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A phenomenon referred to as “shock-wave surfing”, in which a body moves in such a way
as to follow the shock wave generated by another upstream body, is investigated numer-
ically and theoretically. This process can lead to the downstream body accumulating a
significantly higher lateral velocity than would otherwise be possible, and thus is of im-
portance in situations such as meteoroid fragmentation, in which the fragment separation
behaviour following disruption is determined to a large extent by aerodynamic effects.
The surfing effect is first investigated in the context of interactions between a sphere and
a planar oblique shock. Numerical simulations are performed and a simple theoretical
model is developed to determine the forces acting on the sphere. A phase-plane descrip-
tion is employed to elucidate features of the system dynamics. The theoretical model is
then generalised to the more complex situation of aerodynamic interactions between two
spheres, and, through comparisons with further computations, is shown to adequately
predict, in particular, the final separation velocity of the surfing sphere in initially touch-
ing configurations. Both numerical simulations and theory indicate a strong influence of
the body radius ratio on the separation process and predict a critical radius ratio for
initially touching fragments that delineates entrainment of the smaller fragment within
the larger fragment’s shock from expulsion; this critical ratio also results in the most
extended surfing. Further, these results show that an earlier prediction for the separation
velocity to scale with the square root of the radius ratio does not accurately describe
the separation behaviour. The theoretical model is then employed to investigate con-
figurations with varying initial relative sphere positions and velocities. A phase-space
description is also shown to be useful in elucidating the dynamics of the sphere-sphere
system. With regard to meteoroid fragmentation, it is shown that a large fraction of the
variation in the separation behaviour deduced by previous authors from an analysis of
terrestrial crater fields can be explained by a combination of surfing and a modest rota-
tion rate of the parent body. Finally, a selection effect for multiple fragments travelling
together, e.g., immediately following atmospheric disruption, is predicted, whereby larger
fragments repel one another whereas smaller fragments are entrained within the shocks
of larger bodies.

1. Introduction

The problem of aerodynamic interactions between bodies travelling at hypersonic
speeds is an interesting topic of study in its own right, but is also important to our under-
standing of such phenomena as the fragmentation of meteoritic bodies in the atmospheres
of Earth and other planets. The separation behaviour of fragments immediately following
atmospheric disruption is determined to a large extent by aerodynamic effects (Passey &
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Melosh 1980), and this in turn can determine, for instance, the arrangement of craters in
the strewn field formed by fragments that survive the atmospheric transit, or the dam-
age produced at the planetary surface by bodies that explode in the atmosphere (Hills &
Goda 1993). For bodies that are disrupted into a limited number of distinct fragments,
rather than heavily fragmented into a liquid- or swarm-like mass (Chyba et al. 1993;
Svetsov et al. 1995), it is necessary to consider the shock interactions between fragments
to gain an accurate picture of the separation process.

The first to consider in detail the separation of distinct meteoroid fragments were Passey
& Melosh (1980), who, by assuming a purely transverse separation due to bow-shock in-
teractions between two fragments of radii, r; >75, predicted the smaller body to develop
a final separation velocity, Vr, of

Ve = Jot Loy, (1.1)
T2 Pm
where V is the velocity of the meteoroid through the atmosphere; p, and p,, are the
densities of the atmosphere and the meteoroid, respectively. C' is a constant that, through
examining various terrestrial crater fields, was determined by these authors to have a
value between 0.03 and 2.25. As much of the subsequent work on the topic has involved
the modelling of equally sized fragments, (1.1) is often rewritten in the form

Ve =, oLy (1.2)
Pm
Here we do so in anticipation that (1.1) does not provide an accurate representation of
the scaling of Vi with ro /7.

Employing numerical simulations to investigate the symmetrical separation of two
identical fragments, Artem’eva & Shuvalov (1996) determined a value of C' of approx-
imately 0.2; the results of these authors also showed that the lateral force acting on a
trailing body within the shocked region of a leading body is attractive. This confirmed
the collimation effect observed experimentally by Schultz & Sugita (1994), in which in-
dividual particles in a debris cloud were seen to “surf” over the cloud shock front and
become entrained within the shocked region. Subsequent numerical simulations of up to
27 identical fragments (Artemieva & Shuvalov 2001) indicated a value of C of approxi-
mately unity. Models based on these findings have been used in simulating the breakup
of meteoritic bodies in the atmosphere and to draw conclusions, for example, regarding
the rate of arrival of small asteroids at the Earth’s surface (Bland & Artemieva 2003,
2006; Artemieva & Pierazzo 2009). Further work involving the modelling of stationary
bodies (Laurence et al. 2007; Barri 2009) has contributed to our understanding of the
aerodynamic interactions between fragments of different sizes; however, the effect of rel-
ative fragment size on the separation process has still not been properly elucidated. It is
one of the intents of this paper to address this deficiency.

The separation model developed by Passey & Melosh assumes the two fragments,
initially lying next to one another, to separate only in the lateral direction. While appro-
priate for equally sized fragments, for unequally sized bodies possessing differing ballistic
coefficients this assumption can no longer be considered valid. The smaller body (which,
for brevity, we refer to as the secondary) travels downstream relative to the larger body
(the primary) due to its lower ballistic coefficient, as well as laterally due to the repulsive
effect of the highly compressed gas lying in the region between the two. A situation can
then develop in which the primary bow shock impinges on the secondary; the lateral force
remains repulsive, however, as the doubly shocked flow on the body’s inner side is at a
higher pressure than the singly shocked flow on its outer side. Provided the balance of
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FI1GURE 1. “Shock-wave surfing”, in which a smaller body rides downstream on the bow-shock
created by a larger body. The smaller body can either be entrained in the shock layer (e.g.,
upper body), or ejected (lower body), as a result.

forces remains correct, the secondary can then follow, or “surf”, the primary bow-shock
downstream.

An example of such surfing is shown in figure 1, depicting a numerical simulation
of three spheres of relative sizes 1, 1/2 and 1/4 in a uniform Mach 10 flow. The bow-
shock from the primary (largest) body initially impinges on each of the two secondaries:
the forces on the larger secondary cause it to follow the bow-shock downstream over a
considerable distance, gaining significant lateral momentum in the process; the smaller
secondary, after surfing a short distance, is entrained within the shock layer. The trans-
verse velocity of the larger secondary when it exits the shock gives a value for C in
(1.1) of 0.35, which compares with a value of 0.04 obtained from a simulation of two
equally sized spheres. While these exact values will depend to some extent on the body
geometries (note, for example, that Artem’eva & Shuvalov (1996) obtain C'~0.2 for two
symmetrical hemispheres), the physical phenomena that produce the surfing effect are
in no way particular to the spherical configuration considered here. Thus, significantly
enhanced separation velocities can also be expected for other geometries. It is also clear
that the simple 75 /7 scaling indicated by (1.1) cannot be considered to hold over a very
large range of radius ratios.

This phenomenon may seem superficially similar to the “surfing” effect referred to
earlier, noted by Schultz & Sugita (1994) of small particles within a debris cloud; but
the two are fundamentally different. The particle-surfing in the earlier work consists of
movement within the shock layer, and always leads to collimation of the particles within
the shocked region. The present phenomenon results from the special conditions created
by the interaction of the impinging shock with the secondary body, and may lead to the
secondary being either ejected from or entrained within the primary bow-shock.

The simulation shown in figure 1 required approximately 3000 CPU hours to complete
on a typical PC-cluster with 12 quad-core nodes. Considering the number of parameters
that can be varied in this problem, simulations of this size are not a realistic tool for
fully exploring the shock-surfing phenomenon. Thus, to aid in the development of a
theoretical model, in §3 we first consider a simplified version of the surfing problem,
namely a sphere interacting with a planar oblique shock. We verify the theoretical model
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FIGURE 2. Summary of initial configurations considered in the present work: (a) sphere, initially
stationary, interacting with wedge-generated oblique shock (relevant to figures 3-10); (b) spheres
initially stationary and touching, with centres axially aligned (figures 11, 12, 15-17, 23); (c)
spheres initially stationary, centres aligned axially but with lateral separation (figures 18-21);
(d) as in (b) but with rearmost or frontmost points aligned (figure 22-left); (e) as in (b) but
with an initial lateral separation velocity (figure 22-right).

with large-scale, high-resolution computations. The developed model is then generalised
in §4 to interactions between two spheres and, after validation of the results with a
number of further numerical simulations, used to explore the surfing phenomenon and the
separation behaviour in this case. In § 5, a discussion of the significance of these results
for the problem of meteoroid fragmentation appears. For the reader’s convenience, a
schematic summary of the configurations considered in this work is presented in figure 2;
for each configuration, the relevant figure numbers are indicated in the caption.

We restrict our attention throughout to spherical geometries in order to avoid the
additional complication of induced rotations. The use of such blunt geometries also en-
sures that viscous contributions to the forces are small, justifying the present inviscid
treatment. The gas is treated as perfect throughout: while real-gas effects, including
dissociation, vibrational excitation, radiation and ionisation, are important at the flow
conditions relevant to meteoroid entry, the influence of these on the pressure, and thus
the forces, is generally limited (see, for example, Vincenti & Kruger (1965) regarding
dissociational effects and Artemieva & Shuvalov (2001) regarding radiative and ablative
effects).

2. Computational modelling

In this work we are concerned with supersonic flows undergoing full dynamic inter-
action with rigid solid bodies. Reliable fluid-structure interaction (FSI) simulations in
this regime require the coupling of a shock-capturing fluid dynamics solver for the Euler
equations with a rigid body solver that considers the Newtonian laws of motion. The con-
struction of numerical methods for shock-driven FSI problems is, in itself, still an area
of active research, and the number of available software codes is accordingly small. The
discretizations for both the fluid flow and the rigid body dynamics have to be explicit to
give time-accurate results, limiting the possible time step size through a CFL stability
condition. On the other hand, changes in the fluid domain due to the solid body motion
need to be accounted for at every time step. Since several thousand explicit FSI time
steps will typically have to be computed in a given simulation, a fast mesh or geometry
adjustment is vital.

Our approach to this problem is to employ an embedded boundary method in the fluid
solver, in which moving solid structures slide through a fixed Cartesian fluid background
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mesh. The structure is represented implicitly with a scalar level set function that stores
in each fluid grid cell the distance to the nearest point on the solid surface. The sign
of the distance function then determines which cells are within the valid fluid domain
and which are treated as exterior. Exterior cells near the internal boundary are used
to prescribe immersed moving wall boundary conditions. The construction of embedded
wall boundary conditions, considering the intrinsic velocity of a solid object while avoid-
ing unphysical overshoots in the boundary values, is described in detail by Deiterding
(2009). As is characteristic of level set methods (Fedkiw et al. 1999), the Cartesian finite
volume stencil is itself not modified, which results in a slight diffusion of the boundary
location. We alleviate such errors by dynamic adaptive mesh refinement (AMR) of the
Cartesian mesh in the vicinity of the embedded boundary. The refinement approach used
is the spatial and temporal multi-level AMR, algorithm after Berger & Colella (1988),
designed specifically for the solution of hyperbolic fluid flow problems. The AMR algo-
rithm and the embedded boundary method are implemented in the AMROC (Adaptive
Mesh Refinement in Object-oriented C++) code that has been parallelised for distributed
memory machines (Deiterding 2003). AMROC’s framework architecture and its utilisa-
tion for fully coupled shock- and detonation-driven FSI problems is described in depth
by Deiterding et al. (2005). Further verification and validation results, that demonstrate
the ability of the approach to deal with arbitrary structural evolutions while maintaining
computational performance and parallel efficiency, are given by Cirak et al. (2007) and
Deiterding et al. (2009); validation results for gaseous flows may be found in Deiterding
(2005) and Deiterding (2009).

As in our previous work (Laurence et al. 2007), we consider only spherical non-
intersecting, rigid bodies, for which the combined signed distance level set function can
be easily computed. Following a computational splitting approach, the level set function
is re-computed after each time step on the highest level of fluid mesh adaptation, once
the equation of motion for each sphere has been integrated with a forward Euler method.
The instantaneous forces due to the flow are evaluated by integrating the fluid pressure
on each sphere on a high resolution longitude-latitude mesh. In order to calculate nu-
merical fluxes within the finite volume discretization, we utilise the Van Leer flux vector
splitting scheme that is extended to second-order accuracy with the MUSCL-Hancock
method using a Minmod-limiter in the primitive variables (see Toro (1999) for details).
All computations herein were carried out on three-dimensional meshes using a dimen-
sional splitting approach. Since the centres of the spheres are always on the midplane
through the domain, visualisations of computational pseudo-schlieren images typically
show the symmetry plane normal to the z-axis. The computations use one to three ad-
ditional levels of mesh adaptation with refinement factors of either 2 or 3, both in space
and in time. Local dynamic refinement is applied up to the highest level available along
embedded boundaries and shock waves.

3. Surfing a planar oblique shock

By considering impingement involving a planar oblique shock rather than a curved
primary shock, the complexity of the surfing problem is significantly reduced. The con-
ditions behind the shock are now uniform, so, provided the sphere is sufficiently far
from the shock-generating body that reflected shocks have no influence, the only rel-
evant length scale is the sphere radius. Assuming the sphere velocity to be negligible
in comparison to that of the free-stream, the force coefficients will then depend only
on the free-stream Mach number, the shock angle and the location of the impingement
point. At the Mach numbers of interest here, we may also appeal to the Mach number
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FIGURE 3. Pseudo-schlieren images of a sphere interacting with the oblique shock produced by
a 20° wedge at Mach 10.

independence principle (Hayes & Probstein 1966). Thus, for a given shock angle, we can
completely characterise the problem by determining the force coefficients over a range
of sphere positions from entirely within to entirely outside the oblique shock. These can
then be applied to predict the sphere trajectory for an arbitrary initial position (and
velocity).

The definitive work on the interactions between a blunt body and an impinging planar
shock was performed by Edney (1968). Depending on the impingement point, a variety
of complex flow configurations can be produced. The most important of these is known
as the Edney type IV interaction, in which an impinging supersonic jet produces highly
elevated local heating and pressure levels. Edney calculated the flowfields individually for
several impingement locations, but the complex and varying nature of the shock and shear
layer interactions does not lend itself readily to an analysis of the pressure distribution on
the body, which is necessary to obtain the desired force coefficients. However, figure 8 of
Edney shows that the effect of the impinging structure on the surface pressure distribution
is quite localised: away from the impingement point, the pressure soon reverts to roughly
the undisturbed profile. Therefore, despite the locally elevated pressure levels, the overall
contribution to the integrated forces will be limited. This observation is crucial, as it will
allow the development of a simple theoretical model for the forces acting on the sphere,
which can then be generalised to the more complex sphere-sphere case. The reduced
parameter space in the sphere-wedge configuration, however, makes numerical simulation
a feasible tool for characterising the problem, and this is the first focus of this section.

3.1. Computational evaluation of force coefficients

In this subsection, we employ the computational model to calculate the drag and lift
coefficients of the spherical body interacting with a planar oblique shock in a fully three-
dimensional flow field. In each simulation, the sphere is initially positioned completely
inside the shocked region; once the flow is fully established, it is impulsively started with a
lateral velocity of 1% of the freestream velocity. The aerodynamic forces are calculated by
integrating the pressure on the sphere surface at each point along its trajectory. Although
the sphere is, in principle, free to respond to the applied forces, the density ratio is set
to an artificially high value such that these have a negligible effect on its trajectory.
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FIGURE 4. Computational (—) and theoretical (—-—o—-—) force coefficients - (dark) drag, (light)
lift - for a sphere interacting with a planar oblique shock. The wedge angles are 5, 10, 20, and
30° (upper left and right, lower left and right, respectively). The abscissa in each case is the
normalised lateral displacement from the shock.

The computation is concluded once the sphere has completely exited the influence of the
oblique shock.

All computations of the sphere/oblique-shock configuration employ a free-stream Mach
number of 10. The oblique shock is generated by a wedge forming the lower boundary
of the computational domain. The extent of the domain depends on the wedge angle:
for =20°, for example, the base grid is 200x140x20 cells, corresponding to a physical
domain of 20x14x2 sphere diameters. Two levels of additional refinement are applied,
each of factor 2; thus, at the highest level the sphere has an effective resolution of 40
cells. A CFL number of either 0.7 or 0.8 is used. All computations were run on 32 quad-
core nodes of an IBM BG/P machine; the §=20° computation, for instance, required
~ 7,900 CPU hours and 18,112 time step updates computed on the finest level. In order
to quantify the accuracy of the determined force coeflicients at this level of resolution,
a single refinement study was carried out for a wedge angle of 20°; details of this are
provided in §3.4, together with a visualisation of the refinement strategy for the most
refined computation (figure 9).

In figure 3 is shown a sequence of computational pseudo-schlieren images from the
simulation with a wedge angle of 20°. It is apparent that the mesh is not sufficiently
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FIGURE 5. (Left) Ratio of lift to drag for sphere/oblique shock interactions, with wedge angles
of 5, 10, 20, and 30° (dark to light). The horizontal dashed line for each shade indicates the
tangent of the corresponding shock angle. (Right) The maximum L/D value versus the tangent
of the shock angle for Mach numbers of (dark through light) 6, 8, 10, and 25. The dashed line
corresponds to (L/D)maz = tan §.

refined to fully resolve the impinging shock structures in the third and fourth images;
however, for the reason outlined earlier, this is unlikely to have an overly significant effect
on the force coefficients. The computed drag and lift coefficients from this simulation,
together with those for wedge angles of 5, 10 and 30° (corresponding to shock angles
of $=25.8, 9.5, 14.4, and 38.5°, respectively), are plotted in figure 4. Also plotted are
theoretical profiles, discussed in the following subsection. The abscissa in each case is
the lateral displacement (normal to the free-stream flow direction) normalised by the
sphere radius, r, with the origin being the point at which the plane of the shock passes
through the sphere centre. Reading from right to left, corresponding to movement from
outside to inside the shock, the drag shows a small dip as the shock first impinges on
the rear inner side of the sphere, then rises monotonically, with a small overshoot for
larger wedge angles, until the sphere is fully immersed in the shocked region. The lift
also rises rapidly once shock impingement begins, but reaches a well-defined maximum
before decreasing to its fully immersed value. For the largest wedge angle, the lift is seen
to exceed the drag over a small range of positions. Note that, over a broad range of wedge
angles (10°<0<30°), the drag profiles show relatively little variation, with the maximum
immersed drag occurring at §=20°; however, the lift profiles vary strongly, with larger
wedge angles producing significantly higher maximum lift values.

The lift/drag ratios from these simulations are plotted against the normalised lateral
displacement on the left axes of figure 5, together with horizontal lines indicating the
tangent of the shock angle in each case. For each wedge angle, this line is seen to intersect
the L/D curve in two places. Thus, if the sphere is placed with zero initial velocity at
a lateral displacement corresponding to either of these two points, it will remain in the
same position relative to the shock, surfing it downstream over the length of the wedge
(assuming that the sphere velocity remains negligible compared to the flow velocity).
However, only one of these stationary points, that corresponding to a positive (y —ys)/r,
is stable. For the other, a small decrease in y will lead to a decreased L/D, and the
sphere will move inside the shock; on the other hand, a small increase in y will lead to
an L/D greater than tan 8, and the sphere will be further repulsed. In general, provided
the maximum L/D value, (L/D)mas, is greater than tan 8 (this condition is discussed
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FIGURE 6. Approximation to the impinging flow over the sphere used for the theoretical model:
the planar shock is assumed to divide the flow over the sphere into two distinct regions, but
producing no interaction with the sphere bow-shock. The flow angle rather than the shock angle
is used as the dividing plane on the rear half of the sphere.

shortly), there will always be two such stationary points. This follows from the fact that,
outside the shock, L/D = 0, whilst inside, L/D = tand. As tand < tan/, provided
(L/D)maz > tan B, the L/D profile must intersect the tan 3 line (at least) twice.

3.2. Theoretical modelling of force coefficients

Given the relatively limited parameter space in the sphere-wedge configuration, numerical
simulations are a suitable tool for exploring this problem. It is of interest to see whether
a simple theoretical model can yield reasonable results, however, as the development of
such a model will be necessary to fully explore the more complex sphere-sphere problem.
We begin then, as shown in figure 6, by ignoring the complicated shock and shear-layer
interactions near the impingement point, and assume that the impinging shock acts only
to divide the flow over the sphere into two separate regions. A rough justification for
doing this, appealing to the localised effects of impingement shown in figure 8 of Edney
(1968), was given earlier. In each of these regions, we model the surface pressure using
the modified Newtonian distribution (Lees 1955):

| (po2 —p1)cos®y+py for ¢ € [0,7/2),
p={ " for e [m/2,m) (31)

where outside the impinging shock, ©)=60 (the zenith angle of the sphere), and inside
the shock, cos® = cosfcosd — sinfsin ¢sind, where ¢ and ¢ are the azimuthal and
flow deflection angles, respectively; pg2 and p; are the Pitot and static pressures in the
relevant region. The drag and lift coefficients are then easily calculated by integrating
(3.1) over the surface of the sphere. Note that, as shown in figure 6, on the rear half
of the sphere the flow angle rather than the shock angle is used as the dividing plane
between the two flow regions. While there is little difference between results for the two
for smaller wedge angles (0 < 20°), the use of the shock angle for larger § was found to
lead to an unrealistically low drag coefficient when the shock was impinging on the inner
side of the sphere.

In figure 4, the force coeflicients obtained using this approximate model are compared
with computational profiles for several values of the wedge angle. At the largest wedge
angle, =30°, the main features of the profiles are similar, but quantitative agreement is
lacking. This is because the modified Newtonian result, while giving a good prediction for
the pressure distribution at large Mach numbers, becomes increasingly approximate as
the Mach number is decreased. The post-shock Mach number for the 30° wedge is 2.7, low
enough that errors in the Newtonian result become significant. However, for wedge angles
of 20° (for which the post-shock Mach number is 4.2) or less, agreement is satisfactory.
The most notable discrepancy at these smaller wedge angles is an underprediction of
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the lift coefficient between (y — ys)/r=-0.5 and -1, i.e., where the oblique shock is just
impinging upon the outer side of the sphere. From these results, we conclude that the
impinging shock interactions have only a limited influence on the drag and lift coefficients,
as assumed in the theoretical model.

In the previous subsection, we noted that the sphere can follow the oblique shock
downstream provided (L/D)pq. > tan 8. While we might predict from first principles
that the minimum g for this condition to hold will increase with decreasing Mach num-
ber, the theoretical model provides a convenient method of obtaining an approximate
quantitative prediction. On the right axes of figure 5 is plotted (L/D)q. against tan 8
for four Mach numbers between Mach 6 and 25. The point at which each curve crosses
the (L/D)mas = tan g line indicates the minimum g for which stable shock-following,
i.e., surfing, is possible at that Mach number. We see that for M =25, surfing is possible
over almost the entire range of # down to the Mach angle (at which (L/D)pe:=0). As M
is decreased, however, the range of such 3 becomes more limited: at M =6, a minimum
0 for stable surfing of 16° is predicted. The theoretical model cannot be reasonably ex-
pected to give accurate results below this Mach number, but we can safely predict that
this minimum 3 will continue to increase for lower M.

3.3. Utilisation of force coefficients to predict sphere dynamics

From the computational drag and lift profiles shown in figure 4, sphere trajectories for
various initial positions can be calculated by integrating the set of differential equations

i i di, 3 do, 3
Oy, —= =0y, — = =Cp(2,9), —= = =CL(%,9), 3.2
5 =~ U g ~3Or@9), 4 =5Cr@9) (3:2)

di

where =z /r and =y /r are the nondimensional axial and lateral coordinates, t=+/pa/pmtV/r
is the nondimensional time; and 0, =+/pm/pavs/V and O,=+/pm/pavy/V are the nondi-
mensional axial and lateral sphere velocities, respectively. These trajectories may be con-
sidered valid as long as the sphere speed remains negligible compared to the flow speed
ahead of the sphere (a criterion that will depend on the density ratio, p.,/ps). Several
trajectories in physical space for a wedge angle of 20° are plotted in figure 7; these are
reproduced with the lateral coordinate calculated relative to the shock position, ys, in the
left plot of figure 8 (the trajectories that penetrate completely into the shocked region
are omitted in the latter). For clarity, we have limited ourselves here to 9, (0)=0,(0)=0.
The stationary points (at which L/D=tan 3) are indicated by dotted lines in both plots,
and the shock by double grey lines in figure 7. The contrasting stabilities of the two
stationary points is immediately apparent: a trajectory starting close to the inner point
is quickly expelled from the shock, whilst one starting close to the outer point oscillates
around it.

The existence of such stationary points and the oscillatory nature of the sphere tra-
jectories suggest that the sphere dynamics could be further elucidated by a phase-plane
analysis. Noting then that Cp(&,9)=Cp (9 — 9s)=Cp(y — tan 8 &), and similarly for C,
writing n=g¢ — tan %, the system of equations (3.2) can be reduced to

dn dv, 3

@i " a8
where v, = 0, — tan 80,. The phase diagram of (3.3) is shown in the right plot of
figure 8. The stationary points, both lying at v,=0, are seen to be a centre and a saddle
point, respectively; in fact, the phase diagram of (3.3) is very similar to that of a simple
pendulum. The bounding neutrally stable orbit indicates the range of initial conditions
for which the sphere follows the shock downstream; the sphere trajectories in this region

[CL(n) —tan B Cp(n)], (3.3)
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FIGURE 7. Sphere trajectories for various initial positions and zero initial velocity with §=20°.

The shock is indicated by the double grey line; the stationary points (relative to the shock) by
dotted lines.
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FIGURE 8. Sphere trajectories for 6=20°: (left) in normalised coordinates; (right) in the phase
plane. The dotted lines in the left plot indicate the stationary points in the phase diagram.

will oscillate around the stable stationary point with growing wavelengths but no change
in amplitude, due to the lack of damping terms in (3.3). For all initial conditions lying
outside this orbit, the sphere will penetrate fully into the shocked region and remain there.
The range of n for shock-following is maximum at v, =0, extending from the saddle point
at n=-0.88 to n=2.2. The phase portraits for other wedge angles are qualitatively similar
to the one shown: the positions of the stationary points on the v,=0 axis vary slightly,
as may be inferred from figure 5, but all other features are identical.

The nature of the stationary points may also be deduced by considering the eigenvalues
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FI1GURE 9. Pseudo-schlieren visualisation of the complete computational domain of the most
refined numerical simulation in the refinement study; the successively embedded domains of
additional refinement are indicated by the grey levels.

of the Jacobian of (3.3). These are easily shown to be

3 (dCy, dCp
A=ty /= — -t — . 4
\/8 < o~ ) (34)
Noting from the quotient rule that
d [ Cp _ 1 dCy, dCp B 1 dCy, Cr, dCp
dn (C_D) e (CD an > ~Op < dy  Cp dn > 35

and that, at the stationary points, Cr,/Cp = tan 3, we have

/3 d (Cp

where Cp and the derivative are evaluated at the relevant point. As Cp>0, by equat-
ing n with (y — ys)/r in figure 5 we see that, at the inner (i.e., n<0) stationary point,
d(Cr/Cp)/dn > 0; hence, A are real and of opposite sign, indicating this to be a saddle
point. At the outer stationary point, d(Cr,/Cp)/dn < 0; hence, the eigenvalues are imag-
inary, indicating that the stationary point in the linearised system is a centre. While it
cannot be concluded immediately that the corresponding point in the original system is
a centre (a centre in the linearised system may correspond to a stable or unstable node
in the nonlinear system), this may be deduced from the absence of damping terms in
(3.3).

3.4. Refinement study

A refinement study was carried out for a wedge angle of 20°. Up to three additional levels
of refinement were applied over the base grid, with all other computational parameters
remaining identical. The most refined computation required approximately 50,250 CPU
hours on 32 quad-core nodes of the IBM BG/P, taking 36, 344 time steps updates on the
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FIGURE 10. Results of refinement study, showing the drag and lift coefficients for zero through
three (lightest to darkest) levels of additional refinement over the base grid.

RMS change (%)

Additional levels Cp CL
0-1 2.3 6.3
1-2 1.4 3.6
2-3 0.7 2.3

TABLE 1. Results of the refinement study, tabulated as the normalised root-mean-square differ-
ence between the force coefficients at consecutive levels of refinement (i.e., the standard deviation
of the difference normalised by the mean value at the higher level of refinement.)

finest level. Note that on a uniform grid, the computational expense would increase by
24 = 16 whenever the resolution were doubled. A visualisation of the entire computational
domain from this computation, showing both the magnitude of the density gradient
and the refinement strategy, is presented in figure 9. Even at this refinement level, the
impinging shock structures are not fully resolved; however, increasing the refinement
further would be prohibitive in terms of computational cost, and perhaps fruitless insofar
as viscous effects would eventually become important at the smallest scales. Regardless,
as noted earlier, the effect of such imperfectly resolved shock structures on the force
coefficients is unlikely to be problematic.

Results from the refinement study are compared in figure 10: the drag and lift coeffi-
cients for each level of refinement are plotted against the normalised lateral displacement
of the sphere centre from the shock position. The drag profiles are essentially converged
at the highest two levels; there remain small differences in the corresponding lift profiles,
but overall convergence may be considered adequate. These results are further sum-
marised in table 1, in which the RMS percentage differences between consecutive levels
are tabulated. These differences are seen to progressively decrease in magnitude as the
refinement level is increased, though the lift is again slightly more sensitive to changes
in refinement at the highest levels. It may be reasonably concluded, however, that the
use of two additional refinement levels (as in the computations described earlier) gives
satisfactory accuracy in the calculated force coefficients.
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FIGURE 11. Pseudo-schlieren images showing the computed separation behaviour of two
initially touching spheres of radius ratio 0.7 at Mach 10.

FI1GURE 12. Pseudo-schlieren images showing the computed separation of two spheres of radius
ratio 0.4 at Mach 10.

4. Surfing with spheres

We now turn to the sphere-sphere problem, more representative of the situation en-
countered in meteoroid fragmentation. A sense of the important role that the radius
ratio plays in determining the separation characteristics may be gained by comparing
the visualisation sequences in figures 11 and 12, showing the simulated separations of
initially touching sphere pairs with radius ratios of 0.7 and 0.4, respectively, and that
of the ro/r;1=0.5 case in figure 1. For r5/r1=0.7, surfing takes place over only a short
distance and a separation velocity corresponding to C=0.14 in (1.1) results (which is
modest in comparison to C=0.35 calculated for ro/r;=0.5, but still significantly higher
than C=0.04 for ro=ry). For ro/r;=0.4, the secondary is quickly entrained within the
shock region, with a maximum lateral velocity corresponding to C'=0.06. It is apparent
that there exists some critical radius ratio in the range 0.4 < r9/r1 < 0.5 that delineates
entrainment from expulsion for this initially touching configuration. This critical ratio
will be the value at which the surfing distance is maximum and the separation velocity
close to maximum.
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A number of numerical simulations of the two-sphere configuration were carried out,
and are described in §4.3. However, if, in addition to the radius ratio, both the initial
relative positions and velocities of the bodies are allowed to vary, the parameter space of
the problem becomes too large to explore computationally; the smallest value of ro/m
and the extent of the physical domain that can be investigated with numerical simulations
are also limited. Thus, the following subsection is concerned with developing a theoretical
model to determine the impinging force coefficients in the two-sphere surfing problem.

4.1. Theoretical modelling

We begin as in the sphere-wedge case, now appealing to the results shown in figure 4,
by ignoring the complex flow structures near the impingement point and by assuming
that the primary shock acts, as shown in figure 6, simply to divide the flow over the
secondary sphere into two regions (note that the shock angle rather than the flow angle
is now used on the rear half of the sphere). The outer region, exposed to the free-stream
flow, is modelled as before with the modified Newtonian pressure distribution. Due to
the nonuniformity of the flow conditions behind the bow-shock, however, dealing with
the inner region is now more difficult. Assuming the impinging shock angle is known, the
flow conditions immediately behind the shock (in particular the Pitot pressure and the
flow angle) are also known, but approximations must be made further inside the shocked
region.

In Laurence et al. (2007), it was shown that the hypersonic blast-wave analogy, when
combined with the modified Newtonian theory, gives a good approximation to the forces,
and by extension the pressure distribution, acting on a spherical secondary inside a pri-
mary bow-shock. Thus, here we use a similar idea for the inner side of the secondary: the
pressure at any point on the surface is assumed to follow the modified Newtonian result,
(3.1), with the Pitot pressure and flow direction corresponding to the local conditions
in the blast-wave solution. The blast-wave results are modified slightly, however, in the
form of a scaling that takes into account the known conditions immediately behind the
shock (through the oblique shock relations). The static pressure, for example, is given
by p=pbw(x, y)pos(M, B)/pow(x, Rs), where pp, and p,s are the blast-wave and oblique
shock pressures, and R,(x) is the shock radius, which, along with the shock angle §(x),
is assumed to be known; x and y are the axial and lateral coordinates, respectively. The
use of the oblique shock relations is intended to address the limited range of validity of
the blast-wave solution at finite Mach numbers, in particular at distances downstream
for which the strong shock assumption, M sin 8 > 1, can no longer be considered valid
(see, for example, Laurence (2006)).

With the pressure distribution thus defined, the drag and lift coefficients can be cal-
culated by integrating this over the surface of the secondary, as before. To simplify the
integration, the following approximation to the blast-wave solution is made. While an
analytical solution to this problem is available (Sedov 1959), it is not an explicit relation
for the flow variables. In particular, the relation between the nondimensional lateral flow
velocity, 4=(v + 1)u/(yV/z), and the similarity variable, n o< y/+/z, is

2 - —(y=1)/v
o R X 2w—7—1>
DY) —da(y+1—~a (7 , 4.1
<n> (31 =) (] (1)

where 1/no=y/Rs. The nondimensional density and pressure are both functions of 4 and
~ alone. However, the product @(y+ 1 — &) in (4.1) is very close to unity; thus, a good
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FIGURE 13. Similarity solution to the axisymmetric blast wave problem: (solid) exact solution;
(symbols) approximation using (4.2). The flow variables are: o, u/us; A, p/ps; O, p/ps, where
the subscript s refers to conditions immediately behind the shock.

approximation to u is given by
1

= 5 |G = Dm0 4 1] (4:2)

Plots of the approximate and exact solutions are shown in 13; considering the other
simplifications made in the model, agreement is certainly close enough to justify the use
of this approximation.

>

4.2. Numerical simulations

To gauge the performance of the theoretical model, a set of numerical simulations of the
two-sphere problem was performed. The simulations are of two types. In the first, the
computational methodology is similar to that described in § 3, but with a primary sphere
replacing the wedge. The secondary sphere is initially positioned completely inside the
primary shock, and, once the flow is established, is impulsively started with a lateral
velocity of 1% of the free-stream velocity. The forces are calculated numerically at each
point along the trajectory until the sphere is completely outside the shock. In the second
group of simulations, examples of which are shown in figures 11 and 12, the spheres are
initially touching one another and, once the flow is established, are released at the same
instant with zero initial velocities and subsequently allowed to move freely according to
the forces experienced. These latter computations are intended to test the ability of the
theoretical model to simulate the fragment separation problem, whereas the first group
was performed to give a more complete picture of the performance of the theoretical
model in predicting the impinging secondary forces.

Details of the computations are as follows. For the impulsively started simulations, the
size of the computational domain depends on the downstream displacement of the sec-
ondary. The maximum displacement considered is 4 primary diameters (centre-to-centre);
for this simulation, the base grid is 130x100x 50, corresponding to a physical domain of
6.5x5.0x2.5 primary diameters. For the majority of the simulations, o /r1=0.5; for these,
two additional levels of refinement of factor 2 are used, resulting in an effective resolution
for the primary of 80 cells at the highest level. For the single ro/r1=0.25 simulation, a
refinement factor of 3 at the highest level is employed. For all impulsively started simu-
lations, the Mach number is 25 and the CFL number 0.8. The computational overhead
depends on the particular geometry; for the simulation with the largest physical do-
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main referred to earlier, 26,200 CPU hours on 256 cores of an IBM BG/P machine were
required to perform 34,396 time steps on the finest level.

For the free-flying simulations, a base grid of 130x105x50, corresponding to a physical
domain of 6.5x5.25%2.5 primary diameters, is employed with a single level of refinement
of factor 3. At the refined level, the effective diameter of the primary sphere is 60 cells. The
density ratio, py,/pa, is 1000, which is a compromise between computational time and a
desire that the maximum sphere velocities remain sufficiently low that the results can be
considered independent of p,, /p,. This choice of value means that the maximum velocity
of the secondary is typically limited to 10% of the free-stream velocity during the time
period of interest. A CFL number of 0.8 is used throughout; each computation required
only ~ 100 CPU hours on two cores of a quad-core 2.8 GHz Linux workstation. The single
simulation shown in figure 1 is slightly more refined, with the effective resolution of the
primary being 80 cells. Two Mach numbers of 10 and 25 are considered and, for each,
the radius ratio is varied over a range of values between 0.3 and 1. For all free-flying
computations, the spheres are initially positioned with their centres at the same axial
location and with their lateral edges just touching (figure 2b).

4.3. Comparison of theoretical and computational results

In this subsection we assess the performance of the theoretical model by comparing its
predictions with the results of the numerical simulations just described. To provide an
appropriate comparison, the primary shock profile in the theoretical calculations was
specified using a polynomial curve-fit to the computational shock. The surface dividing
the flow regions on the secondary in the theoretical model was calculated according to
the shock angle at the point of intersection with the sphere; the shock was then assumed
to be planar in the axial direction, but shock curvature in the transverse direction was
accounted for. In the free-flying simulations, since the theoretical model does not provide
any means of predicting the motion of the primary body, this was taken in each case from
the corresponding computation (except for the ro=r; case, for which symmetry could be
used.) Less ad-hoc methods for dealing with the primary shock shape and the primary
motion are discussed later in this article.

In figure 14 are presented computational and theoretical results from the impulsively
started simulations. The drag and lift coefficients are plotted against the normalised
lateral displacement from the shock (with R, being the effective shock radius at the
axial displacement corresponding to the secondary centre). The computational profiles
for y — Rs > 0 are seen to be similar to the corresponding sphere-wedge curves shown
in figure 4. As the secondary moves further inside the shock, however, the sharply de-
creasing flow density (see figure 13) means that the forces quickly drop away from their
peak values, with the drag coefficient now also achieving a well-defined maximum. An
extensive analysis of the nature of the forces inside the shock may be found in Laurence
et al. (2007). Agreement between theoretical and computational results is satisfactory,
especially considering the number of simplifying assumptions in the theoretical model.
The most noticeable discrepancy is the theoretical prediction for the forces to drop more
rapidly for y— Ry < 0. A similar effect was observed in Laurence et al., and was attributed
to the strong entropy wake in the blast-wave approximation.

Turning now to the the free-flying simulations, theoretical and computational trajec-
tories for two cases, ro/r1=0.5 and 0.6, both at M=25, are shown in figure 15, and the
x and y displacements as functions of time are plotted for the smaller radius ratio in
figure 16. From these displacement profiles, it is clear that the theoretical model under-
predicts both the drag and the lift in the early stages of the motion, when there is only
a small separation between the spheres. This was also clear from a comparison of the
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FIGURE 14. Impinging drag (dark) and lift (light) coefficients as functions of the normalised
lateral displacement for impulsively started two-sphere simulations at M=25: (upper left)
ro/r1=0.5, & = (x2 — z1)/r1 = 1.5; (upper right) r2/r1=0.5, £=3.0; (lower left) r2/r1=0.5,
£=8.0; (lower right) r2/r1=0.25, £=3.0; —, computation; —- —o—-—, theory.

theoretical and numerical forces, and is not surprising: not only is the initial shock angle
sufficiently large (~40°) that the results of the theoretical model are questionable even
for the simpler sphere-wedge configuration (see figure 4), but, in addition, in the phys-
ical flow field there is a region of highly compressed gas between the two bodies that
augments both the lift and the drag; this feature is not present in the theoretical model.
Despite this initial discrepancy, however, the computational and theoretical trajectories
lie close to one another, indicating that at least the ratio of the lift to the drag is well
captured. Once some separation between the bodies has developed, the theoretical model
performs as indicated in figure 14.

Final computed separation velocities for the complete set of free-flying simulations are
compared to the corresponding theoretical values in figure 17. The normalised velocity
Vi=v/pm/paVr/V, equal to V/C in (1.2), is plotted separately against the radius ratio for
each of the Mach numbers investigated. As /71 is decreased from 1, the computational
profiles are seen to rise increasingly steeply until the critical radius ratio of approximately
0.45 is reached, at which point Vi drops sharply. This drop indicates a transition from
expulsion of the secondary to entrainment within the primary shock (note that, as the
separation velocity is not well-defined for entrainment, the plotted value of V7 in this
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FIGURE 15. Computational (dashed) and theoretical (solid) separation trajectories for radius
ratios of r2/r1=0.5 (left) and 0.6 (right), at a Mach number of M=25. Both trajectories are
calculated until the time at which the theoretical secondary leaves the primary shock.
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FIGURE 16. Computational (dashed) and theoretical (solid) secondary displacements for
ro/r1=0.5 and M =25 (corresponding to the left trajectory in figure 15.)

case corresponds to the maximum lateral velocity reached by the secondary.) Although
it is not clear from figure 17, a marginally smaller critical 7o /r1 occurs for M=25, due in
part to the slightly smaller primary shock radius and in part to the stronger bow-shock
producing a larger secondary lift coeflicient at the higher Mach number.

The theoretical separation velocities show good agreement with computations at 7o /r1=1
(which must be considered somewhat fortuitous), but then rise more gradually as the
radius ratio is decreased. This is consistent with the deficit in the theoretical lift observed
in the initial stages of the separation, as exemplified in figure 16. Slightly higher critical
radius ratios, of 0.52 and 0.48, respectively, for M =10 and 25, are predicted by the model
than are observed in computations. Also, as ro/r1 is decreased below this critical value,
the theoretical model predicts the maximum lateral velocity to drop more rapidly. Agree-
ment for the higher Mach number of the two is superior; this is to be expected, as the
blast wave approximation assumes M — oo. According to (1.1), the plotted normalised
velocity should scale as /71 /r2, and such curves are also shown in figure 17. This scaling
is seen to give a poor approximation to the separation behaviour, however, and clearly
does not predict a critical radius ratio that separates entrainment from expulsion.

We conclude from these comparisons that the theoretical model developed here, while
limited in its ability to predict the forces accurately when the separation between the two
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FIGURE 17. Normalised separation velocities, Vq'«:\/pm/paVT/Yﬂ for two initially touching
spheres with centres axially aligned, for Mach numbers of 10 (left) and 25 (right): —O—,
theory; —-—o—-—, numerical simulations; ———, scaling indicated by (1.1). Note that for M =10,
r2/r1=0.45, the primary shock was still impinging upon the secondary when it left the compu-
tational domain.

bodies is small, provides satisfactory predictive ability elsewhere. Furthermore, it gives an
adequate approximation to the secondary trajectory and to the final separation velocity
in simulating the separation of spherical fragments, especially at the Mach numbers
relevant to meteoroid fragmentation (i.e., M=25 and higher).

In the following two subsections then, the theoretical model is employed to further
investigate the effects of varying the radius ratio, the initial positions, and the relative
initial velocities of the spheres. To avoid reliance on the results of numerical simulations,
the correlation of Billig (1967) is now used in place of a computational profile for the
primary bow-shock shape. Also, the primary sphere motion is assumed to be unaffected by
the presence of the secondary, i.e., constant values of the primary drag and lift coefficients
of Cp1=0.9 and C11=0 are assigned. For initially separated spheres, this is a reasonable
assumption. For initially touching spheres, the influence of the secondary on the primary
drag in the free-flying computations was found to be generally small (<13% for ro/r1 <
0.7); thus, the assumption of zero lift here is approximately equivalent to modelling a
symmetric three-body configuration with two secondaries. The differences between this
and the original two-body configuration are described shortly. All calculations described
in these subsections, unless stated otherwise, employ a Mach number of 25.

4.4. System dynamics in sphere-sphere surfing

We now investigate the effect of varying the initial lateral separation of the spheres
(figure 2c¢), in particular to determine whether a range of stable surfing behaviour, as was
found for the sphere-wedge arrangement, can be established. For the initially touching
two-sphere configurations considered thus far, surfing was found in general to be unstable.
This is because for a secondary sufficiently large to avoid entrainment (r2/r1 2 0.45),
the lateral momentum developed during the impingement phase is large enough that, as
the secondary exits the shock, the flow cannot bend its trajectory around more quickly
than the shock angle is decreasing. By varying the initial lateral separation, however, the
initial repulsion for large secondaries can be decreased; also, surfing becomes possible
for smaller radius ratios (note that the sphere-sphere behaviour in the limit ro/r7 — 0,
and for small axial velocities, will tend locally to that of the sphere-wedge arrangement).
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FI1GURE 18. Theoretical secondary trajectories in normalised coordinates for various initial lat-
eral positions, for radius ratios of r2/r1=0.05 (upper left), 0.1 (upper right), 0.2 (lower left),
and 0.5 (lower right), all at Mach 25. Note the differing horizontal and vertical scales.

Thus, it should be possible to reproduce surfing behaviour similar to that observed in
the earlier configuration.

4.4.1. Sphere trajectories

In figure 18 are plotted secondary trajectories for four different radius ratios: r5 /r1=0.05,
0.1, 0.2, and 0.5, each with four choices of the initial lateral position (relative to the
shock). These are obtained by integrating (3.2) for each of the two spheres. For the pri-
mary, having already assumed the force coefficients to be constant, the integration is
trivial. For the secondary, now & = (xg —x1)/r1 and § = (y2 — y1)/r1 in the evaluation of
Cp and C. In all the cases shown, the secondary and primary centres are initially aligned
in the axial direction and the initial velocities are zero. The abscissa in each plot is the
normalised axial distance between sphere centres, #; the ordinate is the lateral distance
between the secondary centre and the shock radius, Rs, normalised by the secondary
radius. Thus, the secondary is completely outside the shock for (y2 — Rs)/r2 > 1/ cosf.
This scaling was chosen as it is the most convenient for the following analysis.

For all ro/ry, the minimum initial separation considered of yog — Rs = 0 (at which
the initial lateral force is close to a maximum) results in the secondary being quickly
ejected from the shock. For the two smaller ro/r1, the aerodynamic forces acting in
the undisturbed free-stream are sufficient to turn the trajectory so that the secondary
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re-enters the shocked region, only for it to be ejected once again (for ro/r1=0.05, a
further re-entry occurs at £220). For the two larger radius ratios, the secondary remains
outside the shock after the first ejection. For the maximum initial separation shown,
(y20 — Rs)/r2 = 1.5, the secondaries begin their trajectories outside the primary shock.
The axial momentum developed in the free-stream allows the body to penetrate deeply
into the shock in each case, but the large repulsive forces then encountered cause it to be
strongly expelled. Increasing the initial separation further to (y20 — Rs)/r2 = 2 results in
the secondary penetrating completely inside the shock and becoming entrained for all but
the largest radius ratio. For the two intermediate initial separations, (y20 — Rs)/r2 = 0.5
and 1.0, the secondary motion is similar to the oscillatory behaviour observed for sphere-
wedge interactions, with the sphere dipping in and out of the shocked region, but typically
failing to develop sufficient lateral momentum to be decisively ejected. The oscillation
wavelength increases with ro /71, and, because of the decreasing shock angle with &, does
so more rapidly than according to the linear relationship that is exhibited for a planar
shock.

4.4.2. Governing equations in phase space

It is clear from the trajectories just discussed that the sphere-sphere system behaviour
is at least to some extent similar to that of the sphere-wedge configuration. Unfortunately,
now that the shock angle [ is a function of Z, the flow similarity that enabled (3.2) to be
reduced to (3.3) no longer exists, complicating efforts to derive a comprehensive phase-
space description. We proceed then as follows.

We begin by assuming that the Mach number and radius ratio are given, and that
the spheres are initially stationary. By analogy with the reasoning that led to (3.3), we
now write 7 = (y2 — Rs)/r2, so that v, = dn/dt = Oy2 — Uy1 — tan B (Og2 — 1), where
t=+/pa/pmtV/ra. The analogous system of equations to (3.3) is then

dn

T =u, (4.3a)
d’Un 3 () T2 Uz2 — Or1 d

n _ 3 T2 _t _ 2 — 2= T T (4.3
7 =3 Cra(B,m) " Cr1 —tan 3 (ODQ(B’H) " ODI)} cos?2 3 di (4.38)
dg ro . . .ag

=~ = — \Ug2 — Ug1) 7%, 4.

7 e %) 3

where any newly introduced notation has its obvious meaning. As discussed earlier, C'pq
and Cp, are assumed constant; in particular Cp1=0. Since ( is a single-valued func-
tion of &, we can easily reverse this dependency and write & = 2(3); in this case, the
derivative d3/d# in (4.3c) becomes (di#/dB)~!. However (4.3) is prevented from being
an autonomous system for n, v,, and [ by the appearance of 0;0 — 051 in (4.3b) and
(4.3¢). In general, this expression, representing an integrated drag coefficient, depends
on t, n(0), and 3(0). Nor is it reasonable to simply ignore this problem by neglecting the
relevant term in (4.3b). To show this, in figure 19 are plotted the two underbracketed
terms in (4.3b) (which we refer to as the force-coefficient and shock-curvature terms, re-
spectively) versus Z for the ro/r1=0.05 and 0.5 trajectories from figure 18. Except for the
initial stages of the motion, the magnitudes of the two terms are seen to be comparable.
However, if we limit ourselves to a single initial axial position, characterised by ((0), the
value of 0,9 — U1 should vary but weakly with the initial lateral position, 7(0), and may
then be approximated as a function only of 3 (or of - the two are now equivalent). If
this approximation is reasonable, the shock-curvature term profiles in figure 19 should
be roughly independent of yop. For r3/r1=0.05, this is indeed true. For ro/r1=0.5, the
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FIGURE 19. Terms in equation (4.3b) for the r2/r1=0.05 (left) and 0.5 (right) trajectories shown
in figure 18: (solid) shock-curvature term for (y20 — Rs)/r2=0, 0.5, 1.0, and 1.5 (dark to light);
(symbols) force-coefficient term for (y20 — Rs)/r2=0.5 (——A—-) and 1.5 (= —o—-—).

single profile corresponding to (y20 — Rs)/r2 = 1.5 diverges from the others, due to the
high drag experienced by the secondary as it penetrates deeply into the shock in this
case. Overall, however, this approximation may be considered reasonable.

Therefore, (4.3) can now be treated as an autonomous system, and, moreover, the
right hand side of (4.3¢) is a function only of §; thus, 8 can be solved for independently
of n and v,. We can then construct local phase planes of 7 and v, for given values of
0 that can be used to elucidate the behaviour of the secondary trajectories in phase
space. It is to be understood, however, that this description is only valid for the single
considered value of the initial axial position, 3(0) (as well as of the initial axial velocity,
052(0) — 9,1(0)). Before proceeding with this phase-space analysis, we comment briefly
on the differences between (3.3) and (4.3).

The key difference is the introduction in (4.3b) of the shock-curvature term (o /r1)[(Dz2—
01/ cos B)2d3/dz. Physically, the influence of the shock curvature is to increase the effec-
tive magnitude of v,, as the secondary moves away from the shock, but decrease it as the
secondary approaches the shock; thus, the presence of this term will enlarge the region of
stability in the local phase-plane. This may also be understood mathematically to arise
from the fact that d3/dz is always negative, so the shock-curvature term will act as a pos-
itive contribution to the lift coefficient, decreasing the minimum value of C'z2 for which a
stable stationary point can exist. This effect is further augmented by the introduction of
the primary drag coefficient, C'p1, in the force-coefficient term. However, if the combined
effect is sufficiently large that (r2/71)[(942—041)/ cos B]?|dB/dz| > tan 8 (1—r2/r1)Ch ts,
where Cp ¢s is the free-stream drag coefficient, then no stable stationary point will exist
(this is equivalent to lifting the L/D profile in the left plot of figure 5 such that the
free-stream value lies above the horizontal tan § line). In this case, no stable surfing is
possible; such a situation will be shown to be realisable, at least locally.

4.4.3. Phase-space behaviour

We now return to our phase-space analysis of (4.3). In figure 20 are plotted the phase-
space counterparts of the physical trajectories in figure 18 for two radius ratios, ro/r1 =
0.05 and 0.2. In addition, local phase planes of 1 and v, are shown for values of
corresponding to £=0, 1, 4 and 20. These are evaluated by setting the shock-curvature
term in (4.3b) to its mean value over the four trajectories at the appropriate point
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downstream in each case. The general features of these phase planes are, in part, similar
to the sphere-wedge phase diagram in figure 8, with the two stationary points present
in all cases. For both radius ratios, however, the stable region in the phase plane is seen
to expand considerably in the downstream direction, and this is mirrored in the growing
amplitudes of the trajectory oscillations (perhaps more clearly seen in figure 18); this may
be attributed to the factors described in the previous paragraph. The growth of the stable
region also means that the ro/r1=0.2, (y20 — Rs)/r2=1.5 trajectory, though beginning
slightly outside the local stable region, nevertheless remains stable. Despite this growth,
the positions of the stationary points vary but very little downstream: for ry/r1=0.05,
the stable point, for example, shifts from n=0.76 at =0 to 0.95 at & = 20; for ro/r1=0.2,
the variation is from 0.73 to 0.96. The most notable differences between the phase-space
pictures for the two radius ratios are the smaller region of stability (most apparent
upstream) in the phase plane, and the reduced number of trajectory oscillations, for the
larger r3/r1. The latter point is obvious from dimensional considerations; the former is
discussed shortly.

A significant difference between the present phase diagrams and those of sphere-wedge
configurations is the presence of a second centre at n<0 (for clarity, we now refer to
the first centre and its bounding stable region as “principal”). This centre is visible in
the r3/r1=0.2 planes, but is also present in all those for ro/r;=0.05 (though outside
the plotted limits) except for that corresponding to #=0. The appearance of this second
stable point is due to the rapid drop in the value of Cps as n decreases inside the
shock (see figure 14), which means that the positive Cp; and shock-curvature terms in
(4.3b) become dominant, and dv,/dt switches sign from negative to positive. When this
happens, the formerly open phase paths become closed circuits bounding the two stable
regions, and it is possible for the secondary to exhibit oscillations that take it from fully
inside to fully outside the shock and back again. These predictions should be treated
with some caution, however: figure 14 shows that the theoretical model predicts Cpsy to
drop more rapidly inside the shock than is physically realistic; also, the assumed value
of the shock-curvature term in (4.3b) used to produce these phase planes is likely to be
too high for trajectories that penetrate fully into the shocked region.

Phase-space pictures corresponding to those in figure 20 for M =10 were also obtained.
The main features of the local phase planes are generally similar, but the the primary sta-
ble regions are initially slightly smaller for the lower Mach number, and, after reaching a
maximum extent near £=4, begin shrinking in the downstream direction; the oscillations
in the secondary trajectories show corresponding reductions in amplitude downstream.
One might suspect that these differences are related to the Mach number effect observed
in the right plot of figure 5, as it is reasonable to assume that the extent of the prin-
cipal stable region in the local phase plane will be determined by the degree to which
the maximum L/D value exceeds tan 3. To investigate whether a similar Mach number
effect exists for the sphere-sphere case, on the left axes of figure 21, (L/D)mas is plot-
ted against tan(§ for Mach numbers of 10 and 25 and for various radius ratios. Here
L/D = [Cra — (r2/71)Cr1]/[Cp2 — (r2/r1)Cp1] and thus is strictly only the effective
lift /drag ratio when 9,9 — 0,1 = 0. However, the shock-curvature term varies but very
little between these two Mach numbers, so plotting in this form better highlights the
differences between the two. The line (L/D)pqe, = tan g is included for reference, but
the location where each curve intersects this line now has little physical significance. As
in the sphere-wedge case, (L/D)mq. initially lies well above tan 3 for both Mach num-
bers and for all radius ratios. As (3 is decreased, however, the M =10 profiles drop more
steeply, whereas the M =25 curves remain well above the tan 3 line over a large range of
B (with the ratio (L/D)mas/ tan B increasing until tan $/0.15). This provides a holistic
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FIGURE 21. (Left) Maximum lift-to-drag ratios for the secondary sphere at M=10 (dark)
and M=25 (light): —-—o—-— re/r1=0.1; —A—, ro/r1=0.2; ---0O---, 7r2/r1=0.5; ———,
(L/D)maz = tanB. (Right) Phase plane for M=25, ro/r1=0.2, £=4, using the shock-curva-
ture term for the (y20 — Rs)/r2 = 1.5 trajectory in (4.3b).

explanation as to why the size of the principal stable region decreases in the downstream
direction in the M=10 phase diagrams but increases for M=25. If the Mach number is
decreased further, the size of the stable region should continue to shrink; unfortunately,
the use of the blast-wave analogy means that the theoretical model cannot be expected
to give reliable results for Mach numbers much below 10.

A further observation from the left plot of figure 21 is that, for a given Mach number
and 3, (L/D)mae is minimum for r5/r120.2. This explains the decreased extent of the
principal stable region for this radius ratio compared to ro/r;1=0.05 in figure 20. The
reason for this effect is that, as ro/r; is increased, though the peak Cpo decreases mono-
tonically, the influence of the ro/r; x Cpy term in the denominator of L/D becomes
increasingly dominant.

The possibility was mentioned earlier that, if the shock curvature term in (4.3b) were
sufficiently large, the principal stable point could cease to exist. In figure 20, in which
the mean value of the shock-curvature term over the relevant trajectories is employed,
this phenomenon is not observed. However, it was noted in the discussion of figure 19
that the magnitude of the shock-curvature term for (yo0 — Rs)/r2 = 1.5 is typically larger
than for the other trajectories. On the right axes of figure 21 is shown the phase plane
for M=25, ro/r1=0.2, £=4, using the shock-curvature term corresponding to this single
trajectory. The principal stable region is seen to disappear altogether, though the saddle
point and the inner stable region remain. A similar picture is obtained for M=10. This
behaviour helps to explain why the relevant trajectory in figures 18 and 20 shows such
large amplitude oscillations. The rapid decay of the shock-curvature term downstream,
however, means that the phase planes for both Mach numbers revert to their more familiar
appearance by =20, and even this trajectory will eventually take the secondary back
towards the primary shock.

Finally, we are now in a position to predict the phase-plane picture for initial conditions
other than #(0)=0 and 9,2(0) — 051 (0) = 0. For £(0)<0 or 942(0) — 951(0) # 0, the mag-
nitude of the shock-curvature term will increase for a given 3, enlargening the principal
stable region or transforming the phase plane into the form seen in figure 21. Conversely,
for 2(0)>0, the shock-curvature term will become smaller, shrinking the principal region
of stability and possibly eliminating the second centre. Even as this term tends to zero,
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however, the principal stable region will remain finitely large except for 3 only slightly
greater than the Mach angle. This may be deduced from the left plot of figure 21, in
which the intersections of the (L/D)qe curves with the tan g line give the minimum £
for the existence of a stable region in this limit.

4.5. Separation of spherical fragments

As a further application of the theoretical model, we now return to arrangements in
which the bodies are initially touching to examine the effects of varying the initial point
of alignment and the relative velocities of the bodies. With regard to the meteoroid
fragmentation problem, this will give some indication of the influence that the disruption
location on the parent body has on the subsequent separation behaviour, and the effects
of combining aerodynamic interactions with other mechanisms that can influence the
initial separation, such as parent-body rotation.

On the left axes of figure 22, the final (or maximum, for entrainment) normalised
separation velocity is plotted against the radius ratio for different choices of the axial
alignment point of the spheres: alignment of the centres (as before), of the frontmost
point, and of the rearmost point are considered (see figure 2d; the three of course coincide
for ro=ry). The initial relative velocity is zero in all cases. First, by comparing the
centre-aligned profile with the theoretical M=25 profile in figure 17, the influence of
neglecting the repulsive effect of the secondary on the primary (i.e., assigning Cr,1=0) can
be deduced. The critical radius ratio is shifted to a slightly higher value, 0.51 compared
to 0.48, and, if expelled, the secondary separation velocity is augmented by a small
amount. Comparing the profiles for the three alignment points, the critical radius ratio
is observed to increase from 0.19 for front alignment to 0.51 for centre alignment, through
to 0.67 for rear alignment. This can be explained by the increase in the effective shock
radius experienced by the secondary as it is moved from the front to the rear. The
maximum separation velocity also increases as the critical radius ratio decreases, since
smaller bodies have smaller ballistic coefficients and are thus more greatly affected by
aerodynamic forces. Note that the scaling of Passey & Melosh, (1.1), gives a result closest
to the front-aligned profile, since the assumption of a purely lateral separation is most
appropriate here.

We now consider the separation behaviour when there is a finite initial relative velocity
between the fragments, V,,. This initial velocity may result, for example, from rotation
of the parent body (Passey & Melosh 1980) or from conversion of the strain energy in
the parent body prior to disruption into kinetic energy of the fragments. A rough upper
bound for the velocity produced by the latter mechanism can be estimated as follows.
The potential strain energy in a body undergoing uniaxial compression is approximately
es = pPAL/(2E) = p*mo/(2pmE), where A, | and my are the frontal area, length, and
mass of the body, p is the mean pressure, and F is the Youngs modulus. If this energy
is assumed to be converted entirely into lateral kinetic energy of the fragment pair,
conservation of momentum gives (1 +ma/m1)maV2 = 2e,. Using mo/mae = 1+ mq/ma,
we then obtain

VTO,maz - ( 1 1+ (Tl/T2)3)1/2 V. (4 4)
Vv pmE 1+ (ra/r1)3 ‘o '
The maximum separation velocity from this mechanism thus increases approximately as
(ro/r1)~%/% as ro /7y is decreased.

If both the magnitude and the direction of the initial separation velocity are allowed
to vary, as well as the initial alignment of the fragments, the parameter space becomes
too large to investigate. We thus limit ourselves to purely lateral initial separations
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F1GURE 22. Normalised separation velocities calculated for initially touching spheres at a Mach
number of M=25, using the theoretical model. (Left) Zero initial separation velocity with:
—.—o—-—, rearmost points aligned; ---/A\---  centres aligned; —[J—, frontmost points aligned;
———, scaling indicated by (1.1). (Right) Nonzero initial lateral velocities with sphere centres
axially aligned, for (darkest to lightest): r2/r1=0.2, 0.3, 0.35, 0.4, 0.45, 0.5, and 0.6; ¢, maximum
separation velocity from strain-energy conversion for the Sikhote-Alin meteoroid, according to
(4.4). The vertical dashed lines indicate the maximum initial velocity from a spinning parent
body, with parameters appropriate for the Sikhote-Alin meteoroid, assuming rotation rates of 1
and 4 rps.

and axial alignment of the sphere centres (figure 2e). On the right axes of figure 22 is
plotted the final (or maximum, for entrainment) normalised separation velocity versus
the initial normalised velocity, V/y=+/pm/paVro/V, for a number of choices of ry /7.
As Vi, is increased, extended surfing becomes possible for smaller radius ratios, leading
to a decreased critical ro/r1. This is similar to the effect of moving the alignment point
forward, as discussed earlier; the corresponding increase in the maximum separation
velocity is also generally observed (note, however, that the precise value of the maximum
for a given ro/ry is sensitive to the choice of initial conditions, so the peak in each
profile should be considered a lower bound). On each of the curves is also indicated the
point corresponding to the maximum initial separation velocity that is available from
strain-energy conversion for the relevant radius ratio, (4.4), for parameters appropriate
for the Sikhote-Alin meteoroid at breakup (Krinov 1966). Since this meteoroid underwent
multiple stages of fragmentation, the height of the second-to-last stage according to eye-
witness accounts (16 km), which was most likely responsible for the major dimensions of
the crater field, is chosen, giving an atmospheric density of p, = 0.17 kg/m3. The values
of the other parameters are V = 15km/s, and F = 200 GPa. Strain-energy conversion
is seen to have a small effect on the separation behaviour: even for this limiting case,
the critical radius ratio drops by only a small amount to slightly below 0.5. For weaker
bodies (e.g., stones), the reduced E in (4.4) will be offset by a decreased p, at the point
of disruption, and these results will not be substantially altered.

Also shown on the right plot of figure 22 are vertical lines corresponding to the maxi-
mum initial separation velocities resulting from rotation rates of wy=1 and 4 rps for the
Sikhote-Alin parent body. These assume an initial mass of 300 tonnes (Heide 1963), and
thus, with a density of p,, = 7800kg/m?, a radius of approximately 2m. The effect of
spinning on the subsequent surfing behaviour is seen to be potentially much more signifi-
cant for meteoroids of this size than strain-energy conversion: for 1 and 4 rps, the critical
radius ratio drops to 0.4 and ~0.2, respectively. Moving the initial point of alignment
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F1GURE 23. Normalised separation velocity of the primary body from numerical simula-
tions of initially touching two-sphere configurations: —-—-A--— M=10; ---0---, M=25; ——,
Vipo(ra/r1)?

forward, or increasing the parent body radius, would decrease the critical ratio even fur-
ther. These results also show that the combined effects of surfing and a modest rotation
rate give the potential for a significant variation in the final separation velocity. The
maximum separation velocity for r2/r1=0.2 in the right plot of figure 22 corresponds to
a value of C=1.56 in (1.1); thus, a large fraction of the variation deduced in this “con-
stant” by Passey & Melosh from terrestrial crater fields (see §1) can be explained by the
combination of these two mechanisms.

4.6. Primary body motion for initially touching configurations

In previous separate-fragment models (Artemieva & Shuvalov 2001; Bland & Artemieva
2006), the separation behaviour of the primary body was derived from conservation of
lateral momentum applied to the fragment pair. This assumption, while valid for equally
sized fragments (but from symmetry rather than mechanical considerations), was pro-
posed by the authors with some doubts as to its validity when 79 # 7. Indeed, both the
presence of intervening fluid (to which momentum may be transferred) and the limited
domain of influence of a body in supersonic flow may lead one to question this assump-
tion, even without knowledge of the surfing phenomenon. With the highly asymmetrical
domains of influence produced by surfing, however, it is clearly not appropriate to corre-
late the final lateral momenta of the two bodies. In the computations described in §4.3,
for example, the magnitude of the maximum lateral momentum of the secondary varies
from less than a third of to more than twice that of the primary.

The theoretical model developed in this work does not tell us anything about the
motion of the primary during separation from an initially touching configuration, and to
obtain quantitative results we must look to the relevant computations. These can still be
informed by general physical arguments, however. Following a similar line of reasoning
to Passey & Melosh (1980), we write

VTP :FTpAt/ml, (45)

where Vrp is the final separation velocity of the primary, Frp is the mean lateral force,
and At is the time period over which the secondary influences the primary. Assuming the
separation to be dominated by the secondary motion, we may characterise the influence
time as At = /2€/aq, where £ and a4 are the secondary influence distance and separation
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acceleration, respectively. The influence distance will scale as & o 75, where 0<k<1: the
upper limit for k is appropriate for o=y, in which case the separation is primarily lateral
and the influence distance scales with the secondary shock radius; for ro<ry, however,
the separation is principally axial due to the significantly lower ballistic coefficient of the
secondary, and the dependence of £ on 7o will be weak. In either case, the secondary
acceleration will scale roughly as ag o< 1/r5. The lateral force exerted by the secondary
on the primary will also depend on the secondary size, as a larger secondary will have
a larger pressure footprint on the primary surface. If the primary surface were planar,
this would result in Frp o< 73 (which will be the limiting behaviour as r/r; — 0), but,
because of the the curvature of the primary surface, the dependence will, in general, be
less than quadratic.

Combining these dependencies, we have Vrp oc ry', where 1<m<3, and with m~2
likely to be an appropriate value over a range of ro/ry. Indeed, in figure 23, the nor-
malised primary separation velocities from the free-flying simulations described in §4.3
are plotted, and a value of m=2 in the scaling of Vp is seen to provide a good fit to the
data. Although these arguments are not sufficient in themselves to provide quantitative
information regarding the primary separation behaviour, with a small number of relevant
computations, they can be used to extrapolate the primary behaviour over a range of
relative body sizes.

5. Discussion

We conclude with a brief discussion of the implications of the shock-surfing phe-
nomenon, particularly for meteoroid fragmentation. First, because of the dependence of
the extent of surfing on the radius ratio in initially touching configurations, and the highly
augmented separation velocities that can result from extended surfing, it is clear that the
radius ratio is a critical parameter in determining the separation behaviour. The influ-
ence of the radius ratio is not well captured by the scaling law of Passey & Melosh, (1.1),
and, moreover, the extrapolation of the separation behaviour of equally sized fragments
to unequal fragments, as in previous separate-fragment models (Artemieva & Shuvalov
2001; Bland & Artemieva 2006), is unlikely to yield accurate results. The implications
of surfing for the assumption of conserved lateral momentum in deriving the primary
motion in these models has also been discussed.

The existence of a critical radius ratio (or, more correctly, a critical ratio range, given
that a number of factors affect the precise value of this ratio), delineating entrainment
of the secondary within the primary shock from expulsion, will also lead to a selection
effect for multiple fragments travelling together, e.g., immediately following atmospheric
disruption of the parent body. The largest fragments will repulse one another, but with
moderate resulting separation velocities; slightly smaller fragments will have the potential
to be repulsed strongly due to surfing effects; whereas the smallest fragments will likely
be entrained within the shocks of larger fragments (at which point a further selection
effect can take place due to the dependence of the lateral force coefficient on the radius
ratio noted by Laurence et al. (2007)). This could lead to interesting and observable
phenomena in the formation of crater fields: for example, outlying fragments could be
produced by extended surfing immediately following disruption, and smaller fragments
could impact further downrange than would otherwise be possible due to their travelling
within the low-density region behind larger fragments. Regarding this last point, one
of the “peculiarities” of the Sikhote-Alin crater field noted by Krinov (1966) is that “a
fairly large number of small craters and holes were found to lie in the front part between
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large craters.” This may in fact not be a peculiarity at all, but an expected result of
interactions between fragments of different sizes.

Finally, the impinging shock interactions experienced during surfing will lead to ex-
tremely high local pressures and heat fluxes on the secondary body (Edney 1968; Sander-
son et al. 2004). Such interactions, for example, were responsible for burning ”gaping
holes” in the pylon of a dummy ramjet attached to the X-15 aircraft (Bertin & Cummings
2006). This increased dynamic and thermal loading would lead to enhanced ablation and
possibly further fragmentation of the impinged-upon fragment, and would also increase
the rate of energy transfer to the atmosphere.
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