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Abstract 

Using quantum teleportation a quantum state can be teleported with a certain 

probability. Here the probabilities for multiple teleportation are derived, i.e. for the 

case that a teleported quantum state is teleported again or even more than two times, 

for the two-dimensional case, e.g., for the two orthogonal directions of the 

polarization of photons. It is shown that the probability for an exact teleportation, 

except for an irrelevant phase factor, is 25%, i.e., surprisingly, this result holds for 

the case of a single teleportation as well as for an arbitrary number of a sequence of 

teleportations. In the remaining 75% of the cases, unitary transformations occur, 

which are equivalent to those occurring for a single teleportation except for an 

irrelevant phase factor. 
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Introduction 

It is known that the quantum state of a particle can be transferred onto another 

particle, the latter may in principle be, e.g., several kilometres away from the initial 

one [1,2]. The process is called quantum teleportation. For the two-dimensional case 

the original quantum state can be written as  

〉+〉=〉 1|0|| baψ  ,      (1) 

where |  may denote horizontal polarization, and |  vertical polarization. a and b 

are two complex numbers with | . This state is in the hand of the 

sender (Alice). Via an experimental setup called quantum teleportation, as 

experimentally shown first by Bouwmeester et al. [2], this state can be teleported to a 

receiver (Bob). Except for an irrelevant phase factor, Bob obtains one of the 

following four possible states with equal, i.e., 25% probability 

〉0 〉1

1||| 22 =+ ba

〉=〉 ψϕ || 11 M , 〉=〉 ψϕ |22 M| , 〉=〉 ψϕ |33 M| , 〉=〉 ψϕ |44 M| , (2) 

where  
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i.e., in the first case, an exact teleportation of the state is achieved, except for an 

irrelevant phase factor. In the three other cases, simple unitary transformations do 

occur.  

In the following text, first, the equations for the states for double teleportation are 

described and the probabilities for different outcomes are derived, second, the 

corresponding results for an arbitrary number of teleportations are obtained, and, 

finally, it is concluded that multiple teleportation can be realised experimentally with 

available technology. 
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Equations for double quantum teleportation 

Bob can teleport the state he received from Alice to a further receiver (Charlie). In 

the following, the probability that Charlie receives the original state 〉ψ|  is 

computed. At first one could suggest that the probability would be only 

%25.6
16
1
= , because Bob received the state with 25% probability, however, 

detailed computation will show that this is not the case. Charlie will receive with 

equal probability one of the following 16 states 

〉=〉=〉 ψϕφ ||| nmnmnm MMM , with { }4,3,2,1, ∈nm . (4) 

Computation of  yields nm MM
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From here it follows that in all cases, four possible results essentially correspond to 

one result known from the single teleportation. From (5) it follows that, except for an 

irrelevant phase factor, with probability of 25% the final state will be the same as the 

original state, as it is known for the single teleportation, and not just with probability 

of 6.25%. According to (6-8) also the other three possible states are, except for a 

phase factor, the same as for the single teleportation. 
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Equations for multiple quantum teleportation 

The case of an arbitrary number of sequential teleportations is considered. Using 

complete induction it is clear that the final states will again be the same as for the 

single teleportation except for an irrelevant phase factor. To determine the states 

exactly, consider the case that the original state is teleported p times. The final states 

can be written as  

〉⋅⋅⋅=〉⋅⋅⋅ ψϕ ||
11 kkkk MM

pp .     (9) 

Here, k1=q in case the first teleportation is the one corresponding to the 

transformation Mq (3), where q can be 1, 2, 3, or 4 respectively. Analogously, k2 , k3, 

…, kp indicate the results of the second, third till to the pth teleportation. In order to 

evaluate (9) it is efficient to replace each product of two neighboring matrices in (9) 

by a single matrix, continuing this p-1 times till only one matrix is left. This takes just 

p-1 computational steps in total, and it can be done using (5-8). An operator R for 

replacement is defined via the following equations  

{ }

{ }
















==−
≠≠∈

=+=−=+−
=−
=−

==+
∈=−

=

2. and 4 if,
, , ,2,3,4with 

 2 ifor  ,1 ifor  ,1 if,)1(
1, if,
1, if,

4, if,
,2,3 and  if,

3

1

1

nmM
nqmqm,n,q

nmnmnmM
nM
mM

nmM
m,nnmM

MRM

q
m
m

n

nm               (10) 

The following results hold: 

nmnm MMMRM = , { }4,3,2,1, ∈nm , and { } nmMRMq :4,3,2,1 ∈∃ qM∝ .     (11) 

The two-matrices operator R can be applied to (9) iteratively  

〉⋅⋅⋅=〉⋅⋅⋅=〉 −
⋅⋅⋅ ψψϕ |||

111

1
kk

p
kkkk MMRMM
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After doing so, this equation contains just one single matrix. Only p-1 times two 

neighboring indices have to be replaced by a single index, and eventually up to p-1 

occurring minus signs on the right side of eq. (10) have to be taken into account.  
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Conclusion 

Applying exactly the experimental scheme of Bouwmeester et al. [2] only two out of 

the four Bell states can be discriminated [3]. It is known that it is impossible to 

conduct a complete Bell measurement on two-mode polarization states using only 

linear passive elements [4], unless the two photons are entangled in a further degree 

of freedom [5]. Schemes involving non-linearities have been developed, e.g., 

applying resonant atomic interactions [6], or by Fock filtering using the Kerr effect 

[7]. Vitali et al. [8] have described a scheme to detect all four Bell states and to 

conduct a complete quantum teleportation using a Kerr non-linearity which is 

feasible using available technology. Further, rather different versions of quantum 

teleportation have been performed successfully yet [9-11]. 

Realising, e.g., the scheme in [8] for single teleportation, complete multiple 

teleportation as described in the present text can be undertaken as follows. Each 

sender (Alice, Bob, ...) determines which of the four possible unitary transformations 

( M ) occurred from her/him to the corresponding next receiver 

(Bob, Charlie, ..., Fred). Each sender can encode this information within two classical 

bits. All bits, together with the information from which sender the bits are, can be 

sent to the final receiver (Fred) who then simply has to apply (12) as described using 

(10), determining a single matrix ( ) which describes the 

transformation that occurred to the original state during multiple teleportation. 

According to (5), Fred can then apply the same single unitary transformation 

( M ) to the state he received. Of course, in case that the single 

matrix is , no transformation has to be made at all. Doing so he will, according to 

(5), obtain in all cases the original quantum state, except for an irrelevant phase 

factor. 

4321 or  ,,, MMM

4321 or  ,,, MMM

1M

4321 or  ,,, MMMM

The described scheme is minimal in the sense that a minimal number of 

transformations, i.e. no one or one, has to be conducted by the final receiver to 

recover the original state. 

Realising multiple teleportation of quantum states it will be possible to chain 

quantum states over large distances, and, further, multiple teleportation can be used 

within quantum computers. 
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