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Introduction

In the last decades large scale Earth’s monitoring has become possible thanks
to the radar instruments. These systems are useful to monitor a scene and
collect measurements even if we are far from it. In particular they have in-
creased the applicability of remote sensing techniques, extending it to the
vegetated areas monitoring. These imaging radars are airborne or space-
borne radars which generate a reflectivity map of an illuminated area through
trasmission and reception of electromagnetic energy. Special attention has
been paid to synthetic aperture radar (SAR) because of its high spatial res-
olution and multivarious information content. SAR sensors operate in the
microwave region of the elctromagnetic spectrum with wavelengths between
1cm and several meters. As an active system, a SAR emits by itself mi-
crowave radiation to the ground and measures the electromagnetic backscat-
tered field. The measurements are then processed to obtain a high resolution
image. Because SAR systems operate with an illumination of their own, they
can perform equally well during day and night. A SAR system consists of a
transmitter and a receiver; if they are different the radar system is known as
bi-static or multi-static (depending on the number of the receivers), other-
wise if they coincide, it will be called monostatic.

One limitation of a SAR system is due to the cylindrical simmetry of the
acquisition that does not allow to evaluate the height of an observed point.
Two main extensions of conventional SAR have been pursued in the past
to resolve the limitation in the elevation: SAR interferometry and SAR po-
larimetry. SAR interferometry tries to break the cylindrical symmetry using
two acquisitions obtained along two parallel paths separeted by a baseline B.
The drawback of this method is that it is not able to resolve several scatterers
in the same resolution cell. SAR polarimetry is another major extension of
conventional single channel SAR imaging. The main feature is that it allows
a discrimination of different types of scattering mechanisms. Polarimetric
SAR interferometry (POLInSAR) is a new technique that tries to combine
the capability of interferometry to extract the height information with the
polarimetric capability to decompose the backscattered signal in a sum of
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different scattering mechanisms. With POLInSAR the topographic height of
the phase centre of each extracted scattering mechanism can be estimated
independently. Anyway this technique fails when we want to resolve two
scatterers at different height with the same scattering mechanism.

This drawback gives birth to an onther type of SAR systems called SAR
Tomography (SARTom). A first demonstration of SARTom for the airborne
case was done in 1998. Through the several acquisitions it is possible to build
up an aperture in the direction perpendicular to the flight path allowing to
define a vertical resolution. This capability allows a 3-dimensional (3D)
imaging of an observed scene. In order to achieve good resolution a big
number of tracks is required. Moreover, the maximum volume height defines
the sampling along the tomographic aperture that must respect the Nyquist
criterion to avoid aliasing. SARTom offered for the first time the possibility
to see through the vegetation. This feature is very important in the scenario
of Kyoto protocol. In the last years, in fact, the need to monitor forests
has increased in order to extract information about their height and for
forestry classification. In particular, the height of forest has become the key
parameter to do an analysis of the global carbon stocks. In this context,
the thesis deals with a new approach to reduce the number of tracks, to
present a strategy to design a constellation for SAR Tomography and to
investigate on an inversion parametric approach to retrieve the reconstruction
in the height direction in order to evaluate the ground and mean canopy
height. One possibility to retrieve information about the height consists in
solving a linear inverse problem with SVD. Concerning the design of the
transmitting-receiving scheme, the choice of the number and the locations of
the spatial acquisitions is of fundamental importance in order to retrieve the
3D structure. Formally, as long as a linear scattering model of the scenario is
employed and the available a priori knowledge is exploited, the reconstruction
by a SVD approach should follow a first design stage of the measurements to
be performed having the aim of improving the ill-conditioning. This can be
performed by optimizing the behaviour of the singular values as a function
of the parameters defining the acquisition scheme. Concerning the inversion
of the problem to obtain a reconstruction, an algorithm based on a global
minimization of a funtional is presented in the second part of the work. This
approach could lead to a better resolution of the reconstruction.

In Chapter 1 we introduce the principles of SAR data processing. SAR
interferometry is also introduced as first step to overcome limitation of con-
ventional SAR. A brief look at Polarimetry and Polarimetric SAR interfer-
ometry is done in order to point out the reason of using SAR Tomography.
An application of SARTom is presented in the framework of forest biomass
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estimation.

In Chapter 2 we formulate the problem and present the main approach
for the focusing of a tomographic signal. The Fourier based Specan is pre-
sented showing its need to use a large number of tracks. Spectral estimation
methods,CAPON and MUSIC, are presented.

Chapter 3 relates to the main work of the thesis. In the first part we
present the inversion based on Singular Value Decomposition in order to re-
construct the density profile in the height direction. Then, we use SVD to
optimise the constellation with the reduced number of tracks. The second
part involves a different apporach to the problem. We implement a para-
metric algorithm for inversion based on the minimization of a functional.
We present a global iterative stochastic algorithm for optimisation known as
Multi-Level Single Linkage method.

In Chapter 4 we presents results obtained with SVD inversion and the
parametric inversion using simulated data. Then we present the data set for
the experimental data; the data set is property of DLR. It has been acquired
from E-SAR over the forest of Dornstetten (Germany) in September 2006.
We show the result ontained with SVD inversion using the real data. Finally,
we combine the SVD optimisation of the constellation with the parametric
inversione in the case of real data and reduced constellation. Conclusions
and outlook are carried out at the end of the chapter.
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Chapter 1

Introduction on SAR
Tomography

1.1 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) refers to a particular set of active mi-
crowave sensors used to generate a two-dimensional reflectvity map of an
examined scene. A common configuration of a SAR consists in mounting a
microwave transmitter and receiver on a moving platform like an air-plane
(Airborne SAR) or satellite (Spaceborne SAR); The SAR system illuminates
an area on the ground by trasmitting electromagnetic pulses with a certain
Pulse Repetition Frequency (PRF) and receives the backscattered echoes,
which are sampled and stored in a matrix, commonly called the raw data.
Then the raw data are processed to obtain the reflectivity map of the scene.
A SAR system can operate in different acquisition modes ([Cumm 04]):

� Stripmap SAR: In this mode, the antenna pointing direction is held
constant as the radar platform moves;

� Spotlight SAR: This mode steers the antenna during the acquisition
to illuminate the same area (spot);

� ScanSAR: In this mode the antenna beam is periodically changed to
illuminate different subswath in the range direction.
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1.1 Synthetic Aperture Radar

Figure 1.1: Airborne SAR stripmap geometry

In this work we focus on Airborne SAR systems and all the data presented
have been acquired in the stripmap mode. In this case the antenna is ori-
ented parallel to the flight direction (azimuth) and it looks sidewards to the
ground (see Fig.1.1). The look direction of the antenna is normally called
‘range’or ‘slant-range’. The transmitter emits short radar pulses to the
ground and after a certain time delay ∆t the receiver will have the backscat-
tered echoes from the ground. The time delay will be

∆t =
2r

c
, (1.1)

where c is the speed of light. With regard to the range spatial resolution, we
can observe that two objects ∆r-away can be effectively discriminated only
if the received pulses - of width Tr - are completely separeted only. This
condition implies that

∆r ≥ δsr =
cTr
2

, (1.2)

where δsr is the achievable slant range resolution, which can be also expressed
as function of the corresponding pulse bandwith W

δsr =
c

2W
. (1.3)
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Equation (1.3) suggests that it is possible to achieve high resolution in range
only by using a very short pulse duration. The resulting energy densities
are often difficult to handle in practice. To overcome this problem, a modern
radar sytem, including a SAR one, transmits long linear frequency modulated
pulses (chirp). In the along-track or azimuth direction, the resolution of a
side-looking radar is obtained through the physical dimension of its aperture.
It corresponds to the size of the antenna footprint on the ground along the
flight direction. The angular resolution αra of an antenna of length L in the
azimuth direction corresponds to the antenna beam width. For a wavelength
λ it is given by

αra =
λ

L
⇒ δaz = αrar0 =

λr0

L
, (1.4)

where δaz is the spatial resolution in azimuth at a given range r0. To achieve
an high resolution in azimuth1 we need to increase antenna dimension - that
is not an easy task to be accomplished - and or to use short object distances.
A SAR overcomes these problems taking advantage of the ”phase history” of
scatterers. The coherent sum of all the echoes received leads to the formation
of a synthetic antenna. The situation is similar to that of an object imaged by
a linear antenna, of length equal to the distance covered during the azimuth
illumination time, when the antenna is far away from the object. In the case
of a synthetic aperture only one antenna is used and thanks to the movement
of the platform the different antenna positions are obtained. Considering that
the phase difference between elements of the synthetic aperture results from
a two-way path difference, the angular resolution of a synthetic aperture of
length Lsa is:

αsa =
λ

2Lsa
. (1.5)

The maximum length for the synthetic aperture corresponds to the length of
the flight path from which a scatterer is illuminated or, likewise, to the size
of the antenna footprint on the ground at the distance r0,

Lsa = αsar0 =
λr0

L
⇒ δaz = αsar0 =

L

2
. (1.6)

According to equation (1.6) we can conclude that the achieved resolution is
independent of the range distance and is determined only by the size of the
real antenna. Typically an Airborne SAR has a resolution approximately up
to 30cm.

1A Spaceborne system with an orbital height of 800Km and an antenna aperture of
15m shows a resolution of approximately 3Km only.
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1.1.1 SAR data processing

The aim of SAR data processing is to obtain the best possible representation
of a scene from the collected raw data. For a description of the scattering
processes on the ground, a reflectivity function ρ(x, r) can be used, which
models the ground as a superposition of separeted δ-like point scatterers:

ρ(x, r) =
∑
n

ρnδ(x− xn, r − rn) , (1.7)

where ρn is the complex backscattering amplitude of the n-th scatterer and
δ(x, r) the two dimensional Dirac’s delta-function. The transmitted pulses
of the sensor at position x can be expressed as

st(x, t) = p(t)ejwt , (1.8)

where p(t) denotes a pulse envelope and w is the carrier frequency of the
radar. Assuming that the system transmits and receives the same pulse
at the same position (stop and go approximation), the echo of a scatterer
positioned at (xn, rn) is received by the sensor after a time delay of

∆tn(x, xn, rn) =
2r(x− xn, rn)

c
. (1.9)

The entire received echo at position x is a coherent superposition of all the
echoes from the scatterers in the scene illuminated from that position2:

stotr (x, t) =
∑
n

ρnδ

(
t− 2r(x− xn, rn)

c

)
e−2jwr(x−xn,rn)/c ejwt (1.10)

stotr (x, t) = ejwt
∫∫

ρ(xn, rn)e−2jwr(x−xn,rn)/cδ(t−∆tn)dxndrn . (1.11)

We can notice that the echo phase of a scatterer depends on the trend of
∆tn and therefore on r(x− xn, rn). As the sensor is positioned at r = 0, the
range history of the n-th scatterer can be written as

r(x− xn, rn) =
√
r2
n + (x− xn)2 w rn +

(x− xn)2

2rn
. (1.12)

The echoes of this scatterer received from different azimuth positions x do
not appear in the same range line, but on a hyperbolic curve centered at xn

2In the receiver hardware the carrier frequency is removed by a quadratic demodulation
before data recording.
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1.1 Synthetic Aperture Radar

and with a curvature dependent on rn. This effect is referred in the literature
as ‘range cell migration’ ([Cumm 04],[Olm 93]). Because of this, range times
and range distances are not interchangeable. In case that a short illumination
path with respect to the distance to the object (Lsa � rn) can be assumed,
a parabolic approximation as in (1.12) is possible. This is the case for SAR
sensors with moderate to low resolution. Under this approximation the total
response of a single scatterer at position (xn, rn) sounds like:

snr (x, xn, rn) = ρne
2jwrn/c ejw(x−xn)2/crn rect

(
(x− xn)

Lsa

)
. (1.13)

The intention of SAR processing is to focus the received energy of a scatterer
on the position of the scatterer from which it originated. In practice, the task
of this algorithm is to obtain an estimation of the original reflectivity function
ρ(x, r). The most common method is based on the concept of matched
filtering. The image result v(x, r) is obtained by correlating the raw data,
pixel by pixel, with two-dimensional reference functions href (x, t, xn, rn). For
one single pixel (xn, rn), this can be written as:

v(xn, rn) =

∫∫
stotr (x, t)href (x, t, xn, rn)dxdt . (1.14)

An azimuth line of the image result can be obtained by:

v(xn, rn) = stotr (x, t = 2rn/c)�x href (x, rn) , (1.15)

where �x denotes the correlation in the x-direction and href (x, rn) is the
matched reference function for focusing a point scatterer located in the range
distance rn. Because of the large amount of data acquired in modern high
resolution radar systems, this time domain formulation is very slow and in-
efficient. Using the so-called ‘Convolution Theorem’ the correlation can be
expressed as a multiplication with a space inverted response in the wavenum-
ber domain,

Ṽ (kx, rn) = S̃totr (kx, 2rn/c)H̃ref (kx, rn) , (1.16)

where Ṽ (kx, rn), S̃totr (kx, 2rn/c) and H̃ref (kx, rn) are the Fourier-transforms
of v(xn, rn), stotr (x, t = 2rn/c) and href (x, rn) in the x-dimension, respectively,
and kx denotes the spatial frequency in the azimuth direction. The transfer
function H̃ref (kx, rn) can be obtained from href (x, rn) by:

H̃ref (kx, rn) =
1

2π

∫
href (x, rn)e−jkxxdx . (1.17)
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An approximation of the integral in (1.17) can be found by the stationary
phase assumption [Olm 93]. With the stationary points found, the integral
can be approximated as:

H̃ref (kx, rn) =
1

2π
e
jcrnk

2
x

4w . (1.18)

Going back to the time domain we obtain the azimuth line of the image
result:

v(xn, rn) = Lsaρne
2jwrn
c e

jw
crn

(x−xn)2sinc

(
wLsa
crn

(x− xn)

)
, (1.19)

where ‘sinc’stands for the ‘sinus cardinalis’-function sin(x)/x. As we can see

(a) (b)

Figure 1.2: Signal Compression. (a) Chirp Signal, (b) Uncompressed signal

in (1.2) the first sidelobes are -13dB lower than the main peak. This can
cause problems if a strong target is near to some weaker targets. Therefore,
using an Hamming-window function to weight the reference function it is
possible to show a better Peak-Sidelobe-Ratio (PSLR).

(a) (b)

Figure 1.3: Signal Compression with Hamming windowing. (a) Chirp Signal,
(b) Uncompressed signal
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1.1 Synthetic Aperture Radar

The PSLR of the compressed signal shown in 1.4 is now much better and
has a value of averagely -43dB. To obtain the final two-dimensional point
target response, we have to use a second reference function in the range di-
rection. The final result is shown in the following picture. The input is the
complex signal, as recorded by the SAR sensor. After an one dimensional
Fourier-transform in range direction, each range line is multiplied with
the Fourier-transform of the reference function in range. After the inverse
FFT back to time domain, the data are compressed in range, but are still
defocused in azimuth. Then a Fourier-transform in azimuth is performed,
followed by a multiplication of the Fourier-transform of the reference func-
tion in azimuth. After the back-transformation, the complex image result is
derived. When our scene is a real one with more than one scatterer there is

(a) (b) (c)

Figure 1.4: (a) Raw data, (b) Range uncompressed Raw data, (c) Poin target
response

a high probability to incur in a degrading effect called ‘speckle’ (see Figure
1.5). We know that the backscatter of each resolution cell or pixel is the com-
bined effect of all the individual objects within the cell that return or scatter
the radar signal. For this reason, cells that are adjacent to each other and
appear visually very similar may have completely different backscatterer at
radar wavelenghts. This is because the individual objects within the cell are
positioned differently giving a different resultant backscatter. The variation
in backscatter for otherwise homogeneous cells is the origin of the speckle and
gives a grainy appearance to radar images. Speckle can be reduced through
an averaging process in order to obtain a better estimation of the desired in-
formation. This process is known as ‘multilook’. The drawback is, of course,
the resolution loss due to the averaging. The multilook process in frequency
domain consists in dividing the spectrum, in separate looks, to later incoher-
ently add the resulting images. The method for SAR processing presented
in this subsection is a simplified algorithm using some approximations but is
quite usable for SAR sensors with relatively low resolution. More advanced
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Figure 1.5: Speckle generation

algorithms, including range migration, become important for high resolution
imaging and can be found in the literature ([Cumm 04]).

1.1.2 SAR terrain induced distortion

A quick glance comparing a radar image with an aerial photography or a
satellite one will reveal obviuos differences caused by the fact that relief
displacement is in the opposite directions. On aerial photographs relief dis-
placement falls away from the nadir point because the top is imaged further
from nadir than the base of a structure. In radar images the top of a structure
may be imaged before the base. Thus, the relief displacement falls towards
the nadir. Due to the side looking geometry, the relief displacement will be
greater in slant range than ground range. The slant range distorsion occurs
because the radar measures the distance to features in slant-range rather
than true horizontal distance along the ground. This results in a varying im-
age scale, moving from near to far range. The following subsections present
typical terrain distorsion occurring in a radar image. The three character-
istic distorsion resulting from the geometric relationship between the sensor
and the terrain that are present in a radar image are foreshortening, lay-
over and shadowing . Foreshortening is the effect by which the foreslopes
of hills and mountains appear to be compressed. As we can see in Figure
1.6, the simplified terrain element (hill) represented by the triangle ABC is
illuminated by the radar beam and the echoes from points a, b and c are
projected on the slant range image plane to points a

′
, b

′
and c

′
. When ab is

sloped towards the sensor S, but only so much that α < γ, then the image
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1.1 Synthetic Aperture Radar

Figure 1.6: Foreshortening generation

a′b′ will be shorter than ab. When the slope is perpendicular to the beam,
α = γ, a

′
will coincide with b

′
so that all the energy scattered from the slope

will be compressed into a single pixel. This is complete foreshortening and
marks the transition to layover. Here α > γ and consequently b

′
precedes a

′

Figure 1.7: Layover generation

in range sequence. The echo from ab is distributed, but in reverse sequence
and superimposed over that from ba′′ . A third configuration is illustrated in
Figure 1.7 where the back slope bc of the terrain is steep enough so that it
cannot be illuminated by the radar beam. This occurs when the slope is and
is known as shadowing. Backscatter information is lost, not only from area
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Figure 1.8: Shadowing generation

bc, but also from cd which is shadowed in the proper optical sense of the word.
If we want to add further imaging capabilities to extract height information
we need to use approaches different from SAR conventional processing.

1.2 SAR Interferometry

It has already been mentioned in the section 1.1 that the standard SAR
imaging problem displays a cylindrical symmetry. This means that two scat-
terers can have the same range distance to the sensor but are seen under a
different look angle. In this case the radar echo arrives at the same time at
the sensor, and they cannot be solved. This condition implies that is not
possible to obtain any information about the height. A first step to intro-
duce some imaging capabilities in the vertical direction is to use cross-track
interferometry.

1.2.1 Cross-Track Interferometry

The main goal of cross-track interferometry is to break cylindrical symme-
try and to extract topographic information using two SAR images acquired
from slightly different positions ([Cumm 04]). The two images can either be
acquired by using two antennas on the same platform simultaneosly (single-
pass interferometry), or by using one antenna in repeated passes over the

10



 

                                                                                                                     

 
1.2 SAR Interferometry

Figure 1.9: Sketch of SAR interferometry geometry

same area at different times (repeat-pass interferometry). The basic
imaging geometry is shown in Figure 1.9. The scene is observed from two
antennas S1 and S2, separeted by a baseline B with a slope ε. At a certain
topographic height z a scatterer ρ is located, which is observed under the
off-nadir angle θ. The range distances of two antennas to the scatterer are r1

and r2, respectively. The receiving signals s1 and s2, after SAR processing,
consist of the complex terrain reflectivity ρ(r) modulated by a phase term
due to range distance to the scatterer:

s1(r1) = |ρ1(r1)|ej∠ρ1(r1) and s2(r2) = |ρ2(r2)|ej∠ρ2(r2) . (1.20)

The phase of the received signals consists of two contributions: a determin-
istic one associated to the round trip path lenghts, and a random phase
contribution due to the different terrain reflectivity charateristic:

∠s1(r1) = 2
2π

λ
r1 and ∠s2(r2) = 2

2π

λ
r2 . (1.21)

The knowledge of the two antenna locations and of the corresponding range
distances permits the determination of the location of the point P in the
three-dimensional space by simple triangulation. The accuracy depends on
the precision of estimation of these parameters. Before interferograms can be
formed, the two images have to be precise and coregistrated to each other.
Because they are acquired in repeat-pass mode the tracks are not syncronized,
a certain offset in azimuth might occur. Because of the baseline, a similar
thing happens in range direction. At this point a complex interferogram is
formed just multiplying the first signal with the complex conjugate of the

11



 

                                                                                                                     

 
1.2 SAR Interferometry

second signal as
s1(r1)s∗1(r2) = |s1s

∗
2|e−j

4π
λ

∆r12 . (1.22)

Thus, the phase of the interferogram corresponds to the path difference of
the two signals ∆r12:

Φ = −4π

λ
∆r12 + 2πN , where N ∈ Z . (1.23)

Using equation (1.23), it is possible to measure the range difference ∆r12 in
terms of the interferometric phase. Using the Carnot Theorem, ∆r12 may be
expressed in terms of imaging geometry parameters as

r2
2 = r2

1 +B2 + 2r1B sin (θ − ε) ⇒ sin (θ − ε) =
r2

2 − r2
1 −B2

2r1B
, (1.24)

where ε denotes the slope of the baseline with respect to the horizontal plane,
and θ the look-angle from the first antenna. With known θ, the height of the
scatterer can be calculated by:

h = h0 − r1 cos θ . (1.25)

If the baseline B is small compared to the slant range distance we can use
the parallel ray approximation; substituting r2 = r1 + ∆r12 in (1.24) and
neglecting ∆r2

12, we have:

∆r12 = B sin (θ − ε) +
B2

2r1

⇒ ∆r12 = B sin (θ − ε) . (1.26)

Furthermore, it is common to decompose the baseline B into a parallel B‖
and orthogonal B⊥ to the line-of-sight of range direction component

B‖ = B sin (θ − ε) B⊥ = B cos (θ − ε) , (1.27)

then the interferometric phase is:

Φ = −4π

λ
B sin (θ − ε) = −4π

λ
B‖ . (1.28)

Consider now the following two scenarios. In a first scenario, a second point
P

′
located at the same height z of P , but at a different range distance

r1 + ∆r12, as shown in The look-angle will change about ∆θR, and the cor-
responding interferometric phase of P ′ is

Φ
′
= −4π

λ
B sin (θ + ∆θR − ε) . (1.29)
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The phase difference between the two points in the interferogram is given by

∆ΦR =
4π

λ
B[sin (θ + ∆θR − ε)− sin (θ − ε)] ≈ −4π

λ
B sin (θ − ε)∆θR .

(1.30)
Applying a small angle approximation, r1∆θR ≈ r1 sin ∆θR = ∆r12/ tan θ,
the phase difference between the two points in the interferogram as a function
of their range difference ∆r12 becomes

∆ΦR = −4π

λ

B sin (θ − ε)∆r12

r1 tan θ
= −4π

λ

B⊥∆r12

r1 tan θ
. (1.31)

Equation (1.31) states that a flat surface without topography generates a
linear interferometric phase known as flat-earth phase component. This lin-
ear term has to be subtracted in order to relate directly the interferometric
phase to the topography. In a second scenario now, we consider the point
P

′
to be located at the same range distance r1 as P , but at different height

z + ∆z as shown in The look-angle will alter by ∆θz, and the phase in the
interferogram will be

Φ
′
= −4π

λ
B sin (θ + ∆θz − ε) . (1.32)

According to the previous considerations, in order to obtain the excessive
phase contribution caused by the height difference between the two points,
we have to subtract the range dependent phase component

∆Φz = −4π

λ
B[sin (θ + ∆θz − ε)− sin (θ − ε)] ≈ 4π

λ
B sin (θ − ε)∆θz .

(1.33)
Finally, using again r1∆θz ≈ r1 sin ∆θz = ∆z/ sin θ, the interferometric phase
difference related to the height variation ∆z, results as

∆Φz = −4π

λ

B sin (θ − ε)∆z
r1 sin θ

= −4π

λ

B⊥∆z

r1 sin θ
. (1.34)

As shown by Equation (1.34), the interferometric phase differences are di-
rectly related to the topographic height of the scene3. Up to now the fact
that the interferometric phase is measured only modulo 2π has been ignored.
Before applying equation (1.34), it is necessary to reconstruct the absolute
phase from the measured ‘wrapped’phase. Several so called ‘phase unwrap-
ping ’ algorithms have been addressed in recent publications ([Prat 04]). An

3For example, an airborne L-band system with a flight height of 4000m achieve a
resolution of at least 50cm in height with a baseline of 25m.

13



 

                                                                                                                     

 
1.3 SAR Polarimetry

important factor in SAR interferometry is the quality of the interferogram. In
general, the assumption that the complex reflectivity is angle-independent is
not correct. For repeat pass interferometry, a stability over time is addition-
ally necessary. Therefore, the interferogram appears usually noisy, reducing
the precision of the height estimation as well as limiting the ability to resolve
the 2π ambiguities. A measure of the interferogram quality is the normalised
complex cross-correlation between the two SAR images, known as the inter-
ferometric coherence:

γ := − |E(s1s
∗
2)|√

E(s1s∗1)E(s2s∗2)
. (1.35)

The coherence varies between 0 (no correlation) and 1 (the two images are
identical). In figure 1.10 present a block diagram of a simple SAR Interfer-
ometry processing. Even if SAR interferometry introduce some capabilities

Figure 1.10: Block diagram to obrain an interferogram with two images using
the Flat-Earth removal

to map a scene in the third dimension, it has several deficiencies. A major
limitation of interferometry is its inability to resolve two or more scatterers
located in the same range distance. SAR interferometry alone can only pro-
duce a surface and never a volumetric representation of the examined scene.

1.3 SAR Polarimetry

A first contribution to overcome the ambiguity problem in vertical direction
of single-channel SAR remote sensing comes from polarised waves ([Clou 98]).
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(a) Interferogram with flat
term

(b) Interferogram without
flat term

(c) Coherence map

Figure 1.11: Interferogram and coherence map

A polarimetric SAR system is able to measure the backscattered electric field,
including its polarisation state. The scattering mechanism leads to changes
of the polarisation of the trasmitted wave. Therefore, the polarisation of the
backscattered wave depends both on the scattering properties of the object
and the polarisation of the trasmitted wave. In this way is possible to extract
additional information about the scattering process and to separate multiple
contributions occuring in the same resolution cell related to different scatter-
ing mechanisms. The polarisation of an electromagnetic wave describes the
behaviour of the oscillating electric field vector ~Etot. Due to the transverse
nature of electromagnetic waves, the electric field vector lies in the plane or-
thogonal to the propagation direction. Therefore, any possible polarisation
state can be decomposed in a linear combination of two components which
are both orthogonal to the propagation direction:

~Etot = Eh~h+ Ev~v , (1.36)

where Eh and Ev denote the projection of Etot onto the versors ~h and ~v,
which form a reference orthogonal basis. The projections Eh and Ev are
complex quantities and describe the polarisation state of far-field electro-
magnetic wave. The first tool to describe scatterers using polarymetry is
the 2x2 complex scattering matrix [S], which describe the relation between
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transmitted and received wave:(
Er
h

Er
v

)
=

[
Shh Shv
Svh Svv

](
Et
h

Et
v

)
. (1.37)

Et
h and Et

v denote the horizontally and vertically polarised components of
the transmitted field, and Er

h and Er
v the ones of the measured backscat-

tered field, respectively. The elements of [S] denote the complex scattering
amplitudes; Shh and Svv are referred to as the co-polar, Shv and Svh as
the cross-polar components. In radar, the scattering matrix is measured by
transmitting and receiving successive pulses in h− and v− polarisation. It
has to be noted that in the case of backscattering in a reciprocal medium
and symmetric scatterers, the two off-diagonal elements of [S] are identical.
The measuring of full polarimetric scattering matrix allows characterizing an
object through its polarisation signature and to identify and separate dif-
ferent elementary scattering mechanisms. An alternative formulation of the

Figure 1.12: Polarimetric E-SAR image of Oberpfaffenhofen, incl. DLR (HH-
green, VV-blue, HV,red).

polarimetric scattering problem uses a vectorial formulation. This approach
replaces the scattering matrix by a three-dimensional scattering feature vec-
tor ~k3 by projecting the scattering matrix onto an orthonormal set of basis
matrices of a three dimensional vector space:

[S] =

[
Shh Shv
Svh Svv

]
⇒ ~k3 = trace([S]Υ) = [k0, k1, k2]T , (1.38)

where trace([S]Υ) is the sum of the diagonal elements of the matrix while Υ
denotes a complete set of 2x2 complex basis matrices. Due to reciprocity, the
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cross-polarized elements are identical, Shv = Svh, and the scattering vector
is commonly given as a 3-element vector. The basis Υ is not unique and so
there are more than one way for decomposing the same scattering matrix
([Reig 01]). In the literature one important basis set is formed by the three
Pauli spin matrices:

ΥP =
√

2

([
1 0
0 1

]
,

[
1 0
0 −1

]
,

[
0 1
1 0

])
, (1.39)

while the corresponding scattering vector has the form:

~k3P =
1√
2

[
Shh + Svv, Shh − Svv, 2Shv

]T
. (1.40)

The Pauli vectorisation is very common because it can be physically inter-
preted in terms of three basic scattering mechanisms:

� Pauli 1 (Shh+Svv) : emphasizes isotropic ‘odd’-bounce scatterers, such
as idealised ‘flat’surfaces or trihedral corner reflectors;

� Pauli 2 (Shh − Svv) : emphasizes isotropic ‘even ’-bounce scatterers,
like for example a double bouce;

� Pauli 3 (2Shv) : corresponds to isotropic ‘even’-bounce scattering with
an orientation rotated by π/4 like a double bounce target whose axis is
rotated to the line-of-sight direction (e.g. dihedral corner reflectors with
a rotation of 45 degrees). Also in case of random volume scattering,
a significant contribution of the backscattering is found in this third
component ok ~k3P .

In general, it is possible to evaluate the contribution of a certain scatter-
ing mechanism ~w of the measured scattering vector ~k just calculating its
projection:

µ = ~w † · ~k , (1.41)

where † denotes the adjoint operation4 and µ is the complex scattering am-
plitude of the chosen scattering mechanism.
The scattering matrix is able to characterize only one single deterministic
scatterer present in each resolution cell. This approach fails if we consider
distributed scatterers. For this kind of targets the backscattering of each
resolution cell is related to the coherent superposition of several scattering

4complex conjugate transpose
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processes. Due to the presence of speckle noise, these scatterers can be de-
scribed only in a statistical way. One possible approach is to introduce a
coherency matrix [T3] and try to decompose it as the combination of differ-
ent canonical scattering mechanisms in form of second order statistics, such
as the variance and the correlation for all elements of [S]. In the Pauli-basis,
the coherency matrix is given by

[T3] = 〈~k3P
~k †3P 〉 ,

with 〈. . . 〉 denoting a spatial averaging. One possibility to decompose [T3]
was proposed by S.R. Cloude and is based on eigenvector analysis. Due to
the spatial averaging [T3] is in general of full rank 3 and as consequence of
its definition it is a hermitian positive semidefinite matrix. This means that
it can be written as a sum of three indipendent coherency matrices:

[T3] =
3∑
i=1

[T3]i = λ1(~u1~u
†
1 ) + λ2(~u2~u

†
2 ) + λ3(~u3~u

†
3 ) , (1.42)

where λi are the eigenvalues of [T3] and ~ui their orthonormal eigenvectors.
Eigenvalues represents also the amplitude of the scattering process described
by the corresponding eigenvector. A way to evaluate if all three scatter-
ing mechanism are dominant or not is to define the polarimetric scattering
entropy Hpol. It is defined as

Hpol :=
3∑
i=1

−Pi log3 Pi , with Pi =
λi∑3
j=1 λj

. (1.43)

Entropy can assume a value between 0 and 1. An entropy of 0 means that
thare is only one scattering mechanism dominant (or one significant eigen-
value). This condition is equivalent to have a deterministic scatterer de-
scribed by a single scattering matrix. On the other hand, an entropy close
to 1 occurs when eigenvalues are identical and there are several equally dom-
inant scattering processes.
Summarizing, using polarimetry for target decomposition allows the sepa-
ration of scatterers with different shapes and orientations occuring inside
the same resolution cell. This means that polarimetry alone is not sufficient
to extract information about the spatial height or vertical distribution of
scatterers in our scene.

1.3.1 Polarimetric SAR Interferometry

Polarimetric SAR Interferometry (POLInSAR) is an approach to com-
bine the features of polarimetry with the generation of an interferogram
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([Clou 03]). In this way in the same resolution cell it is possible to evaluate
the height of objects with different scattering mechanisms.
Using polarimetry implies that we have a scattering received vector for each
polarisation. This means that the interferogram generated from two slightly
different positions is a vectorial operation which gives a 6x6 coherency ma-
trix:

Λ12 := 〈~k1·~k †2 〉 =

[
T11 Ω12

Ω †12 T22

]
, (1.44)

where superscripts 1 and 2 refer to the measurements at the two positions
of the baseline, Tii is the 3x3 polarimetric coherency matrices and Ωij is the
interferogram for a certain polarisation. Defining two scattering processes
~w1 and ~w2 the complex coherence will be:

γ̃(~w1, ~w2) =
~w †1 Ω12 ~w2√

~w †1T11 ~w1

√
~w †2T22 ~w2

, (1.45)

If there are two different scatterers separeted in height it is now, in principe,
possible to extract the height of both. One application, presented by Cloude
([Clou 03]), is based on a three-stage inversion process to determine the
height of forests. A two-layer model, is one used for the ground response and
the second one for the canopy. In this 2-layer case or Random-Volume-Over-
Ground (RVOG),([Clou 03], [Clou 98]), the observed coherence is given by
the formula

γ̃(~w) = ejφ
γ̃v + µ(~w)

1 + µ(~w)
= ejφ[γ̃v +

γ̃v
1 + µ(~w)

(1− γ̃v)] , (1.46)

Here the ground phase φ and complex volume coherence γ̃v are combined
with the parameter µ, the ground-to-volume ratio that includes the effects
of wave extinction in the medium. By isolating the polarisation dependent
terms the resulting coherence lies along a straight line in the complex coher-
ence plane. The line intersects the circle at two points. One of these is the
underlying topography related phase; the other one is a false solution and
must be rejected. The first stage is to find straight line inside the unit circle
of interferometric coherence that best fits my data. To do this we vary two
phase variable ψ1 and ψ2 as shown in Figure 1.13. The output from stage 1
is a set of ψ1 and ψ2 paired values for each pixel. The next stage involves
deciding which of these is the true ground phase. As shown in [Clou 98] µ is
given by the distance along the line; this means that the nearer a coherence
point is to Q, the higher is the corresponding ground-to-volume ratio µ. Re-
membering scattering physics, it is reasonable to expect that HV coherence
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Figure 1.13: Coherence distribution.

channel will be ranked furthest away in distance from the ground phase point
Q. To estimate the two remaining parameters, height and extinction, we use
the estimation of ground phase φ and to find the intersection point between
the coherence line and the curve corresponding to the height/extinction vari-
ations. By fixing the mean wave extinction σ at two different values and then
varying the height, we obtain two different loci. Where the curve intersects
the line, we have a candidate γv point. This becomes our estimation of the
volume coherence γ̂est. From the baseline data we can estimate the vertical
wave number kz and then pre-calculate a look-up table (LUT) of γv as a
function oh height hv and wave extinction σ. By comparing γ̂este

−jφ with
the LUT, we can finally have an estimation of the height and extinction.
We have to consider that this approach is based on a fitting algorithm of
noisy data and it is possible that sometimes it gives non-physical solutions
([Clou 03], [Clou 98]). Moreover, in a real case, a volume scatterer such as a
forest, does not show a so simple structure; usually there are more than one
layer of certain ticknesses. Anyway, we have to notice that POLInSAR is
able only to determine just the phase centre for each layer. Moreover, we are
not sure that each layer as a polarimetric signature orthogonal with the other
ones. The estimation process has problem of stability because is based on
an estrapolation algorithm, therefore the problem should be ill-conditioned.
In conclusion, polarimetric SAR interferomtery is able to estimate the height
only of three different scattering process. However if a same scattering mech-
anism is distributed over different heights this tecnique fails because it is not
able to split the received signal into different contributions.
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1.4 SAR Tomography

Tomographic techniques are well known to have real three-dimensional imag-
ing capabilities ([Reig 01]), in particular in medical applications (Computer
Aided Tomography). In the case of SAR the tomographic acquisition pro-
cess as well as the data processing are to be extended in a suitable way. It
has been shown in Subsection 1.1.1, that for a fixed azimuth position x, the
received SAR signal sr(t) under a given off-nadir angle θ is a convolution of
the complex reflectivity ρ(y, z) with the transmitted signal st(t). Therefore,
its spectrum can be expressed in terms of the Fourier-transforms of the
signal S̃r(w) and the reflectivity R̃(ky, kz):

S̃r(w) = S̃t(w)R̃(ky, kz) , with ky =
2w

c
sin(θ), kz =

2w

c
cos(θ) . (1.47)

Spectra of images acquired from different positions (i.e. with different off-
nadir angles θ) contain different slices of the spectrum of the reflectivity
R̃(ky, kz). By using a series of tracks, in this way a knoledge about a two di-
mensional area of the reflectivity function ρ(y, z) can be reconstructed from
this spectrum. This procedure corresponds to the formation of a second
synthetic aperture in the normal direction, which is oriented perpendicu-
lar to the line-of-sight and azimuth direction (see Figure 1.14). It can also
be interpreted as a multi-baseline interferometer with the number of tracks
beign much greater than two. The multi-baseline imaging geometry is the
technique adopted in the following. This imaging technique allows multiple

(a) (b)

Figure 1.14: (a) Principle of multibaseline SAR tomography. (b) Extraction
of 3D profile from N SAR images.

phase center separation in the vertical (height) direction, leading to a full
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3-D reconstruction of the imaged scene. Retrieval of volume structure infor-
mation (e.g. forestry classification) and the solution of the layover problem
are two of the most promising applications.

1.5 SAR and Forestry applications

Forests are a dominant biome of the earth and have an important impact on
its economic and environmental well-being. Moreover, they are also a major
store of carbon, regulator of climate and water flow, habitat for wildlife, and
reservoir of ecological and biological diversity ([Mette 02]). For the reasons

Figure 1.15: Global distribution of forests. Source: FAO 2006

explained above forest inventories are required to get informations about
density, height, age and volume of them. The compilation of national forest
inventories is very elaborate if we consider the large and often remote exten-
sion of forests. In this context, radar remote sensing can contribute to the
monitoring of forests and to an understanding of ecosystem processes, pro-
viding information on some of the more important biophysical parameters.
For example forest Biomass is a key parameter in understanding the carbon
cycle and determining accurately global rates of carbon stocks (see figure
1.5). A methodology, based on forest height estimation from SAR data, was
presented in [Mette 02]. Nowadays, global forest inventory and forest (above
ground) biomass are critical topics in discussions about global climate change.
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In particular forest biomass plays an important role in dynamic ecosystem
change especially with respect to a reliable global Carbon-flux modelling. In
the scenario of Kyoto protocol, this problem has not only an ecological di-
mension but also political ([Mette 02]). One promising approach to estimate

Figure 1.16: Global carbon cycle

forest biomass is via the usable stem volume (ger.: ”Derbholz”-volume). The
”Derbholz”-volume Dh-vol [m3/ha], is defined as the stem volume with more
than 7 centimeters diameter and can be evaluated from

Dh− vol = basal area ∗ average tree height ∗ FzDH (1.48)

Dh− vol = forest height ∗ Fz∗ (1.49)

where basalarea is the stem cross-section at 1.3m = breastheight[m3/ha],
averagetree/forestheight[m], FzDH the ”Derbholz” form factor, a correla-
tion factor, and Fz∗ a modified form factor. Equation (1.48) is a forestry
standard, while the second one is a modification that allows to relate ”Derbholz”-
volume to tree height directly without regarding basal area. Such equations
are defined ”allometric5” bacause they derive a certain size parameter from
related parameters. The pysiological relevance of the allometric equation
becomes evident, lies in the interpretation that any organ of the organism
receives a part of the total growth energy that is proportional to the relative
size. The standard forestry tables contain fixed ratios between basal area,

5[gr.: allos metros - indirect measure. Allometry is the science concerned with the
description of size relations in organisms.]
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average tree height, FzDH and ”Derbholz”-volume. The tables are organized
in age classes and dinstiguish certain forest types. FzDH is therefore regarded
as function of age and forest type. Since radar remote sensing systems
measure height and not age, it makes sense to equation (1.49) and regard
Fz∗ as function of tree heights and forest type.The forestry tables describe
forest types by 3 parameters:

1. Stand conditions;

2. Forestry concept;

3. Species.

An exact estimation of ”Derbholz”-volume from tree heights is possible
when these parameters are known. In a recent study, [Mette 02], it has been
shown that when estimating ”Derbholz”-volume from stand age, information
about stand conditions is very important. On the other hand, when esti-
mating ”Derbholz”-volume from average tree height, the influence of stand
conditions are negligible. This means that a specific height correlates with
a specific biomass. This phenomenon is known as the extended law of Eich-
horn ([Mette 02], [Mette 02]). A common allometric height biomass equation
according to the rule of Eichhorn is:

B = 1.66 · h1.58
f , (1.50)

where B is the Biomass anh hf is the forest height. It becomes evident
we need to define ”forest height”. One promising parameter is the h100,
the average of the highest 100 trees per hectare. The reason is that it is
probably close to the height that is extracted from a radar remote sensing
system. This approach to estimate above ground biomass from forest heights
has a first advantage to measure a significant higher biomass level. The
second main advantage lies in the fact that instead of a direct relation of
backscattered amplitude to biomass, important forest parameters as height,
canopy density and underlying topography are directly estimated. These
parameters are urgently required for a wide spectrum of forest applications
apart from biomass estimation.
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Chapter 2

SAR Tomography: state of the
art

2.1 Formulation of the problem: parallel do-

mains

To analyze the problem we consider a simple geometry where the observation
domain and the investigation domain are parallel as we can see in figure 2.1.
The locations of the tracks along the n direction is called constellation. L
is the tomographic aperture, H is the maximum height of the volume, r0

is the minimum range distance and d is the distance between two tracks,
known also as the baseline ([Reig 00]). The information content of a SAR
resolution cell is the projection of the 3-D scattering contributions into a
2-D plane. The lost dimension is related to the height of the scatterers
that are occurring to form the radar echo that will be compressed into the
resolution cell. Assuming that the scattering mechanism verifies the Born
approximation1, the received signal can be written as

sr(n) =

∫ H/2

−H/2
ρ(n)e−j2β

√
(n−n)2+r20dn (2.1)

1The Born approximation represents the total scattered fields as the superposition of
the scattered fields generated by the single scatterers, neglecting interactions between the
scatterers themselves.
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Figure 2.1: Tomographic constellation and geometry of the problem.

The phase term can be approximated√
(n− n)2 + r2

0

m

r0

√
1 + (n−n)2

r20
≈ r0

[
1 +

(n− n)2

2r2
0

]
= r0 +

(n− n)2

2r0

(2.2)

Neglecting the quadratic phase terms the expression of the received signal is

sr(n) =

∫ −H/2
H/2

ρ(n)e
−j2β nn

r0 dn =

∫ −H/2
H/2

ρ(n)e
−j2 2π

λ
nn
r0 dn (2.3)

We notice that there is a Fourier transform relation between the received sig-
nal and the reflectvity ρ(n). Different approaches can be used to extrapolate
from this relation the unknown reflectivity.

2.2 Spectral Analysis

The basic principle of tomographic SAR focusing is to perform an aperture
synthesis in the n-direction by aid of the different flight tracks. It will be
shown that for reasonable resolutions in height the distances between the
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2.2 Spectral Analysis

furthermost tracks can stay relatively small. In order to distinguish clearly
between sensor and target coordinates, the latter are marked in the following
by an overbar. Additionally, a simplified geometry, as shown in Fig. 1.14, will
be used. It assumes equally spaced baselines and it neglects all projections
related to the off-nadir angle θ, i.e. ~n is considered to have the same direction
as ~z (θ = 90◦). In the real side-looking case, d would correspond to the
baseline perpendicular to the line-of-sight (LOS) and ~n to a scatterer height
of h̄ = n̄ sin(θ). The two-way pathlength between the sensor at position n
and a scattering element at height n̄0, with minimum range distance r0, can
be espressed as:

r(n, n̄0) = 2
√

(r2
0 + (n− n̄0)2) w 2r0 +

(n− n̄0)2

r0

, (2.4)

and the received signal sr can be modelled as

sr(n, n̄0) = ρ(x̄0, n̄0, r̄0)e
− jk
r0

(n−n̄0)2
, (2.5)

where ρ(x̄0, n̄0, r̄0) denotes the complex reflectivity at the scene coordinate
(x̄0, n̄0, r̄0), and k the wavenumber 2π/λ. The received signal consists of
the complex reflectivity convolved with a quadratic phase function. This
chirp signal is a function of the n-direction and has a zero frequency offset
if n̄0 = 0. It shows a positive frequency offset if the height of the target is
positive, and a negative offset if the height of the target is negative. The
algorithm to process the tomographic signal is called ‘Specan’ and is based
on the assumptions that the range migration is very small and the received
signal has a quadratic phase modulation independent from its position in
the scene. The first step in the Specan is to compensate the quadratic
phase variation by multiplying the received signal sr by a complex conjugate
quadratic phase function. This operation is denoted as ‘deramping ’ (see
Fig. 2.2). By multiplying the received signal with a deramping function

u(n) = e
jk
r0
n2

(2.6)

a demodulated signal sd can be obtained:

sd(n, n̄0) = ρ(x̄0, n̄0, r̄0) ∗ e−
jk
r0

(n̄2
0−2nn̄0)

. (2.7)

The spatial frequency kn of the deramped signal sd is no longer dependent on
the n-position; it depends only on the height n̄0 of the occurring scattering
processes

kn(n̄0) =
∂arg(sd)

∂n
=

2kn̄0

r0

(2.8)
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2.2 Spectral Analysis

Figure 2.2: Block diagram of Specan algorithm.

The final step in the Specan algorithm is to perform a spectral analysis
by means of a Fast Fourier Transform (FFT). According to equation (2.8)
the kn-domain (height frequency domain) is directly related to the spatial
n̄-domain in the object space. The desired image result v(n̄, n̄0) is, therefore,
equal to the Fourier-transforms of the deramped signal in the n-direction
Sd(kn, n̄0)

v(n̄, n̄0) = Sd(kn, n̄0) = ρ(x̄0, n̄0, r̄0)e
− jk
r0
n̄2

0

∫ +L/2

−L/2
e

2jk
r0

(n̄−n̄0)n
dn (2.9)

and resolving the integral we obtain

v(n̄, n̄0) = ρ(x̄0, n̄0, r̄0)Le
− jk
r0
n̄2

0 sinc

(
kL

r0

(n̄0 − n̄)

)
. (2.10)

From the width of the sinc-function, the geometric resolution in the n-
direction results as

δn̄ =
λr0

2L
. (2.11)

The bigger is the tomographic aperture the better is the resolution. We have
assumed until now that the signal is continously measured at all positions
in the receiving plane. In the real case, for the feasibility condition, only a
certain number of tracks can be flown.
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2.2 Spectral Analysis

Figure 2.3: Reconstruction of one point target with a constellation of 21
tracks, a tomographic aperture of 400m and the minimum range distance of
5000m.

For this reason, we have to take care that the illumination path is properly
sampled in order to avoid height ambiguities. Conseguence of this is that the
sampling distance d must be sufficiently small to fulfil the Nyquist-criterion
for the spatial bandwidth of sd. If this can not be fulfilled, high sidelobes
and ambigiuties will occur in the image. The sampling distance d, which is
necessary for unambiguous imaging, depends on the total height H of the
examined volume:

d ≤ 1/Bsd =

∣∣∣∣∣−2π

(
∂arg(sd)

∂n

)−1
∣∣∣∣∣ =

λr0

2H
. (2.12)

In Fig. 2.4(a) the two sincs are distinguished but the resolution is limited,
and the sinc functions are not thin.

(a) (b)

Figure 2.4: Reconstructions with 2 points target at distance of 30m, with (a)
the full system of 21 tracks and a baseline of 10m (b) the full system of 21
tracks and a baseline of 15m.

The drawback of SARTom is that to obtain a good resolution and avoid
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ambiguities a large number of tracks is needed implying a big cost for the
system. For this reason it becomes critical to find new approach for the
reduction of the constellation.

2.3 Alternative approaches for SARTom

Many different approaches have been recently investigated to overcome the
drawbacks of Fourier analysis ([Nann 08], [Nann 09]). In this work we present
due approaches relating to different categories. The first one is a non para-
metric method, called Capon and the second one is a parametric approach
known as Music. In general, all high resolution methods are based on a
covariance matrix formulation defined as

R = 〈srs†r〉 which is estimated by R̂ =

NS∑
i=1

srs
†
r , (2.13)

where NSI represents the number of samples used to generate the covariance
matrix R̂. The condition N > I is necessary in order to avoi a singular matrix

R̂. Capon method is a classical approach based on beamforming/spectral
estimation method. The main idea is to focus the system on a certain height,
corresponding to the height of a scatterer. To do that, the range of valid
heights is scanned in order to find the maximum of power. The estimate
power given by Capon, P̂C(n), is function of the height n:

P̂C(n) =
1

a(n)†R̂
−1
a(n)

, (2.14)

where a(n) is the steering vector. It must be mentioned that the Capon
estimator corresponds to a minimisation of the received power in all direction
except those of the observed scatterer. When we use Capon no estimation of
the number of dominant scatterers is needed. The second category is based
on the principle of subspace estimation. The most known subspace method
is Music. The idea is to identify two different subspaces: signal and noise
subspace. Then using an eigendecomposition, the observed covariance matrix

is decomposed,R̂ = Ê Γ̂ Ê
†
, where Ê represents the matrix of eigenvectors of

R̂, and Γ̂ is a diagonal matrix formed with the eigenvalues of R̂. After that the
eigenvector space is decomposed into the two subspaces, the signal subspace
ÊS, and the noise subspace ÊN , with Ê = ÊS ÊN . It is possible then to scan

a functional that represents the projection of the steeering vectors themselves
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into the noise subspace. If the steering vector is matching a direction where
a scatterer is located, then its projection into the noise subspace will be zero.
The functional of the Music P̂M(n), is given by:

P̂M(n) =
1

a†(n)
(
ÊN ÊN

†)
a(n)

(2.15)

Using Music we need an estimation of the number of dominant scatterers.
The Music algorithm has been used for SAR Tomography to estimate the
mean phase center of the volumetric target and its width. This algorithm is
often defined as pseudobeamforming technique because it gives information
about the position of the phase centers of scatterers, rather than the mea-
sure of their backscattered power. In particular, in [Nann 08] it has been
proposed a new method to reduce the number of tracks with an equivalent
resolution of 3m.

Figure 2.5: Full polarimetric SAR image with R(HH)-G(VV)-B(HV) color
coding. The forested area is analyzed along the cut represented by the
straight line.

The data has been acquired with E-SAR, in L-band during one day in
September 2006 over Dornstetten (Germany). The acquisition geometry is
nominally regular horizontal grid of 21 tracks with an average baseline of
20m. In Fig. 2.3 we can see a SAR polarimetric image of the forest in Dorn-
stetten. In Fig. 2.6(a) we can see the reconstruction obtained with CAPON
method using a constellation of 21 tracks. In Fig. 2.6(b) we can see the

31



 

                                                                                                                     

 
2.3 Alternative approaches for SARTom

(a)

(b)

(c)

Figure 2.6: Tomograms of a forested area obtained using the full tomographic
aperture and N = 21 tracks with (a) Capon beamforming and (b) Music
algorithm. (c) Tomogram obtained using the reduced aperture and N = 8
tracks by means of the Music algorithm.
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reconstruction obtained with the full constellation using MUSIC. They end
up with a constellation with 8 tracks as we can notice in the Fig. 2.6(c).
Finally, they have done an average along the azimuth as we can see in Fig.
2.3. The two distributed components related with ground and canopy have

Figure 2.7: Normalized average of the profiles along azimuth of (dashed line)
Fig. 2.6(b) and (solid line) Fig. 2.6(c).

a Gaussian shape. This result is consistent with the assumed forest model
and the estimated averaged tree height. Therefore for the following analysis
we will assume Gaussian shapes for the ground and canopy responses and we
will use a reduce system with 8 tracks.
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Chapter 3

SVD optimisation and
parametric inversion

3.1 SVD inversion

In this section we propose a different approach for SAR tomography, by
formulating the problem in a linear inverse problem framework [Bert 98].
Equation (2.3) shows the relation between the unknown ρ(n) and the data
sr(n); the data is not continous but is discrete because it is acquired building
a constellation of N tracks. This means that for each general track k the
equation (2.3) becomes:

sr(n)k =

∫ H/2

−H/2
ρ(n)e

−j 4π
λ

nnk
r0 dn (3.1)

Figure 3.1: Ground and canopy responses
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3.1 SVD inversion

This means that the reconstruction is obtained by solving a semidiscrete
linear inverse problem. Starting from measured discrete data we solve the
problem finding the 3-D density function. To solve a linear inverse problem
we have to discretize the operator. This operation involves two step. A
first step is the discretization of the unknown; this step implies the choice of
basis functions to represent the unknown and is very crucial. In a recent work
[Nann 08] it has been shown how ground and canopy appear as two Gaussians
contributions. This allows us to use Gaussians to make a Gaussians expansion
to represent the unknown. This choice permits us to modulate the resolution

Figure 3.2: Examples of six basis Gaussians functions

varying our basis functions and to add a-priori information into the model.
If we define the number of basis functions, Nb we can write the density as

ρ(n) =

Nb∑
i= 1

ci bi(n) , where b(n) = [b1(n), b2(n), ..., bNb(n)] . (3.2)

The second step regards the sampling of the data. This operation consists
at finding a constellation with a limited number of tracks. The use of a
reduced number of tracks in combination with the use of Gaussians function
to represent the unknown leads to an irregular constellation. Moreover the
geometry in the real case is a bit different from the case of parallel domains
(see Figure 3.3). In this case we have not got two parallel domains but we
can reconduct to the case of parallel domains adding a right phase to the
reconstruction.
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3.1 SVD inversion

Figure 3.3: Geometry of SAR tomography in the real case

Collecting all the measured data from an certain constellation of N tracks,
the mathematical expression of tha data is

sr = [sr1 , sr2 , ..., srN ] , ⇒ sr ∈ CN . (3.3)

The measured data is a complex vector of N elements. If we want to ob-
tain the vector of weight coefficients for the basis functions to represent the
unknown, the problem consists of the following inverse problem:

sr = B c , c = [c1, c2, . . . , cNb ] , (3.4)

where c is the vector containing the weight coefficients. B is a matrix NbxN
and the generic element of the matrix is:

Bij =

∫ H/2

−H/2
bj(n)e

−j2β nni
r0 dn (3.5)

Thanks to the Singular Value Decomposition (SVD), it is possible to de-
compose the matrix B as the product of three matrices

B = U S V † , (3.6)
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3.1 SVD inversion

where the superscript † stands for the transpose conjugate of a matrix. S is
called singular matrix and is a diagonal matrix

S =



σ1 0 · · · · · · 0

0 σ2 0 · · · ...
... 0

. . . 0
...

... · · · · · · . . . 0

... · · · · · · · · · σNb

... · · · · · · · · · 0

... · · · · · · · · · ...
0 · · · · · · · · · 0


(3.7)

and the vector Λ = [σ1, σ2, ..., σNb ] is the vector containing the singular values.
The operator B admits a singular system defined by the following problems:

B v i = σi u i

B† u i = σi v i

(3.8)

where vi is the i-th element of the set of singular functions and ui is the i-th
element of the set of singular vectors. Using the following expressions

c =

Nb∑
i=1

civ i

⇓

sr = B c =
∑Nb

i=1 ciB vi =

Nb∑
i=1

ciσiu i

⇓
sri = σici ⇒ ci =

sri
σi

(3.9)

and the relation bi =
(
U †sr

)
i

we obtain:

c =

Nb∑
i=1

1

σi

(
U †sr

)
i
v i (3.10)
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3.1 SVD inversion

When we use SVD to reconstruct the object function γ we should take
care when low singular values are present, since they could amplify the noise
component in the inversion process and introduce instability. For example,
denoting with δβi an error on the data we have:

c =

Nb∑
i=1

αi u i sr =

Nb∑
i=1

βi v i

B

(
Nb∑
i=1

αi u i

)
=

Nb∑
i=1

αiB u i =

Nb∑
i=1

αiσi v i = sr =

Nb∑
i=1

βiv i

βi = αiσi ⇒ αi =
βi
σi

(3.11)

The error on the data and on the unknown will be

βi = βi + δβi

αi =
βi
σi

+
δβi
σi

(3.12)

From equation (3.12) the error δβi could be amplified if σi is a low sin-
gular value leading to a large error on αi . This effect is referred to as noise
propagation; due to it we prefer to look for a reliable solution restricting
the solution space to a subspace spanned only by singular functions corre-
sponding to the singular values that are over a threshold representing the
noise level. This scheme is called truncated SVD (TSVD) [Bert 98]. If we
denote with N b the number of singular values above the threshold equation
(3.10) becomes:

c =

Nb∑
i=1

1

σi

(
U †sr

)
i
v i (3.13)
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3.1 SVD inversion

Figure 3.4: Truncated singular values

An example is now proposed to show the potentiality of TSVD. Let us
consider an actual distribution of two gaussians and choose a constellation
with two tracks and a baseline of 20m.

(a) Gaussian basis functions (b) Reconstruction vs real distribution

Figure 3.5: Example of TSVD with 2 tracks

The basis functions will be two Gaussians with the same positions and vari-
ance of the actual distribution but the amplitudes don’t match. Adding noise
with an SNR equal to 15dB we invert the problem with TSVD obtaining
a reconstruction (red line) that completely matches the actual distribution
(black line). This means if I want to evaluate two unknowns - in our case
the amplitudes of the Gaussians of the real distribution - we need only two
tracks.
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3.2 SVD for constellation optimisation

When we use a low number of samples for the data, the problem becomes
ill-conditioned. Because we are not obliged to use a uniformly spaced passes,
the main idea of this work was to implement an algorithm to find the ”best”
constellation i.e., a constellation providing the ”best” conditioning of the ma-
trix to be inverted. This is equivalent to searching for the constellation with
the highest trend of the singular values. In combination with the Truncated

Figure 3.6: Singular values optimisation

SVD and a reduced number of tracks, choosing the optimum constellation
allow us to include a bigger number of singular values to invert the problem.
In this way we get more information to retrieve the height profile, as we can
see also in the Figure 3.6. We choose a certain set of Gaussian functions (in
our case is equal to six). For each constellation we obtain a linear problem

sr = B c . (3.14)

Using SVD we decompose the matrix B, obtaining the vector with the sin-
gular values Λ = [σ1, σ2, . . . , σNb ]. The aim of the algorthm is to find the
constellation with the highest seguence of σi. In the following picture we
present the block diagram of the algorithm implemented in IDL:
We can notice that the algorithm minimizes a functional related to the inverse
of the sum of the normalized singular values:

constellation : F = minF , F =
1

Nb∑
i=1

(σi/σ1)

, (3.15)

where Nb is the number of basis functions. Starting from a guess constellation
the algorithm gives us the numerical solution of the functional to minimize.
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Figure 3.7: Block diagram of singular values optimisation

We have started from a uniform 8 tracks constellation and the solution are 8
nonuniformly spaced passes. To verify the robustness of the method we have
also started from a non regular 8 tracks constellation with the same total
aperture of 140m. In both case the final optimised constellation is the same.
This algorithm has been implemented for simulations. In the case of real data
we have already a data set. We have flown with a 21 regular constellation.
The constellation of 21 tracks has an aperture of 400m and a baseline of 20m.
It is the same constellation acquired in the forest of Dornstetten in September
2006, used by Nannini in his work ([Nann 08]). In this case we are not able to
find the constellation of 8 tracks with any grade of freedom. We are limited
to choose the position from the 21 already flown. For this reason we have
done an optimisation choosing the ”best” 8 passes over the 21 already flown.
As we have done in the case of simulated data we have choosen a set of
basis function and the algorithm gives us the constellation that implies the
optimum conditioning of our inverse problem. Fixed the constellation, the
choice of a certain set of basis functions allow us to overcome the problem
of inversion adding a-priori information into the model. Because the scene
may vary (for example the height of forest could change), we need to find a
constellation that is the ”best” possible in average. If we decide to flight over
certain passes based on the choice of Gaussian functions as basis functions,
we could be in a situation where the a-priori information inserted into the
model are too strong. To free ourselves from the a-priori information added
to the model, we have decided to use several sets of basis functions. All sets
are constituted of Gaussian functions with different position and variance.
The optimisation algorithm now must minimized a functional that is the
mean of all the 20 functionals related to each set of basis function

F =
1

20

20∑
k=1

Fk , where Fk =

Nb∑
i=1

(σi/σ1) . (3.16)
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Figure 3.8: Representation of several sets of Gaussian basis functions

In this way we obtain a constellation that is the ”best” in average. In the
following figure we can see a simple block diagram of the constellation op-
timisation with 20 sets of basis functions. Summarising, we can say that

Figure 3.9: Block diagram of optimisation with 20 sets of Gaussian basis
functions

the SVD inversion does not give a reconstruction that is totally independent
from the a-priori information, but the SVD tool to optimize the constellation
is a good candidate for a strategy to design a constellation for a campaign.
In this scenario our idea is to use SVD to design the constellation and to use
a more stable and precise approach for the inversion.

3.3 Parametric inversion

An alternative method proposed in this work to retrieve the height profile
is based on a parametric inversion. Referring to the configuration with N
parallel tracks, presented in the previous chapter, If we define six parameters
related to the ground and canopy, for each sestuple we obtain a measured
density:

X = (x1, x2, x3, x4, x5, x6) X ∈ <6

γ
meas

= x1e
−x5(x3−x3)2 + x2e

−x6(x4−x4)2 , (3.17)

where x1, x2 denote the amplitudes of ground and canopy respectively, x3, x4

the position of the gaussians related to ground and canopy and x5, x6 their
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variances. For the generic track k, the measured backscattered signal will
be:

smeask =

∫ H/2

−H/2

(
x1 e

−x5(n−x3)2 + x2 e
−x6(n−x4)2

)
e
−j2β nnk

r0 dn . (3.18)

This kind of model-based inversion relies on an optimisation procedure in
which the density in the height direction is reconstructed by optimising the
following objective function:

F (x1, x2, x3, x4, x5, x6) = ||smeas − sr||2 . (3.19)

The value of this function indicates the closeness between the measured data
and the backscattered signal as predicted following an estimate of the un-
known parameters x1, x2, ..., x6. In general, because the forward model is
nonlinear, the resulting objective function may have several optima.

This kind of inversion methods yield the correct results if they converge
to the global optimum of the objective function. A first step to ensure the
convergency to the global minimum, is to incorporate a priori information in
the definition of the objective function. Defining the minimum and maximum
values for all the six parameters we can define a subspace Ω of <6 where to
search for the global minimum. The problem now is to find the sestuple:

(x∗1, x
∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6) : F (x∗1, x

∗
2, x
∗
3, x
∗
4, x
∗
5, x
∗
6) = min

Ω⊆<6
||smeas − sr||2 . (3.20)

However, local optimisation methods such as conjugate gradient method
don’t ensure the convergence to the true solution, which corresponds to the
global optimum. One way to overcome this problem is to apply global optimi-
sation methods, such as simulating annealing (SA), and genetic algorithms
(GA). The main drawbacks of these approaches regard their low efficiency
in terms of computation time and are low accuracy in locating the exact
solution [Nakh 99]. Therefore in this work we use a multilevel single-linkage
method (MLSL), which incorporates a local optimisation method into the
global search.
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3.3 Parametric inversion

3.3.1 Global Optimisation of objective function

Multi-level single linkage method is a stochastic iterative method based upon
some kind of random sampling in the feasible domain Ω. To avoid repetition
of local searches, occurring in the case of a simple Random Search method,
MLSL include an adaptive search strategy, sample clustering, and a statis-
tical stopping rule as enhancements to the basic scheme of pure random
sampling. The procedure of MLSL for the k-th iteration is the following:

1. Generate P sample points drawn from a uniform distribution over Ω,
and calculate the corresponding functional values at these points. Add
P points to the (initially empty) set of sample points;

2. Sort the whole sample of Pk points in order od decreasing function
value, and select the ξPk points with the smallest function values,
where ξ is any fixed number in (0, 1]; the resulting sample is called
reduced sample;

3. Select start points from the reduced sample points for local searches.
The selection will be discussed later;

4. Perform local minimizations from the selected starting points;

5. If the stopping rule is satisfied, the lowest local minimum is taken as
the global minimum, otherwise go to Step 1.

In Step 3. at the k-th iteration each reduced sample point X is selected
as a starting point for a local minimization provided that the starting point
has not been used at a previous iteration and that there is no sample point
Y within the critical distance d(k) of X with F (Y ) < F (X). The critical
distance is given by

d(k) = π−1/2

[
Γ

(
1 +

M

2

)
Ψ(Ω) τ

log kP

kP

]1/M

, (3.21)

where Γ stands for the gamma function, Ψ(Ω) denotes the Lesbegue measure
of Ω and τ is a positive constant. M = dim(X) = 6 is the dimension of the
space of objective function.
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3.3 Parametric inversion

In [Rinnoo 87] the following theoretical properties have been proven:

� When τ > 0, all local minima of F (X) will be found within a finite
number of iterations with probability one;

� When τ > 4, the total number of local searches started by the MLSL
method will be finite with probability one even if the sampling continues
forever. In our reconstructions, τ is set to six.

From a computational point of view varius authors confirm the numerical
feasibility of this approach even if they point out some weaknesses such as the
necessity of storing the whole sample and the decision about local searches.
In fact, as the threshold d(k) is decreasing with k, the decision of not starting
a local search from a point might be revised in a subsequent iteration. For
this reason, the choice of P , the sample size of each cycle, is quite critical as
too small value would imply too many revisions of previous decisions, while
a choice of a big sample size might produce a waste computational effort due
to the high number of function evaluations required. Anyway, this algorithm
is amenable to be parallelized to reduce the computational effort and show
much more flexibility as compared to the SVD inversion. Moreover, while
the convergence of GA and its variants to the global minimum is guaranteed
in a weak probabilistic sense, in the case of MLSL there exists a probabilistic
guarantee to find the global minimum of a function within a finite number
of local searches [Rinnoo 87]. Finally, the method presented is based on the
assumption that the function and its gradient are continous.
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3.3 Parametric inversion

Figure 3.10: Block diagram of MLSL algorithm
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Chapter 4

3D Reconstruction: numerical
and experimental results

4.1 Simulated data analysis

In this section we present results of simulations performed using SVD inver-
sion and parametric inversion. In both cases simulations has been done firstly
with the full constellation (21 tracks) and later with the reduced system (8
tracks).

4.1.1 SVD inversion: simulated results

Figure 4.1: 21 tracks constellation

The first simulation arranged with SVD inversion has used 21 tracks rep-
resented in the figure 4.1. The total aperture is 400m and the baseline is 20m.
We have used six Gaussian functions as basis functions. All of them have the
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4.1 Simulated data analysis

same amplitude - equal to one - and they have the same variance three by
three. The constellation used here for the simulations is the same of the full
constellation of the data set for the experimental results. We have simulated

(a) Gaussian basis functions (b) Singular values trend

Figure 4.2: Simulated data using 21 tracks

a real distribution with two gaussian, one related to the ground response and
the other one to model the canopy. The amplitude ratio is equal to 0.7, the
distance between the maximum is equal to 18m. The variance related to the
ground is 25cm and for the canopy is 10m. Using the TSVD we can notice
the last two values have been ignored for the inversion (see Figure 4.2 (b)).
The reconstruction (see Figure 4.3), represented in the figure with the red

Figure 4.3: Reconstruction using SVD with 21 tracks

line, matches almost completely the real distribution for the canopy, while
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4.1 Simulated data analysis

we obtain some information about the position of the ground. In the fol-
lowing figure we can see the singular functions that represents the functions
used by SVD to evaluate the weighting coefficients for the basis functions.
Then, we have done a simulation with 8 tracks. Starting from a 8 regular

Figure 4.4: Singular functions for SVD inversion with 21 tracks

tracks constellation we have optimised the singular values trend obataining
the ”best” constellation that gives the ”best” conditioning of the problem.
Then, we have done a comparison between the reconstructions before and af-
ter the optimisation. Thanks to the optimisation, the singular values trend is

Figure 4.5: Constellation of 8 tracks before and after optimisation

now higher and it is possible to use two singular values more, collecting more
information to retrieve the height profile (see Figure 4.6). Improvements
can be noticed in the reconstruction with the optimised constellation (see
Figure 4.7(a),(b)). Now we obtain more information about the ground and
a more precise matching with the Gaussian related to the canopy. To test
the robustness of the algorithm for the optimisation we ha done a simulation
starting from a non-regular 8 tracks constellation and after the optimisation
we have obtained the same constellation as before.
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4.1 Simulated data analysis

Figure 4.6: Singular values trend before optimisation (black stars) and after
(red diamonds)

(a) Reconstruction before optimi-
sation

(b) Reconstruction after optimisa-
tion

Figure 4.7: Simulated data using 8 tracks

Figure 4.8: Constellation of 8 tracks before (non-regular) and after optimi-
sation
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4.1 Simulated data analysis

4.1.2 Parametric inversion: simulated results

In the following subsection we will present results with simulated data using
the parametric approach explained in the section 3.3.
The first results obtained are obtained using a conventional local minimisa-

Figure 4.9: 21 tracks constellation

tion using 21 tracks, as we can see in the figure 4.9, depicting the constellation
of 21 tracks. Using a local minimization we are not able to find the global
minimum but for each simulation we obtain a different local minimum, as the
figure 4.10 shows. We start from different starting points and we obtained
different results corresponding to different local minimum. The black line
represents the real distribution and the green one is the reconstruction. For

Figure 4.10: Simulated reconstructions using 21 tracks with local optimiza-
tion

this reason we need a more efficient minimization method, such as the MLSL.
Using this global optimisation algorithm we can notice an improvement in
our reconstructions, both using 21 tracks and 8 tracks. Instead, from Figure
4.11 the reconstructions are very close to the real distribution, proving the
correct solution of the MLSL algorithm.

51



 

                                                                                                                     

 
4.2 Experimental data analysis

(a) Reconstruction with 21 tracks (b) Reconstruction with 8 tracks

Figure 4.11: Parametric reconstruction using MLSL

4.2 Experimental data analysis

Figure 4.12: Photo of Dornstetten forest

The data set has been acquired over the forest of Dornstetten (DE) in
Semptember 2006. The airplane has flown several times building a 21 tracks
constellation. The constellation has a total aperture of 400m and an average
nominal baseline of 20m. The nominal height of flight is about 3760m. The
experimental airborne SAR system was implemented by DLR and is called
E-SAR. It is a Synthetic Aperture Radar system onboard of a DLR Dornier
Do 228 aircraft (see Figure 4.13). In this case the sensor has operated in
L-band (1.3 GHz) with horizontal polarization. The forest is caracterized by
spruce trees with an average height of 16m. A cut along the azimuth of the
forest has been analyzed, as we can see in the Figure 4.14. Due to the fact
we have already acquired data from a certain constellation, we are limited to
find the ”best” 8 tracks constellation over the 21 already flown.
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4.3 Experimental results

Figure 4.13: E-SAR Dornier Do 228-212 aircraft for remote sensing at DLR

Figure 4.14: Polarimetric image of the Dornstetten forest. The red line
represents the cut along which data set has been collected

4.3 Experimental results

In this section experimental results obtained from SVD inversion and from
the parametric approach will be shown. We present firstly reconstructions
using the full constellation of 8 tracks and then with the reduced system (8
tracks).
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4.3 Experimental results

4.3.1 Full system reconstruction

The experimental result using 21 tracks has been obtained using SVD in-
version. We have choosen a set of Gaussian basis functions with the same
amplitude and the same variance three by three. For each processed azimuth

Figure 4.15: Gaussian basis functions used for experimental results

bin we obtain a reconstruction that is a linear combination of the basis func-
tions. If we collect all the reconstructions we can make a tomogram. In this
tomogram, the x-axis represents the azimuth and the y-axis is the height. The
colours show the intensity of the density profile retrieved from the inversion.
Comparing this result with the reconstruction using Fourier inversion with
the same full constellation, we can notice many similarities about the ground
information and the canopy. For example, where there is a little road in the
forest in both reconstructions we can distinguish only the ground response,
while the canopy is absent. In certain areas there is a dense vegetation and
we can notice in both reconstructions a high backscattered signal related to
the canopy and a low response for the ground. At the end of forest, there
is a river and in both reconstruction we can observe that the backscattered
signal is very low and random. We have to point out that Fourier reconstruc-
tion has used a polarimetric information and the color (red, blue and green)
stands for three different scattering mechanisms (Pauli 1, Pauli 2, Pauli 3).
Doing an average in azimuth of the reconstructions we obtain the following
shape and we can see that the distance between two phase centers of ground
and canopy is averagelly 16m.
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4.3 Experimental results

(a) Reconstruction with Fourier polarimetric

(b) Reconstruction with SVD inversion

Figure 4.16: Reconstructions with full constellation (21 tracks)

Figure 4.17: Mean in azimuth of reconstructions with 21 tracks
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4.3 Experimental results

4.3.2 Reduced system reconstruction

In the case of real data the optimisation has worked choosing the 8 tracks,
out of the 21 already flown, that give the best singular values trend. We have
choosen the same set of basis functions used for the full constellation. As we
can see from the Figure 4.19 we have an improvement of several orders of
magnitude between the ”best” constellation (red diamonds) and the ”worst”
one (black stars). Even if we have drastically reduced the number of tracks

Figure 4.18: Singular values for different constellations

we still are able to retrieve informations in the height direction. Compared
to the Fourier reconstruction using 21 tracks, the reconstruction with SVD
using the ”best” 8 tracks constellation has similarities and show information
where the canopy is very dense, where there are no canopy contribution due
to the presence of a street, and a low backscattered signal in correspondence
to the presence of the river.

Figure 4.19: Reconstruction with the ”best” 8 tracks constellation
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4.3 Experimental results

The mean in azimuth of the reconstruction gives us a distance between
the two phase centers of 17m. Doing several simulations changing the set of

Figure 4.20: Mean in azimuth of reconstructions with ”best” constellation

basis functions we have noticed that the reconstruction is basis dependent.
This feature can lead to a bad reconstruction if the basis functions represent
a very strong constraint and they don’t match with the reality.

Figure 4.21: Singular values for different constellations in the case of bad
basis functions
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4.3 Experimental results

Figure 4.22: Reconstruction with the 8 tracks constellation using bad basis
functions

For this reason we have tried to implement a solution to mitigate the
dependece on the a priori information we have inserted into the model. We
have defined 20 different sets of basis functions and we have found the ”best”
constellation in average for all these 20 sets of Gaussian functions.

Figure 4.23: Constellation before and after optimisation with 20 sets of basis
functions

Figure 4.23 represents the full constellation before the optimisation and the
reduced system after the optimisation. The reconstruction shows also for this
constellation similarities compared to the reconstruction with Fourier using
the full system.
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4.3 Experimental results

We can check also in this case that it is possible to retrieve informations
where the canopy is much more dense and where is present the street and
there is only the ground contribution. Also in this case, doing the mean

Figure 4.24: Reconstruction with the ”best” 8 tracks constellation using 20
sets of basis functions

in azimuth of reconstructions we obtain a distance between the two phase
centers - the maxima of the two gaussians - of 16m.

Figure 4.25: Mean in azimuth of reconstructions optimising with 20 sets of
basis functions

The final step done in this work has been to combine the optimisation of
constellation based on SVD with the parametric inversion. We have done
a comparison between the reconstruction retrieved with a regular 8 tracks
constellation and the reconstruction with the optimised constellation.

59



 

                                                                                                                     

 
4.3 Experimental results

Using the parametric approach we can notice the reconstruction seems to
be more stable in the case of the optimised constellation. Using the regular
constellation, instead, the ground in some points oscillates. The paramteric
method, moreover, should perform a better resolution compared with the
normal SVD inversion. In fact, observing parametric reconstructions it is
clear that the ground is more thinner showing a better resolution.

(a) Reconstruction with 8 regular tracks

(b) Reconstruction with 8 optimised tracks

Figure 4.26: Parametric reconstruction with 8 tracks
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