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Abstract:

The output of a laboratory convection experiment is taken as a measure for one-dimensional numerical simu-
lations with the aid of two different statistical turbulence models. These models — they are of second and
third order of closure, respectively — are compared with each other. The importance of specific terms in the
second moment equations with respect to typical features of the convective boundary layer is discussed. To
assist this, balances of the heat flux equation are presented. It turns out that turbulent diffusion may not be
neglected in the absence of mean advection. This transport process is indispensable for the representation of
counter gradient heat fluxes.

Zusammenfassung: Zur Frage der Leistungsfahigkeit verschiedener Turbutenzmodelle hisherer Ordnung bei
der Simulation der konvektiven Grenzschicht

Die Ergebnisse eines Laborexperiments zur Untersuchung der konvektiven Grenzschicht dienen als Vergleich
fiir eindimensionale Simulationen mit Hilfe zweier verschiedener statistischer Turbulenzmodelle. Diese Modelle,
von denen das eine zweiter, das andere dritter Schlicungsordnung ist, werden miteinander verglichen. Ein-
zelne Terme in den Gleichungen fiir die zweiten Momente werden beziiglich ihrer Bedeutung fiir die Darstel-
lung typischer Eigenschaften der konvektiven Grenzschicht diskutiert. Bilanzen der Gleichung fiir den Wirme-
flufy sind dabei von Nutzen. Es zeigt sich, dalh bei verschwindender mittlerer Advektion die turbulente Diffu-
sion nicht vernachlissigt werden darf. Ihre Beriicksichtigung als Transportprozef ist unabdingbar, um Wirme-
fliisse gegen den Gradienten der mittleren Temperatur errechnen zu kénnen.

Resume: Sur la valeur de differents modeles de turbulence d’ordre supérieur pour simuler la couche limite
convective

Les résultats d’une expérience de laboratoire sur la convection sont utilisés pour apprécier les simulations
numériques & une dimension de deux modcles statistiques de turbulence. Ces modéles — dont [a fermeture est,
respectivement, du deuxieme et du troisiéme ordre — sont comparés entre eux. On discute I'importance de
termes spécifiques dans les équations des moments du second ordre a4 1'égard de traits caractéristiques de la
couche limite convective. A cette fin, on présente les bilans de 1'équatjon du flux de chaleur. Il apparait
qu’on ne peut négliger la diffusion turbulente ¢n I'absence d’une advection moyenne, Ce processus-de trans-
port est indispensable pour représenter les flux de chaleur dans la direction opposée & celle du gradient.

1 Introduction

Our aim is to simulate the convective boundary layer (CBL) with the help of a 1-D numerical
model. What has to be taken into account? One needs a turbulence model, which represents the averaged
convective structures and therefore is called a statistical model. Turbulence energy is supplied internally
by buoyancy throughout the whole layer. In the absence of mean flow (free convection) shear production
as a second source of turbulence is excluded. Thus simple eddy viscosity concepts for the closure of the

Beitr. Phys. Atmosph. Vol. 59, No. 4, November 1986 505

0005-8173/86/04 0505—13 $ 03.00/0 ' © 1986 Friedrich Vieweg & Sohn Verlagsgesellschaft mbH



governing equations obviously fail, since they are usually dependent on the deformation tensor, which
vanishes in this case. More complex turbulence models, considering balance equations at least for the
second moments, take into account all production mechanisms and are one way out of the dilemma
presented.

In this paper two higher order closure models are presented, which differ considerably in the complexity
of the mode! equations. The one (M1) is a third order closure model with prognostic equations for the
second order moments and diagnostic equations for the third order ones. The other one (M2) is of second
order with one prognostic equation for the turbulence energy and algebraic expressions for the other
variances and covariances. This ty pe of model corresponds tolevel 2 1/2 in the nomenclature of MELLOR
and YAMADA (1982), which in the following is referred to as MY 82.

MELLOR and YAMADA (1974, MY 74) have compared the results of different second order models with the
Wangara data. The agreement was quite good even for the simpler versions of the models, but no justifi-
cation of turbulence quantities was possible, because the measurements only gave vertical profiles of the
mean first moments. In a more recent paper (MY 82) they demonstrate that the results of their 2 1/2-
level model fit the data of WILLIS and DEARDORFT (1974) quite well. This experimental investigation
of the CBL reveals the main turbulent characteristics inside a tank of water, heated from below.

In the meantime DEARDORFF and WILLIS (1985, DW 85) repeated their experiment. Some former results,
e.g. the profiles of vertical energy and of temperature variance, have been revised. We used the outpout
of this experiment for testing our models. We try to answer the question of how the second order equa-
tions can reproduce typical processes like entrainment or counter gradient heat fluxes. The specific
terms realizing these processes are identified.

2 Equations of the Models

With respect to the conditions in a water tank we are concerned with an incompressible fluid.
Therefore the continuity equation takes on the divergence free form and density varies only due to tem-
perature fluctuations:

dp =—poBoT (1)

where po = 1000 kg/m*® and the volumetric expansion coefficient 8 = 2.3 1074 X~1: Momentum and
thermodynamic equations can be simplified due to the special conditions in the free convection case.
The only external force acting upon the fluid, is buoyancy. For this reason Reynolds averages of the
physical variables are formed in horizontal planes. The mean values of horizontal velocity components u
and v vanish, as well as all horizontal gradients of mean values. Further on the continuity equation implies
zero vertical mean velocity w. Thus the Boussinesq approximated momentum equation is truncated to

a high degree: The buoyancy term is balanced by the vertical gradients of Reynolds stresses and pressure.
The equation for the mean temperature T, if there are no external forces, and molecular diffusion is
ignored, reduces to:

0T _ 90 ==
at“az‘”T (2)
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2.1 The equations for the second moments

The prognostic equations for turbulent momentum and scalarfluxes at high Reynolds numbers
for an incompressible fluid can be found in textbooks like RODI (1980). In the special case of free con-
vection these equations read:

!
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While the production terms due to mean gradients (PG) and buoyancy (PB) are directly computable,
three classes of terms are normally unknown in these equations:

° pressure-gradient terms I,
. dissipation terms € and
L diffusive terms D (including triple correlations)

They need to be either parameterized or — in the case of triple correlations - closed by the introduction
of third order closure.

2.2 Common parameterizations

We study the problem of free convection and try to learn, how special terms of the second
moment equations describe it. We are not interested in the effects which different parameterizations
may have on the results, Therefore we make use of well tried model approximations for the unknown
correlations.

Both, the momentum and the heat flux equation contain pressure-gradient terms, which act to redistribute
turbulent kinetic energy and reduce heat fluxes and anisotropic stresses, respectively. Analysis of the
Poisson-equation for pressure fluctuation leads to a splitting of the pressure-strain term into three com-
ponents:

p' [du; au,f]
~ | ——+ = Ij; ; + 11 .
Po [axj +axi M0 + I 2 + 15,5 ©

Rotta’s ‘return-to-isotropy-term’ I1;; ; is proportional to the anisotropy of the stress tensor:

E —— 2
[jj,1 =~ crm \/!_T (uju; — 384 E) (7)
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£ is the characteristic length scale, E = 1/2u;” the turbulent kinetic energy. Il;; 5 is proportional to the
anisotropy of shear-production and therefore can be omitted under the special condition of no shear.
Il;; 3 was proposed by ZEMAN and LUMLEY (1976) and is proportional to the anisotropy of buoyant-
production:
e, T2 0

i, =~ cpm By T + guiT —3 5ijgaw T') {8)
where the vector of gravitational acceleration g; = (0, 0, g) and cgp, is the corresponding empirical con-
stant. The pressure-temperature gradient correlation is handled analoguously:

p'aT' \/E - —_

Podx; Mir, + it 3= cgr 5~ wiT — cpr BT 9)

To parameterize the various molecular dissipation terms Kolmogoroff's hy pothesis is adopted, which
leads, applying local isotropy for the small turbulent scales, to:

2 E¥?
€jj = 3 Cem —Q_Bij (10)
E/2T7
erT=2Cer — ¢ (11)
gt~ 0 . (12)

Equations (10) to (12) are directly derivable from the theory for turbulence in the inertial subrange and
Cem and cer are the corresponding constants. To close the set of equations Blackadar’s empirical formu-
lation for the length scale is adopted:

Ziop Ztop

QB=kz/(1+'%) (13a) % =a J\/ﬁzdz/ Jﬁdz (13b)
Q 0

where k is the Karman constant (k = 0.35), 4, is the height of the water surface, €, is the maximum
mixing length and a an empirical constant. This formulation fails in stably stratified layers, where E
converges to zero. A modification proposed by DEARDORFF (1980) is used in this situation. 1t involves
the Brunt-Vaisalla frequency:

QS:0.76\/E(ng—I)_”2 (14)

The required length scale £ is then the minimum of these two formulations: 2 = min (25, ;).

The constants in Rotta’s term and in the expressions for dissipation have been adopted from MY 82.
The buoyancy part of the pressure parameterization (cgmy and cpr) corresponds to ZEMAN and LUMLEY
(1976), whereas « has been set due to own experiences with various kinds of boundary layers. Thus our
set of constants reads:

pressure-terms: Ccgrm = 0.512, crt = 0.636, Cam = 3/10, cpr = 1/3
dissipation: Cem = 0.169, cer = 0.140
lengthscale: a=02

The difference in the numerical values between the MY 82- and our constants stems from our use of E
for turbulent energy, while MY 82 take q* = 2E for this quantity. Choosing the values of our constants we
took into account this difference, because not the constants themselves, but the total parameterized
expression must equal each other.
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2.3 Assumptions concerning M1

Model version M1 solves the full balance equations for the second order moments. This requests
a closure at the third order level by introducing equations for the triple correlations, The assumptions of
ZEMAN and LUMLEY (1976) are adopted for these equations:

1. the local rate of change of the third-order moments is approximately zero
2. local isotropy of the third-order moments for molecular terms is assumed
3. the quasi-normal-approximation (QNA) is used for the fourth-order moments which appear.

The QNA relates the fourth-order moments to moments of first and second order. These assumptions
lead to diagnostic equations for the triple correlations (listed in parameterized form in the appendix),
containing terms representing production, dissipation, diffusion and buoyancy. In contrast to M1, all
second order models involving diffusion terms in the second moment equations, replace the divergence
of triple correlations by downgradient diffusion assumptions. This does not allow for buoyancy effects,
which is the main difference between it and our third order closure.

The result of these assumptions is a set of prognostic equations for the first and second-order moments
(Equations (18)), involved in the current problem, and diagnostic equations for all triple correlations,
representing the turbulent diffusion of turbulence variables (Appendix).

2.4 Assumptions concerning M2

In contrast to M1 additional physical assumptions are made for M2 concerning the second order
moment equations (Equations (19)). The main simplifying aspects are

L local equilibrium and
L isotropic forcing.

Following the scaling arguments in MY 74 all material derivatives as well as diffusive transport terms are
neglected in the second moment equations for the anisotropic shear stresses, heat fluxes and temperature
variance. The equations for these quantities thus become diagnostic and no closure for third order mo-
ments is required. The state of turbulence is assumed to be in static equilibrium, and anisotropy is deter-
mined solely by local effects. A complete balance equation is solved only for the turbulent kinetic energy.
The diffusive term, containing the triple correlation, is approximated by a downgradient diffusion para-
meterization:

9 [ Uiy p')) b (5 12 aE> ,
ax; (u,( 2 Po 9z \3 feam E 0z (15)
The coefficient c3p, is given the value of 0.2 in accordance with the MY 82-set of constants. All time
dependent processes and vertical transports by turbulent diffusion are therefore restricted to the equa-
tion for the turbulence energy, which still influences all other turbulent moments via parameterization.

The production terms due to gradients of the mean variables can be split in the following way:

—— 0y 2 ay
Uiug 5o = (Ai9+§5ifa E)__axg (16a)
— oT 2 aT
u;y; a—}; = (Aij+§6ijE)—axj (16b)

As SCHEMM and LIPPS (1976) have demonstrated by tneans of a scale analysis, the anisotropic forcing
(containing the anisotropic stress tensor Aj; as a factor) is negligible in comparison to the isotropic one
(multiplied by 2/38E). The only gradient production term, which does not vanish due to the special
conditions in the free convection case, is the one in the heat flux equation.
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2.5 Parameterized equations for the second moments

The prescribed assumptions transform Equations (3) through (5) and result in the set of Equa-
tions (18) for M1 and {19) for M2; the symbols in the headline are used without subscripts to design the

type of term listed below:
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2.6 Numerical scheme and boundary conditions

Model equations M1 and M2 are solved on the same 50 point staggered grid. Corresponding to
the laboratory equipment, the water depth of 0.4 m results in a grid spacing of Az = 0.008 m. The quan-
tities w'T' and all triple correlations are positioned atz=KAz,K=0,1,...,51, whereas all other variables
are computed at pointsz=(K —1/2)Az, K=0,1,...,51. For time-integration the Adams-Bashforth

scheme is used at a time step of At=0.05s.

The initial condition for the temperature profile is given by the experimental data of DW 85 (curve A in
Figure 1). In M1 all double correlations are set to zero except at the lowest level, where values are set
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according to the similarity theory (the solutions are not very sensitive to these values). For M2, only E
has to be initialized; a linearly decreasing profile is used with a bottom value according to the formula-
tion in M1, and zero at the top. The temperature gradient in the lowest level, needed for the solution of
Equations (18.5, 18.6, 19.5 and 19.6), is approximated by dT/dz = T_/kz. The temperature scale T is
given by Equation (21). The vertical gradient of all triple correlations is set to zero at the bottom as are
all double and triple correlations at the upper boundary. Corresponding to the heat flux imposed at the
bottom of the tank and building up the CBL, an adequate value has to be set for w'T" at the [ower
boundary. As DW 85 point out, some uncertainty remains about the determination of surface heat flux
w'T, under conditions of vanishingly small mean flow. In our numerical experiments we have used a
boundary value of w'T, = 1.4 107* K m/s, determined by integration of the measured temperature pro-
files for times t, = 191 s and t; = 599 s in Figure 1:

Ztap

w'T. = J (3T/0t) dz (17)
0

As the temperature profile is not known below z = 0.07 m, the assumption has been made that both
curves are constant in z below this level. The same value for the bottom heat flux results from using the
empirical formula w'Tg =(z;/1.2) 3T, /3t, given by DW 85. T, is the mean temperature in the CBL for
a given time.

3 Results

In the following, sets of the experimental and numerical results are shown in the same figures.
The turbulent quantities are normalized by the convective velocity w,, the temperature scale T, and the
height z; of the mixed layer. By using this normalization the results are independent on time and com-
parable to measurements of CBLs in different geometries. w, and T, are defined as

w, = (Bgw'Tg z;)'° (20)

and the temperature scale

w'Tg
T,= W (e2))
3.1 Temperature profile

Figure 1 presents the mean temperature profiles from the DW 85 experiment and from our
simulations. The measured and simulated temperature profiles agree well. Small differences in the warming
1ate of the whole mixed layer probably are due to the uncertainty in the bottom heat flux in the experi-
ment. We suspect that during the initial phase, a larger heat flux has been imposed because our mean
temperatures are systematically lower than in the experiment by a constant amount. We ensured that
simulated and experimental curves would nearly overlay each other if the heat supply were increased
during the initial period of 191 seconds (0.0019 mK/s). The measurements show the build up of a mixed
layer, capped by an inversion at height z;. During the experiment the temperature level in the convective
layer increases and the inversion extends towards the stable layer above. A measure for the growth of the
CBL is the dimensionless vertical velocity of the inversion height (9z;/at)/w, . Table 1 shows the results
of different laboratory, atmospheric and numerical experiments. The stratification below z; is slightly
stable down to a height of about 0.5z; or somewhat more. The lower portion of the mixed layer is not
shown.
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3.2 Heat flux

The profiles of the heat flux (Figure 2) exhibit a nearly linear decrease from the bottom to z;.
This is the typical behaviour of the heat flux in the steady state, when the build up phase of the CBL has
ended. The constant gradient of w'T’ illustrates its well mixed character, insofar as each sublayer con-
ducts the heat from below with the same resistance and absorbs the same amount of heat.

Following Equation (2) the temperature profile is mainly influenced by the divergence of the heat flux.
Differentiation of this equation with respect to z shows that curvature in the w'T -profile is only caused
by time changes in the mean temperature gradient. 9T/3z varies in time due to the deepening of the CBL.
Correspondingly the sharpest curvature of the heat flux is observed around z;. The increase in inversion
height also influences the mixed layer, but in its lower parts the temperature gradient becomes nearly
independent of time and the deviation from linearity in the w'T -profile is almost invisible.

A region of negative heat flux values is observed around z;. It is caused by the mixing exchange between
the convective and the stable layer. This physical process is called entrainment. Relatively cool fluid,
driven by a large amount of vertical momentum, penetrates the inversion upward. Compensatory down-
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draft of relatively warm fluid is set in motion. The result of this entrainment is a warming of the lower
and a cooling of the upper interfacial region. The ‘overshooting’ of the temperature profile near z; is a
measure for the intensity of this process. The same holds for the extension and minimum amount of the
heat flux. In the tank experiment, entrainment reaches from 0.8-1.2 z;, the minimum value for w'T’ is
about — 10 % of w'Ty.

In the case of M1 the agreement with the observed heat flux is perfect for all important features, while
M2 underestimates the entrainment. This prediction could be improved by simply increasing the diffu-
sion coefficient c3p in the energy equation. Then a larger amount of E would be transported upwards
near the inversion, where it triggers the heat flux minimum via the production term of Equation (19.5).
Setting c3;p = 1 would be sufficient to obtain a result similar to M1. This gives a first hint that the tur-
bulent diffusion is of decisive importance. It is confirmed in the Section 3.4.

3.3 Counter gradient flux

Since the observed experimental stratification (Figure 1) is stable at least above the lowest level
of measurements, counter gradient heat fluxes prevail in the upper portion of the mixed layer (between
approximately (0.5-0.8) z;). Comparing the temperature profiles as simulated by the two numerical
models, the most important difference is in the stability of the upper part of the CBL. M1 produces
increasingly positive temperature gradients above approximately 0.5 z;, while the heat flux changes its
sign at about 0.85 z;. Position and extension of the counter gradient flux region is therefore in very good
accordance with the measurements. M2 on the other hand excludes the existence of a counter gradient
heat flux on principle: Temperature gradient and w'T" are strictly coupled, which can be seen by reorgan-
izing Equation (19.5):

Q 2 El/z aT
W CRT 3 0z (22)
w =
L+ —L (1 =) g8 T
CETCRTE RT}8 az

The denominator also remains positive for negative temperature gradients, because for unstable strati-
fication, E grows rapidly and keeps the second addend greater than minus one.

3.4 Heat flux balance

The comparison of the w'T equations in M1 and M2 (Equations (18.5) and (19.5)) show a
difference of three terms: Local rate of change, diffusion and production.

9 r aT ' ' Ell2 —ry
o ¥ w'T' = 2a +gfT'? - P w2T - cpp -v-Q—wT —cprgfT™? (18.5)
1/2 _
0=—%Eg—T+gﬁT'2 — CRT ETWT ~cprgfT"? (19.5)

Figure 3 shows the relative weight of all terms in the complete heat flux Equation (18.5) as a function of
time ata fixed height of 20 cm. From this plot one can get a hint of how good the assumptions are, which
lead to Equation (19.5). As soon as the CBL reaches this position (after about 190 s) a heat flux is estab-
lished, as reflected by the rapid evolution of gradient- and buoyant production. After the passage of the
inversion, processes PG, PB, D and II are of the same order of magnitude. The neglection of the diffusion
term seems not to be justified by this simulation. On the other hand the local rate of change really plays
the role of a small residuum and the assumption of quasi-stationarity will not cause a serious error. The
replacement of the full production term by the isotropic assumption w?38T/dz= 2/3E0T/9z is expected
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to be of minor importance. M1 predicts the vertical turbulence energy to be of the order of E. Thus M2
will underestimate the influence of this term.

If it is correct that the diffusion term in the heat flux Equation (18.5) is the decisive one for the simula-
tion of counter gradient heat flux, its neglection should produce results very similar to those of M2. We
have proved this statement by an additional numerical test: The turbulent diffusion in Equations (18.5)
and (18.6) has been switched off by setting the triple correlations w?T' and w'T'? equal to zero, whereas
the time dependency remained unchanged. As major results the entrainment zone diminished and the
temperature profile lost its stable portion above 0.5 z/z; totally. The removal of turbulent diffusion in
the equations for heatflux and temperature variance makes the counter gradient flux vanish. The result
also confirms, that in this context the time derivative is relatively meaningless.

The heat flux budget at a fixed time is plotted in Figure 4. The statement about the importance of the
diffusive transport is also verified by its vertical distribution. Additionally, an insight is gained into how
turbulent diffusion supports positive heat fluxes in a stably stratified environment. It works as a sink in
the lower part of the mixed layer, where the production terms are positive. Above the level where the

lapse rate changes sign, turbulent diffusion becomes a source and balances the negative mean gradient
production.

Corresponding to the Rotta parameterization, the pressure gradient term is proportional to the aniso-
tropy of the w'T’-correlation, weighted by the amount of turbulent kinetic energy. A CBL is by its
nature highly anisotropic and therefore the [I-term makes a large contribution to the budget in nearly
all of the layer. Near the inversion the dominant process is the negative production due to the strong
stable stratification, while buoyant production — reflecting the typical relative maximum of T'2 (Figure
6) —, pressure and diffusion terms counteract this effect.
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Figure 3 Time series of all terms in the heat flux ® Figure 4 Budget of the heat flux equation at the
Equation (18.5) at 2=20 cm, normalized ll(w*w'T;.)/ fixed time 599s, normalization and symbols as in
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35 Variances of w and T’

The distribution of vertical energy is plotted in Figure 5. Both models show the typical CBL-
maximum of w'? at a height of 0.3 z; to 0.4z;, agreeing well with the data, although M1 underestimates
and M2 overestimates this value. This effect can be eliminated in each model by ‘fitting’ the constant cry,
which controls redistribution between the different turbulence energy components. One other point
should be noted: Near the inversion a higher intensity is observed in the experiment than in the numeri-
cal predictions. Especially the profile computed by M2 shows a very rapid decrease in the upper mixed
layer. The vertical transport of this quantity is insufficient as pointed out in Section 3.2.

The most striking feature of the temperature variance profile (Figure 6) is the secondary maximum at z;.
As can be seen from Equations (18.6) and (19.6) it is produced by the heat flux minimum in combina-
tion with the stable stratification in this layer. For this reason the M1-peak is more distinct than that
computed by M2. The latter seems to agree better with the experimental result in this region. Another
difference is to be noticed at a height of 0.9 z;: While in the case M2 the temperature variance vanishes,
M1 predicts a normalized value of about 1.0 for T™. Again, the reason for this effect is the turbulent
diffusion in M1 which transports the variance into this region, where the production term is zero or very
small.

4 Conclusions

The most important conclusion which can be drawn from the comparison between M1 and M2
is that turbulent diffusion may not be neglected. The relevance of this statement is restricted to 1-D

Z/71

0 10 -20 -30 40

Figure 5 Vertical turbulent kinetic energy as 'Yy Tz
measured in DW 835 and computed by M1 and

- . ® Figure 6 Variancc of temperature fluctuation T
M2 at time 599s, normalized by w

as measured in DW 85 and computed by M1 and
M2 at time 5995, normalized by T,

Beitr. Phys. Atmosph. Vol. 89, No. 4, November 1986 515



statistical simulations. We are aware, that the diffusion terms in our system represent physical processes,
which cannot be described by these kinds of models. Neither the rising of warm bubbles nor any trans-
port by mean vertical velocity can be resolved. Thus diffusion is the only transport at all in our equations
and necessarily of high importance. M2 takes into account turbulent diffusion only in the energy equa-
tion. Although this is coupled with the equations of all other turbulent quantities, this formulation
evidently is not sufficient to simulate processes like entrainment or counter gradient heat fluxes ade-
quately. The assumptions that lead to model equations M1 and M2 are rough. In particular we think of
the 1-dimensional approach to turbulence, which is in principal 3-D. Keeping this in mind, the agreement
with the DW 85 experiment is surprisingly good. This is one justification for these simple models. Another
is the very modest demand for computer resources. We have applied a large-eddy-simulation to the same
experimental situation, using the full M2-model (which comprises diagnostic equations for all anisotropic
shear stresses and heat fluxes) for representation of the subgrid-scale. The need for computer time for a
8 X 8 X 50 grid exceeded the 1-D-simulation by a factor of 150. The temperature profiles do not look
significantly different from the M1-result. If the prediction of mean profiles is the user’s only interest,
the M1 model can be recommended for problems of the free convection type.

APPENDIX

Third-Order Equations

Diagnostic equations for third-order moments for M1, depending on the parameterization of
ZEMAN and LUMLEY (1976) and the formulation of CHEN and COTTON (1983):

Ao .3 ( ,g g Q_’[)
1+3G1C3TT WT T tC3k —(= Bl

VvE 0z

wT? = L (B1+gBT?) (A02)

_CJK\/F:

—

(AO01)

Cr 4 Il 7 .
wiT =C3F\7E(—2 25£WT—WT£ 2+ 3gﬁ Tz) (A03)
. L(W 8 1,13 )

C3K\/E 3w 3z ¥ + 5 ghw T (A04)
u?w' = ¢y é (\Fga; u7+%gﬁw'2T' ) (A05)
viw' = C3Ké (—:V_E % Vit %gﬁw'zT' ) (A06)

A Ry Sy e s Ry
Bl=—-w 32 2wT asz (A07)
2 aT
GI“C(J] Egﬁ (AOS)

G1 was first introduced by CHEN and CQTTON (1983) to include the dependence of triple correlations
on thermal stability and to ensure that T'>, w'T” and w” T are positive near the surface.
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The constants used for the triple correlations are dependent on those for the second moments. After
some albegra on the equations for € and E as well as the different timescales of second and third-order
moments 7 and 73 (73 = 7/2.33), we get:

CyT = 352, Cik = 108, Cyp = lOl, Cg1 <= 3.80

Asthe QNA is utilized and OGURA (1962) showed that the use of this QNA in solving the equations may
produce negative variances, ANDRE (1976) introduced the clipping approximation for third-order mo-
ments. This clipping approximation takes the damping effect of the fourth-order moments on the third-
order ones into account and limits the magnitude of the triple correlations. The clipping approximation
is imposed to insure that:
7T ozt
[a’? (b™ ¢ +b'c’ )]
TR . R SN
labct<min [b*(a” ¢ +ac )]
T2, 2 oz, o 2
[c“(@a” b +ab )|
where a, b, ¢ stand for any of the models’ turbulent fluctuating quantities. Numerical experiments with
M1 show that in this application, the clipping approximation is only useful in computing T'?, while it is
not necessary for the other triple correlations.
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