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ABSTRACT

A comparison between limb retrieval results obtained by
the operational and the scientific processor for the SCIA-
MACHY (Scanning Imaging Absorption Spectrometer
for Atmospheric CHartographY) instrument is presented.
The scientific processor is based on the same retrieval
method as the operational processor, but without the strict
requirements for computation speed. It uses as a forward
model, the Picard iteration model, and as an inversion
model, direct and iterative regularization methods. In
contrast, the operational processor uses an approximate
forward model with a multiple scattering correction and
the Tikhonov regularization with a constant value of the
regularization parameter. Both processors were devel-
oped at DLR-IMF.

1. INTRODUCTION

Due to the strict requirements regarding the computation
time, the off-line processor of the SCIAMACHY (Scan-
ning Imaging Absorption Spectrometer for Atmospheric
CHartographY) instrument operates with several approx-
imations. These approximations are incorporated in both
the forward and the inversion models. Here we would
like to investigate the impact of these approximations.

The main simplification which is done in the forward
model concerns the treatment of the multiple scattering.
At the a priori state Xa in essence we compute the signal
measured by the detector I (Xa) with a radiative trans-
fer model for a pseudo-spherical atmosphere and in the
independent pixel approximation. Then, we define the
correction factor for the multiple scattering effect by

cms (Xa) =
I (Xa)− Iss (Xa)

I (Xa)
, (1)

where Iss (Xa) is the single scattering term, and in the
inversion process we use the representation

I (X) = Iss (X) [1 + cms (Xa)] , (2)

where X is the actual atmospheric state. Thus, only the
single scattering term accounts on the actual atmospheric

state, and it is apparent that this approximation is valid
if the a priori state is sufficiently close to the true atmo-
spheric state. Note that not only the forward model but
also the Jacobian are affected by the multiple scattering
approximation.

The regularization method which is used in the inversion
process is the Tikhonov regularization [4] with an a priori
regularization parameter. This means that the regulariza-
tion parameter, which should balance the residual and the
constraint, is chosen in advance and is not correlated with
the true measurement. The a priori selection of the regu-
larization parameter is performed for synthetic data, and
therefore the method appears to be dangerous especially
when the measurement is affected by large systematic er-
rors.

The scientific processor developed at the German
Aerospace Center is the counterpart of the off-line pro-
cessor, which is not, however, limited by any time con-
straints. This brings the opportunity to employ more
time-consuming approaches and study their impact. The
processor uses the Picard iteration method to simulate
the radiance field in a full spherical atmosphere and in-
cludes polarization as well as Ring effects. A large class
of regularization methods as for instance, the Tikhonov
regularization, the iteratively regularized Gauss-Newton
method, the regularizing Levenberg-Marquardt method,
the asymptotical regularization approach and the regular-
ized total least-squares method can be used for a specific
application.

2. POINTING ERROR CORRECTION

The SCIAMACHY O3 profiles retrieved both by the sci-
entific and the off-line processors are shown in Fig. 1
together with the corresponding ground-based LIDAR
profile measured during the satellite overpass at Tsukuba,
Japan. Comparing the measured profile and the profile
retrieved by the off-line processor one can recognize the
pointing error causing an altitude shift of the retrieved
profile. In the scientific processor the altitude shift is
treated by using the quasi-optimality principle introduced
in [2, 3]. Namely, if xδ

4h is the retrieved profile corre-
sponding to the altitude shift 4h, then the optimal value



Figure 1. Left: SCIAMACHY ozone profile compared
with the profile measured by groundbased LIDAR at
Tsukuba on 20061211. Right: the discrete quasi-
optimality function.

of 4h is given by

(4h)opt = arg min
4h

∥∥∥∥∥4h
dxδ

4h

d4h

∥∥∥∥∥
2

. (3)

Fig. 2 explains graphically the idea expressed in Eq. 3.

Figure 2. Set of profiles retrieved assuming different 4h.
The profile corresponding to the local minimum of the
quasi-optimality function is shown in red.

For a set of 4h values a set of profiles is retrieved. Ev-
ery next profile is shifted relative to a previous one by
dxδ

4h. For the profile retrieved with optimal 4h its shift
relative to the previous becomes smaller than for other
ones. This corresponds to local minimum of the quasi-

optimality function expressed as

QOPT Function = arg min
4h

∥∥∥∥∥4h
dxδ

4h

d4h

∥∥∥∥∥
2

. (4)

In practice, a discrete version of the quasi-optimality cri-
terion is used, where we compute the regularized solu-
tions for a discrete set of 4h values and calculate the
derivatives by using finite-differences.

3. ADDRESSING THE UNDERREGULARIZA-
TION PROBLEM

3.1. The Nonlinear Discrepancy Principle

The plots in Fig. 3 illustrate that the profile retrieved

Figure 3. Left: same as left panel on Fig. 1, but for
Mauna Loa on 20061013. Right: nonlinear residual to-
gether with the noise level.

by the off-line processor is underregularized, that is, the
value of the regularization parameter is too small. To deal
with this problem we use the scientific processor with an
a posteriori parameter choice method, namely the non-
linear discrepancy principle. The steps of this parameter
selection criterion can be summarized as follows:

1. solve the inverse problem without regularization and
estimate the noise level ∆ as the nonlinear residual
at the last iteration;

2. solve the inverse problem for several discrete values
of the regularization parameter αk and store the cor-
responding nonlinear residuals

∥∥yδ − F
(
xδ

αk

)∥∥;

3. select the optimal solution xδ
αk∗

corresponding to
the first index k∗ for which it holds true that∥∥yδ − F

(
xδ

αk∗

)∥∥ ≤ τ∆, (5)



where τ = (1.1..1.2) is a control parameter.

3.2. The Discrepancy Principle for the Linearized
Equation

In Fig. 4 the profile retrived by the off-line processor is

Figure 4. Left: same as left panel on Fig.1, but for Re-
union on 20061211. Right: residual for the linearized
equation together with the noise level.

also underregularized. To solve this inversion problem
we also apply the Tikhonov regularization but use the dis-
crepancy principle for the linearized equation as parame-
ter choice method. The method is similar to its nonlinear
version and involves the following steps: At the iteration
step k consider the linearized equation Kk (x− xa) =
yδ

k and use an analytical representation of the regularized
solution of parameter α, xδ

k+1,α. Then,

1. for α = 0, compute the noise level as

4k =
∥∥yδ

k −Kk

(
xδ

k+1,0 − xa

)∥∥ ; (6)

2. compute the optimal value of the regularization pa-
rameter αopt as the solution of the discrepancy prin-
ciple equation∥∥yδ

k −Kk

(
xδ

k+1,α − xa

)∥∥ = τ∆k. (7)

Note that the solution of the discrepancy principle equa-
tion requires the use of the GSVD (Generalized Singu-
lar Value Decomposition) of the Jacobian matrix and of
the regularization matrix, in contrast to the off-line pro-
cessor, which uses the SVD (Singular Value Decomposi-
tion) [1] of the standard form transformed Jacobian ma-
trix. Since the SVD is much faster than the GSVD, the
computation effort of the off-line processor is substan-
tially smaller than that of the scientific processor.
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