
energy [**r]evolution**

A SUSTAINABLE WORLD ENERGY OUTLOOK

report 3rd edition 2010 world energy scenario

Greenpeace International, European Renewable Energy Council (EREC)

date June 2010

isbn 978-90-73361-90-4

project manager & lead author Sven Teske, Greenpeace International

EREC Arthouros Zervos, Christine Lins, Josche Muth

Greenpeace International Sven Teske research & co-authors DLR, Institute of Technical Thermodynamics, Department of Systems Analysis and Technology Assessment, Stuttgart, Germany: Dr. Wolfram Krewitt (†), Dr. Thomas Pregger, Dr. Sonja Simon, Dr. Tobias Naegler. Institute of Vehicle Concepts, Stuttgart, Germany: Dr. Stephan Schmid. Ecofys BV, Utrecht, The Netherlands: Wina Graus, Eliane Blomen. EcoEquity, School of Public Policy, Georgia Institute of Technology, Atlanta, USA: Paul Baer, Assistant Professor, (Chapter 2.3 – Greenhouse Development Rights). Center for Climate Change and Sustainable Energy Policy (3CSEP), Budapest, Hungary: Prof Diana Ürge Vorsatz, Director, (Chapter 2.1). Institute for Sustainable Futures (ISF), University of Technology, Sydney, Australia: Jay Rutovitz, Alison Atherton (Chapter 6 & 7 – job calculation).

image the INDIGENOUS NENETS PEOPLE MOVE EVERY 3 OR 4 DAYS SO THAT THEIR REINDEER DO NOT OVER GRAZE THE GROUND AND THEY DO NOT OVER FISH THE LAKES. THE YAMAL PENINSULA IS UNDER HEAVY THREAT FROM GLOBAL WARMING AS TEMPERATURES INCREASE AND RUSSIA'S ANCIENT PERMAFROST MELTS.

partners

"will we look into the eyes of our children and confess

that we had the **opportunity**, but lacked the **courage?** that we had the **technology**, but lacked the **vision?**"

OECD North America WorldWatch Institute/ Sunna Institute: Janet Sawin, Freyr Sverrisson; GP USA: Damon Moglan, Kyle Ash. **Latin America** Universidad de Chile, Luis Vargas; GP Brazil: Marcelo Furtado, Ricardo Baitelo. **OECD Europe/EU27** EREC:

regional partners:

Christine Lins, Josche Muth, Arthouros Zervos, Frauke Thies, Jan van de Putte. **Transition Economies** Valdimir Tchouprov. Africa & Middle East Reference Project: "Trans-Mediterranean Interconnection for Concentrating Solar Power" 2006, Dr. Franz Trieb; GP Mediterranean: Nili Grossmann, GP Africa: Melita Steele, Fiona Musana. India WISE, G M Pillai, Pune / India; GP India: Vinuta Gopal, Manish Ram, Siddharth Pathak. Other Dev. Asia ISEP-Institute Tokyo: Mika Ohbayashi, Hironao Matsubara Tetsunari Iida (2008); GP South East Asia: Tara Buakamsri. China CREIA, Li Junfeng; Prof. Zhang Xilian, University Tsinghua, Beijing (2008); GP China: Ailun Yang, Liu Shuang. OECD Pacific Dialog Institute, Wellington, New Zealand: Murray Ellis; GP Australia Pacific: Julien Vincent.

Greenpeace International reviewers Jan Beranek, Tzeporah Berman, Nicola Davies, Alexandra Dawe, Jasper Inventor, Emily Rochon, Joris Thijssen, Wendel Trio, Stephanie Tunmore.

editor Crispin Aubrey

printing PrimaveraQuint, the Netherlands, www.primaveraquint.nl

design & layout onehemisphere, Sweden, www.onehemisphere.se

contact sven.teske@greenpeace.org, lins@erec.org

for further information about the global, regional and national scenarios please visit the energy [r]evolution website: **www.energyblueprint.info/** Published by Greenpeace International and EREC. (GPI reference number JN 330). Printed on 100% post consumer recycled chlorine-free paper.

foreword

A global energy scenario paints a picture of our common future - the picture depicts how the future could unfold. Energy scenarios send important messages on alternative futures to decision makers in political, financial, industrial sectors as well as other stakeholders in the energy market. They paint a picture which can encourage and guide decision makers involved in shaping our energy future.

Based on assumptions, global scenarios provide information on the conditions necessary to harness existing renewable energy potential and allow for reasonable assessment of the factors of success.

If the assumptions are limited, they are likely to impede the dynamic development of renewable energy sources. Countries may not make important decisions, or decisions will be incorrect. If the assumptions are ambitious, they could encourage countries to reap the benefits that accompany the accelerated deployment of renewable energies. They can improve energy security, alleviate energy poverty and reduce carbon emissions.

foreword introduction executive summary climate protection & energy policy

14

18

- implementing the energy [r]evolution
- nuclear power & climate protection 30

the energy [r]evolution 35 scenarios for a future energy supply 47

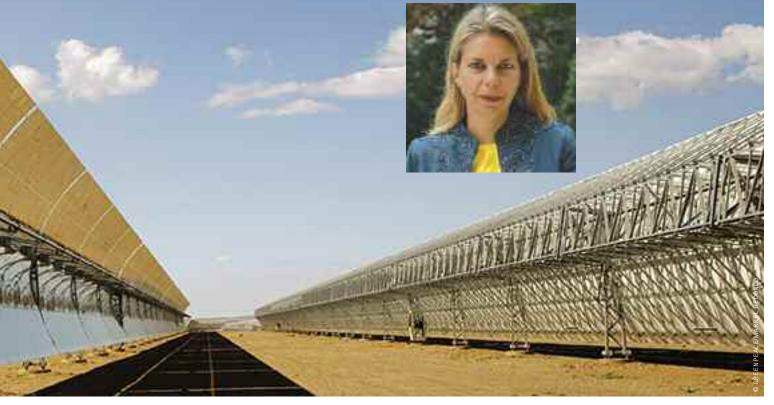
key results of the global energy [r]evolution scenario 64

contents

ANDASOL 1 SOLAR POWER STATION SUPPLIES UP TO 200,000 PEOPLE WITH CLIMATE-FRIENDLY ELECTRICITY AND SAVES ABOUT 149,000 TONNES OF CARBON DIOXIDE PER YEAR COMPARED WITH A MODERN COAL POWER PLANT.

4

6 8 It is clear that global scenarios have a critical role to play in the development of the global energy framework. To keep up with the fast paced development of renewable energy technologies, and to accurately convey current and possible future growth rates of renewable energy worldwide, global scenarios need to be kept up to date.


Due to the high relevance of energy scenarios in the global energy debate, the International Renewable Energy Agency, IRENA, will itself facilitate an open and transparent dialogue on renewable energy scenarios within the framework of its mandate. Its mandate does not include the issues of fossil or nuclear energy.

IRENA aims to ensure that assumptions about renewable energy reflect the rapid development that we can currently witness in renewable energy technologies and policies. In the long term, IRENA itself will play an active role in the development of Renewable Energy scenarios in discussion with other organizations like the European Renewable Energy Council (EREC) and Greenpeace. The energy [r]evolution series has become a reference publication for many over time. The third issue again displays all attributes of a good scenario: it accounts for progress in the field of technologies and policies, spells out the essential framework conditions, provides for solutions – like, in this case, a global financing model - and finally, visualizes positive benefits, like the impact of an accelerated deployment of renewable energies on the job sector.

Energy [r]evolution underlines once again the importance of renewable energy in the context of climate change mitigation. It demonstrates that renewable energies stand ready to make a significant contribution.

Hélène Pelosse

INTERIM DIRECTOR-GENERAL IRENA - INTERNATIONAL RENEWABLE ENERGY AGENCY JUNE 2010

7 future investment & employment	134
energy resources & security of supply	149
🧿 energy technologies	169

energy efficiency – more with less	180
1 transport	193
policy recommendations	205

13 glossary & appendix 211

introduction

"FOR THE SAKE OF A SOUND ENVIRONMENT, POLITICAL STABILITY AND THRIVING ECONOMIES, NOW IS THE TIME TO COMMIT TO A TRULY SECURE AND SUSTAINABLE ENERGY FUTURE."

image A WORKER ENTERS A TURBINE TOWER FOR MAINTENANCE AT DABANCHENG WIND FARM. CHINA'S BEST WIND RESOURCES ARE MADE POSSIBLE BY THE NATURAL BREACH IN TIANSHAN (TIAN MOUNTAIN).

The energy debate has moved to the top of the agenda right across the social, political and economic spectrum. For governments this is because energy is the lifeblood of their economies, for scientists because of the threat of climate change to the dominance of fossil fuels, for NGOs because of the environmental and social impacts, for economists because of the business potential of a shift in the way our energy is produced, for engineers because they have the task of developing new technologies to supply and consume energy in a smarter way and last but not least for consumers as volatile energy prices have a direct impact on household budgets.

Access to sufficient energy is vital for making our economies work but at the same time one of the main sources of the greenhouse gas emissions that put our climate at risk. While the last climate change summit in Copenhagen was a failure, international negotiations to address the issue remain high on the political agenda. Highly volatile fossil fuel prices are creating more and more uncertainty for the global economy while at the same time giving an indirect incentive for investing in renewable energy technologies, which are now booming. Against that background this third edition of the Energy [R]evolution analysis takes a deep plunge into possible energy supply strategies for the future and how to develop a sustainable energy and climate policy. Access to energy is of strategic importance for every country in the world. Over the past few years oil prices have gone up and down like a rollercoaster, jumping to a record high in July 2008 of \$147.27 and then falling back again to \$33.87 in December. Even so, over the whole of 2009 the average oil price was still between \$60 and \$80 per barrel. At the same time, with gas prices in Europe rising in line with the price of oil, the impact on both the heating and power sectors has been huge.

Security of energy supply is not only influenced by the cost of fuels, however, but by their long term physical availability. Countries without their own fossil fuel supplies have increasingly shown interest in renewable energy sources, not only because of the price stability this brings but because they are indigenous and locally produced.

Renewable energy technologies produce little or no greenhouse gases and rely on virtually inexhaustible natural elements for their 'fuel'. Some of these technologies are already competitive. The wind power industry, for example, has continued its explosive growth in the face of a global recession and a financial crisis and is a testament to the inherent attractiveness of renewable technology. In 2009 the total level of annual investment in clean energy was \$145 billion, only a 6.5% drop from the record previous year, while the global wind power market grew by an annual 41.5%. The

image NORTH HOYLE WIND FARM, UK'S FIRST WIND FARM IN THE IRISH SEA WHICH WILL SUPPLY 50,000 HOMES WITH POWER.

renewable energy industry now employs around two million people worldwide and has become a major feature of national industrial development plans. Meanwhile, the economics of renewables are expected to further improve as they develop technically, as the price of fossil fuels continues to rise and as their saving of carbon dioxide emissions is given a monetary value.

Despite the small drop in fossil fuel emissions in the industrialised world as a result of the economic crisis, globally the level of energy related carbon dioxide continues to grow. This means that a recovered economy will result in increasing CO₂ emissions once again, further contributing to the greenhouse gases which threaten our planet. A shift in energy policy is needed so that a growing economy and reduced CO₂ emissions can go hand in hand. The Energy [R]evolution analysis shows how this is possible.

Although the Copenhagen climate change conference at the end of 2009 was a huge disappointment, it should not lead to a feeling that nothing can happen. A change in energy policy has to be connected to a change of climate policy. The United Nations (UNFCCC) climate talks therefore still remain central to the survival of our planet and a global regime for CO₂ reduction. Placing a price on carbon, as well as a long term agreement on CO₂ reduction, are both of vital importance for the uptake of renewables and energy efficiency. A new 'fair, ambitious and legally binding' (FAB) deal will need to incorporate the existing Kyoto Protocol's architecture. This relies fundamentally on legally binding emissions reduction obligations, on common guidelines for accounting rules, on a compliance regime and on agreed carbon trading mechanisms.

energy [r]evolution 2010

This is the third edition of the global Energy [R]evolution scenario since the first one was published in January 2007, and the analysis has been constantly deepened. In the second edition we introduced specific research for the transport sector and an investigation of the pathway to future investment in renewable energies. Since than we have published country specific scenarios for over 30 countries and regions, added a study of the employment implications of the scenarios and a detailed examination of how the grid network needs to be improved and adapted.

This new edition has broken fresh ground again. The 2010 Energy [R]evolution not only includes the financial analysis and employment calculations in parallel with the basic projections, we have also added a second, more ambitious Energy [R]evolution scenario. This was considered vital because rapid improvements in climate science made it clear during 2009 that a global 50% reduction in energy related CO_2 emissions by 2050 might not be enough to keep the global mean temperature rise below +2°C. An even greater reduction is needed if runaway climate change is to be avoided.

The advanced Energy [R]evolution scenario has changed five parameters compared to the basic version. These mean that the economic lifetime of coal power stations has been reduced from 40 to 20 years, the growth rate of renewables has taken the advanced projections of the renewable industry into account, the use of electric drives in the transport sector will take off ten years earlier, the expansion of smart grids will happen quicker, and last but not least, the expansion of fossil fuel based energy will stop after 2015.

A drastic reduction in CO₂ levels and a share of over 80% renewables in the world energy supply are both possible goals by 2050. Of course this will be a technical challenge, but the main obstacle is political. We need to kick start the Energy [R]evolution with long lasting reliable policy decisions within the next few years. It took more than a decade to make politicians aware of the climate crisis; we do not have another decade to agree on the changes needed in the energy sector. Greenpeace and the renewables industry present the Energy [R]evolution scenario as a practical but ambitious blueprint. For the sake of a sound environment, political stability and thriving economies, now is the time to commit to a truly secure and sustainable energy future – a future built on energy efficiency and renewable energy, economic development and the creation of millions of new jobs for the next generation.

Christine Lins SECRETARY GENERAL EUROPEAN RENEWABLE ENERGY COUNCIL (EREC) JUNE 2010

Sven Teske CLIMATE & ENERGY UNIT GREENPEACE INTERNATIONAL

executive summary

"AT THE CORE OF THE ENERGY [R]EVOLUTION WILL BE A CHANGE IN THE WAY THAT ENERGY IS PRODUCED, DISTRIBUTED AND CONSUMED."

image THE PS10 CONCENTRATING SOLAR THERMAL POWER PLANT IN SEVILLA, SPAIN. THE 11 MEGAWATT SOLAR POWER TOWER PRODUCES ELECTRICITY WITH 624 LARGE MOVABLE MIRRORS CALLED HELIOSTATS. THE SOLAR RADIATION, MIRROR DESIGN PLANT IS CAPABLE OF PRODUCING 23 GWH OF ELECTRICITY WHICH IS ENOUGH TO SUPPLY POWER TO A POPULATION OF 10,000.

This third edition of the Energy [R]evolution is even more ambitious and visionary than the previous two editions. The report demonstrates how the world can get from where we are now, to where we need to be in terms of phasing out fossil fuels, cutting CO_2 while ensuring energy security. This phase-out of fossil fuels offers substantial benefits such as independence from world market fossil fuel prices as well as the creation of millions of new green jobs. It also means providing energy to the two billion people currently without power. Our future and the future of the planet is rooted in the investment in people and local communities in terms of installing and maintaining renewable energy sources, rather than further subsidising the dirty fossil fuels which are inherently finite. The following executive summary outlines in brief a practical blueprint of how to make this a reality.

environmental challenge:

The threat of climate change, caused by rising global temperatures, is the most significant environmental challenge facing the world at the beginning of the 21st century. It has major implications for the world's social and economic stability, its natural resources and in particular, the way we produce our energy.

The Copenhagen Accord, agreed at the climate change summit in December 2009, has the stated aim of keeping the increase in global temperatures to below 2° C, and then considering a 1.5° C limit by 2015.

However, the national emissions reduction pledges submitted by various countries to the United Nations coordinating body, the UNFCCC, in the first half of 2010 are likely to lead to a world with global emissions of between 47.9 and 53.6 gigatonnes of carbon dioxide equivalents per year by 2020. This is about 10–20% higher than today's levels. In the worst case, the Copenhagen Accord pledges could even permit emission allowances to exceed a 'business as usual' projection.¹

In order to avoid the most catastrophic impacts of climate change, the global temperature increase must be kept as far below $2^{\circ}C$ as possible. This is still possible, but time is running out. To stay within this limit, global greenhouse gas emissions will need to peak by 2015 and decline rapidly after that, reaching as close to zero as possible by the middle of the 21st century.

a safe level of warming?

Keeping the global temperature increase to 2° C is often referred to as a 'safe level' of warming, but this does not reflect the reality of the latest science. This shows that a warming of 2° C above pre-industrial levels would pose unacceptable risks to many of the world's key natural and human systems.² Even with a 1.5° C warming, increases in

references

1 COPENHAGEN ACCORD PLEDGES ARE PALTRY-JOERI ROGELJ, MALTE MEINSHAUSEN, APRIL 2010. 2 W. L. HARE. A SAFE LANDING FOR THE CLIMATE. STATE OF THE WORLD. WORLDWATCH INSTITUTE. 2009.

drought, heatwaves and floods, along with other adverse impacts such as increased water stress for up to 1.7 billion people, wildfire frequency and flood risks, are projected in many regions. Neither does staying below 2°C rule out large scale disasters such as melting ice sheets. Partial de-glaciation of the Greenland ice sheet, and possibly the West Antarctic ice sheet, could even occur from additional warming within a range of $0.8 - 3.8^{\circ}$ C above current levels.³ If rising temperatures are to be kept within acceptable limits then we need to significantly reduce our greenhouse gas emissions. This makes both environmental and economic sense. The main greenhouse gas is carbon dioxide (CO₂) produced by using fossil fuels for energy and transport.

climate change and security of supply

Spurred by recent rapidly fluctuating oil prices, the issue of security of supply - both in terms of access to supplies and financial stability - is now at the top of the energy policy agenda. One reason for these price fluctuations is the fact that supplies of all proven resources of fossil fuels - oil, gas and coal - are becoming scarcer and more expensive to produce. So-called 'non-conventional' resources such as shale oil have even in some cases become economic, with devastating consequences for the local environment. What is certain is that the days of 'cheap oil and gas' are coming to an end. Uranium, the fuel for nuclear power, is also a finite resource. By contrast, the reserves of renewable energy that are technically accessible globally are large enough to provide about six times more power than the world currently consumes - forever.

Renewable energy technologies vary widely in their technical and economic maturity, but there are a range of sources which offer increasingly attractive options. These include wind, biomass, photovoltaics, solar thermal, geothermal, ocean and hydroelectric power. Their common feature is that they produce little or no greenhouse gases, and rely on virtually inexhaustible natural elements for their 'fuel'. Some of these technologies are already competitive. The wind power industry, for example, continued its explosive growth in the face of a global recession and a financial crisis in 2008 and 2009 and is a testament to the inherent attractiveness of renewable technology.

Last year (2009) Bloomberg New Energy Finance reported the total level of annual investment in clean energy as \$145 billion, only a 6.5% drop from the record previous year. The global wind industry defied the economic downturn and saw its annual market grow by 41.5% over 2008, and total global wind power capacity increase by 31.7% to 158 GW at the end of 2009.⁴ More grid-connected solar PV capacity was added worldwide than in the boom year of 2008. And the economics of renewables will further improve as they develop technically, as the price of fossil fuels continues to rise and as their saving of carbon dioxide emissions is given a monetary value.

At the same time there is enormous potential for reducing our consumption of energy, and still continuing to provide the same level of energy services. This study details a series of energy efficiency measures which together can substantially reduce demand across industry, homes, business and services.

Against these positive attractions, nuclear energy is a relatively minor industry with major problems. The average age of operating commercial nuclear reactors is 23 years, so more power stations are being shut down than started. In 2008, world nuclear production fell by 2% compared to 2006, and the number of operating reactors as of January

2010 was 436, eight less than at the historical peak of 2002. Although nuclear power produces little carbon dioxide, there are multiple threats to people and the environment from its operations. These include the risks and environmental damage from uranium mining, processing and transport, the risk of nuclear weapons proliferation, the unsolved problem of nuclear waste and the potential hazard of a serious accident. The nuclear option is therefore discounted in this analysis.

the energy [r]evolution

The climate change imperative demands nothing short of an energy revolution, a transformation that has already started as renewable energy markets continue to grow. In the first global edition of the Energy [R]evolution, published in January 2007, we projected a global installed renewable capacity of 156 GW by 2010. At the end of 2009, 158 GW has been installed. More needs to be done, however. At the core of this revolution will be a change in the way that energy is produced, distributed and consumed.

the five key principles behind this shift will be to:

- Implement renewable solutions, especially through decentralised energy systems
- Respect the natural limits of the environment
- Phase out dirty, unsustainable energy sources
- Create greater equity in the use of resources
- Decouple economic growth from the consumption of fossil fuels

Decentralised energy systems, where power and heat are produced close to the point of final use, will avoid the current waste of energy during conversion and distribution. Investments in 'climate infrastructure' such as smart interactive grids, as well as super grids to transport large quantities of offshore wind and concentrating solar power, are essential. Building up clusters of renewable micro grids, especially for people living in remote areas, will be a central tool in providing sustainable electricity to the almost two billion people around the world for whom access to electricity is presently denied.

greenhouse development rights

But although the Energy [R]evolution envisages a clear technological pathway, it is only likely to be turned into reality if its corresponding investment costs are shared fairly under some kind of global climate regime. To demonstrate one such possibility, we have utilised the Greenhouse Development Rights framework, designed by EcoEquity and the Stockholm Environment Institute, as a way of evening up the unequal ability of different countries to respond to the climate crisis in their energy polices.

references

3 JOEL B. SMITH, STEPHEN H. SCHNEIDER, MICHAEL OPPENHEIMER, GARY W. YOHE, WILLIAM HARE, MICHAEL D. MASTRANDREA, ANAND PATWARDHAN, IAN BURTON, JAN CORFEE-MORLOT, CHRIS H. D. MAGADZA, HANS-MARTIN FÜSSEL, A. BARRIE PITTOCK, ATIQ RAHMAN, AVELINO SUAREZ, AND JEAN-PASCAL VAN YPERSELE: ASSESSING DANGEROUS CLIMATE CHANGE THROUGH AN UPDATE OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) "REASONS FOR CONCERN". PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. PUBLISHED ONLINE BEFORE PRINT FEBRUARY 26, 2009, DOI: 10.1073/PNAS.0812355106.THE ARTICLE IS FREELY AVAILABLE AT: HTTP://WWW.PNAS.ORG/CONTENT/EARLY/2009/02/25/ 0812355106.FULL.PDF A COPY OF THE GRAPH CAN BE FOUND ON APPENDIX 1. 4 GLOBAL WIND 2009 REPORT, GWEC, MARCH 2010, S. SAWYER, A. ZERVOS.

"The long term scenario has been developed further towards a complete phasing out of fossil fuels in the second half of this century."

The Greenhouse Development Rights (GDR) framework calculates national shares of global greenhouse gas obligations based on a combination of responsibility (contribution to climate change) and capacity (ability to pay). Crucially, GDRs take inequality within countries into account and calculate national obligations on the basis of the estimated capacity and responsibility of individuals. Individuals with incomes below a 'development threshold' – specified in the default case as \$7,500 per capita annual income, PPP adjusted – are exempted from climate-related obligations. Individuals with incomes above that level are expected to contribute to the costs of global climate policy in proportion to their capacity (amount of income over the threshold) and responsibility (cumulative CO₂ emissions).

The result of these calculations is that rich countries like the United States of America, which are also responsible for a large proportion of global greenhouse gas emissions, will contribute much more towards the costs of implementing global climate policies, such as increasing the proportion of renewables, than a country like India. Based on a 'Responsibility and Capacity Indicator', the USA, accounting for 36.8% of the world's responsibility for climate change, will in turn be responsible for funding 36.3% of the required global emissions reductions.

The GDR framework therefore represents a good mechanism for helping developing countries to leapfrog into a sustainable energy supply, with the help of industrialised countries, while maintaining economic growth and the need to satisfy their growing energy needs. Greenpeace has taken this concept on board as a means of achieving equity within the climate debate and as a practical solution to kickstarting the renewable energy market in developing countries.

methodology and assumptions

Three scenarios up to the year 2050 are outlined in this report: a Reference scenario, an Energy [R]evolution scenario with a target to reduce energy related CO_2 emissions by 50%, from their 1990 levels, and an advanced Energy [R]evolution version which envisages a fall of more than 80% in CO_2 by 2050.

The **Reference Scenario** is based on the reference scenario in the International Energy Agency's 2009 World Energy Outlook (WEO 2009) analysis, extrapolated forward from 2030. Compared to the previous (2007) IEA projections, WEO 2009 assumes a slightly lower average annual growth rate of world Gross Domestic Product (GDP) of 3.1%, instead of 3.6%, over the period 2007-2030. At the same time, it expects final energy consumption in 2030 to be 6% lower than in the WEO 2007 report. China and India are expected to grow faster than other regions, followed by the Other Developing Asia group of countries, Africa and the Transition Economies (mainly the former Soviet Union). The OECD share of global purchasing power parity (PPP) adjusted GDP will decrease from 55% in 2007 to 29% by 2050.

The **Energy [R]evolution Scenario** has a key target for the reduction of worldwide carbon dioxide emissions down to a level of around 10 Gigatonnes per year by 2050. A second objective is the global phasing out of nuclear energy. To achieve these goals the scenario is characterised by significant efforts to fully exploit the large potential for energy efficiency. At the same time, all cost-effective renewable energy sources are used for heat and electricity generation, as well as the production of bio fuels. The general framework parameters for population and GDP growth remain unchanged from the Reference scenario.

The Advanced Energy [R]evolution Scenario takes a much more radical approach to the climate crisis facing the world. In order to pull the emergency brake on global emissions it therefore assumes much shorter technical lifetimes for coal-fired power plants - 20 years instead of 40 years. This reduces global CO₂ emissions even faster and takes the latest evidence of greater climate sensitivity into account. To fill the resulting gap, the annual growth rates of renewable energy sources, especially solar photovoltaics, wind and concentrating solar power plants, have therefore been increased.

Apart from that, the advanced scenario takes on board all the general framework parameters of population and economic growth from the basic version, as well as most of the energy efficiency roadmap. In the transport sector, however, there is 15 to 20% lower final energy demand until 2050 due to a combination of simply less driving and instead increase use of public transport and a faster uptake of efficient combustion vehicles and – after 2025 – a larger share of electric vehicles.

Within the heating sector there is a faster expansion of CHP in the industry sector, more electricity for process heat and a faster growth of solar and geothermal heating systems. Combined with a larger share of electric drives in the transport sector, this results in a higher overall demand for power. Even so, the overall global electricity demand in the advanced Energy [R]evolution scenario is still lower than in the Reference scenario.

In the advanced scenario the latest market development projections of the renewable industry⁵ have been calculated for all sectors (see Chapter 5, Table 5.13: Annual growth rates of renewable energy technologies). The speedier uptake of electric and hydrogen vehicles, combined with the faster implementation of smart grids and expanding super grids (about ten years ahead of the basic version) allows a higher share of fluctuating renewable power generation (photovoltaic and wind). The threshold of a 40% proportion of renewables in global primary energy supply is therefore passed just after 2030 (also ten years ahead). By contrast, the quantity of biomass and large hydro power remain the same in both Energy [R]evolution scenarios, for sustainability reasons.

towards a renewable future

Today, renewable energy sources account for 13% of the world's primary energy demand. Biomass, which is mostly used in the heat sector, is the main source. The share of renewable energies for electricity generation is 18%, while their contribution to heat supply is around 24%, to a large extent accounted for by traditional uses such as collected firewood. About 80% of the primary energy supply today still comes from fossil fuels. Both Energy [R]evolution scenarios describe development pathways which turn the present situation into a sustainable energy supply, with the advanced version achieving the urgently needed CO₂ reduction target more than a decade earlier than the basic scenario.

The following summary shows the results of the advanced Energy [R]evolution scenario, which will be achieved through the following measures:

• Exploitation of existing large energy efficiency potentials will ensure that final energy demand increases only slightly - from the current 305,095 PJ/a (2007) to 340,933 PJ/a in 2050, compared to 531,485 PJ/a in the Reference scenario.

references 5 SEE EREC, RE-THINKING 2050, GWEC, EPIA *ET AL*.

image THOUSANDS OF FISH DIE AT THE DRY RIVER BED OF MANAQUIRI LAKE, 150 KILOMETERS FROM AMAZONAS STATE CAPITOL MANAUS, BRAZIL.

This dramatic reduction is a crucial prerequisite for achieving a significant share of renewable energy sources in the overall energy supply system, compensating for the phasing out of nuclear energy and reducing the consumption of fossil fuels.

- More electric drives are used in the transport sector and hydrogen produced by electrolysis from excess renewable electricity plays a much bigger role in the advanced than in the basic scenario. After 2020, the final energy share of electric vehicles on the road increases to 4% and by 2050 to over 50%. More public transport systems also use electricity, as well as there being a greater shift in transporting freight from road to rail.
- The increased use of combined heat and power generation (CHP) also improves the supply system's energy conversion efficiency, increasingly using natural gas and biomass. In the long term, the decreasing demand for heat and the large potential for producing heat directly from renewable energy sources limits the further expansion of CHP.
- The electricity sector will be the pioneer of renewable energy utilisation. By 2050, around 95% of electricity will be produced from renewable sources. A capacity of 14,045 GW will produce 43,922 TWh/a renewable electricity in 2050. A significant share of the fluctuating power generation from wind and solar photovoltaic will be used to supply electricity to vehicle batteries and produce hydrogen as a secondary fuel in transport and industry. By using load management strategies, excess electricity generation will be reduced and more balancing power made available.
- In the heat supply sector, the contribution of renewables will increase to 91% by 2050. Fossil fuels will be increasingly replaced by more efficient modern technologies, in particular biomass, solar collectors and geothermal. Geothermal heat pumps and, in the world's sunbelt regions, concentrating solar power, will play a growing part in industrial heat production.
- In the transport sector the existing large efficiency potentials will be exploited by a modal shift from road to rail and by using much lighter and smaller vehicles. As biomass is mainly committed to stationary applications, the production of bio fuels is limited by the availability of sustainable raw materials. Electric vehicles, powered by renewable energy sources, will play an increasingly important role from 2020 onwards.
- By 2050, 80% of primary energy demand will be covered by renewable energy sources.

To achieve an economically attractive growth of renewable energy sources, a balanced and timely mobilisation of all technologies is of great importance. Such mobilisation depends on technical potentials, actual costs, cost reduction potentials and technical maturity. Climate infrastructure, such as district heating systems, smart grids and supergrids for renewable power generation, as well as more R&D into storage technologies for electricity, are all vital if this scenario is to be turned into reality. The successful implementation of smart grids is vital for the advanced Energy [R]evolution from 2020 onwards.

It is also important to highlight that in the advanced Energy [R]evolution scenario the majority of remaining coal power plants – which will be replaced 20 years before the end of their technical lifetime – are in China and India. This means that in practice all coal power plants built between 2005 and 2020 will be replaced by renewable

energy sources from 2040 onwards. To support the building of capacity in developing countries significant new public financing, especially from industrialised countries, will be needed. It is vital that specific funding mechanisms such as the "Greenhouse Development Rights" (GDR) and "Feed-in tariff" schemes (see chapter 2) are developed under the international climate negotiations that can assist the transfer of financial support to climate change mitigation, including technology transfer.

future costs

Renewable energy will initially cost more to implement than existing fuels. The slightly higher electricity generation costs under the advanced Energy [R]evolution scenario will be compensated for, however, by reduced demand for fuels in other sectors such as heating and transport. Assuming average costs of 3 cents/kWh for implementing energy efficiency measures, the additional cost for electricity supply under the advanced Energy [R]evolution scenario will amount to a maximum of \$31 billion/a in 2020. These additional costs, which represent society's investment in an environmentally benign, safe and economic energy supply, continue to decrease after 2020. By 2050 the annual costs of electricity supply will be \$2,700 billion/a below those in the Reference scenario.

It is assumed that average crude oil prices will increase from \$97 per barrel in 2008 to \$130 per barrel in 2020, and continue to rise to \$150 per barrel in 2050. Natural gas import prices are expected to increase by a factor of four between 2008 and 2050, while coal prices will continue to rise, reaching \$172 per tonne in 2050. A CO_2 'price adder' is applied, which rises from \$20 per tonne of CO_2 in 2020 to \$50 per tonne in 2050.

future investment

It would require until 2030 \$17.9 trillion in global investment for the advanced Energy [R]evolution scenario to become reality - approximately 60% higher than in the Reference scenario (\$11.2 trillion). Under the Reference version, the levels of investment in renewable energy and fossil fuels are almost equal - about \$5 trillion each - up to 2030. Under the advanced scenario, however, the world shifts about 80% of investment towards renewables; by 2030 the fossil fuel share of power sector investment would be focused mainly on combined heat and power and efficient gas-fired power plants. The average annual investment in the power sector under the advanced Energy [R]evolution scenario between 2007 and 2030 would be approximately \$782 billion.

Because renewable energy has no fuel costs, however, the fuel cost savings in the advanced Energy [R]evolution scenario reach a total of \$6.5 trillion, or \$282 billion per year until 2030 and a total of \$41.5 trillion, or an average of \$964 billion per year until 2050.

"Worldwide we would see more direct jobs created in the energy sector if we shift to either of the Energy [R]evolution scenarios than if we continue business as usual."

future global employment

Worldwide, we would see more direct jobs created in the energy sector if we shifted to either of the Energy [R]evolution scenarios.

- By 2015 global power supply sector jobs in the Energy [R]evolution scenario are estimated to reach about 11.1 million, 3.1 million more than in the Reference scenario. The advanced version will lead to 12.5 million jobs by 2015.
- By 2020 over 6.5 million jobs in the renewables sector would be created due a much faster uptake of renewables, three-times more than today. The advanced version will lead to about one million jobs more than the basic Energy [R]evolution, due a much faster uptake of renewables.
- By 2030 the Energy [R]evolution scenario achieves about 10.6 million jobs, about two million more than the Reference scenario. Approximately 2 million new jobs are created between 2020 and 2030, twice as much as in the Reference case. The advanced scenario will lead to 12 million jobs, that is 8.5 million in the renewables sector alone. Without this fast growth in the renewable sector global power jobs will be a mere 2.4 million. Thus by implementing the E[R] there will be 3.2 million or over 33% more jobs by 2030 in the global power supply sector.

development of CO₂ emissions

While CO₂ emissions worldwide will increase by more than 60% under the Reference scenario up to 2050, and are thus far removed from a sustainable development path, under the advanced Energy ERJevolution scenario they will decrease from 28,400 million tonnes in 2007 (including international bunkers) to 3,700 in 2050, 82% below 1990 levels. Annual per capita emissions will drop from 4.1 tonnes/capita to 0.4 t/capita. In spite of the phasing out of nuclear

energy and a growing electricity demand, CO_2 emissions will decrease enormously in the electricity sector. In the long run efficiency gains and the increased use of renewable electric vehicles, as well as a sharp expansion in public transport, will even reduce CO_2 emissions in the transport sector. With a share of 42% of total emissions in 2050, the transport sector will reduce significantly but remain the largest source of CO_2 emissions - followed by industry and power generation.

policy changes

To make the Energy [R]evolution real and to avoid dangerous climate change, Greenpeace and EREC demand that the following policies and actions are implemented in the energy sector:

- 1. Phase out all subsidies for fossil fuels and nuclear energy.
- 2. Internalise the external (social and environmental) costs of energy production through 'cap and trade' emissions trading.
- **3.** Mandate strict efficiency standards for all energy consuming appliances, buildings and vehicles.
- **4.** Establish legally binding targets for renewable energy and combined heat and power generation.
- **5.** Reform the electricity markets by guaranteeing priority access to the grid for renewable power generators.
- **6.** Provide defined and stable returns for investors, for example by feed-in tariff programmes.
- **7.** Implement better labelling and disclosure mechanisms to provide more environmental product information.
- **8.** Increase research and development budgets for renewable energy and energy efficiency.

figure 0.1: global: development of primary energy consumption under the three scenarios

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO)

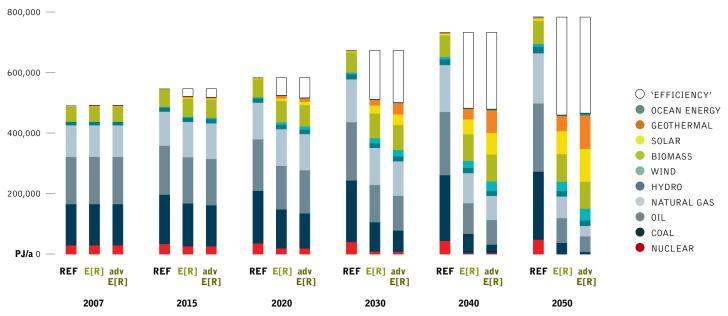
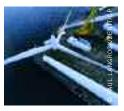



image CONSTRUCTION OF THE OFFSHORE WINDFARM AT MIDDELGRUNDEN NEAR COPENHAGEN, DENMARK.

table 0.1: energy [r]evolution: summary for policy makers

	POLICY	WHO	201	.0 2015 20)20 202	25 203	0 2035	2040	2045	2050
targets	 Climate Peak global temperature rise well below 2°C Reduce ghg emissions by 40% by 2020 (as compared to 1990) in developed countries Reduce ghg emissions by 15 to 30% of projected growth by 2020 in developing countr Achieve zero deforestation globally by 2020 Agree a legally binding global climate deal as soon as possible 	UNFCCC UNFCCC UNFCCC UNFCCC UNFCCC								
targets	Strict efficiency target for vehicles: 80g CO ₂ /km by 2020 Build regulations with mandatory renewable energy shares (e.g. solar collectors) Na	by 2020 EU G8 G8 G8 tional Governments tional Governments tional Governments								
mechanisms	 Phase-out subsidies for fossil and nuclear fuels Put in place a Climate Fund under the auspices of the UNFCCC Provide at least 140 billion USD/year to the Climate Fund by 2020 Ensure priority acces to the fund for vulnerable countries and communities Establish feed-in law for renewable power generation in Annex 1 countries Establish feed-in law with funding from Annex 1 countries for dev. countries 	G20 UNFCCC UNFCCC UNFCCC tional Governments G8 + G77								
	ENERGY [R]EVOLUTION RESULTS									
energy heating	 Implementation of Smart Grids (Policy/Planning/Construction) Smart Grids interconnection to Super Grids (Policy/Planning/Construction) Renewables cost competive (max = worst case - min = best case) Phase out of coal power plants in OECD countries Phase out of nuclear power plants in OECD countries Global Renewable Heat supply shares Shares (max = adv. ER - Min = ER): 30% / 50% / 75% / over 90% Implementation of district heating (Policy/Planning/Construction) Renewables cost competive (max = worst case - min = best case) Global Renewable Heat supply shares Shares (max = adv. ER - Min = ER): 30% / 50% / 75% / over 90% Implementation of district heating (Policy/Planning/Construction) Na Renewables cost competive (max = worst case - min = best case) Global Renewable Final Energy shares Shares (max = adv. ER - Min = ER): 30% / 50% / 75% / over 90% Consumer and business (Other Sectors) Industry Transport Total Final Energy 	ities & RE Industry tional Governments ov & Grid Operator RE - Industry Utilities Utilities RE Industry tional Governments RE Industry								
transport consumer	 Power demand for IT equipment stablized and start to decrease National energy intensity drops to 3 MJ/\$GDP (Japan's level today) Global Transport Development Shift fright from road to rail and where possible from aviation to ships 	sumer Product Dev. IT Industry Industry + Gov. + Logistic Industry gional Governments Car-Industry								
emissions	 Energy Related CO₂ Emissions Global CO₂ reductions (min = adv. ER - Max = ER): Emission peak / -30% / -50% / - Annex 1 CO₂ reductions (min = adv. ER - Max = ER): Emission peak / -30% / -50% / Non Annex 1 CO₂ reductions (min = adv. ER - Max = ER): Emission peak / -30% / -5 	′ -80 %								

climate protection and energy policy

GLOBAL

THE KYOTO PROTOCOL INTERNATIONAL ENERGY POLICY RENEWABLE ENERGY TARGETS DEMANDS FOR THE ENERGY SECTOR

"never before has humanity been forced to grapple with such an immense environmental crisis."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN

image WANG WAN YI, AGE 76, ADJUSTS THE SUNLIGHT POINT ON A SOLAR DEVICE USED TO BOIL HIS KETTLE. HE LIVES WITH HIS WIFE IN ONE ROOM CARVED OUT OF THE SANDSTONE, A TYPICAL DWELLING FOR LOCAL PEOPLE IN THE REGION. DROUGHT IS ONE OF THE MOST HARMFUL NATURAL HAZARDS IN NORTHWEST CHINA. CLIMATE CHANGE HAS A SIGNIFICANT IMPACT ON CHINA'S ENVIRONMENT AND ECONOMY.

The greenhouse effect is the process by which the atmosphere traps some of the sun's energy, warming the earth and moderating our climate. A human-driven increase in 'greenhouse gases' has enhanced this effect artificially, raising global temperatures and disrupting our climate. These greenhouse gases include carbon dioxide, produced by burning fossil fuels and through deforestation, methane, released from agriculture, animals and landfill sites, and nitrous oxide, resulting from agricultural production, plus a variety of industrial chemicals.

Every day we damage our climate by using fossil fuels (oil, coal and gas) for energy and transport. As a result, climate change is already impacting on our lives, and is expected to destroy the livelihoods of many people in the developing world, as well as ecosystems and species, in the coming decades. We therefore need to significantly reduce our greenhouse gas emissions. This makes both environmental and economic sense.

According to the Intergovernmental Panel on Climate Change, the United Nations forum for established scientific opinionon climate change, the world's temperature could potentially increase over the next hundred years by up to 6.4° Celsius. This is much faster than anything experienced so far in human history. The goal of climate policy should be to avoid dangerous climate change, which is being translated in limiting global mean temperature rise, as compared to pre-industrial levels, well below 2°C above, or even below 1.5°C. Above these tresholds, we will reach dangerous tipping points and damage to ecosystems and disruption to the climate system increases dramatically. We have very little time within which we can change our energy system to meet these targets. This means that global emissions will have to peak and start to decline by 2015.

Climate change is already harming people and ecosystems. Its reality can be seen in disintegrating polar ice, thawing permafrost, dying coral reefs, rising sea levels and fatal heat waves. It is not only scientists that are witnessing these changes. From the Inuit in the far north to islanders near the Equator, people are already struggling with the impacts of climate change. An average global warming of 1.5°C threatens millions of people with an increased risk of hunger, malaria, flooding and water shortages. Never before has humanity been forced to grapple with such an immense environmental crisis. If we do not take urgent and immediate action to stop global warming, the damage could become irreversible. This can only happen through a rapid reduction in the emission of greenhouse gases into the atmosphere.

This is a summary of some likely effects if we allow current trends to continue:

Likely effects of small to moderate warming

- Sea level rise due to melting glaciers and the thermal expansion of the oceans as global temperature increases. Massive releases of greenhouse gases from melting permafrost and dying forests.
- A greater risk of more extreme weather events such as heatwaves, droughts and floods. Already, the global incidence of drought has doubled over the past 30 years.
- Severe regional impacts. In Europe, river flooding will increase, as well as coastal flooding, erosion and wetland loss. Flooding will also severely affect low-lying areas in developing countries such as Bangladesh and South China.
- Natural systems, including glaciers, coral reefs, mangroves, alpine ecosystems, boreal forests, tropical forests, prairie wetlands and native grasslands will be severely threatened.
- Increased risk of species extinction and biodiversity loss.

The greatest impacts will be on poorer countries in sub-Saharan Africa, South Asia, Southeast Asia and Andean South America as well as small islands least able to protect themselves from increasing droughts, rising sea levels, the spread of disease and decline in agricultural production.

longer term catastrophic effects Warming from emissions may trigger the irreversible meltdown of the Greenland ice sheet, adding up to seven metres of sea level rise over several centuries. New evidence shows that the rate of ice discharge from parts of the Antarctic mean it is also at risk of meltdown. Slowing, shifting or shutting down of the Atlantic Gulf Stream current will have dramatic effects in Europe, and disrupt the global ocean circulation system. Large releases of methane from melting permafrost and from the oceans will lead to rapid increases of the gas in the atmosphere, and consequent warming.

"climate change has moved from being a predominantly physical phenomenon to being a social one" (hulme, 2009)."

the kyoto protocol

Recognising these threats, the signatories to the 1992 UN Framework Convention on Climate Change (UNFCCC) agreed the Kyoto Protocol in 1997. The Protocol finally entered into force in early 2005 and its 190 member countries meet annually to negotiate further refinement and development of the agreement. Only one major industrialised nation, the United States, has not ratified Kyoto.

The Kyoto Protocol commits the signatories from developed countries to reduce their greenhouse gas emissions by 5.2% from their 1990 level by the target period of 2008-2012. This has in turn resulted in the adoption of a series of regional and national reduction targets. In the European Union, for instance, the commitment is to an overall reduction of 8%. In order to help reach this target, the EU has also agreed a target to increase its proportion of renewable energy from 6% to 12% by 2010.

At present, the 193 members of the UNFCCC are negotiating a new climate change agreement that should enable all countries to continue contributing to ambitious and fair emission reductions. Unfortunately the ambition to reach such an agreement in Copenhagen failed and governments will continue negotiating in 2010 and possibly beyond to reach a new fair, ambitous and legally binding deal. Such a deal will need to ensure industrialized countries reduce their emissions on average by at least 40% by 2020, as compared to 1990 emissions. They will further need to provide at least \$US 140 billion a year to developing countries to enable them to adapt to climate change, to protect their forests and to achieve the energy revolution. Developing countries should reduce their greenhouse gas emissions by 15 to 30% as compared to the projected growth of their emissions by 2020.

This new FAB deal will need to incoporate the Kyoto Protocol's architecture. This relies fundamentally on legally binding emissions reduction obligations. To achieve these targets, carbon is turned into a commodity which can be traded. The aim is to encourage the most economically efficient emissions reductions, in turn leveraging the necessary investment in clean technology from the private sector to drive a revolution in energy supply.

After Copenhagen, governments need to increase their ambitions to reduce emissions and need to even more invest in making the energy revolution happening. Greenpeace believes that it is feasible to reach a FAB deal in Cancun at the end of this year, if their would be sufficient political will to conclude such an agreement. That political will seems to be absent at the moment, but even if a FAB deal could not be finalised in COP16, due to lack of ambition and commitment of some countries, major parts of the deal must be put in place in Cancun, specifically those related to long term finance commitments, forest protection and overall ambition of emission reductions, so that by the Environment and Development Summit in Brazil in 2012 we can celebrate a deal that keeps the world well below 2 degrees warming with good certainty.

international energy policy

At present, renewable energy generators have to compete with old nuclear and fossil fuel power stations which produce electricity at marginal costs because consumers and taxpayers have already paid the interest and depreciation on the original investments. Political action is needed to overcome these distortions and create a level playing field for renewable energy technologies to compete.

At a time when governments around the world are in the process of liberalising their electricity markets, the increasing competitiveness of renewable energy should lead to higher demand. Without political support, however, renewable energy remains at a disadvantage, marginalised by distortions in the world's electricity markets created by decades of massive financial, political and structural support to conventional technologies. Developing renewables will therefore require strong political and economic efforts, especially through laws that guarantee stable tariffs over a period of up to 20 years. Renewable energy will also contribute to sustainable economic growth, high quality jobs, technology development, global competitiveness and industrial and research leadership.

renewable energy targets

In recent years, in order to reduce greenhouse emissions as well as increase energy security, a growing number of countries have established targets for renewable energy. These are either expressed in terms of installed capacity or as a percentage of energy consumption. These targets have served as important catalysts for increasing the share of renewable energy throughout the world.

A time period of just a few years is not long enough in the electricity sector, however, where the investment horizon can be up to 40 years. Renewable energy targets therefore need to have short, medium and long term steps and must be legally binding in order to be effective. They should also be supported by mechanisms such as feed-in tariffs for renewable electricity generation. In order for the proportion of renewable energy to increase significantly, targets must be set in accordance with the local potential for each technology (wind, solar, biomass etc) and be complemented by policies that develop the skills and manufacturing bases to deliver the agreed quantity of renewable energy.

In recent years the wind and solar power industries have shown that it is possible to maintain a growth rate of 30 to 35% in the renewables sector. In conjunction with the European Photovoltaic Industry Association⁶, the European Solar Thermal Power Industry Association⁷ and the Global Wind Energy Council⁸, the European Renewable Energy Council and Greenpeace have documented the development of those industries from 1990 onwards and outlined a prognosis for growth up to 2020 and 2040.

references

6 'SOLARGENERATION IV', SEPTEMBER 2009.
 7 GLOBAL CONCENTRATED SOLAR POWER OUTLOOK - WHY RENEWABLES ARE HOT! MAY,

2009.

 ${f 8}$ 'GLOBAL WIND ENERGY OUTLOOK 2008', OCTOBER 2008.

image A PRAWN SEED FARM ON MAINLAND INDIA'S SUNDARBANS COAST LIES FLOODED AFTER CYCLONE AILA. INUNDATING AND DESTROYING NEARBY ROADS AND HOUSES WITH SALT WATER.

Greenpeace and the renewables industry have a clear agenda for the policy changes which need to be made to encourage a shift to renewable sources.

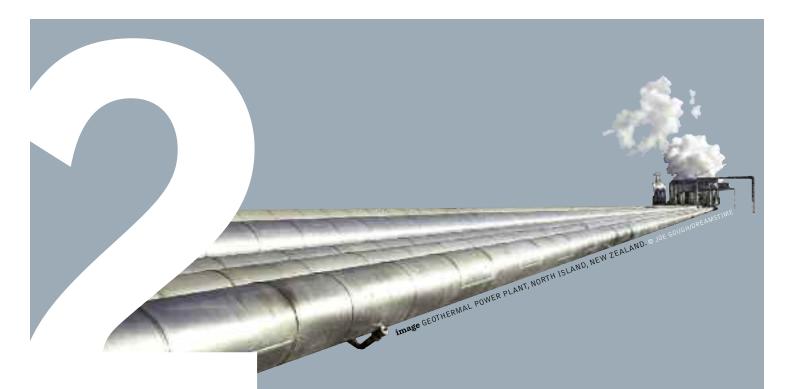
The main demands are:

- $\ensuremath{\mathbf{1}}.$ Phase out all subsidies for fossil fuels and nuclear energy.
- **2.** Internalise external (social and environmental) costs through 'cap and trade' emissions trading.
- **3.** Mandate strict efficiency standards for all energy consuming appliances, buildings and vehicles.
- **4.** Establish legally binding targets for renewable energy and combined heat and power generation.
- **5.** Reform the electricity markets by guaranteeing priority access to the grid for renewable power generators.
- **6.** Provide defined and stable returns for investors, for example through feed-in tariff payments.
- **7.** Implement better labelling and disclosure mechanisms to provide more environmental product information.
- **8.** Increase research and development budgets for renewable energy and energy efficiency

Conventional energy sources receive an estimated \$250-300 billion^o in subsidies per year worldwide, resulting in heavily distorted markets. Subsidies artificially reduce the price of power, keep renewable energy out of the market place and prop up non-competitive technologies and fuels. Eliminating direct and indirect subsidies to fossil fuels and nuclear power would help move us towards a level playing field across the energy sector. Renewable energy would not need special provisions if markets factored in the cost of climate damage from greenhouse gas pollution. Subsidies to polluting technologies are perverse in that they are economically as well as environmentally detrimental. Removing subsidies from conventional electricity would not only save taxpayers' money. It would also dramatically reduce the need for renewable energy support.

"If we do not take urgent and immediate action to protect the climate the damage could become irreversible."

images 1. AN AERIAL VIEW OF PERMAFROST TUNDRA IN THE YAMAL PENINSULA. THE ENTIRE REGION IS UNDER HEAVY THREAT FROM GLOBAL WARMING AS TEMPERATURES INCREASE AND RUSSIA'S ANCIENT PERMAFROST MELTS. 2. SOVARANI KOYAL LIVES IN SATJELLIA ISLAND AND IS ONE OF THE MANY PEOPLE AFFECTED BY SEA LEVEL RISE: "NOWADAYS, HEAVY FLOODS ARE GOING ON HERE. THE WATER LEVEL IS INCREASING AND THE TEMPERATURE TOO. WE CANNOT LIVE HERE, THE HEAT IS BECOMING UNBEARABLE, WE HAVE RECEIVED A PLASTIC SHEET AND HAVE COVERED OUR HOME WITH IT. DURING THE COMING MONSOON WE SHALL WRAP OUR BODIES IN THE PLASTIC TO STAY DRY. WE HAVE ONLY A FEW GOATS BUT WE DO NOT KNOW WHERE THEY ARE. WE ALSO HAVE TWO CHILDREN AND WE CANNOT MANAGE TO FEED THEM." 3. WANG WAN YI, AGE 76, SITS INSIDE HIS HOME WHERE HE LIVES WITH HIS WIFE IN ONE ROOM CARVED OUT OF THE SANDSTONE, A TYPICAL DWELLING FOR LOCAL PEOPLE IN THE REGION. DROUGHT IS ONE OF THE MOST HARMFUL NATURAL HAZARDS IN NORTHWEST CHINA. CLIMATE CHANGE HAS A SIGNIFICANT IMPACT ON CHINA'S ENVIRONMENT AND ECONOMY. 4. INDIGENOUS NENETS PEOPLE WITH THEIR REINDEER. THE NENETS PEOPLE MOVE EVERY 3 OR 4 DAYS SO THAT THEIR HERDS DO NOT OVER GRAZE THE GROUND. THE ENTIRE REGION AND ITS INHABITANTS ARE UNDER HEAVY THREAT FROM GLOBAL WARMING AS TEMPERATURES INCREASE AND RUSSIA'S ANCIENT PERMAFROST MELTS. 5. A BOY HOLDS HIS MOTHER'S HANDS WHILST IN A QUEUE FOR EMERGENCY RELIEF SUPPLY, SCIENTISTS ESTIMATE THAT OVER 70,000 PEOPLE, LIVING EFFECTIVELY ON THE FRONT LINE OF CLIMATE CHANGE, WILL BE DISPLACED FROM THE SUNDARBANS DUE TO SEA LEVEL RISE BY THE YEAR 2030.


references

9 WORLD ENERGY ASSESSMENT: ENERGY AND THE CHALLENGE OF SUSTAINABILITY', UNITED NATIONS DEVELOPMENT PROGRAMME, 2000.

implementing the energy [r]evolution

GLOBAL

COST CURVES FTSM SCHEME GREENHOUSE DEVELOPMENT RIGHTS

"bridging the gap."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN

image A WORKER ASSEMBLES WIND TURBINE ROTORS AT GANSU JINFENG WIND POWER EQUIPMENT CO. LTD. IN JIUQUAN, GANSU PROVINCE, CHINA.

This chapter starts "cost curve" calculations on which our projections for future investment in a dramatic shift towards renewable energy will be based. Based on these cost calculations two different innovative international mechanisms which will enable the Energy [R]evolution scenarios to be implemented are presented. The first is the concept of Greenhouse Development Rights, an attempt to even up on a global basis the unequal ability of different countries to respond in their energy polices to the climate crisis. The second is a proposal for a Feed-in Tariff Support Mechanism which would enable the expansion of new renewable energy projects to take place in the developing world both faster and with secure financial support.

2.1 cost curves: defining the priorities for investment

While energy scenarios play an increasing role within the global, regional and national energy and climate debate, the different ways of setting up scenarios are under discussion. In principle there are 2 different types of scenarios: "Top-down" and "Bottom up" calculated energy scenarios.

Top-down scenarios are mostly cost driven, the cost projections for each technology, fuel costs and CO₂ costs have a huge influence for the projected energy mix in the future as the model usually optimizes the mix in the basis of cheapest energy generation. A low cost projection for e.g. nuclear energy or the coal price will result in a large share of nuclear and coal power plants in the electricity generation of the future. However those models are often not very technology specific and in same cases there is not even a distinction between two very different solar electricity technologies to concentrated solar power (CSP) and photovoltaic (pv) as both technologies have very different capacities factors, costs and technical parameters. While "bottom up" scenario are technology driven and have therefore a very detailed breakdown of different technologies and can model energy system more exact. On the downside those models are not cost specific and they do not optimize the economic side of a future energy system. In the past years, both models are moving towards each other. While "topdown" scenarios have a greater level of technical details, bottom up scenarios include more and more economic parameters.

The IEA World Energy Outlook – which is the reference scenario for both energy [r]evolution scenarios are in principle bottom up models, but with a greater level of cost assumptions. The section provides an overview about the resulting cost curves of all three scenarios. As "cost curves" do play an increasing role in the energy and climate debate Greenpeace and EREC decided to include those in the new Energy [R]evolution edition.

concept and methodology

The concept of supply curves of carbon abatement and energy all rest on the same foundation. They are curves consisting typically of discreet steps, each step relating the energy generation/conservation or abatement potential related to the abatement measure/energy generation technology or measure to conserve energy to its marginal cost; and rank these steps according to their cost. As a result, a curve is obtained that can be interpreted similarly to the concept of supply curves in traditional economics.

The concept of abatement and energy supply curves has common and specific limitations. One of the most commonly cited ones is that in certain cases there are options to come to "negative costs". The existence of untapped "profitable" (i.e. negative cost) potentials themselves represents a realm of debates ongoing for decades between different schools of thought . Those accepting negative cost potentials argue, among others, that certain barriers prevent those investments from taking place on a purely market basis, but policy interventions can remove these barriers and unlock these profitable potentials. Therefore the barriers prevailing in renewable energy markets such as insufficient information, limited access to capital, uncertainty about future fuel prices (for example in the case of fossil fuels or biomass) or misplaced incentives (e.g. fossil fuel subsidies for social or other reasons) hindering a higher rate of investments into renewable energy technologies as well, but even more importantly for untapped energy efficiency measures, potentially resulting in negative cost options. A further concern about supply curves is that the methodology simplifies reality as the curves do not reflect the real choices of actors, who accordingly do not always implement the available options in the order suggested by the curve.

Perhaps one of the key shortcomings of the cost curves is that they consider and compare mitigation options apply individually, whereas typically a package of measures are applied together, therefore potentially missing synergistic and integrational opportunities. Optimised, strategic packages of measures may have lower average costs than the average of the individual measures applied using a piecemeal approach. In particular the missing dynamic system perspective considering relevant interactions with the overall system behaviour can be problematic, although cost curves applying advanced methods are dynamic rather than static. Also so called "low hanging fruits" - such as efficiency measures - appear in these graphs first and e.g. offshore wind in 10 years time. While in reality, the policy must do both at the same time. As efficiency measure are relatively easy to achieve via e.g. technical standards and codes, offshore wind takes several year of preparation. So a policy change in efficiency shows results fairly quickly, while a policy towards offshore wind will deliver the first electricity years later, due to longer planning and construction time. Besides that, strategic planning of the energy mix of the future required infrastructure - such as smart grids, offshore grids or district heating pipelines - which again need several years to implement. In particular this is true for GHG mitigation cost curves where the question of substituted energy options plays a major role for the calculation of the mitigated CO₂-emissions.

references

 ${\bf 10}$ CARLSMITH ET AL. 1990, SUTHERLAND 1991, KOOMEY ET AL. 1998, GUMERMAN ET AL. 2001.

1977

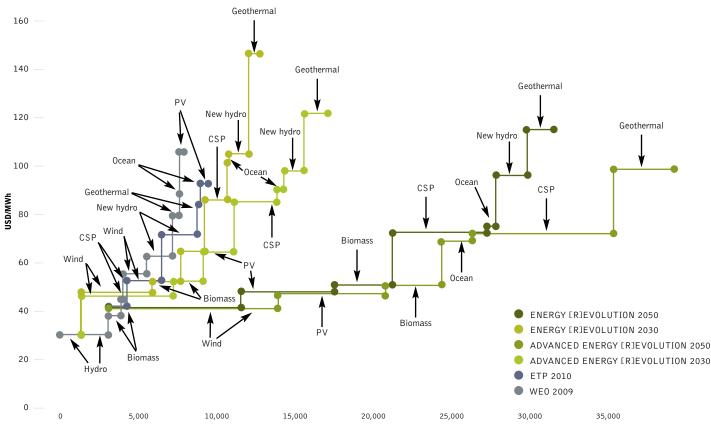

global renewable electricity supply curves

Figure 2.1 shows the global renewable electricity supply curve for 4 scenarios: IEA WEO (2009), ETP (2010), Greenpeace Energy [R]evolution and Greenpeace Advanced Energy [R]evolution. Note that the only investment cost data were available for IEA scenarios, therefore the other cost components, such as fixed and variable capital and generation costs, including OM, have been taken from the Energy [R]evolution data. For the Energy [R]evolution and Advanced Energy [R]evolution scenarios potentials are projected both for 2030 and 2050, while unfortunately no such forecasts were available for the IEA scenarios for 2050.

The figures attest the importance of long-term frameworks for renewable energy. Potentials at the same costs more than double between 2030 and 2050 (please note that presently existing

capacity is included in these potentials, with hydropower separated into "new hydro" and "existing hydro"). The IEA scenarios find significantly lower potentials at equal cost levels than the Energy [R]evolution ones. Both IEA and the Energy [R]evolution scenarios find wind as having a large potential at very competitive costs. In the Energy [R]evolution scenarios this is followed by biomass and then PV in 2030, while PV becomes cheaper by 2050 than biomass. IEA scenarios project very low costs for CSP, lower than for wind, however, this technology is not expected to add a significant power production capacity to global electricity generation. Similarly, they also project approximately half the cost for geothermal power for 2030 as the Energy [R]evolution scenarios, however, they see very little potential for this technology; while Energy [R]evolution scenarios project fairly large potentials at the highest (Energy [R]evolution) or second highest (Advanced Energy [R]evolution) cost levels from among the technologies. Ocean energy is expected to play a small role, except in the Advanced Energy [R]evolution scenario, even if its costs are projected to be under that of several renewable electricity generation technologies.

figure 2.1: renewable energy supply curves for the energy [r]evolution scenario

Electricity generation (TWh)

image A MAINTENANCE WORKER MARKS A BLADE OF A WINDMILL AT GUAZHOU WIND FARM NEAR YUMEN IN GANSU PROVINCE, CHINA.

2.2 ftsm: a support scheme for renewable power in developing countries

This section outlines a Greenpeace proposal for a feed-in tariff system in developing countries whose additional costs would be financed by developed nations. The financial resources for this could come from a combination of innovative sources, could be managed by the Copenhagen Green Climate Fund (that still needs to be established), and the level of contributions should be set through the GDR framework (see 2.3).

Both Energy [R]evolution scenarios show that renewable electricity generation has huge environmental and economic benefits. However its investment and generation costs, especially in developing countries, will remain higher than those of existing coal or gas-fired power stations for the next five to ten years. To bridge this cost gap a specific support mechanism for the power sector is needed. The **Feed-in Tariff Support Mechanism (FTSM)** is a concept conceived by Greenpeace International.¹¹ The aim is the rapid expansion of renewable energy in developing countries with financial support from industrialised nations.

Since the FTSM concept was first presented in 2008, the idea has received considerable support from a variety of different stakeholders. The Deutsche Bank Group´s Climate Change Advisors, for example, have developed a proposal based on FTSM called "GET FiT". Announced in April 2010, this took on board major aspects of the Greenpeace concept.

bankable renewable energy support schemes

Since the early development of renewable energies within the power sector, there has been an ongoing debate about the best and most effective type of support scheme. The European Commission published a survey in December 2005 which provided a good overview of the experience so far. This concluded that feed-in tariffs are by far the most efficient and successful mechanism. A more recent update of this report, presented in March 2010 at the IEA Renewable Energy Workshop by the Fraunhofer Institute¹², underscores this conclusion. The Stern Review on the Economics of Climate Change also concluded that feed-in tariffs "achieve larger deployment at lower costs". Globally more than 40 countries have adopted some version of the system.

Although the organisational form of these tariffs differs from country to country, there are certain clear criteria which emerge as essential for creating a successful renewable energy policy. At the heart of these is a reliable, bankable support scheme for renewable projects which provides long term stability and certainty¹³. Bankable support schemes result in lower cost projects because they lower the risk for both investors and equipment suppliers. The cost of wind-powered electricity in Germany is up to 40% cheaper than in the United Kingdom¹⁴, for example, because the support system is more secure and reliable.

experience of feed-in tariffs

- Feed-in tariffs are seen as the best way forward, especially in developing countries. By 2009 this system had incentivised 75% of PV capacity worldwide and 45% of wind capacity.
- Based on experience, feed-in tariffs are the most effective mechanism to create a stable framework to build a domestic market for renewables. They have the lowest investment risk, highest technology diversity, lowest windfall profits for mature technologies and attract a broad spectrum of investors.¹⁵
- The main argument against them is the increase in electricity prices for households and industry, as the extra costs are shared across all customers. This is particularly difficult for developing countries, where many people can't afford to spend more money for electricity services.

For developing countries, feed-in laws would be an ideal mechanism to support the implementation of new renewable energies. The extra costs, however, which are usually covered in Europe, for example, by a very minor increase in the overall electricity price for consumers, are still seen as an obstacle. In order to enable technology transfer from Annex 1 countries to developing countries, a mix of a feed-in law, international finance and emissions trading could be used to establish a locally based renewable energy infrastructure and industry with the assistance of OECD countries.

Finance for renewable energy projects is one of the main obstacles in developing countries. While large scale projects have fewer funding problems, there are difficulties for small, community based projects, even though they have a high degree of public support. The experiences from micro credits for small hydro projects in Bangladesh, for example, as well as wind farms in Denmark and Germany, show how both strong local participation and acceptance can be achieved. The main reasons for this are the economic benefits flowing to the local community and careful project planning based on good local knowledge and understanding. When the community identifies the project rather than the project identifying the community, the result is generally faster bottom-up growth of the renewables sector.

The four main elements for successful renewable energy support schemes are therefore:

- A clear, bankable pricing system.
- Priority access to the grid with clear identification of who is responsible for the connection, and how it is incentivised.
- Clear, simple administrative and planning permission procedures.
- Public acceptance/support.

The first is fundamentally important, but it is no good if you don't have the other three elements as well.

references

 $11 \ \mbox{implementing the energy (r]evolution, october 2008, sven teske, greenpeace international.$

12 EFFECTIVE AND EFFICIENT LONG-TERM ORIENTED RE SUPPORT POLICIES, MARIO RAGWITZ, MARCH 2010.

 $^{{\}bf 13}$ 'the support of electricity from renewable energy sources', european commission, 2005.

¹⁴ SEE ABOVE REPORT, P. 27, FIGURE 4.

¹⁵ EFFECTIVE AND EFFICIENT LONG-TERM ORIENTED RE SUPPORT POLICIES,

FRAUNHOFER INSTITUTE, MARIO RAGWITZ, MARCH 2010.

the feed-in tariff support mechanism

The basic aim of the FTSM is to facilitate the introduction of feedin laws in developing countries by providing additional financial resources on a scale appropriate to the circumstances of each country. For those countries with higher levels of potential renewable capacity, the creation of a new sectoral no-lose mechanism generating emission reduction credits for sale to Annex I countries, with the proceeds being used to offset part of the additional cost of the feed-in tariff system, could be appropriate. For others there would need to be a more directly funded approach to paying for the additional costs to consumers of the tariff. The ultimate objective would be to provide bankable and long term stable support for the development of a local renewable energy market. The tariffs would bridge the gap between conventional power generation costs and those of renewable generation.

the key parameters for feed in tariffs under FTSM are:

- Variable tariffs for different renewable energy technologies, depending on their costs and technology maturity, paid for 20 years.
- Payments based on actual generation in order to achieve properly maintained projects with high performance ratios.
- Payment of the 'additional costs' for renewable generation based on the German system, where the fixed tariff is paid minus the wholesale electricity price which all generators receive.
- Payment could include an element for infrastructure costs such as grid connection, grid re-enforcement or the development of a smart grid. A specific regulation needs to define when the payments for infrastructure costs are needed in order to achieve a timely market expansion of renewable power generation.

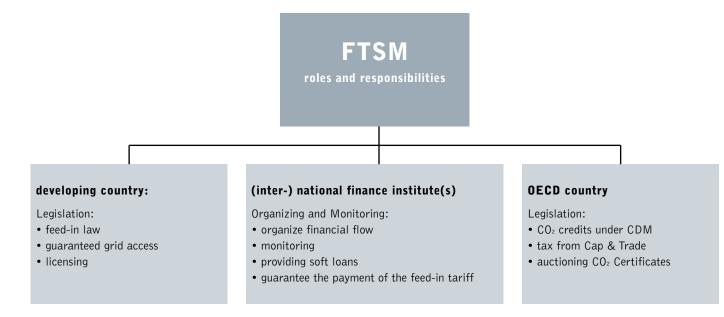
A developing country which wants to take part in the FTSM would need to establish clear regulations for the following:

- Guaranteed access to the electricity grid for renewable electricity projects.
- Establishment of a feed-in law based on successful examples.
- Transparent access to all data needed to establish the feed-in tariff, including full records of generated electricity.
- Clear planning and licensing procedures.

The average additional costs for introducing the FTSM between 2010 and 2020 under the Energy [R]evolution scenario are estimated to be between 5 and 3 cents/kWh and 5 and 2 cents/kWh under the advanced version. The cost per tonne of CO_2 avoided would therefore be around US\$25.

The design of the FTSM would need to ensure that there were stable flows of funds to renewable energy suppliers. There may therefore need to be a buffer between fluctuating CO₂ emission prices and stable long term feed-in tariffs. This would be possible through the proposed Greenhouse Development Rights scheme, which would create a stable income for non-OECD countries (see Chapter 2.3, Table 2.7 and 2.8). The FTSM will need to secure payment of the required feed-in tariffs over the whole lifetime (about 20 years) of each project.

In order to be eligible, all renewable energy projects must have a clear set of environmental criteria which are part of the national licensing procedure in the country where the project will generate electricity. Those criteria will have to meet a minimum environmental standard defined by an independent monitoring group. If there are already acceptable criteria developed these should be adopted rather than reinventing the wheel. The members of the monitoring group would include NGOs, energy and finance experts as well as members of the governments involved. Funding will not be made available for speculative investments, only as soft loans for FTSM projects.


The FTSM would also seek to create the conditions for private sector actors, such as local banks and energy service companies, to gain experience in technology development, project development, project financing and operation and maintenance in order to develop track records which would help reduce barriers to further renewable energy development.

the key parameters for the FTSM fund will be:

- The mechanism will guarantee payment of the feed-in tariffs over a period of 20 years as long as the project is operated properly.
- The mechanism will receive annual income from emissions trading or from direct funding.
- The mechanism will pay feed-in tariffs annually only on the basis of generated electricity.
- Every FTSM project must have a professional maintenance company to ensure high availability.
- The grid operator must do its own monitoring and send generation data to the FTSM fund. Data from the project managers and grid operators will be compared regularly to check consistency.

image A WOMAN STUDIES SOLAR POWER SYSTEMS AT THE BAREFOOT COLLEGE.THE COLLEGE SPECIALISES IN SUSTAINABLE DEVELOPMENT AND PROVIDES A SPACE WHERE STUDENTS FROM ALL OVER THE WORLD CAN LEARN TO UTILISE RENEWABLE ENERGY.THE STUDENTS TAKE THEIR NEW SKILLS HOME AND GIVE THEIR VILLAGES CLEAN ENERGY.

financing the energy [r]evolution with FTSM

Based on both Energy [R]evolution Scenarios for developing (non-OECD) countries, a calculation has been done to estimate the costs and benefits of an FTSM programme using the following assumptions:

power generation costs The average level of feed-in tariffs, excluding solar, has been calculated on the assumption that the majority of renewable energy sources require support payments of between 7 and 15 cents per kilowatt-hour. While wind and bio energy power generation can operate on tariffs of below 10 cents per kWh, other technologies, such as geothermal and concentrated solar power, will need slightly more. Exact tariffs should be calculated on the basis of specific market prices within each country. The feed-in tariff for solar photovoltaic projects reflects current market price projections. The average conventional power generation costs are based on new coal and gas power plants without direct or indirect subsidies.

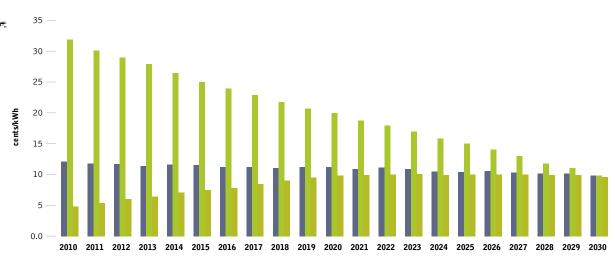
specific CO² **reduction per kWh** The assumed CO₂ reduction per kWh from switching to renewables is crucial for calculating the specific cost per tonne of CO₂ saved. In non-OECD countries the current level of CO₂ emissions for power generation averages 871 gCO₂/kWh, and will reduce to 857 gCO₂/kWh by 2030 (see Reference scenario Chapter 6). The average level of CO₂ emissions over the period from 2010 to 2020 is therefore 864 gCO₂/kWh.

table 2.1: assumptions for ftsm calculations

KEY PARAMETER	AVERAGE FEED-IN TARIFF EXCL. SOLAR PV (ct/kWh)	AVERAGE FEED-IN TARIFF FOR SOLAR PV (ct/kWh)
2010	12	20
2020	11	15
2030	10	10

financial parameters From the beginning of the financial crisis in mid-2008 it became clear that inflation rates and capital costs were likely to change very fast. The cost calculations in this programme do not take into account changes in interest rates, capital costs or inflation; all cost parameters are nominal based on 2009 levels.

key results The FTSM programme would cover 624TWh by 2015 and 4,960 TWh by 2030 of new renewable electricity generation and save 77.6 GtCO₂ between 2010 and 2030. This works out at 3.8 GtCO₂ per year under the basic Energy [R]evolution scenario and 82 GtCO₂ or 4.1 GtCO₂ per year under the advanced version. With an average CO₂ price of US\$23.1 per tonne, the total programme would cost US\$1.62 trillion. This works out at US\$ 76.3 billion annually under the basic version and US\$ 1.29 trillion or US\$ 61.4 billion annually under the advanced scenario.


Under the GDR scheme, this would mean that the EU-27 countries would need to cover 22.4% (US\$ billion 289) of these costs, or US\$14.4 annually. The costs for the USA would amount to US\$24.9 billion each year. India, on the other hand, would receive US\$13 billion per year between 2010 and 2030 to finance the domestic uptake of renewable power generation.

The FTSM will bridge the gap between now and 2030, when electricity generation costs for all renewable energy technologies are projected to be lower than conventional coal and gas power plants. However, this case study has calculated even lower generation costs for conventional power generation than we have assumed in our price projections for the Energy [R]evolution scenario (see Chapter 5, page 52, Table 5.3.). This is because we have excluded CO_2 emission costs. If these are taken into account coal power plants would have generation costs of 10.8 \$cents/kWh by 2020 and 12.5 cents/kWh by 2030, as against the FTSM assumption of 10 cents/kWh over the same timescale. However, the advanced Energy [R]evolution case takes those higher costs into account and reaches economies of scale for renewable power generation around 5 years earlier. Therefore, in the second period in the advanced case, the annual costs of the FTSM programm drop significantly under the basic version even with much higher renewable electricity volume.

As the difference between renewable and coal electricity generation costs are projected to decrease, more renewable electricity can be financed with roughly the same amount of money.

more than 1700 GW renewables

figure 2.5: feed-in tariffs versus conventional power generation

AVERAGE FEED-IN TARIFF - EXCL SOLAR

AVERAGE FEED-IN TARIFF - SOLAR

AVERAGE CONVENTIONAL POWER GENERATION COSTS

table 2.2: ftsm key parameters - Energy [R]evolution

table 2.3: ftsm key parameters - adv Energy [R]evolution

for developing countries

Overall, the FTSM for non-OECD countries will bring more than

1,700 GW (2,300 GW in the advanced version) of new renewable

energy power plants on line, creating about 5 million jobs with an

annual cost of under US\$15,000 per job per year.

KEY PARAMETER	CONVENTIONAL POWER GENERATION COSTS (ct/kWh)	INTEREST RATES (%)	SPECIFIC REDUCTION PER KWH (gCO2/kWh)	KEY PARAMETER	CONVENTIONAL POWER GENERATION COSTS (ct/kWh)		SPECIFIC REDUCTION PER KWH (gCO2/kWh)
2010	7	4	0.7	2010	7	4	0.7
2020	10	4	0.7	2020	11	4	0.7
2030	10	4	0.7	2030	12.5	4	0.7

table 2.4: ftsm programme

KEY RESULTS TOTAL NON-OECD	YEAR	AVERAGE CO2 COST PER TONNE [\$/ TCO2]	AVERAGE ANNUAL CO2 EMISSION CREDITS (MILLION T CO2)	TOTAL ANNUAL COSTS (BILLION US\$)	TOTAL CO2 CERTIFICATES PER PERIODE (MILLION T CO2)	TOTAL COSTS PER PERIOD (BILLION \$)
Period 1 E[R]	2010-2019	27.8	2,080.4	57.9	20,804	579.3
Period 1 adv E[R]	2010-2019	26.3	2,199.3	57.9	21,993	579.3
Period 2 E[R]	2020-2030	18.3	5,165.8	94.7	56,824	1041.6
Period 2 adv E[R]	2020-2030	11.9	5,461.0	64.8	60,071	712.7
Period 1+2 E[R]	2010-2030	23.1	3,623.1	76.3	77,628	1,621
Period 1+2 adv E[R]	2010-2030	19.1	3,830.1	61.4	82,064	1,292

Biomass adv E[R] Geothermal adv E[R] Solar Thermal adv E[R] Ocean Energy adv E[R]	23.6 0.2 41.2 21.6 0.0 0.0	312.0 22.0 218.0 55.4 24.7 4.6	1,092.0 204.0 487.0 164.0 281.0 67.0	2,949.0 998.0 946.0 715.0 1,550.0 237.0	Wind adv E[R] PV adv E[R] Biomass adv E[R] Geothermal adv E[R] Solar Thermal adv E[R] Ocean Energy adv E[R]	15 0 7 4 0 0	140 14 44 10 10 1	443 114 100 28 91 20	1,142 560 173 117 255 70
Geothermal adv E[R]	0.2 41.2 21.6	22.0 218.0 55.4	204.0 487.0 164.0	998.0 946.0 715.0	PV adv E[R] Biomass adv E[R] Geothermal adv E[R]	0 7 4	14 44 10	114 100 28	560 173 117
	0.2 41.2	22.0 218.0	204.0 487.0	998.0 946.0	PV adv E[R] Biomass adv E[R]	0 7	14 44	114 100	560 173
Biomass adv E[R]	0.2	22.0	204.0	998.0	PV adv E[R]	0	14	114	560
			,	,		-			· · · · · · · · · · · · · · · · · · ·
PV adv E[R]	23.6	312.0	1,092.0	2,949.0	Wind adv E[R]	15	140	443	1,142
Wind adv E[R]									
Total - new RE E[R]	86.7	623.8	1,699.0	4,958.5	Total - new RE E[R]	26.2	214.1	570.7	1,610.3
Ocean Energy E[R]	0.0	4.6	27.4	48.5	Ocean Energy E[R]	0	1	8	14
Solar Thermal E[R]	0.0	21.7	112.1	798.0	Solar Thermal E[R]	0	9	36	130
Geothermal E[R]	21.6	50.5	111.0	251.0	Geothermal E[R]	4	9	19	44
Biomass E[R]	41.2	218.0	488.5	950.0	Biomass E[R]	7	44	100	173
PV E[R]	0.2	22.0	105.4	673.0	PV E[R]	0	14	59	383
Wind E[R]	23.6	307.0	854.5	2,238.0	Wind E[R]	15	138	347	865
ELECTRICITY GENERATION (TWh/a)	2007	2015	2020	2030	INSTALLED CAPACITY (GW)	2007	2015	2020	2030

table 2.5: renewable power for non-oecd countries under ftsm programme

2.3 greenhouse development rights

The Energy [R]evolution scenarios present a range of pathways towards a future based on an increasing proportion of renewable energy, but such routes are only likely to be followed if their corresponding investment costs are shared fairly under some form of global climate regime. To demonstrate how this would be possible we have used the Greenhouse Development Rights framework, designed by EcoEquity and the Stockholm Environment Institute, as a potential basis for implementing the Energy [R]evolution .

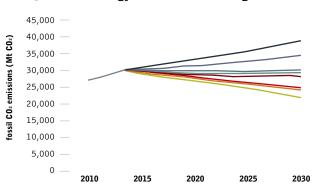
Greenpeace advocates for industrialized countries, as a group, to reduce their emissions by at least 40% by 2020 (as compared to 1990 emissions) and for developing countries, as a group, to reduce their emissions by at least 15% by 2020 as compared to their projected growth in emissions. On top of these commitments Greenpeace urges industrialized countries to provide financial resources of at least \$US140 billion per year to fund the cost of climate change mitigation and adaptation in developing countries. The Greenhouse Development Rights framework provides a tool for distributing both this emission reduction and finance target equally amongst countries. Below we show how this will work for implementing the Energy [R]evolution scenarios.

the greenhouse development rights framework

The **Greenhouse Development Rights (GDR)** framework calculates national shares of global greenhouse gas obligations based on a combination of responsibility (contribution to climate change) and capacity (ability to pay). Crucially, GDRs take inequality within countries into account and calculate national obligations on the basis of the estimated capacity and responsibility of individuals. Individuals with incomes below a 'development threshold' – specified in the default case as \$7,500 per capita annual income, PPP adjusted – are exempted from climate-related obligations.

Individuals with incomes above that level are expected to contribute to the costs of global climate policy in proportion to their capacity (amount of income over the threshold) and responsibility (cumulative CO_2 emissions since 1990, excluding emissions corresponding to consumption below the threshold).

The calculations of capacity and responsibility are then combined into a joint **Responsibility and Capacity Indicator (RCI)** by taking the average of the two values. Thus, for example, as shown in Table 2.6 below, the United States of America, with 4.5% of the world's population, has 35.8% of the world's capacity in 2010, 36.8% of the world's responsibility and 36.3% of the calculated RCI. This means that in 2010, the USA would be responsible for 36.3% of the costs of global climate policy.


Because the system calculates obligations based on the characteristics of individuals, and all countries have at least some individuals with incomes over the development threshold, GDRs would eliminate the overarching formal distinction in the Kyoto Protocol between Annex I and non-Annex I countries. There would of course still be key differences between rich and poor countries, as rich countries would be expected to pay for reductions made in other countries as well as making steep domestic emissions reductions, while poor countries could expect the majority of the incremental costs for emissions reductions required within their borders to be paid for by wealthier countries. Similarly, the national obligations calculated through GDRs could be used to allocate contributions to a global adaptation fund; again, even poor countries would have some positive obligations to contribute, but they would expect to be net recipients of adaptation funds, while rich countries would be net contributors.

REGION/COUNTRY	POPULATION (2010)	INCOME USD/A (2010)	CAPACITY (2010)	RESPONSIBILITY (2010)	RCI (2010)	RCI (2020)	RCI (2030)
OECD	17.6%	32,413	86.6%	75.3%	80.9%	72.8%	63.7%
North America	6.6%	37,128	39.8%	41.5%	40.6%	36.9%	32.9%
United States	4.5%	45,640	35.8%	36.8%	36.3%	32.7%	28.9%
Mexico	1.6%	12,408	1.3%	1.6%	1.5%	1.5%	1.5%
Canada	0.5%	38,472	2.6%	3.1%	2.9%	2.7%	2.5%
Europe	8.0%	29,035	29.3%	22.2%	25.8%	23.2%	20.1%
Pacific	3.0%	30,961	17.5%	11.5%	14.5%	12.7%	10.7%
Japan	1.9%	33,422	14.3%	7.3%	10.8%	9.2%	7.4%
Non-OECD	82.4%	5,137	13.4%	24.7%	19.1%	27.2%	36.3%
🖷 E.Europe/Eurasia	4.9%	11,089	1.5%	7.8%	4.7%	5.2%	5.7%
Russia	2.0%	15,031	0.9%	5.9%	3.4%	3.5%	3.8%
Asia	52.5%	4,424	5.6%	7.2%	6.4%	12.7%	20.1%
China	19.7%	5,899	2.9%	4.3%	3.6%	8.3%	13.6%
India	17.2%	2,818	0.1%	0.1%	0.1%	0.5%	1.3%
Middle East	14.9%	2,617	0.8%	2.0%	1.4%	1.7%	2.0%
Africa	3.1%	12,098	2.4%	4.8%	3.6%	4.3%	4.8%
Latin America	7.0%	8,645	3.1%	2.9%	3.0%	3.3%	3.6%
Brazil	2.9%	9,442	1.5%	1.1%	1.3%	1.4%	1.4%
World	100.0%	9,929	100.0%	100.0%	100.0%	100.0%	100.0%
European Union	7.3%	30,471	28.1%	21.8%	25.0%	22.6%	19.6%

table 2.6: population, income, capacity, responsibility and RCI calculated for 2010 for IEA regions and selected countries, plus projected 2020 and 2030 RCI.

A more detailed description of the GDR framework can be found in "The Greenhouse Development Right Framework" published in November 2008.¹⁶ For this study, the standard GDR framework has been slightly modified to account for the most recent IEA World Energy Outlook 2009 baseline emissions and economic growth scenario up to 2030, and for the target pathways defined by the Energy [R]evolution and advanced Energy [R]evolution scenarios (for more details see Chapter 6). Because the GDR framework calculates the share of global climate obligation for each country, it can therefore be used to calculate (against a baseline) the amount of reductions required for each country to meet an international target. In Figure 2.6 we show the global obligation required to move from the IEA baseline to the emissions pathway in the Energy [R]evolution scenario (declining to 25 GtCO₂ in 2020 and 21 GtCO₂ in 2030), with the reduction divided into "wedges" proportional to each country's share.

Figure 2.7 shows the global emissions reductions required under the advanced Energy [R]evolution scenario, also divided into "wedges" proportional to each country or region's Responsibility and Capacity Indicator. Note that the size of each wedge in percentage terms changes over time, consistent with Table 2.6. The largest share is for the US, followed by Europe, while the wedges for India and China increase over time. Africa and Developing Asia have the smallest wedges.

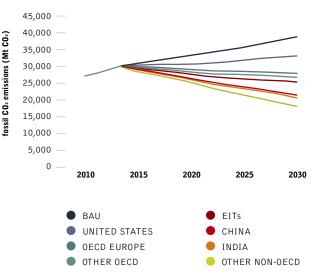


figure 2.6: energy [r]evolution wedges

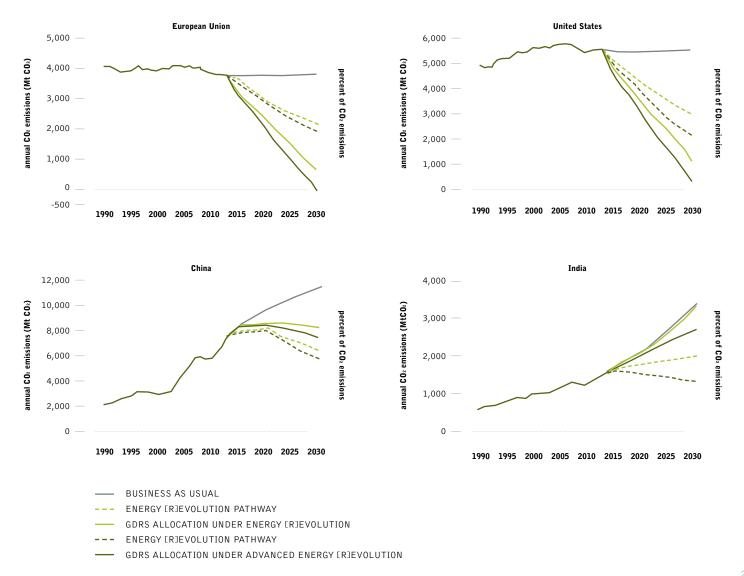
references

 ${\bf 16}$ The greenhouse development right framework" published in November 2008, baer et al. 2008

figure 2.7: advanced energy [r]evolution wedges

Q,

image WIND TURBINES AT THE NAN WIND FARM IN NAN'AO. GUANGDONG PROVINCE HAS ONE OF THE BEST WIND RESOURCES IN CHINA AND IS ALREADY HOME TO SEVERAL INDUSTRIAL SCALE WIND FARMS.



The charts in Figure 2.8 show for the US, EU, India and China, the relationship between domestic emissions reductions under the Energy ERJevolution scenarios and the allocation of responsibility through the GDR framework. For the EU and the US, the allocations (solid blue and green lines) are well below the estimated emissions (dotted blue and green lines), with the difference resulting from an international obligation to fund reductions in other countries. In India and China, by contrast, the allocation of permits is greater than the estimated emissions, indicating that other countries will need to support a reduction from the level indicated by the allocation (solid lines) and projected emissions (dashed lines).

Because the forward calculation of the Responsibility and Capacity Indicator (RCI) depends on the budget that is allocated, the percentage reductions of different countries and regions are slightly different under the Energy [R]evolution and advanced Energy [R]evolution pathways. Nevertheless, because neither capacity nor responsibility from 1990-2010 vary in the two scenarios, the RCIs for specific countries are still quite similar, and thus the actual allocations going forward differ between the two scenarios primarily because of the stricter targets in the advanced scenario.

It is also important to note that because GDRs allocate obligations as a percentage of the global commitment, measured in MtCO₂ in this example, a country with lower per capita emissions will appear to have a more stringent reduction target, when their target is stated in terms of a percentage of 1990 emissions by 2020 or 2030. However, it should be borne in mind that the GDR calculation does not specify the split between domestic and internationally supported reductions. Since we assume that emissions trading or a similar mechanism will lead to a rough equalisation of the marginal cost of reductions, it is in essence the "per capita tonnes of reductions", and thus per capita costs, which are made comparable (not equal) through the calculation of the RCI. With this in mind, we can see under the Energy [R]evolution scenario that the OECD nations have a global responsibility equal to a reduction to 45% below 1990 levels in 2020 and 2% of 1990 levels in 2030.

figure 2.8: annual ghg emissions and reduction pathways allocated under the GDR system for the USA, Europe, China and India

Based on the Energy [R]evolution pathway for the three OECD regions the total domestic emissions would add up to 9.9 GtCO₂ by 2020 and 7.2 GtCO₂ by 2030

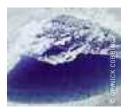
Under the GDR scheme the OECD regions would have an emissions budget of 8.14 GtCO₂ by 2020 and 2.9 GtCO₂ by 2030. Therefore the richer nations have to finance the saving of 1.7 GtCO₂ by 2020 and 4.3 GtCO₂ by 2030 in non-OECD countries.

The non-OECD countries would in aggregate see their emissions allocation rise from 195% of 1990 levels in 2020 to 200% in 2030. In MtCO₂, China's emissions allocation would rise from about 8,200 in 2015 to about 8,500 in 2020 and grow only slightly more by 2030. India by contrast would see its allocation rise from 1,600 MtCO₂ today to about 2,000 by 2020 and 2,800 MtCO₂ in 2030. Within the OECD, the US allocation would fall to 52% of 1990 levels by 2020 and 2% by 2030, while the EU's allocation would fall from 84% today to 33% of 1990 levels in 2020 and -3% of 1990 levels by 2030. (A negative emissions allocation is simply a requirement to buy a larger quantity of emission permits/support a larger amount of mitigation internationally.)

Under the advanced Energy [R]evolution scenario, which has global emissions falling to 25 GtCO₂ in 2020, instead of 27 GtCO₂ in the basic version, and then to 18 GtCO₂ instead of 22 GtCO₂ in 2030, reductions are correspondingly steeper. The OECD countries' allocation of emissions falls to 19% of 1990 levels in 2020 and - 22% in 2030, with the US share being 20% and -24% respectively and the EU's share 12% and -22%. China's emissions allocation peaks at 8,300 MtCO₂ (instead of 8,500 under the basic scenario) and falls to 7,300 MtCO₂ by 2030; India, however, changes little from its allowances under the less stringent global pathway.

For an interesting comparison in terms of relatively wealthy "developing" countries, which are currently completely excluded from binding targets under the Kyoto protocol, consider Brazil and Mexico; both see their allocation falling immediately below their 2010 levels. In the Energy [R]evolution scenario, the drop is about a 15% reduction below 2010 levels by 2020; in the advanced scenario, the drop is about a 30% reduction below 2010 levels.

Table 2.7 presents an overview of the CO₂ emission allocations by country and/or region based on the global Energy [R]evolution pathway towards a level of 27 GtCO₂ in 2020 and 21.9 GtCO₂ in 2030. The advanced version shown in Table 2.8 has a stricter reduction pathway, falling to 18.3 GtCO₂ by 2030, a bit more than ten years ahead of the basic scenario. The GDR system allocates the same emission allocations for each country under the advanced Energy [R]evolution pathway, but this scenario also results in a faster uptake of renewable energy, enabling developing countries to leapfrog from conventional to renewables faster. This pathway might also reduce stranded investments resulting from closed fossil fuel power stations, as developing countries will be able to build up the energy infrastructure with new technologies from the very beginning.


In total, all the OECD countries will have cumulative emissions allocations between 1990 and 2030 of 8.14 GtCO₂ and 7.35 GtCO₂ under the advanced Energy [R]evolution scenario. The scenarios show that 21% (basic version) or 27% (advanced) of those emission reductions will have to come from international actions, as domestic emissions are still too high. In summary, the OECD countries will have to finance a saving of 45 GtCO₂ for non-OECD countries. A possible mechanism to support the introduction of renewable power generation in those countries - crucial to the Energy [R]evolution scenarios - would be the feed-in tariff support system described below.

applying GDR to the energy [r]evolution

It is obvious that, given the huge responsibility and large capacity of industrialised countries, they have a high RCI. Their responsibility for implementing emission reductions should therefore go well beyond the domestic reductions they can achieve by implementing the Energy [R]evolution. Tables 2.7 and 2.8 show the difference between their emissions under the two ER scenarios and the emission reductions they would be responsible for if the RCI is used to distribute their global obligations more equitably.

The difference between their domestic emissions in the ER scenarios and the levels under the RCI system defines the responsibility that these countries will have to fund the implementation of the Energy ERJevolution scenario in developing countries

image GREENPEACE AND AN INDEPENDENT NASA-FUNDED SCIENTIST COMPLETED MEASUREMENTS OF MELT LAKES ON THE GREENLAND ICE SHEET THAT SHOW ITS VULNERABILITY TO WARMING TEMPERATURES.

table 2.7: greenhouse development emission allocation - energy [r]evolution base case

	1990		2015			2020			2030	
FOSSIL CO2 EMISSION IN [MT CO2]	I	GDR I EMISSION RIGHTS		MITIGATION FUND	GDR EMISSION RIGHTS		MITIGATION FUND		DOMESTIC EMISSION RIGHTS UNDER ADV. E[R]	MITIGATION FUND
OECD	11,405	10,834	11,716	-882	8,143	9,919	-1,775	2,926	7,253	-4,327
North America	5,756	5,732	6,094	-361	4,357	5,223	-865	1,740	3,655	-1,915
United States	5,009	4,847	5,183	-336	3,618	4,393	-775	1,278	3,043	-1,765
Mexico	302	406	394	12	361	363	-2	276	279	-2
Canada	445	479	516	-37	378	466	-88	186	334	-148
Europe	4,026	3,263	3,642	-379	2,394	2,947	-553	648	2,209	-1,561
Pacific	1,623	1,838	1,980	-142	1,392	1,749	-357	538	1,389	-851
Non-OECD	9,542	18,023	28,308	885	18,587	16,810	1,777	19,037	14,707	4,330
Transition Economies	4,158	2,598	2,382	216	2,418	1,931	487	2,077	1,440	637
Asia	3,596	11,734	11,170	564	12,498	11,526	972	13,284	10,252	3,032
China	2,277	8,226	7,830	396	8,503	8,033	470	8,065	6,557	1,508
India	607	1,712	1,626	86	2,054	1,807	247	2,861	2,035	826
Other Asia	712	1,796	1,714	82	1,940	1,686	254	2,358	1,660	698
Africa	566	962	1,001	39	922	1,013	91	887	1,031	143
Middle East	608	1,661	1,555	105	1,768	1,439	329	1,978	1,248	730
Latin America	613	1,069	1,030	39	981	901	80	811	736	75
World	20,947	28,857	28,854		26,730	26,729		21,963	21,960	

table 2.8: greenhouse development emission allocation - advanced energy [r]evolution base case

FOSSIL CO2 EMISSION IN [MT CO2]	1990	GDR [EMISSION RIGHTS		MITIGATION FUND		2020 DOMESTIC EMISSION RIGHTS	MITIGATION FUND		2030 DOMESTIC M EMISSION RIGHTS	/ITIGATION FUND
			UNDER ADV. E[R]			UNDER ADV. E[R]			UNDER ADV. E[R]	
OECD	11,405	10,524	11,317	-793	7,359	9,327	-1,969	911	5,941	-5,029
North America	5,756	5,575	5,841	-266	3,956	4,749	-793	694	2,724	-2,030
United States	5,009	4,709	4,942	-233	3,267	3,965	-698	370	2,188	-1,818
Mexico	302	399	396	3	341	350	-9	218	246	-29
Canada	445	468	503	-36	349	434	-85	106	290	-184
Europe	4,026	3,160	3,488	-328	2,134	2,908	-774	-11	1,931	-1,942
Pacific	1,623	1,789	1,988	-199	1,269	1,671	-402	229	1,286	-1,057
Non-OECD	9,542	17,892	17,109	783	18,161	16,179	1,983	17,459	12,436	5,022
Transition Economies	4,158	2,571	2,382	189	2,342	1,906	436	1,837	1,303	534
Asia	3,596	11,671	11,142	529	12,266	11,067	1,199	12,301	8,485	3,817
China	2,277	8,178	7,813	366	8,323	7,875	448	7,324	5,744	1,580
India	607	1,709	1,620	90	2,039	1,524	515	2,742	1,332	1,410
Other Asia	712	1,784	1,709	74	1,904	1,667	236	2,236	1,409	827
Africa	566	953	998	44	895	970	74	804	889	85
Middle East	608	1,646	1,571	75	1,729	1,393	336	1,857	1,124	733
Latin America	613	1,051	1,016	34	929	843	86	659	636	23
World	20,947	28,417	28,426		25,520	25,506		18,370	18,377	

nuclear power and climate protection

GLOBAL

A SOLUTION TO CLIMATE PROTECTION? NUCLEAR POWER BLOCKS SOLUTIONS NUCLEAR POWER IN THE E[R] SCENARIO THE DANGERS OF NUCLEAR POWER NUCLEAR PROLIFERATION NUCLEAR WASTE SAFETY RISKS

image SIGN ON A RUSTY DOOR AT CHERNOBYL ATOMIC STATION.

"safety and security risks, radioactive waste, nuclear proliferation..."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN

image MEASURING RADIATION LEVELS OF A HOUSE IN THE TOWN OF PRIPYAT THAT WAS LEFT ABANDONED AFTER THE NUCLEAR DISASTER.

Nuclear energy is a relatively minor industry with major problems. It covers just one sixteenth of the world's primary energy consumption, a share set to decline over the coming decades. The average age of operating commercial nuclear reactors is 23 years, so more power stations are being shut down than started. In 2008, world nuclear production fell by 2% compared to 2006, and the number of operating reactors as of January 2010 was 436, eight less than at the historical peak of 2002.

In terms of new power stations, the amount of nuclear capacity added annually between 2000 and 2009 was on average 2,500 MWe. This was six times less than wind power (14,500 MWe per annum between 2000 and 2009). In 2009, 37,466 MW of new wind power capacity was added globally to the grid, compared to only 1,068 MW of nuclear. This new wind capacity will generate as much electricity as 12 nuclear reactors; the last time the nuclear industry managed to add this amount of new capacity in a single year was in 1988.

Despite the rhetoric of a 'nuclear renaissance', the industry is struggling with a massive increase in costs and construction delays as well as safety and security problems linked to reactor operation, radioactive waste and nuclear proliferation.

a solution to climate protection?

The promise of nuclear energy to contribute to both climate protection and energy supply needs to be checked against reality. In the most recent Energy Technology Perspectives report published by the International Energy Agency¹⁷, for example, its Blue Map scenario outlines a future energy mix which would halve global carbon emissions by the middle of this century. To reach this goal the IEA assumes a massive expansion of nuclear power between now and 2050, with installed capacity increasing four-fold and electricity generation reaching 9,857 TWh/year, compared to 2,608 TWh in 2007. In order to achieve this, the report says that 32 large reactors (1,000 MWe each) would have to be built every year from now until 2050. This would be unrealistic, expensive, hazardous and too late to make a difference. Even so, according to the IEA scenario, such a massive nuclear expansion would cut carbon emissions by less than 5%.

unrealistic: Such a rapid growth is practically impossible given the technical limitations. This scale of development was achieved in the history of nuclear power for only two years at the peak of the statedriven boom of the mid-1980s. It is unlikely to be achieved again, not to mention maintained for 40 consecutive years. While 1984 and 1985 saw 31 GW of newly added nuclear capacity, the decade average was 17 GW each year. In the past ten years, less than three large reactors have been brought on line annually, and the current production capacity of the global nuclear industry cannot deliver more than an annual six units. **expensive:** The IEA scenario assumes very optimistic investment costs of \$2,100/kWe installed, in line with what the industry has been promising. The reality indicates three to four times that much. Recent estimates by US business analysts Moody's (May 2008) put the cost of nuclear investment as high as \$7,500/kWe. Price quotes for projects under preparation in the US cover a range from \$5,200 to 8,000/kWe.¹⁸ The latest cost estimate for the first French EPR pressurised water reactor being built in Finland is \$5,000/kWe, a figure likely to increase for later reactors as prices escalate. The Wall Street Journal has reported that the cost index for nuclear components has risen by 173% since 2000 – a near tripling over the past eight years.¹⁹ Building 1,400 large reactors of 1,000 MWe, even at the current cost of about \$7,000/kWe, would require an investment of US\$9.8 trillion.

hazardous: Massive expansion of nuclear energy would necessarily lead to a large increase in related hazards. These include the risk of serious reactor accidents, the growing stockpiles of deadly high level nuclear waste which will need to be safeguarded for thousands of years, and potential proliferation of both nuclear technologies and materials through diversion to military or terrorist use. The 1,400 large operating reactors in 2050 would generate an annual 35,000 tonnes of spent fuel (assuming they are light water reactors, the most common design for most new projects). This also means the production of 350,000 kilograms of plutonium each year, enough to build 35,000 crude nuclear weapons.

Most of the expected electricity demand growth by 2050 will occur in non-OECD countries. This means that a large proportion of the new reactors would need to be built in those countries in order to have a global impact on emissions. At the moment, the list of countries with announced nuclear ambitions is long and worrying in terms of their political situation and stability, especially with the need to guarantee against the hazards of accidents and proliferation for many decades. The World Nuclear Association listed the Emerging Nuclear Energy Countries in February 2010. In Europe this included Italy, Albania, Serbia, Portugal, Norway, Poland, Belarus, Estonia, Latvia, Ireland and Turkey. In the Middle East and North Africa: Iran, Gulf states including UAE, Yemen, Israel, Syria, Jordan, Egypt, Tunisia, Libya, Algeria and Morocco. In central and southern Africa: Nigeria, Ghana, Uganda and Namibia. In South America: Chile, Ecuador and Venezuela. In central and southern Asia: Azerbaijan, Georgia, Kazakhstan, Mongolia and Bangladesh. In South East Asia: Indonesia, Philippines, Vietnam, Thailand, Malaysia, Australia and New Zealand.

slow: Climate science says that we need to reach a peak of global greenhouse gas emissions in 2015 and reduce them by 20% by 2020. Even in developed countries with an established nuclear infrastructure it takes at least a decade from the decision to build a reactor to the delivery of its first electricity, and often much longer. This means that even if the world's governments decided to implement strong nuclear expansion now, only a few reactors would start generating electricity before 2020. The contribution from nuclear power towards reducing emissions would come too late to help.

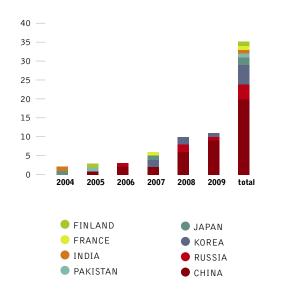
references

^{17 &#}x27;ENERGY TECHNOLOGY PERSPECTIVES 2008 - SCENARIOS & STRATEGIES TO 2050', IEA.
18 PLATTS, 2008; ENERGY BIZ, MAY/JUNE 2008
19 WALL STREET JOURNAL, 29 MAY 2008

nuclear power blocks solutions

Even if the ambitious nuclear scenario is implemented, regardless of costs and hazards, the IEA concludes that the contribution of nuclear power to reductions in greenhouse gas emissions from the energy sector would be only 4.6% - less than 3% of the global overall reduction required.

There are other technologies that can deliver much larger emission reductions, and much faster. Their investment costs are lower and they do not create global security risks. Even the IEA finds that the combined potential of efficiency savings and renewable energy to cut emissions by 2050 is more than ten times larger than that of nuclear.


The world has limited time, finance and industrial capacity to change our energy sector and achieve a large reduction in greenhouse emissions. Choosing the pathway of spending \$10 trillion on nuclear development would be a fatally wrong decision. It would not save the climate but it would necessarily take resources away from solutions described in this report and at the same time create serious global security hazards. Therefore new nuclear reactors are a clearly dangerous obstacle to the protection of the climate.

nuclear power in the energy [r]evolution scenario

For the reasons explained above, the Energy [R]evolution scenario envisages a nuclear phase-out. Existing reactors would be closed at the end of their average operational lifetime of 35 years. We assume that no new construction is started and only two thirds of the reactors currently under construction will be finally put into operation.

figure 3.1: new reactor construction starts in

past six years. OUT OF 35 NEW REACTORS WHOSE CONSTRUCTION HAS STARTED SINCE 2004, ONLY TWO ARE LOCATED IN EUROPE (FINLAND AND FRANCE).

the dangers of nuclear power

Although the generation of electricity through nuclear power produces much less carbon dioxide than fossil fuels, there are multiple threats to people and the environment from its operations.

The main risks are:

- Nuclear Proliferation
- Nuclear Waste
- Safety Risks

These are the background to why nuclear power has been discounted as a future technology in the Energy [R]evolution Scenario.

1. nuclear proliferation

Manufacturing a nuclear bomb requires fissile material - either uranium-235 or plutonium-239. Most nuclear reactors use uranium as a fuel and produce plutonium during their operation. It is impossible to adequately protect a large reprocessing plant in order to prevent the diversion of plutonium to nuclear weapons. A smallscale plutonium separation plant can be built in four to six months, so any country with an ordinary reactor can produce nuclear weapons relatively quickly.

The result is that nuclear power and nuclear weapons have grown up like Siamese twins. Since international controls on nuclear proliferation began, Israel, India, Pakistan and North Korea have all obtained nuclear weapons, demonstrating the link between civil and military nuclear power. Both the International Atomic Energy Agency (IAEA) and the Nuclear Non-proliferation Treaty (NPT) embody an inherent contradiction - seeking to promote the development of 'peaceful' nuclear power whilst at the same time trying to stop the spread of nuclear weapons.

Israel, India and Pakistan all used their civil nuclear operations to develop weapons capability, operating outside international safeguards. North Korea developed a nuclear weapon even as a signatory of the NPT. A major challenge to nuclear proliferation controls has been the spread of uranium enrichment technology to Iran, Libya and North Korea. The Director General of the International Atomic Energy Agency, Mohamed El Baradei, has said that "should a state with a fully developed fuel-cycle capability decide, for whatever reason, to break away from its nonproliferation commitments, most experts believe it could produce a nuclear weapon within a matter of months".²⁰

The United Nations Intergovernmental Panel on Climate Change has also warned that the security threat of trying to tackle climate change with a global fast reactor programme (using plutonium fuel) "would be colossal".²¹ Even without fast reactors, all of the reactor designs currently being promoted around the world could be fuelled by MOX (mixed oxide fuel), from which plutonium can be easily separated.

references

 $^{{\}bf 20}$ mohamed elbaradei, 'towards a safer world', ${\it economist}$, 18 october 2003 ${\bf 21}$ ipcc working group II, 'impacts, adaptations and mitigation of climate change: scientific-technical analyses', 1995

Restricting the production of fissile material to a few 'trusted' countries will not work. It will engender resentment and create a colossal security threat. A new UN agency is needed to tackle the twin threats of climate change and nuclear proliferation by phasing out nuclear power and promoting sustainable energy, in the process promoting world peace rather than threatening it.

2. nuclear waste

The nuclear industry claims it can 'dispose' of its nuclear waste by burying it deep underground, but this will not isolate the radioactive material from the environment forever. A deep dump only slows down the release of radioactivity into the environment. The industry tries to predict how fast a dump will leak so that it can claim that radiation doses to the public living nearby in the future will be "acceptably low". But scientific understanding is not sufficiently advanced to make such predictions with any certainty.

As part of its campaign to build new nuclear stations around the world, the industry claims that problems associated with burying nuclear waste are to do with public acceptability rather than technical issues. It points to nuclear dumping proposals in Finland, Sweden or the United States to underline its argument.

The most hazardous waste is the highly radioactive waste (or spent) fuel removed from nuclear reactors, which stays radioactive for hundreds of thousands of years. In some countries the situation is exacerbated by 'reprocessing' this spent fuel, which involves dissolving it in nitric acid to separate out weapons-usable plutonium. This process leaves behind a highly radioactive liquid waste. There are about 270,000 tonnes of spent nuclear waste fuel in storage, much of it at reactor sites. Spent fuel is accumulating at around 12,000 tonnes per year, with around a quarter of that going for reprocessing.²² No country in the world has a solution for high level waste.

The IAEA recognises that, despite its international safety requirements, "... radiation doses to individuals in the future can only be estimated and that the uncertainties associated with these estimates will increase for times farther into the future."

The least damaging option for waste already created at the current time is to store it above ground, in dry storage at the site of origin, although this option also presents major challenges and threats. The only real solution is to stop producing the waste.

3. safety risks

Windscale (1957), Three Mile Island (1979), Chernobyl (1986) and Tokaimura (1999) are only a few of the hundreds of nuclear accidents which have occurred to date.

- A simple power failure at a Swedish nuclear plant in 2006 highlighted our vulnerability to nuclear catastrophe. Emergency power systems at the Forsmark plant failed for 20 minutes during a power cut and four of Sweden's ten nuclear power stations had to be shut down. If power was not restored there could have been a major incident within hours. A former director of the Forsmark plant later said that "it was pure luck there wasn't a meltdown". The closure of the plants removed at a stroke roughly 20% of Sweden's electricity supply.
- A nuclear chain reaction must be kept under control, and harmful radiation must, as far as possible, be contained within the reactor, with radioactive products isolated from humans and carefully managed. Nuclear reactions generate high temperatures, and fluids used for cooling are often kept under pressure. Together with the intense radioactivity, these high temperatures and pressures make operating a reactor a difficult and complex task.
- The risks from operating reactors are increasing and the likelihood of an accident is now higher than ever. Most of the world's reactors are more than 25 years old and therefore more prone to age related failures. Many utilities are attempting to extend their life from the 30 years or so they were originally designed for up to 60 years, posing new risks.
- De-regulation has meanwhile pushed nuclear utilities to decrease safety-related investments and limit staff whilst increasing reactor pressure and operational temperature and the burn-up of the fuel. This accelerates ageing and decreases safety margins.

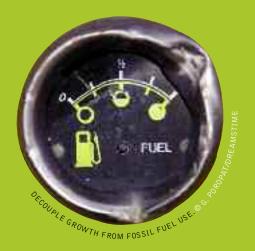
986) Jclear power and climate protection 16 rgency es there ta l harmful reactor, fully and ether d ex task.

"despite the rhetoric of a 'nuclear-renaissance', the industry is struggling with a massive increase in costs and construction delays as well as safety and security problems."

references

 $22\ \mbox{`WASTE MANAGEMENT IN THE NUCLEAR FUEL CYCLE', WORLD NUCLEAR ASSOCIATION, INFORMATION AND ISSUE BRIEF, FEBRUARY 2006 (WWW.WORLD-NUCLEAR.ORG/INFO/INF04.HTM)$

figure 3.2: the nuclear fuel chain



the energy [r]evolution

GLOBAL

KEY PRINCIPLES A DEVELOPMENT PATHWAY NEW BUSINESS MODEL THE NEW ELECTRICITY GRID HYBRID SYSTEMS SMART GRIDS THE SUPER GRID A EUROPEAN SUPER GRID

"half the solution to climate change is the smart use of power."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN The climate change imperative demands nothing short of an energy revolution. The expert consensus is that this fundamental shift must begin immediately and be well underway within the next ten years in order to avert the worst impacts. What is needed is a complete transformation of the way we produce, consume and distribute energy, and at the same time maintain economic growth. Nothing short of such a revolution will enable us to limit global warming to less than a rise in temperature of well below 2° Celsius, above which the impacts become devastating.

Current electricity generation relies mainly on burning fossil fuels, with their associated CO_2 emissions, in very large power stations which waste much of their primary input energy. More energy is lost as the power is moved around the electricity grid network and converted from high transmission voltage down to a supply suitable for domestic or commercial consumers. The system is innately vulnerable to disruption: localised technical, weather-related or even deliberately caused faults can quickly cascade, resulting in widespread blackouts. Whichever technology is used to generate electricity within this old fashioned configuration, it will inevitably be subject to some, or all, of these problems. At the core of the energy revolution there therefore needs to be a change in the way that energy is both produced and distributed.

key principles

the energy [r]evolution can be achieved by adhering to five key principles:

1.respect natural limits – phase out fossil fuels by the end of this century We must learn to respect natural limits. There is only so much carbon that the atmosphere can absorb. Each year we emit over 25 billion tonnes of carbon equivalent; we are literally filling up the sky. Geological resources of coal could provide several hundred years of fuel, but we cannot burn them and keep within safe limits. Oil and coal development must be ended.

While the basic Energy [R]evolution scenario has a reduction target for energy related CO_2 emissions of 50% from 1990 levels by 2050, the advanced case goes one step further and aims for a reduction target of over 80%.

2.equity and fairness As long as there are natural limits there needs to be a fair distribution of benefits and costs within societies, between nations and between present and future generations. At one extreme, a third of the world's population has no access to electricity, whilst the most industrialised countries consume much more than their fair share.

The effects of climate change on the poorest communities are exacerbated by massive global energy inequality. If we are to address climate change, one of the principles must be equity and fairness, so that the benefits of energy services – such as light, heat, power and transport – are available for all: north and south, rich and poor. Only in this way can we create true energy security, as well as the conditions for genuine human wellbeing.

The Energy [R]evolution scenario has a target to achieve energy equity as soon as technically possible. By 2050 the average per capita emission should be between 1 and 2 tonnes of CO_2 .

3. implement clean, renewable solutions and decentralise

energy systems There is no energy shortage. All we need to do is use existing technologies to harness energy effectively and efficiently. Renewable energy and energy efficiency measures are ready, viable and increasingly competitive. Wind, solar and other renewable energy technologies have experienced double digit market growth for the past decade.

Just as climate change is real, so is the renewable energy sector. Sustainable decentralised energy systems produce less carbon emissions, are cheaper and involve less dependence on imported fuel. They create more jobs and empower local communities. Decentralised systems are more secure and more efficient. This is what the energy revolution must aim to create.

"THE STONE AGE DID NOT END FOR LACK OF STONE, AND THE OIL AGE WILL END LONG BEFORE THE WORLD RUNS OUT OF OIL."

Sheikh Zaki Yamani, former Saudi Arabian oil minister

To stop the earth's climate spinning out of control, most of the world's fossil fuel reserves – coal, oil and gas – must remain in the ground. Our goal is for humans to live within the natural limits of our small planet.

4. decouple growth from fossil fuel use Starting in the developed countries, economic growth must be fully decoupled from fossil fuel usage. It is a fallacy to suggest that economic growth must be predicated on their increased combustion.

We need to use the energy we produce much more efficiently, and we need to make the transition to renewable energy and away from fossil fuels quickly in order to enable clean and sustainable growth.

5. phase out dirty, unsustainable energy We need to phase out coal and nuclear power. We cannot continue to build coal plants at a time when emissions pose a real and present danger to both ecosystems and people. And we cannot continue to fuel the myriad nuclear threats by pretending nuclear power can in any way help to combat climate change. There is no role for nuclear power in the Energy [R]evolution .

from principles to practice

In 2007, renewable energy sources accounted for 13% of the world's primary energy demand. Biomass, which is mostly used for heating, was the main renewable energy source. The share of renewable energy in electricity generation was 18%. The contribution of renewables to primary energy demand for heat supply was around 24%. About 80% of primary energy supply today still comes from fossil fuels, and 6% from nuclear power.²³

The time is right to make substantial structural changes in the energy and power sector within the next decade. Many power plants in industrialised countries, such as the USA, Japan and the European Union, are nearing retirement; more than half of all operating power plants are over 20 years old. At the same time developing countries, such as China, India and Brazil, are looking to satisfy the growing energy demand created by their expanding economies.

references

 ${\bf 23}$ 'energy balance of NON-DECD countries' and 'energy balance of DECD countries', IEA, 2009

image GREENPEACE OPENS A SOLAR ENERGY WORKSHOP IN BOMA. A MOBILE PHONE GETS CHARGED BY A SOLAR ENERGY POWERED CHARGER.

Within the next ten years, the power sector will decide how this new demand will be met, either by fossil and nuclear fuels or by the efficient use of renewable energy. The Energy [R]evolution scenario is based on a new political framework in favour of renewable energy and cogeneration combined with energy efficiency.

To make this happen both renewable energy and cogeneration – on a large scale and through decentralised, smaller units – have to grow faster than overall global energy demand. Both approaches must replace old generating technologies and deliver the additional energy required in the developing world.

As it is not possible to switch directly from the current large scale fossil and nuclear fuel based energy system to a full renewable energy supply, a transition phase is required to build up the necessary infrastructure. Whilst remaining firmly committed to the promotion of renewable sources of energy, we appreciate that gas, used in appropriately scaled cogeneration plants, is valuable as a transition fuel, and able to drive cost-effective decentralisation of the energy infrastructure. With warmer summers, tri-generation, which incorporates heat-fired absorption chillers to deliver cooling capacity in addition to heat and power, will become a particularly valuable means of achieving emissions reductions.

a development pathway

The Energy [R]evolution envisages a development pathway which turns the present energy supply structure into a sustainable system. There are three main stages to this.

step 1: energy efficiency

The Energy [R]evolution is aimed at the ambitious exploitation of the potential for energy efficiency. It focuses on current best practice and technologies that will become available in the future, assuming continuous innovation. The energy savings are fairly equally distributed over the three sectors – industry, transport and domestic/business. Intelligent use, not abstinence, is the basic philosophy for future energy conservation. The most important energy saving options are improved heat insulation and building design, super efficient electrical machines and drives, replacement of old style electrical heating systems by renewable heat production (such as solar collectors) and a reduction in energy consumption by vehicles used for goods and passenger traffic. Industrialised countries, which currently use energy in the most inefficient way, can reduce their consumption drastically without the loss of either housing comfort or information and entertainment electronics. The Energy [R]evolution scenario uses energy saved in OECD countries as a compensation for the increasing power requirements in developing countries. The ultimate goal is stabilisation of global energy consumption within the next two decades. At the same time the aim is to create 'energy equity' – shifting the current one-sided waste of energy in the industrialised countries towards a fairer worldwide distribution of efficiently used supply.

A dramatic reduction in primary energy demand compared to the IEA's Reference scenario (see chapter 6) – but with the same GDP and population development - is a crucial prerequisite for achieving a significant share of renewable energy sources in the overall energy supply system, compensating for the phasing out of nuclear energy and reducing the consumption of fossil fuels.

step 2: the renewable energy [r]evolution

decentralised energy and large scale renewables In order to achieve higher fuel efficiencies and reduce distribution losses, the Energy [R]evolution scenario makes extensive use of Decentralised Energy (DE).This is energy generated at or near the point of use.

DE is connected to a local distribution network system, supplying homes and offices, rather than the high voltage transmission system. The proximity of electricity generating plant to consumers allows any waste heat from combustion processes to be piped to nearby buildings, a system known as cogeneration or combined heat and power. This means that nearly all the input energy is put to use, not just a fraction as with traditional centralised fossil fuel plant.

figure 4.1: centralised energy infrastructures waste more than two thirds of their energy

61.5 units LOST THROUGH INEFFICIENT GENERATION AND HEAT WASTAGE

100 units >> ENERGY WITHIN FOSSIL FUEL

38.5 units >>

3.5 UNITS LOST THROUGH TRANSMISSION AND DISTRIBUTION 13 units WASTED THROUGH

35 units >> 22 units of ENERGY SUPPLIED OF ENERGY ACTUALLY UTILISED

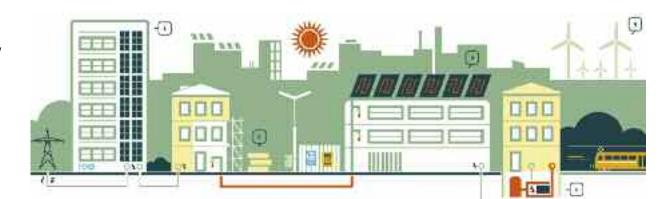
DE also includes stand-alone systems entirely separate from the public networks, for example heat pumps, solar thermal panels or biomass heating. These can all be commercialised at a domestic level to provide sustainable low emission heating. Although DE technologies can be considered 'disruptive' because they do not fit the existing electricity market and system, with appropriate changes they have the potential for exponential growth, promising 'creative destruction' of the existing energy sector.

A huge proportion of global energy in 2050 will be produced by decentralised energy sources, although large scale renewable energy supply will still be needed in order to achieve a fast transition to a renewables dominated system. Large offshore wind farms and concentrating solar power (CSP) plants in the sunbelt regions of the world will therefore have an important role to play.

cogeneration The increased use of combined heat and power generation (CHP) will improve the supply system's energy conversion efficiency, whether using natural gas or biomass. In the longer term, a decreasing demand for heat and the large potential for producing heat directly from renewable energy sources will limit the need for further expansion of CHP.

renewable electricity The electricity sector will be the pioneer of renewable energy utilisation. Many renewable electricity technologies have been experiencing steady growth over the past 20 to 30 years of up to 35% annually and are expected to consolidate at a high level between 2030 and 2050. By 2050, under the Energy ERJevolution scenario, the majority of electricity will be produced from renewable energy sources. The anticipated growth of electricity use in transport will further promote the effective use of renewable power generation technologies.

renewable heating In the heat supply sector, the contribution of renewables will increase significantly. Growth rates are expected to be similar to those of the renewable electricity sector. Fossil fuels will be increasingly replaced by more efficient modern technologies, in particular biomass, solar collectors and geothermal. By 2050, renewable energy technologies will satisfy the major part of heating and cooling demand.


transport Before new technologies, including hybrid or electric cars and new fuels such as bio fuels, can play a substantial role in the transport sector, the existing large efficiency potentials have to be exploited. In this study, biomass is primarily committed to stationary applications; the use of bio fuels for transport is limited by the availability of sustainably grown biomass.²⁴ Electric vehicles will therefore play an even more important role in improving energy efficiency in transport and substituting for fossil fuels.

Overall, to achieve an economically attractive growth of renewable energy sources, a balanced and timely mobilisation of all technologies is essential. Such a mobilisation depends on the resource availability, cost reduction potential and technological maturity. And alongside technology driven solutions, lifestyle changes - like simply driving less and using more public transport – have a huge potential to reduce greenhouse gas emissions.

figure 4.2: a decentralised energy future

EXISTING TECHNOLOGIES, APPLIED IN A DECENTRALISED WAY AND COMBINED WITH EFFICIENCY MEASURES AND ZERO EMISSION DEVELOPMENTS, CAN DELIVER LOW CARBON COMMUNITIES AS ILLUSTRATED HERE. POWER IS GENERATED USING EFFICIENT COGENERATION TECHNOLOGIES PRODUCING BOTH HEAT (AND SOMETIMES COOLING) PLUS ELECTRICITY, DISTRIBUTED VIA LOCAL NETWORKS. THIS SUPPLEMENTS THE ENERGY PRODUCED FROM BUILDING INTEGRATED GENERATION. ENERGY SOLUTIONS COME FROM LOCAL OPPORTUNITIES AT BOTH A SMALL AND COMMUNITY SCALE. THE TOWN SHOWN HERE MAKES USE OF – AMONG OTHERS – WIND, BIOMASS AND HYDRO RESOURCES. NATURAL GAS, WHERE NEEDED, CAN BE DEPLOYED IN A HIGHLY EFFICIENT MANNER.

city

- 1. PHOTOVOLTAIC, SOLAR FAÇADES WILL BE A DECORATIVE ELEMENT ON OFFICE AND APARTMENT BUILDINGS. PHOTOVOLTAIC SYSTEMS WILL BECOME MORE COMPETITIVE AND IMPROVED DESIGN WILL ENABLE ARCHITECTS TO USE THEM MORE WIDELY.
- 2. RENOVATION CAN CUT ENERGY CONSUMPTION OF OLD BUILDINGS BY AS MUCH AS 80% - WITH IMPROVED HEAT INSULATION, INSULATED WINDOWS AND MODERN VENTILATION SYSTEMS.
- 3. SOLAR THERMAL COLLECTORS PRODUCE HOT WATER FOR BOTH THEIR OWN AND NEIGHBOURING BUILDINGS.
- 4. EFFICIENT THERMAL POWER (CHP) STATIONS WILL COME IN A VARIETY OF SIZES - FITTING THE CELLAR OF A DETACHED HOUSE OR SUPPLYING WHOLE BUILDING COMPLEXES OR APARTMENT BLOCKS WITH POWER AND WARMTH WITHOUT LOSSES IN TRANSMISSION.
- 5. CLEAN ELECTRICITY FOR THE CITIES WILL ALSO COME FROM FARTHER AFIELD. OFFSHORE WIND PARKS AND SOLAR POWER STATIONS IN DESERTS HAVE ENORMOUS POTENTIAL.

references 24 SEE CHAPTER 13

image THE TRUCK DROPS ANOTHER LOAD OF WOOD CHIPS AT THE BIOMASS POWER PLANT IN LELYSTAD, THE NETHERLANDS.

new business model

The Energy [R]evolution scenario will also result in a dramatic change in the business model of energy companies, utilities, fuel suppliers and the manufacturers of energy technologies. Decentralised energy generation and large solar or offshore wind arrays which operate in remote areas, without the need for any fuel, will have a profound impact on the way utilities operate in 2020 and beyond.

While today the entire power supply value chain is broken down into clearly defined players, a global renewable power supply will inevitably change this division of roles and responsibilities. The following table provides an overview of today's value chain and how it would change in a revolutionised energy mix.

While today a relatively small number of power plants, owned and operated by utilities or their subsidiaries, are needed to generate the required electricity, the Energy [R]evolution scenario projects a future share of around 60 to 70% of small but numerous decentralised power plants performing the same task. Ownership will therefore shift towards more private investors and away from centralised utilities. In turn, the value chain for power companies will shift towards project development, equipment manufacturing and operation and maintenance.

table 4.2: utilities today

	LARGE SCALE GENERATION) TRADING	TRANS- MISSION	DISTRIBUTION	SALES
		trader (e.g. banks)		local DSO	
	IPP		TS0		retailer
mining companies					
	FUEL (LARGE & TRADING SUPPLY SMALL SCALE) GENERATION				SALES RENEWABLE GENERATION
	utili				investors
		trader (e.g. banks)		local DSO	
	IPP		TS0		retailer
mining companies			IT cor		

IPP = INDEPENDEND POWER PRODUCER

TSO = TRANSMISSION SYSTEM OPERATOR

LOCAL DSO = LOCAL DISTRIBUTION SYSTEM OPERATOR

TASK & MARKET PLAYER	(LARGE SCALE) PROJECT INSTALLATION GENERATION DEVELOPMENT	PLANT OPERATION & OWNER MAINTANANCE	FUEL SUPPLY	DISTRIBUTION	SALES
STATUS QUO	Very few new power plants + central planning	large scale generation in the hand of few IPP´s & utilities	global mining operations	grid operation still in the hands of utilities	
MARKET PLAYER					
Utility					
Mining company					
Component manufacturer					
Engineering companies & project developers					
ENERGY [R]EVOLUTION Power Market	many smaller power plants + decentralized planning	large number of players e.g. IPP´s, utilities, private consumer, building operators	no fuel needed (except biomass)	grid operation under state control	
MARKET PLAYER					
Utility					
Mining company					
Component manufacturer					
Engineering companies & project developers					

table 4.1: power plant value chain

Simply selling electricity to customers will play a smaller role, as the power companies of the future will deliver a total power plant to the customer, not just electricity. They will therefore move towards becoming service suppliers for the customer. The majority of power plants will also not require any fuel supply, with the result that mining and other fuel production companies will lose their strategic importance.

The future pattern under the Energy [R]evolution will see more and more renewable energy companies, such as wind turbine manufacturers, also becoming involved in project development, installation and operation and maintenance, whilst utilities will lose their status. Those traditional energy supply companies which do not move towards renewable project development will either lose market share or drop out of the market completely.

rural electrification²⁵ Energy is central to reducing poverty, providing major benefits in the areas of health, literacy and equity. More than a quarter of the world's population has no access to modern energy services. In sub-Saharan Africa, 80% of people have no electricity supply. For cooking and heating, they depend almost exclusively on burning biomass – wood, charcoal and dung.

Poor people spend up to a third of their income on energy, mostly to cook food. Women in particular devote a considerable amount of time to collecting, processing and using traditional fuel for cooking. In India, two to seven hours each day can be devoted to the collection of cooking fuel. This is time that could be spent on child care, education or income generation. The World Health Organisation estimates that 2.5 million women and young children in developing countries die prematurely each year from breathing the fumes from indoor biomass stoves.

The Millennium Development Goal of halving global poverty by 2015 will not be reached without adequate energy to increase production, income and education, create jobs and reduce the daily grind involved in having to just survive. Halving hunger will not come about without energy for more productive growing, harvesting, processing and marketing of food. Improving health and reducing death rates will not happen without energy for the refrigeration needed for clinics, hospitals and vaccination campaigns. The world's greatest child killer, acute respiratory infection, will not be tackled without dealing with smoke from cooking fires in the home. Children will not study at night without light in their homes. Clean water will not be pumped or treated without energy.

The UN Commission on Sustainable Development argues that "to implement the goal accepted by the international community of halving the proportion of people living on less than US \$1 per day by 2015, access to affordable energy services is a prerequisite".

the role of sustainable, clean renewable energy To achieve the dramatic emissions cuts needed to avoid climate change – in the order of 80% in OECD countries by 2050 – will require a massive uptake of renewable energy. The targets for renewable energy must be greatly expanded in industrialised countries both to substitute for fossil fuel and nuclear generation and to create the necessary economies of scale necessary for global expansion. Within the Energy [R]evolution scenario we assume that modern renewable energy sources, such as solar collectors, solar cookers and modern forms of bio energy, will replace inefficient, traditional biomass use.

step 3: optimised integration - renewables 24/7

A complete transformation of the energy system will be necessary to accommodate the significantly higher shares of renewable energy expected under the Energy [R]evolution scenario. The grid network of cables and sub-stations that brings electricity to our homes and factories was designed for large, centralised generators running at huge loads, usually providing what is known as 'baseload' power. Renewable energy has had to fit in to this system as an additional slice of the energy mix and adapt to the conditions under which the grid currently operates. If the Energy [R]evolution scenario is to be realised, this will have to change.

Some critics of renewable energy say it is never going to be able to provide enough power for our current energy use, let alone for the projected growth in demand. This is because it relies mostly on natural resources, such as the wind and sun, which are not available 24/7. Existing practice in a number of countries has already shown that this is wrong, and further adaptations to how the grid network operates will enable the large quantities of renewable generating capacity envisaged in this report to be successfully integrated.

We already have the sun, wind, geothermal sources and running rivers available right now, whilst ocean energy, biomass and efficient gas turbines are all set to make a massive contribution in the future. Clever technologies can track and manage energy use patterns, provide flexible power that follows demand through the day, use better storage options and group customers together to form 'virtual batteries'. With all these solutions we can secure the renewable energy future needed to avert catastrophic climate change. Renewable energy 24/7 is technically and economically possible, it just needs the right policy and the commercial investment to get things moving and 'keep the lights on'.²⁶

the new electricity grid

The electricity 'grid' is the collective name for all the cables, transformers and infrastructure that transport electricity from power plants to the end users. In all networks, some energy is lost as it is travels, but moving electricity around within a localised distribution network is more efficient and results in less energy loss.

The existing electricity transmission (main grid lines) and distribution system (local network) was mainly designed and planned 40 to 60 years ago. All over the developed world, the grids were built with large power plants in the middle and high voltage alternating current (AC) transmission power lines connecting up to the areas where the power is used. A lower voltage distribution network then carries the current to the final consumers. This is known as a centralised grid system, with a relatively small number of large power stations mostly fuelled by coal or gas.

references

25 SUSTAINABLE ENERGY FOR POVERTY REDUCTION: AN ACTION PLAN', IT POWERGREENPEACE INTERNATIONAL, 2002.

26 THE ARGUMENTS AND TECHNICAL SOLUTIONS OUTLINED HERE ARE EXPLAINED IN MORE DETAIL IN THE EUROPEAN RENEWABLE ENERGY COUNCIL/GREENPEACE REPORT, "IRJENEWABLES 24/7: INFRASTRUCTURE NEEDED TO SAVE THE CLIMATE", NOVEMBER 2009.

image THE WIND TURBINES ARE GOING TO BE USED FOR THE CONSTRUCTION OF AN OFFSHORE WINDFARM AT MIDDELGRUNDEN WHICH IS CLOSE TO COPENHAGEN, DENMARK.

In the future we need to change the grid network so that it does not rely on large conventional power plants but instead on clean energy from a range of renewable sources. These will typically be smaller scale power generators distributed throughout the grid. A localised distribution network is more efficient and avoids energy losses during long distance transmission. There will also be some concentrated supply from large renewable power plants. Examples of these large generators of the future are the massive wind farms already being built in Europe's North Sea and the plan for large areas of concentrating solar mirrors to generate energy in Southern Europe or Northern Africa.

The challenge ahead is to integrate new generation sources and at the same time phase out most of the large scale conventional power plants, while still keeping the lights on. This will need novel types of grids and an innovative power system architecture involving both new technologies and new ways of managing the network to ensure a balance between fluctuations in energy demand and supply.

The key elements of this new power system architecture are micro grids, smart grids and an efficient large scale super grid. The three types of system will support and interconnect with each other (see Figure 4.3).

A major role in the construction and operation of this new system architecture will be played by the IT sector. Because a smart grid has power supplied from a diverse range of sources and locations it relies on the gathering and analysis of a large quantity of data. This requires software, hardware and networks that are capable of delivering data quickly, and responding to the information that they contain. Providing energy users with real time data about their energy consumption patterns and the appliances in their buildings, for example, helps them to improve their energy efficiency, and will allow appliances to be used at a time when a local renewable supply is plentiful, for example when the wind is blowing.

There are numerous IT companies offering products and services to manage and monitor energy. These include IBM, Fujitsu, Google, Microsoft and Cisco. These and other giants of the telecommunications and technology sector have the power to make the grid smarter, and to move us faster towards a clean energy future. Greenpeace has initiated the 'Cool IT' campaign to put pressure on the IT sector to make such technologies a reality.

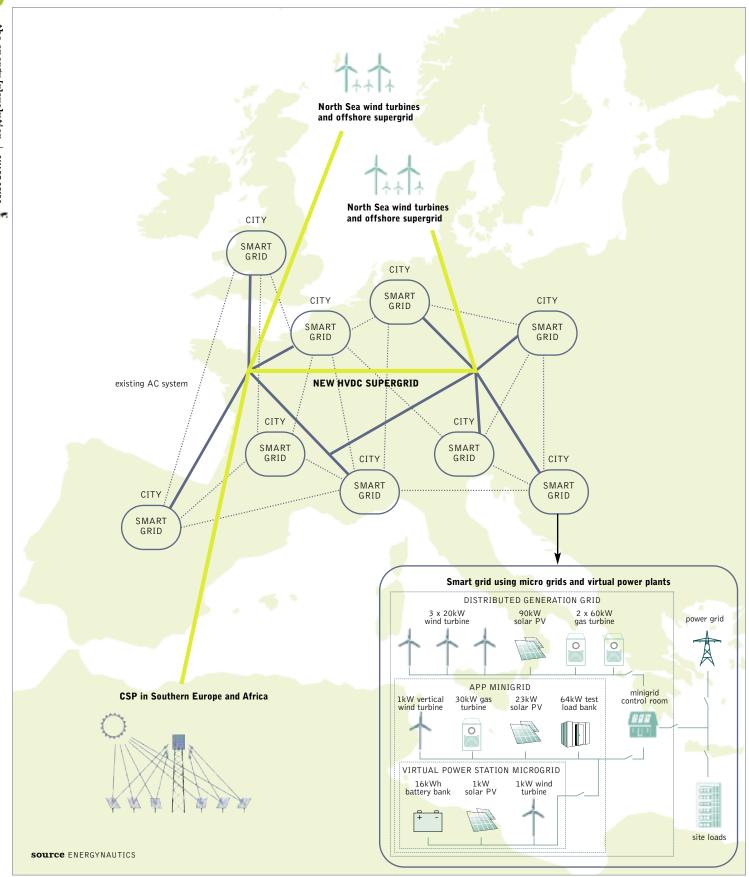
elements in the new power system architecture

A hybrid system based on more than one generating source, for example solar and wind power, is a method of providing a secure supply in remote rural areas or islands, especially where there is no grid-connected electricity. This is particularly appropriate in developing countries. In the future, several hybrid systems could be connected together to form a **micro grid** in which the supply is managed using smart grid techniques.

A **smart grid** is an electricity grid that connects decentralised renewable energy sources and cogeneration and distributes power highly efficiently. Advanced communication and control technologies such as smart electricity meters are used to deliver electricity more cost effectively, with lower greenhouse intensity and in response to consumer needs. Typically, small generators such as wind turbines, solar

hybrid systems

The developed world has extensive electricity grids supplying power to nearly 100% of the population. In parts of the developing world, however, many rural areas get by with unreliable grids or polluting electricity, for example from stand-alone diesel generators. This is also very expensive for small communities.


The electrification of rural areas that currently have no access to any power system cannot go ahead as it has in the past. A standard approach in developed countries has been to extend the grid by installing high or medium voltage lines, new substations and a low voltage distribution grid. But when there is low potential electricity demand, and long distances between the existing grid and rural areas, this method is often not economically feasible.

Electrification based on renewable energy systems with a hybrid mix of sources is often the cheapest as well as the least polluting alternative. Hybrid systems connect renewable energy sources such as wind and solar power to a battery via a charge controller, which stores the generated electricity and acts as the main power supply. Back-up supply typically comes from a fossil fuel, for example in a wind-battery-diesel or PV-battery-diesel system. Such decentralised hybrid systems are more reliable, consumers can be involved in their operation through innovative technologies and they can make best use of local resources. They are also less dependent on large scale infrastructure and can be constructed and connected faster, especially in rural areas.

Finance can often be an issue for relatively poor rural communities wanting to install such hybrid renewable systems. Greenpeace has therefore developed a model in which projects are bundled together in order to make the financial package large enough to be eligible for international investment support. In the Pacific region, for example, power generation projects from a number of islands, an entire island state such as the Maldives or even several island states could be bundled into one project package. This would make it large enough for funding as an international project by OECD countries. Funding could come from a mixture of a feed-in tariff and a fund which covers the extra costs, as proposed in the "ER]enewables 24/7" report, and known as a Feed-in Tariff Support Mechanism. In terms of project planning, it is essential that the communities themselves are directly involved in the process.

panels or fuels cells are combined with energy management to balance out the load of all the users on the system. Smart grids are a way to integrate massive amounts of renewable energy into the system and enable the decommissioning of older centralised power stations.

A **super grid** is a large scale electricity grid network linking together a number of countries, or connecting areas with a large supply of renewable electricity to an area with a large demand ideally based on more efficient HVDC (High Voltage Direct Current) cables. An example of the former would be the interconnection of all the large renewable based power plants in the North Sea. An example of the latter would be a connection between Southern Europe and Africa so that renewable energy could be exported from an area with a large renewable resource to urban centres where there is high demand.

figure 4.3: overview of the future power system with high penetration of renewables

image THE MARANCHON WIND TURBINE FARM IN GUADALAJARA, SPAIN IS THE LARGEST IN EUROPE WITH 104 GENERATORS, WHICH COLLECTIVELY PRODUCE 208 MEGAWATTS OF ELECTRICITY, ENOUGH POWER FOR 590,000 PEOPLE, ANUALLY.

transmission assets, thereby keeping the need for network extensions to the absolute minimum.

To develop a power system based almost entirely on renewable energy sources will require a new overall power system architecture, including smart grid technology. This concept will need substantial amounts of further work to fully emerge.²⁷ Figure 4.4 shows a simplified graphic representation of the key elements in future renewable-based power systems using smart grid technology.

A range of options are available to enable the large-scale integration of variable renewable energy resources into the power supply system. These include demand side management, the concept of a Virtual Power Plant and a number of choices for the storage of power.

The level and timing of **demand for electricity** can be managed by providing consumers with financial incentives to reduce or shut off their supply at periods of peak consumption. This system is already used for some large industrial customers. A Norwegian power supplier even involves private household customers by sending them a text message with a signal to shut down. Each household can decide in advance whether or not they want to participate. In Germany, experiments are being conducted with time flexible tariffs so that washing machines operate at night and refrigerators turn off temporarily during periods of high demand.

This type of demand side management has been simplified by advances in communications technology. In Italy, for example, 30 million innovative electricity counters have been installed to allow remote meter reading and control of consumer and service information. Many household electrical products or systems, such as refrigerators, dishwashers, washing machines, storage heaters, water pumps and air conditioning, can be managed either by temporary shut-off or by rescheduling their time of operation, thus freeing up electricity load for other uses and dovetailing it with variations in renewable supply.

A Virtual Power Plant (VPP) interconnects a range of real power plants (for example solar, wind and hydro) as well as storage options distributed in the power system using information technology. A real life example of a VPP is the Combined Renewable Energy Power Plant developed by three German companies.²⁸ This system interconnects and controls 11 wind power plants, 20 solar power plants, four CHP plants based on biomass and a pumped storage unit, all geographically spread around Germany. The VPP combines the advantages of the various renewable energy sources by carefully monitoring (and anticipating through weather forecasts) when the wind turbines and solar modules will be generating electricity. Biogas and pumped storage units are then used to make up the difference, either delivering electricity as needed in order to balance short term fluctuations or temporarily storing it.²⁹ Together the combination ensures sufficient electricity supply to cover demand.

references

27 SEE ALSO ECOGRID PHASE 1 SUMMARY REPORT, AVAILABLE AT: HTTP://WWW.ENERGINET.DK/NR/RDONLYRES/8B1A4A06-CBA3-41DA-9402-B56C2C288FB0/0/ECOGRIDDK_PHASE1_SUMMARYREPORT.PDF 28 SEE ALSO HTTP://WWW.KOMBIKRAFTWERK.DE/INDEX.PHP?ID=27 29 SEE ALSO

HTTP://WWW.SOLARSERVER.DE/SOLARMAGAZIN/ANLAGEJANUAR2008_E.HTML

smart grids

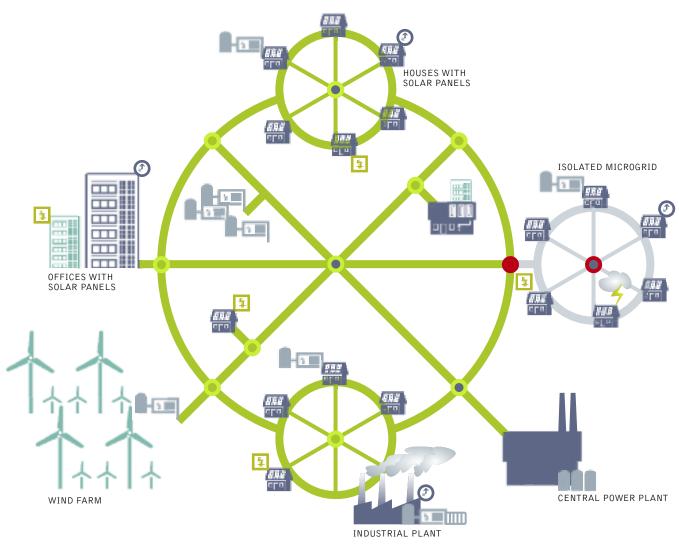
The task of integrating renewable energy technologies into existing power systems is similar in all power systems around the world, whether they are large centralised networks or island systems. The main aim of power system operation is to balance electricity consumption and generation.

Thorough forward planning is needed to ensure that the available production can match demand at all times. In addition to balancing supply and demand, the power system must also be able to:

- Fulfil defined power quality standards voltage/frequency which may require additional technical equipment, and
- Survive extreme situations such as sudden interruptions of supply, for example from a fault at a generation unit or a breakdown in the transmission system.

Integrating renewable energy by using a smart grid means moving away from the issue of baseload power towards the question as to whether the supply is flexible or inflexible. In a smart grid a portfolio of flexible energy providers can follow the load during both day and night (for example, solar plus gas, geothermal, wind and demand management) without blackouts.

A number of European countries have already shown that it is possible to integrate large quantities of variable renewable power generation into the grid network and achieve a high percentage of the total supply. In Denmark, for example, the average supplied by wind power is about 20%, with peaks of more than 100% of demand. On those occasions surplus electricity is exported to neighbouring countries. In Spain, a much larger country with a higher demand, the average supplied by wind power is 14%, with peaks of more than 50%.


Until now renewable power technology development has put most effort into adjusting its technical performance to the needs of the existing network, mainly by complying with grid codes, which cover such issues as voltage frequency and reactive power. However, the time has come for the power systems themselves to better adjust to the needs of variable generation. This means that they must become flexible enough to follow the fluctuations of variable renewable power, for example by adjusting demand via demand-side management and/or deploying storage systems

The future power system will no longer consist of a few centralised power plants but instead of tens of thousands of generation units such as solar panels, wind turbines and other renewable generation, partly distributed in the distribution network, partly concentrated in large power plants such as offshore wind parks.

The trade off is that power system planning will become more complex due to the larger number of generation assets and the significant share of variable power generation causing constantly changing power flows. Smart grid technology will be needed to support power system planning. This will operate by actively supporting day-ahead forecasts and system balancing, providing real-time information about the status of the network and the generation units, in combination with weather forecasts. It will also play a significant role in making sure systems can meet the peak demand at all times and make better use of distribution and

figure 4.4: the smart-grid vision for the energy [r]evolution

A VISION FOR THE FUTURE - A NETWORK OF INTEGRATED MICROGRIDS THAT CAN MONITOR AND HEAL ITSELF.

- PROCESSORS EXECUTE SPECIAL PROTECTION SCHEMES IN MICROSECONDS
- SENSORS ON 'STANDBY' DETECT FLUCTUATIONS AND DISTURBANCES, AND CAN SIGNAL FOR AREAS TO BE ISOLATED
- SENSORS 'ACTIVATED' DETECT FLUCTUATIONS AND DISTURBANCES, AND CAN SIGNAL FOR AREAS TO BE ISOLATED
- **SMART APPLIANCES** CAN SHUT OFF IN RESPONSE TO FREQUENCY FLUCTUATIONS
- DEMAND MANAGEMENT USE CAN BE SHIFTED TO OFF-PEAK TIMES TO SAVE MONEY
- GENERATORS ENERGY FROM SMALL GENERATORS AND SOLAR PANELS CAN REDUCE OVERALL DEMAND ON THE GRID
- **STORAGE** ENERGY GENERATED AT OFF-PEAK TIMES COULD BE STORED IN BATTERIES FOR LATER USE
 - DISTURBANCE IN THE GRID

image LE NORDAIS WINDMILL PARK, ONE OF THE MOST IMPORTANT IN AMERICA, LOCATED ON THE GASPÈ PENINSULA IN CAP-CHAT, QUEBEC, CANADA.

A number of mature and emerging technologies are viable options for **storing electricity**. Of these, pumped storage can be considered the most established technology. Pumped storage is a type of hydroelectric power station that can store energy. Water is pumped from a lower elevation reservoir to a higher elevation during times of low cost, off-peak electricity. During periods of high electrical demand, the stored water is released through turbines. Taking into account evaporation losses from the exposed water surface and conversion losses, roughly 70 to 85% of the electrical energy used to pump the water into the elevated reservoir can be regained when it is released. Pumped storage plants can also respond to changes in the power system load demand within seconds.

Pumped storage has been successfully used for many decades all over the world. In 2007 the European Union had 38 GW of pumped storage capacity, representing 5% of total electrical capacity.

Another way of 'storing' electricity is to use it to directly meet the demand from electric vehicles. The number of electric cars and trucks is expected to increase dramatically under the Energy [R]evolution scenario. The Vehicle-to-Grid (V2G) concept, for example, is based on electric cars equipped with batteries that can be charged during times when there is surplus renewable generation and then discharged to supply peaking capacity or ancillary services to the power system while they are parked. During peak demand times cars are often parked close to main load centres, for instance outside factories, so there would be no network issues. Within the V2G concept a Virtual Power Plant would be built using ICT technology to aggregate the electric cars participating in the relevant electricity markets and to meter the charging/de-charging activities. In 2009 the EDISON demonstration project was launched to develop and test the infrastructure for integrating electric cars into the power system of the Danish island of Bornholm.

the super grid

A Greenpeace simulation study has shown that extreme situations with low solar radiation and little wind in many parts of Europe are not frequent, but they can occur (see box "A European Super Grid"). The power system, even with massive amounts of renewable energy, must be adequately designed to cope with such an event. A key element in achieving this is through the construction of new onshore and offshore super grids.

In the Energy [R]evolution scenario it is assumed that about 70% of all generation is distributed and located close to load centres. The remaining 30% will be large scale renewable generation such as large offshore wind farms or large arrays of concentrating solar power plants. A North Sea offshore super grid, for example, would enable the efficient integration of renewable energy into the power system across the whole North Sea region, linking the UK, France, Germany, Belgium, the Netherlands, Denmark and Norway. By aggregating power generation from wind farms spread across the whole area, periods of very low or very high power flows would be reduced to a negligible amount. A dip in wind power generation in one area would be balanced by higher production in another area, even hundreds of kilometres away. Over a year, an installed offshore wind power capacity of 68.4 GW in the North Sea would be able to generate an estimated 247 TWh of electricity.

The cost of developing the grid is expected to be between ≤ 15 and 20 billion. This investment would not only allow the broad integration of renewable energy but also unlock unprecedented power trading opportunities and cost efficiency. In a recent example, a new 600 kilometre-long power line between Norway and the Netherlands cost ≤ 600 million to build, but is already generating a daily cross-border trade valued at $\le 800,000.^{30}$

a european super grid

The Greenpeace report "ERJenewables 24/7" examined weather patterns across Europe in order to work out what kind of grid technology would be needed to achieve a secure power supply based on the Energy ERJevolution energy mix, which relies extensively on variable sources such as wind and solar power. Although we know that there are technically enough resources to power the whole continent with renewables – solar in the south, wind in the north plus geothermal, biomass and cogeneration – a new network of interactive smart grids will be needed, in turn interconnected with a 'super grid' providing transmission capacity for large scale renewables such as offshore wind and concentrated solar power. This new grid design also needs to take into account rare events when weather-based renewable energy in certain areas drops below the supply level needed.

To evaluate the frequency of extreme events, the study analysed Europe-wide wind data for the last 30 years. The resulting simulations showed that problems could occur particularly in winter, when electricity demand is high and solar production low. Over the last 30 years, however, the potential power production from wind during the winter months in the Energy [R]evolution scenario would have dropped below 50 GW for only 0.4% of the time, equivalent to once a year if the average duration of the event was 12 hours.

In terms of the balance between wind and solar production, the study selected key 'extreme events' and created a model of power supply based on the Energy [R]evolution supply mix.

The results were:

• In an extreme summer event of high demand and extremely low wind (as in August 2003), the available power from locally distributed solar PV would be enough to compensate for the lack of wind. Therefore no change to the existing grid would be needed.

- In an extreme winter event of high demand and low solar power production in most parts of Europe, combined with low wind power production in Central and Northern Europe (as in January 1997), electricity would have to be transmitted from Northern Europe (mainly hydro power) and from Southern Europe (mainly solar power) into Central Europe. For this to be achieved by renewable energy, a new super grid would be needed.
- In an extreme autumn event (as in November 1987), with very low solar radiation and low wind production, reinforcement of the existing high voltage grid, as well as installation of the proposed super grid, would be sufficient.

To be able to provide a reliable, secure power supply to Europe, taking into account extreme weather and high demand scenarios, the study therefore proposed:

- Strengthening 34 high voltage AC interconnections between neighbouring countries in Europe: 5,347 km of upgrades at a cost of approximately €3 billion.
- 17 new or strengthened high voltage DC interconnections within Europe: 5,125 km of upgrades at a cost of approximately €16 billion.
- Up to 15 new high voltage DC 'super grid' connections, including 11 within Europe of up to 6,000 km at a cost of approximately €100 billion and 4 links between Europe and Africa to import concentrating solar electricity with a total length of 5,500 to 6,000 km at a cost of approximately €90 billion.

Altogether the proposal would cost around €209 billion per year up to 2050. Assuming the level of electricity consumption in the Energy [R]evolution scenario, this would increase the cost of every kWh of electricity by about 0.15 cents over 40 years. However, the final cost of the required grids needs further research, especially the availability of storage capacity within Europe, for example from electric vehicles. Further optimisation in the energy generation mix could also significantly reduce the cost of providing the links between North Africa and Europe.

scenarios for a future energy supply

GLOBAL

SCENARIO BACKGROUND MAIN SCENARIO ASSUMPTIONS POPULATION DEVELOPMENT ECONOMIC GROWTH OIL & GAS PRICE PROJECTIONS COST OF CO₂ EMISSIONS COST PROJECTIONS

inese WIND TURBINE IN SAMUT SAKHON, THAILAND, @ GPMINA

SUMMARY OF RENEWABLE ENERGY COST DEVELOPMENT ASSUMED GROWTH RATES IN DIFFERENT SCENARIOS

"towards a sustainable global energy supply system."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN Moving from principles to action on energy supply and climate change mitigation requires a long-term perspective. Energy infrastructure takes time to build up; new energy technologies take time to develop. Policy shifts often also need many years to take effect. Any analysis that seeks to tackle energy and environmental issues therefore needs to look ahead at least half a century.

Scenarios are important in describing possible development paths, to give decision-makers an overview of future perspectives and to indicate how far they can shape the future energy system. Two different kinds of scenario are used here to characterise the wide range of possible pathways for a future energy supply system: a Reference Scenario, reflecting a continuation of current trends and policies, and the Energy [R]evolution Scenarios, which are designed to achieve a set of dedicated environmental policy targets.

The Reference Scenario is based on the reference scenario published by the International Energy Agency (IEA) in World Energy Outlook 2009 (WEO 2009).³¹ This only takes existing international energy and environmental policies into account. Its assumptions include, for example, continuing progress in electricity and gas market reforms, the liberalisation of cross-border energy trade and recent policies designed to combat environmental pollution. The Reference scenario does not include additional policies to reduce greenhouse gas emissions. As the IEA's projection only covers a time horizon up to 2030, it has also been extended by extrapolating its key macroeconomic and energy indicators forward to 2050. This provides a baseline for comparison with the Energy [R]evolution scenario.

The **Energy [R]evolution Scenario** has a key target to reduce worldwide carbon dioxide emissions down to a level of around 10 Gigatonnes per year by 2050 in order to keep the increase in global temperature under +2°C. A second objective is the global phasing out of nuclear energy. First published in 2007, then updated and expanded in 2008, this latest revision also serves as a baseline for the more ambitious "advanced" Energy [R]evolution scenario. To achieve its targets, the scenario is characterised by significant efforts to fully exploit the large potential for energy efficiency, using currently available best practice technology. At the same time, all cost-effective renewable energy sources are used for heat and electricity generation as well as the production of bio fuels. The general framework parameters for population and GDP growth remain unchanged from the Reference Scenario.

The **Advanced Energy [R]evolution Scenario** is aimed at an even stronger decrease in CO_2 emissions, especially given the uncertainty that even 10 Gigatonnes might be too much to keep global temperature rises at bay. All general framework parameters such as population and economic growth remain unchanged. The efficiency pathway for industry and "other sectors" is also the same as in the basic Energy [R]evolution scenario. What is different is that the advanced scenario incorporates a stronger effort to develop better technologies to achieve CO_2 reduction. So the transport sector factors in lower demand (compared to the basic scenario), resulting from a change in driving patterns and a faster uptake of efficient combustion vehicles and – after 2025 – a larger share of electric and plug-in hybrid vehicles.

Given the enormous and diverse potential for renewable power, the advanced scenario also foresees a shift in the use of renewables from power to heat. Assumptions for the heating sector therefore include a faster expansion of the use of district heat and hydrogen and more electricity for process heat in the industry sector. More geothermal heat pumps are also used, which leads – combined with a larger share of electric drives in the transport sector – to a higher overall electricity demand. In addition a faster expansion of solar and geothermal heating systems is assumed.

In all sectors, the latest market development projections of the renewables industry³² have been taken into account (see table 5.13 Annual growth rates of RE energy technologies). In developing countries in particular, a shorter operational lifetime for coal power plants, of 20 instead of 40 years, has been assumed in order to allow a faster uptake of renewables. The speedier introduction of electric vehicles, combined with the implementation of smart grids and faster expansion of super grids (about ten years ahead of the basic Energy [R]evolution scneario) - allows a higher share of fluctuating renewable power generation (photovoltaic and wind) to be employed. The 30% mark for the proportion of renewables in the global energy supply is therefore passed just after 2020 (ten years ahead of the basic Energy [R]evolution scneario).

The global quantities of biomass and large hydro power remain the same in both Energy [R]evolution scenarios, for reasons of sustainability.

These scenarios by no means claim to predict the future; they simply describe three potential development pathways out of the broad range of possible 'futures'. The Energy [R]evolution Scenarios are designed to indicate the efforts and actions required to achieve their ambitious objectives and to illustrate the options we have at hand to change our energy supply system into one that is sustainable.

scenario background

The scenarios in this report were jointly commissioned by Greenpeace and the European Renewable Energy Council from the Institute of Technical Thermodynamics, part of the German Aerospace Center (DLR). The supply scenarios were calculated using the MESAP/PlaNet simulation model adopted in the previous Energy [R]evolution studies.³³ Some detailed analyses carried out during preparation of the 2008 Energy [R]evolution study were also used as input to this update. The energy demand projections were developed for the 2008 study by Ecofys Netherlands, based on an analysis of the future potential for energy efficiency measures. The biomass potential, judged according to Greenpeace sustainability criteria, has been developed especially for this scenario by the German Biomass Research Centre. The future development pathway for car technologies is based on a special report produced in 2008 by the Institute of Vehicle Concepts, DLR for Greenpeace International. These studies are described briefly below.

references

- 31 INTERNATIONAL ENERGY AGENCY, 'WORLD ENERGY OUTLOOK 2007', 2007
- **32** SEE EREC, RE-THINKING 2050, GWEC, EPIA ET AL
- ${\bf 33}$ 'energy irjevolution: a sustainable world energy outlook', greenpeace international, 2007 and 2008

- Energy efficiency study. The aim of the Ecofys study was to develop a low energy demand scenario for the period 2005 to 2050 covering the world regions as defined in the IEA's World Energy Outlook report series. Calculations were made for each decade from 2010 onwards. Energy demand was split up into electricity and fuels. The sectors which were taken into account were industry, transport and 'other' consumers, including households and services. Under the low energy demand scenario, worldwide final energy demand is reduced by 38% in 2050 in comparison to the Reference scenario, resulting in a final energy demand of 376 EJ (ExaJoules). The energy savings are fairly equally distributed over the three sectors of industry, transport and other uses. The most important energy saving options are efficient passenger and freight transport and improved heat insulation and building design. Chapter 11 provides more details about this study. The resulting demand projections of this study have been updated on the basis of the reference scenario from IEA's World Energy Outlook 2009.
- The future for cars. The Institute of Vehicle Concepts in Stuttgart, Germany has developed a global scenario for light duty vehicles (LDV) covering ten world regions. The aim was to produce a demanding but feasible scenario to lower global CO₂ emissions from LDVs within the context of the overall objectives of this report. The approach takes into account a vast range of technical measures to reduce the energy consumption of vehicles, but also considers the dramatic increase in vehicle ownership and annual mileage taking place in developing countries. The major parameters are vehicle technology, alternative fuels, changes in sales of different vehicle sizes (segment split) and changes in vehicle kilometres travelled (modal split). The scenario assumes that a large share of renewable electricity will be available in the future.

A combination of ambitious efforts towards higher efficiency in vehicle technologies, a major switch to grid-connected electric vehicles and incentives for vehicle users to save carbon dioxide lead to the conclusion that it is possible to reduce LDV CO2 emissions from 'well-to-wheel' in 2050 by roughly $25\%^{34}$ compared to 1990 and 40% compared to 2005. By 2050, in this scenario, 60% of the final energy used in road transport will still come from fossil sources, mainly gasoline and diesel. Renewable electricity will cover 25%, bio fuels 13% and hydrogen 2%. Total energy consumption will be reduced by 17% in 2050 compared to 2005, however, in spite of enormous increases in fuel use in some regions of the world. The peak in global CO2 emissions from transport occurs between 2010 and 2015. From 2010 onwards, new legislation in the US and Europe will contribute to breaking the upwards trend. From 2020, the effect of introducing grid-connected electric cars can be clearly seen. Chapter 13 provides more details of this report.

This study still forms the basis for the LDV development pathway in the updated Energy [R]evolution scenarios, but has been modified on the basis of changed statistical data for the new reference year 2007 as well as changes in the reference scenario from IEA's World Energy Outlook 2009. • The global potential for sustainable bio energy. As part of the Energy [R]evolution scenario, Greenpeace also commissioned the German Biomass Research Centre (the former Institute for Energy and Environment) to look at the worldwide potential for energy crops up to 2050. A summary of this report can be found in Chapter 8.

references

 $^{{\}bf 34}$ there is no reliable number available for global LDV emissions in 1990, so a rough estimate has been made.

main scenario assumptions

Development of a global energy scenario requires the use of a multi-region model in order to reflect the significant structural differences between different countries' energy supply systems. The International Energy Agency breakdown of world regions, as used

figure 5.1: world regions used in the scenarios BASED ON IEA

in the ongoing series of World Energy Outlook reports, has been chosen because the IEA also provides the most comprehensive global energy statistics.³⁵ In line with the Energy [R]evolution 2008, this new edition maintains the ten region approach. The definitions of the ten world regions are shown in Figure 5.1.

china

oecd north america

Canada, Mexico, United States

latin america

Antigua and Barbuda, Argentina, Bahamas, Barbados, Belize, Bermuda, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El Salvador, French Guiana, Grenada, Guadeloupe, Guatemala, Guyana, Haiti, Honduras, Jamaica, Martinique, Netherlands Antilles, Nicaragua, Panama, Paraguay, Peru, St. Kitts-Nevis-Anguila, Saint Lucia, St. Vincent and Grenadines, Suriname, Trinidad and Tobago, Uruguay, Venezuela

oecd europe

Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, United Kingdom

africa

Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic, Chad, Comoros, Congo, Democratic Republic of Congo, Cote d'Ivoire, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Reunion, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, United Republic of Tanzania, Togo, Tunisia, Uganda, Zambia, Zimbabwe

middle east

Bahrain, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, United Arab Emirates, Yemen

india

India

Afghanistan, Bangladesh, Bhutan, Brunei, Cambodia, Chinese Taipei, Fiji, French Polynesia, Indonesia, Kiribati, Democratic People's Republic of Korea, Laos, Macao, Malaysia, Maldives, Mongolia, Myanmar, Nepal, New Caledonia, Pakistan, Papua New Guinea, Philippines, Samoa, Singapore, Solomon Islands, Sri Lanka, Thailand, Vietnam, Vanuatu

People's Republic

of China including

developing asia

Hong Kong

transition economies

Albania, Armenia, Azerbaijan, Belarus, Bosnia-Herzegovina, Bulgaria, Croatia, Estonia, Serbia and Montenegro, former Republic of Macedonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Romania, Russia, Slovenia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan, Cyprus*, Malta*

oecd pacific

Australia, Japan, Korea (South), New Zealand

* CYPRUS AND MALTA ARE ALLOCATED TO THE TRANSITION ECONOMIES FOR STATISTICAL REASONS

references

35 'ENERGY BALANCE OF NON-OECD COUNTRIES' AND 'ENERGY BALANCE OF OECD COUNTRIES', IEA, 2009.

image A LARGE SOLAR SYSTEM OF 63M² RISES ON THE ROOF OF A HOTEL IN CELERINA, SWITZERLAND. THE COLLECTOR IS EXPECTED TO PRODUCE HOT WATER AND HEATING SUPPORT AND CAN SAVE ABOUT 6,000 LITERS OF OIL PER YEAR. THUS, THE CO2 EMISSIONS AND COMPANY COSTS CAN BE REDUCED.

1. population development

One important underlying factor in energy scenario building is future population development. Population growth affects the size and composition of energy demand, directly and through its impact on economic growth and development. World Energy Outlook 2009 uses the United Nations Development Programme (UNDP) projections for population development. For this study the most recent population projections from UNDP up to 2050 are applied.³⁶

Table 5.1 shows that, based on UNDP's 2009 assessment, the world's population is expected to grow by 0.86% per year on average over the period 2007 to 2050, from 6.7 billion people in 2007 to more than 9.1 billion by 2050. Population growth will slow over the projection period, from 1.2% per year during 2007-2010 to 0.4% per year during 2040-2050. The updated projections show a small decrease in population by 2050 of around 19 million compared to the previous edition. This will scarcely reduce the demand for energy. The population of the developing regions will continue to grow most rapidly. The Transition Economies will face a continuous decline, followed after a short while by the OECD Pacific countries. OECD Europe and OECD North America are expected to maintain their population, with a peak in around 2020/2030 and a slight decline afterwards. The share of the population living in today's non-OECD countries will increase from the current 82% to 85% in 2050. China's contribution to world population will drop from 20% today to 16% in 2050. Africa will remain the region with the highest growth rate, leading to a share of 22% of world population in 2050. Satisfying the energy needs of a growing population in the developing regions of the world in an environmentally friendly manner is a key challenge for achieving a global sustainable energy supply.

table 5.1: population development projections

(IN MILLIONS)	
---------------	--

REGION	2007	2010	2015	2020	2030	2040	2050
World	6,671	6,909	7,302	7,675	8,309	8,801	9,150
OECD Europe	540	548	558	566	575	578	575
OECD North America	449	462	483	503	537	561	577
0ECD Pacific	200	201	202	201	197	190	180
Transition Economies	340	339	339	337	331	321	311
India	1,165	1,214	1,294	1,367	1,485	1,565	1,614
China	1,336	1,361	1,403	1,439	1,471	1,464	1,426
Other Developing Asia	1,011 a	1,056	1,131	1,203	1,333	1,439	1,516
Latin America	462	478	503	526	563	588	600
Africa	965	1,033	1,153	1,276	1,524	1,770	1,998
Middle East	202	215	235	255	293	326	353

source UN WORLD POPULATION PROSPECTS - 2008 REVISION

references

 ${\bf 36}$ 'world population prospects: the 2008 revision', united nations, population division, department of economic and social affairs (undp), 2009.

2. economic growth

Economic growth is a key driver for energy demand. Since 1971, each 1% increase in global Gross Domestic Product (GDP) has been accompanied by a 0.6% increase in primary energy consumption. The decoupling of energy demand and GDP growth is therefore a prerequisite for reducing demand in the future. Most global energy/economic/ environmental models constructed in the past have relied on market exchange rates to place countries in a common currency for estimation and calibration. This approach has been the subject of considerable discussion in recent years, and the alternative of purchasing power parity (PPP) exchange rates has been proposed. Purchasing power parities compare the costs in different currencies of a fixed basket of traded and non-traded goods and services and yield a widely-based measure of the standard of living. This is important in analysing the main drivers of energy demand or for comparing energy intensities among countries.

Although PPP assessments are still relatively imprecise compared to statistics based on national income and product trade and national price indexes, they are considered to provide a better basis for global scenario development.³⁷ Thus all data on economic development in WEO 2009 refers to purchasing power adjusted GDP. However, as WEO 2009 only covers the time period up to 2030, the projections for 2030-2050 are based on our own estimates.

scenarios for a future energy $\sup ply \mid$ population development & economic growth

table 5.2: gdp development projections

(AVERAGE ANNUAL GROWTH RATES)

REGION	2007-2015	2015-2030	2030-2040	2040-2050	2007-2050
World	3.30%	3.00%	2.70%	2.44%	3.39%
0ECD Europe	1.00%	1.80%	1.30%	1.10%	1.37%
OECD North America	1.80%	2.27%	1.55%	1.45%	1.77%
0ECD Pacific	1.10%	1.23%	1.33%	1.40%	1.27%
Transition Economies	4.60%	3.77%	2.60%	2.54%	3.38%
India	7.00%	5.90%	3.20%	2.50%	4.65%
China	8.80%	4.40%	3.20%	2.55%	4.74%
Other Developin Asia	g 7.20%	4.60%	2.50%	2.20%	4.13%
Latin America	3.10%	2.50%	2.60%	2.40%	2.65%
Africa	4.70%	3.10%	3.40%	3.40%	3.65%
Middle East	4.50%	4.00%	2.30%	2.00%	3.20%

source 2005-2030, IEA WE0 2009; 2030-2050, OWN ASSUMPTIONS

references

37 NORDHAUS, W. 'ALTERNATIVE MEASURES OF OUTPUT IN GLOBAL ECONOMIC-ENVIRONMENTAL MODELS: PURCHASING POWER PARITY OR MARKET EXCHANGE RATES?', REPORT PREPARED FOR IPCC EXPERT MEETING ON EMISSION SCENARIOS, US-EPA WASHINGTON DC, JANUARY 12-14, 2005. Prospects for GDP growth have decreased considerably since the previous study, due to the financial crisis at the beginning of 2009, although underlying growth trends continue much the same. GDP growth in all regions is expected to slow gradually over the coming decades. World GDP is assumed to grow on average by 3.1% per year over the period 2007-2030, compared to 3.1% from 1971 to 2007, and on average by 3.4% per year over the entire modelling period. China and India are expected to grow faster than other regions, followed by the Other Developing Asia countries, Africa and the Transition Economies. The Chinese economy will slow as it becomes more mature, but will nonetheless become the largest in the world in PPP terms early in the 2020s. GDP in OECD Europe and OECD Pacific is assumed to grow by around 1.8 and 1.2% per year over the projection period, while economic growth in OECD North America is expected to be slightly higher. The OECD share of global PPP-adjusted GDP will decrease from 55% in 2005 to 29% in 2050.

3. oil and gas price projections

The recent dramatic fluctuations in global oil prices have resulted in slightly higher forward price projections for fossil fuels. Under the 2004 'high oil and gas price' scenario from the European Commission, for example, an oil price of just \$34 per barrel was assumed in 2030. More recent projections of oil prices by 2030 in the IEA's WEO 2009 range from \$2008 80/bbl in the lower prices sensitivity case up to \$2008 150/bbl in the higher prices sensitivity case. The reference scenario in WEO 2009 predicts an oil price of \$2008 115/bbl.

Since the first Energy [R]evolution study was published in 2007, however, the actual price of oil has moved over \$100/bbl for the first time, and in July 2008 reached a record high of more than \$140/bbl.

Although oil prices fell back to \$100/bbl in September 2008 and around \$80/bbl in April 2010 the projections in the IEA reference scenario might still be considered too conservative. Taking into account the growing global demand for oil we have assumed a price development path for fossil fuels based on the IEA WEO 2009 higher prices sensitivity case extrapolated forward to 2050 (see Table 5.3).

As the supply of natural gas is limited by the availability of pipeline infrastructure, there is no world market price for gas. In most regions of the world the gas price is directly tied to the price of oil. Gas prices are therefore assumed to increase to \$24-29/GJ by 2050.

4. cost of CO₂ emissions

Assuming that a CO₂ emissions trading system is established across all world regions in the longer term, the cost of CO₂ allowances needs to be included in the calculation of electricity generation costs. Projections of emissions costs are even more uncertain than energy prices, however, and available studies span a broad range of future estimates. As in the previous Energy [R]evolution study we assume CO₂ costs of \$10/tCO₂ in 2015, rising to \$50/tCO₂ by 2050. Additional CO₂ costs are applied in Kyoto Protocol Non-Annex B (developing) countries only after 2020.

table 5.3: development projections for fossil fuel prices in \$2008

	UNIT	2000	2005	2007	2008	2010	2015	2020	2025	2030	2040	2050
Crude oil imports	0.111	2000	2000	2007	2000	2010	2010	2020	2020	2000	2010	2000
IEA WEO 2009 "Reference"	barrel	34.30	50.00	75.00	97.19		86.67	100	107.5	115		
USA EIA 2008 "Reference"	barrel					86.64		69.96		82.53		
USA EIA 2008 "High Price"	barrel					92.56		119.75		138.96		
Energy [R]evolution 2010	barrel						110.56	130.00	140.00	150.00	150.00	150.00
Natural gas imports												
IEA WEO 2009 "Reference"												
United States	GJ	5.00	2.32	3.24	8.25		7.29	8.87	10.04	11.36		
Europe	GJ	3.70	4.49	6.29	10.32		10.46	12.10	13.09	14.02		
Japan LNG	GJ	6.10	4.52	6.33	12.64		11.91	13.75	14.83	15.87		
Energy [R]evolution 2010												
United States	GJ			3.24		8.70		10.70	12.40	14.38	18.10	23.73
Europe	GJ			6.29		10.89		16.56	17.99	19.29	22.00	26.03
Japan LNG	GJ			6.33		13.34		18.84	20.37	21.84	24.80	29.30
Hard coal imports												
OECD steam coal imports												
Energy [R]evolution 2010	tonne			69.45		120.59	116.15	135.41	139.50	142.70	160.00	172.30
IEA WEO 2009 "Reference"	tonne	41.22	49.61	69.45		120.59	91.05	104.16	107.12	109.4		
Biomass (solid)												
Energy [R]evolution 2010												
OECD Europe	GJ			7.4		7.7	8.2	9.2		10.0	10.3	10.5
OECD Pacific and North America	a GJ			3.3		3.4	3.5	3.8		4.3	4.7	5.2
Other regions	GJ			2.7		2.8	3.2	3.5		4.0	4.6	4.9

SOURCE 2000-2030, IEA WED 2009 HIGHER PRICES SENSITIVITY CASE FOR CRUDE OIL, GAS AND STEAM COAL; 2040-2050 AND OTHER FUELS, OWN ASSUMPTIONS.

image FIRE BOAT RESPONSE CREWS BATTLE THE BLAZING REMNANTS OF THE OFFSHORE OIL RIG DEEPWATER HORIZON APRIL 21, 2010. MULTIPLE COAST GUARD HELICOPTERS, PLANES AND CUTTERS RESPONDED TO RESCUE THE DEEPWATER HORIZON'S 126 PERSON CREW.

table 5.4: assumptions on CO2 emissions cost development (\$/tCO₂)

COUNTRIES	2015	2020	2030	2040	2050
Kyoto Annex B countries	10	20	30	40	50
Non-Annex B countries		20	30	40	50

5. cost projections for efficient fossil fuel generation and carbon capture and storage (CCS)

While the fossil fuel power technologies in use today for coal, gas, lignite and oil are established and at an advanced stage of market development, further cost reduction potentials are assumed. The potential for cost reductions is limited, however, and will be achieved mainly through an increase in efficiency.³⁸

There is much speculation about the potential for carbon capture and storage (CCS) to mitigate the effect of fossil fuel consumption on climate change, even though the technology is still under development.

CCS is a means of trapping CO₂ from fossil fuels, either before or after they are burned, and 'storing' (effectively disposing of) it in the sea or beneath the surface of the earth. There are currently three different methods of capturing CO2: 'pre-combustion', 'postcombustion' and 'oxyfuel combustion'. However, development is at a very early stage and CCS will not be implemented - in the best case - before 2020 and will probably not become commercially viable as a possible effective mitigation option until 2030.

Cost estimates for CCS vary considerably, depending on factors such as power station configuration, technology, fuel costs, size of project and location. One thing is certain, however: CCS is expensive. It requires significant funds to construct the power stations and the necessary infrastructure to transport and store carbon. The IPCC assesses costs at \$15-75 per tonne of captured CO2 ³⁹, while a recent US Department of Energy report found installing carbon capture systems to most modern plants resulted in a near doubling of costs.⁴⁰ These costs are estimated to increase the price of electricity in a range from 21-91%.⁴¹

Pipeline networks will also need to be constructed to move CO2 to storage sites. This is likely to require a considerable outlay of capital.⁴² Costs will vary depending on a number of factors, including pipeline length, diameter and manufacture from corrosion-resistant steel, as well as the volume of CO2 to be transported. Pipelines built near population centres or on difficult terrain, such as marshy or rocky ground, are more expensive.43

The Intergovernmental Panel on Climate Change (IPCC) estimates a cost range for pipelines of \$1-8/tonne of CO₂ transported. A United States Congressional Research Services report calculated capital costs for an 11 mile pipeline in the Midwestern region of the US at approximately \$6 million. The same report estimates that a dedicated interstate pipeline network in North Carolina would cost upwards of \$5 billion due to the limited geological sequestration potential in that part of the country.⁴⁴ Storage and subsequent monitoring and verification costs are estimated by the IPCC to range from \$0.5-8/tCO2 (for storage) and \$0.1-0.3/tCO₂ (for monitoring). The overall cost of CCS could therefore serve as a major barrier to its deployment.⁴⁵

For the above reasons, CCS power plants are not included in our financial analysis.

Table 5.5 summarises our assumptions on the technical and economic parameters of future fossil-fuelled power plant technologies. In spite of growing raw material prices, we assume that further technical innovation will result in a moderate reduction of future investment costs as well as improved power plant efficiencies. These improvements are, however, outweighed by the expected increase in fossil fuel prices, resulting in a significant rise in electricity generation costs.

2007 2015 2020 2030 2040 **2050**

table 5.5: development of efficiency and investment costs for selected power plant technologies

Coal-fired condensing power plant	Efficiency (%)	45	46	48	50	52	53
	Investment costs (\$/kW)	1,320	1,230	1,190	1,160	1,130	1,100
	Electricity generation costs including CO2 emission costs (\$cents/kWh)	6.6	9.0	10.8	12.5	14.2	15.7
	CO ₂ emissions ^{a)} (g/kWh)	744	728	697	670	644	632
Lignite-fired condensing power plant	Efficiency (%)	41	43	44	44.5	45	45
	Investment costs (\$/kW)	1,570	1,440	1,380	1,350	1,320	1,290
	Electricity generation costs including CO2 emission costs (\$cents/kWh)	5.9	6.5	7.5	8.4	9.3	10.3
	CO ₂ emissions ^{a)} (g/kWh)	975	929	908	898	888	888
Natural gas combined cycle	Efficiency (%)	57	59	61	62	63	64
	Investment costs (\$/kW)	690	675	645	610	580	550
	Electricity generation costs including CO2 emission costs (\$cents/kWh)	7.5	10.5	12.7	15.3	17.4	18.9
	CO2 emissions a)(g/kWh)	354	342	330	325	320	315

SOURCE DLR, 2010 ⁴⁰ CO₂ EMISSIONS REFER TO POWER STATION OUTPUTS ONLY; LIFE-CYCLE EMISSIONS ARE NOT CONSIDERED.

references

38 'GREENPEACE INTERNATIONAL BRIEFING: CARBON CAPTURE AND STORAGE', GOERNE, 2007. 39 ABANADES, J C ET AL., 2005, PG 10.

40 NATIONAL ENERGY TECHNOLOGY LABORATORIES, 2007.

42 RAGDEN, P ET AL., 2006, PG 18.

43 HEDDLE, G ET AL., 2003, PG 17. 44 PARFOMAK, P & FOLGER, P, 2008, PG 5 AND 12.

45 RUBIN ET AL., 2005B, PG 4444.

⁴¹ RUBIN ET AL., 2005A, PG 40.

6. cost projections for renewable energy technologies

The range of renewable energy technologies available today display marked differences in terms of their technical maturity, costs and development potential. Whereas hydro power has been widely used for decades, other technologies, such as the gasification of biomass, have yet to find their way to market maturity. Some renewable sources by their very nature, including wind and solar power, provide a variable supply, requiring a revised coordination with the grid network. But although in many cases these are 'distributed' technologies - their output being generated and used locally to the consumer - the future will also see large-scale applications in the form of offshore wind parks, photovoltaic power plants or concentrating solar power stations.

By using the individual advantages of the different technologies, and linking them with each other, a wide spectrum of available options can be developed to market maturity and integrated step by step into the existing supply structures. This will eventually provide a complementary portfolio of environmentally friendly technologies for heat and power supply and the provision of transport fuels.

Many of the renewable technologies employed today are at a relatively early stage of market development. As a result, the costs of electricity, heat and fuel production are generally higher than those of competing conventional systems - a reminder that the external (environmental and social) costs of conventional power production are not included in market prices. It is expected, however, that compared with conventional technologies, large cost reductions can be achieved through technical advances, manufacturing improvements and large-scale production. Especially when developing long-term scenarios spanning periods of several decades, the dynamic trend of cost developments over time plays a crucial role in identifying economically sensible expansion strategies.

To identify long-term cost developments, learning curves have been applied which reflect the correlation between cumulative production volumes of a particular technology and a reduction in its costs. For many technologies, the learning factor (or progress ratio) falls in the range between 0.75 for less mature systems to 0.95 and higher for well-established technologies. A learning factor of 0.9 means that costs are expected to fall by 10% every time the cumulative output from the technology doubles. Empirical data shows, for example, that the learning factor for PV solar modules has been fairly constant at 0.8 over 30 years whilst that for wind energy varies from 0.75 in the UK to 0.94 in the more advanced German market.

Assumptions on future costs for renewable electricity technologies in the Energy [R]evolution scenario are derived from a review of learning curve studies, for example by Lena Neij and others⁴⁶, from the analysis of recent technology foresight and road mapping studies, including the European Commission funded NEEDS project (New Energy Externalities Developments for Sustainability)⁴⁷ or the IEA Energy Technology Perspectives 2008, projections by the European Renewable Energy Council published in April 2010 ("RE-thinking 2050") and discussions with experts from a wide range of different sectors of the renewable energy industry.

photovoltaics (pv)

The worldwide photovoltaics (PV) market has been growing at over 40% per annum in recent years and the contribution it can make to electricity generation is starting to become significant. The importance of photovoltaics comes from its decentralised/centralised character, its flexibility for use in an urban environment and huge potential for cost reduction. Development work is focused on improving existing modules and system components by increasing their energy efficiency and reducing material usage. Technologies like PV thin film (using alternative semiconductor materials) or dye sensitive solar cells are developing quickly and present a huge potential for cost reduction. The mature technology crystalline silicon, with a proven lifetime of 30 years, is continually increasing its cell and module efficiency (by 0.5% annually), whereas the cell thickness is rapidly decreasing (from 230 to 180 microns over the last five years). Commercial module efficiency varies from 14 to 21%, depending on silicon quality and fabrication process.

The learning factor for PV modules has been fairly constant over the last 30 years, with a cost reduction of 20% each time the installed capacity doubles, indicating a high rate of technical learning. Assuming a globally installed capacity of 1000 GW between 2030 and 2040 in the basic Energy [R]evolution scenario, and with an electricity output of 1400 TWh/a , we can expect that generation costs of around 5-10 cents/kWh (depending on the region) will be achieved. During the following five to ten years, PV will become competitive with retail electricity prices in many parts of the world, and competitive with fossil fuel costs by 2030. The advanced Energy [R]evolution version shows faster growth, with PV capacity reaching 1,000 GW by 2025 – five years ahead of the basic scenario.

table 5.6: photovoltaics (pv) cost assumptions

Energy [R]evolution	2007	2015	2020	2030	2040	2050
Global installed capacity (GW)	6	98	335	1,036	1,915	2,968
Investment costs (\$/kWp)	3,746	2,610	1,776	1,027	785	761
Operation & maintenance costs (\$/kW/a)	66	38	16	13	11	10

Advanced Energy [R]evolution

Global installed capacity (GW)	6	108	439	1,330	2,959	4,318
Investment costs (\$/kWp)	3,746	2,610	1,776	1,027	761	738
Operation & maintenance costs (\$/kW/a)	66	38	16	13	11	10

46 NEIJ, L, 'COST DEVELOPMENT OF FUTURE TECHNOLOGIES FOR POWER GENERATION -A STUDY BASED ON EXPERIENCE CURVES AND COMPLEMENTARY BOTTOM-UP ASSESSMENTS', ENERGY POLICY 36 (2008), 2200-2211.
47 WWW.NEEDS-PROJECT.ORG

image AERIAL VIEW OF THE WORLD'S LARGEST OFFSHORE WINDPARK IN THE NORTH SEA HORNS REV IN ESBJERG, DENMARK.

concentrating solar power

Solar thermal 'concentrating' power stations (CSP) can only use direct sunlight and are therefore dependent on high irradiation locations. North Africa, for example, has a technical potential which far exceeds local demand. The various solar thermal technologies (parabolic trough, power towers and parabolic dish concentrators) offer good prospects for further development and cost reductions. Because of their more simple design, 'Fresnel' collectors are considered as an option for additional cost trimming. The efficiency of central receiver systems can be increased by producing compressed air at a temperature of up to 1,000°C, which is then used to run a combined gas and steam turbine.

Thermal storage systems are a key component for reducing CSP electricity generation costs. The Spanish Andasol 1 plant, for example, is equipped with molten salt storage with a capacity of 7.5 hours. A higher level of full load operation can be realised by using a thermal storage system and a large collector field. Although this leads to higher investment costs, it reduces the cost of electricity generation.

Depending on the level of irradiation and mode of operation, it is expected that long term future electricity generation costs of 6-10 cents/kWh can be achieved. This presupposes rapid market introduction in the next few years.

wind power

Within a short period of time, the dynamic development of wind power has resulted in the establishment of a flourishing global market. While favourable policy incentives have made Europe the main driver for the global wind market, in 2009 more than three quarters of the annual capacity installed was outside Europe. This trend is likely to continue. The boom in demand for wind power technology has nonetheless led to supply constraints. As a consequence, the cost of new systems has increased. Because of the continuous expansion of production capacities, the industry is already resolving the bottlenecks in the supply chain, however. Taking into account market development projections, learning curve analysis and industry expectations, we assume that investment costs for wind turbines will reduce by 30% for onshore and 50% for offshore installations up to 2050.

table 5.7: concentrating solar power (csp) cost assumptions table 5.8: wind power cost assumptions

Energy [R]evolution	2007	2015	2020	2030	2040	2050
Global installed capacity (GW)	1	25	105	324	647	1,002
Investment costs (\$/kW)*	7,250	5,576	5,044	4,263	4,200	4,160
Operation & maintenance costs (\$/kW/a)	300	250	210	180	160	155

Advanced Energy [R]evolution

Global installed capacity (GW)	1	28	225	605	1,173	1,643
Investment costs (\$/kW)*	7,250	5,576	5,044	4,200	4,160	4,121
Operation & maintenance costs (\$/kW/a)	300	250	210	180	160	155

* INCLUDING HIGH TEMPERATURE HEAT STORAGE.

Energy [R]evolution	2007	2015	2020	2030	2040	2050				
Installed capacity (on+offshore)	95	407	878	1,733	2,409	2,943				
Wind onshore										
Investment costs (\$/kWp)	1,510	1,255	998	952	906	894				
0&M costs (\$/kW/a)	58	51	45	43	41	41				
Wind offshore										
Investment costs (\$/kWp)	2,900	2,200	1,540	1,460	1,330	1,305				
0&M costs (\$/kW/a)	166	153	114	97	88	83				
Advanced Energy [R]evolution										
Installed capacity (on+offshore)	95	494	1,140	2,241	3,054	3,754				
Wind onshore										
Investment costs (\$/kWp)										

0&M costs (\$/kW/a)	58	51	45	43	41	41
Wind offshore						
Investment costs (\$/kWp)	2,900	2,200	1,540	1,460	1,330	1,305
0&M costs (\$/kW/a)	166	153	114	97	88	83

biomass

The crucial factor for the economics of biomass utilisation is the cost of the feedstock, which today ranges from a negative cost for waste wood (based on credit for waste disposal costs avoided) through inexpensive residual materials to the more expensive energy crops. The resulting spectrum of energy generation costs is correspondingly broad. One of the most economic options is the use of waste wood in steam turbine combined heat and power (CHP) plants. Gasification of solid biomass, on the other hand, which opens up a wide range of applications, is still relatively expensive. In the long term it is expected that favourable electricity production costs will be achieved by using wood gas both in micro CHP units (engines and fuel cells) and in gas-and-steam power plants. Great potential for the utilisation of solid biomass also exists for heat generation in both small and large heating centres linked to local heating networks. Converting crops into ethanol and 'bio diesel' made from rapeseed methyl ester (RME) has become increasingly important in recent years, for example in Brazil, the USA and Europe. Processes for obtaining synthetic fuels from biogenic synthesis gases will also play a larger role.

A large potential for exploiting modern technologies exists in Latin and North America, Europe and the Transition Economies, either in stationary appliances or the transport sector. In the long term Europe and the Transition Economies will realise 20-50% of the potential for biomass from energy crops, whilst biomass use in all the other regions will have to rely on forest residues, industrial wood waste and straw. In Latin America, North America and Africa in particular, an increasing residue potential will be available.

table 5.9: biomass cost assumptions

Energy [R]evolution	2007	2015	2020	2030	2040	2050
Biomass (electricity on	ly)					
Global installed capacity	(GW) 28	48	62	75	87	107
Investment costs (\$/kW)	2,818	2,452	2,435	2,377	2,349	2,326
0&M costs (\$/kW/a)	183	166	152	148	147	146
Biomass (CHP)						
Global installed capacity	(GW) 18	67	150	261	413	545
Investment costs (\$/kW)	5,250	4,255	3,722	3,250	2,996	2,846
0&M costs (\$/kW/a)	404	348	271	236	218	207

Advanced Energy [R]evolution

Biomass (electricity only)

Global installed capacity	(GW)	28	50	64	78	83	81
Investment costs (\$/kW)	2	,818	2,452	2,435	2,377	2,349	2,326
0&M costs (\$/kW/a)		183	166	152	148	147	146
Biomass (CHP)							
Global installed capacity	(GW)	18	65	150	265	418	540
Investment costs (\$/kW)	5	,250	4,255	3,722	3,250	2,996	2,846
0&M costs (\$/kW/a)		404	348	271	236	218	207

In other regions, such as the Middle East and all Asian regions, increased use of biomass is restricted, either due to a generally low availability or already high traditional use. For the latter, using modern, more efficient technologies will improve the sustainability of current usage and have positive side effects, such as reducing indoor pollution and the heavy workloads currently associated with traditional biomass use.

geothermal

Geothermal energy has long been used worldwide for supplying heat, and since the beginning of the last century for electricity generation. Geothermally generated electricity was previously limited to sites with specific geological conditions, but further intensive research and development work has enabled the potential areas to be widened. In particular the creation of large underground heat exchange surfaces - Enhanced Geothermal Systems (EGS) - and the improvement of low temperature power conversion, for example with the Organic Rankine Cycle, open up the possibility of producing geothermal electricity anywhere. Advanced heat and power cogeneration plants will also improve the economics of geothermal electricity.

As a large part of the costs for a geothermal power plant come from deep underground drilling, further development of innovative drilling technology is expected. Assuming a global average market growth for geothermal power capacity of 9% per year up to 2020, adjusting to 4% beyond 2030, the result would be a cost reduction potential of 50% by 2050:

table 5.10: geothermal cost assumptions

Energy [R]evolution		2007	2015	2020	2030	2040	2050				
Geothermal (electricity only)											
Global installed capacity	(GW)	10	19	36	71	114	144				
Investment costs (\$/kW)	12	,446	10,875	9,184	7,250	6,042	5,196				
0&M costs (\$/kW/a)		645	557	428	375	351	332				
Geothermal (CHP)											
Global installed capacity	(GW)	1	3	13	37	83	134				
Investment costs (\$/kW)	12	,688	11,117	9,425	7,492	6,283	5,438				
0&M costs (\$/kW/a)		647	483	351	294	256	233				
Advanced Energy [R]evolution											

Geothermal (electricity only)

deothermal (electricity	Unity)						
Global installed capacity	(GW)	10	21	57	191	337	459
Investment costs (\$/kW)	12	,446	10,875	9,184	5,196	4,469	3,843
0&M costs (\$/kW/a)		645	557	428	375	351	332
Geothermal (CHP)							
Global installed capacity	(GW)	0	3	13	47	132	234
Investment costs (\$/kW)	12	,688	11,117	9,425	7,492	6,283	5,438
0&M costs (\$/kW/a)		647	483	351	294	256	233

image A COW INFRONT OF A BIOREACTOR IN THE BIOENERGY VILLAGE OF JUEHNDE. IT IS THE FIRST COMMUNITY IN GERMANY THAT PRODUCES ALL OF ITS ENERGY NEEDED FOR HEATING AND ELECTRICITY, WITH CO2 NEUTRAL BIOMASS.

- for conventional geothermal power, from 7 \$cents/kWh to about 2 \$cents/kWh;
- for EGS, despite the presently high figures (about 20 \$cents/kWh), electricity production costs - depending on the payments for heat supply - are expected to come down to around 5 \$cents/kWh in the long term.

Because of its non-fluctuating supply and a grid load operating almost 100% of the time, geothermal energy is considered to be a key element in a future supply structure based on renewable sources. Up to now we have only used a marginal part of the potential. Shallow geothermal drilling, for example, makes possible the delivery of heating and cooling at any time anywhere, and can be used for thermal energy storage.

ocean energy

Ocean energy, particularly offshore wave energy, is a significant resource, and has the potential to satisfy an important percentage of electricity supply worldwide. Globally, the potential of ocean energy has been estimated at around 90,000 TWh/year. The most significant advantages are the vast availability and high predictability of the resource and a technology with very low visual impact and no CO₂ emissions. Many different concepts and devices have been developed, including taking energy from the tides, waves, currents and both thermal and saline gradient resources. Many of these are in an advanced phase of R&D, large scale prototypes have been deployed in real sea conditions and some have reached premarket deployment. There are a few grid connected, fully operational commercial wave and tidal generating plants.

table 5.11: ocean energy cost assumptions

Energy [R]evolution	2007	2015	2020	2030	2040	2050
Global installed capacity (GW) 0	9	29	73	168	303
Investment costs (\$/kW)	7,216	3,892	2,806	2,158	1,802	1,605
Operation & maintenance costs (\$/kW/a)	360	207	117	89	75	66

Advanced Energy [R]evolution

Global installed capacity (GW)	0	9	58	180	425	748
Investment costs (\$/kW)	7,216	3,892	2,806	1,802	1,605	1,429
Operation & maintenance costs (\$/kW/a)	360	207	117	89	75	66

The cost of energy from initial tidal and wave energy farms has been estimated to be in the range of 15-55 \$cents/kWh, and for initial tidal stream farms in the range of 11-22 \$cents/kWh. Generation costs of 10-25 \$cents/kWh are expected by 2020. Key areas for development will include concept design, optimisation of the device configuration, reduction of capital costs by exploring the use of alternative structural materials, economies of scale and learning from operation. According to the latest research findings, the learning factor is estimated to be 10-15% for offshore wave and 5-10% for tidal stream. In the medium term, ocean energy has the potential to become one of the most competitive and cost effective forms of generation. In the next few years a dynamic market penetration is expected, following a similar curve to wind energy.

Because of the early development stage any future cost estimates for ocean energy systems are uncertain. Present cost estimates are based on analysis from the European NEEDS project.⁴⁸

hydro power

Hydropower is a mature technology with a significant part of its global resource already exploited. There is still, however, some potential left both for new schemes (especially small scale run-ofriver projects with little or no reservoir impoundment) and for repowering of existing sites. The significance of hydropower is also likely to be encouraged by the increasing need for flood control and the maintenance of water supply during dry periods. The future is in sustainable hydropower which makes an effort to integrate plants with river ecosystems while reconciling ecology with economically attractive power generation.

table 5.12: hydro power cost assumptions

Energy [R]evolution	2007	2015	2020	2030	2040	2050
Global installed capacity (GV	V) 922	1,043	1,206	1,307	1,387	1,438
Investment costs (\$/kW)	2,705	2,864	2,952	3,085	3,196	3,294
Operation & maintenance costs (\$/kW/a)	110	115	123	128	133	137

Advanced Energy [R]evolution

Global installed capacity (GW)	922	1,111	1,212	1,316	1,406	1,451
Investment costs (\$/kW)	2,705	2,864	2,952	3,085	3,196	3,294
Operation & maintenance costs (\$/kW/a)	110	115	123	128	133	137

summary of renewable energy cost development

Figure 5.2 summarises the cost trends for renewable energy technologies as derived from the respective learning curves. It should be emphasised that the expected cost reduction is basically not a function of time, but of cumulative capacity, so dynamic market development is required. Most of the technologies will be able to reduce their specific investment costs to between 30% and 70% of current levels by 2020, and to between 20% and 60% once they have achieved full maturity (after 2040).

Reduced investment costs for renewable energy technologies lead directly to reduced heat and electricity generation costs, as shown in Figure 5.3. Generation costs today are around 8 to 26 \$cents/kWh for the most important technologies, with the exception of photovoltaics. In the long term, costs are expected to converge at around 5-12 \$cents/kWh. These estimates depend on site-specific conditions such as the local wind regime or solar irradiation, the availability of biomass at reasonable prices or the credit granted for heat supply in the case of combined heat and power generation.

assumed growth rates in different scenarios

In scientific literature⁴⁹ quantitative scenario modelling approaches are broadly separated into two groups: "top-down" and "bottomup" models. While this classification might have made sense in the past, it is less appropriate today, since the transition between the two categories is continuous, and many models, while being rooted in one of the two traditions - macro-economic or energy-engineering - incorporate aspects from the other approach and thus belong to the class of so-called hybrid models.⁵⁰ In the energy-economic modelling community, macro-economic approaches are traditionally classified as top-down models and energy-engineering models as bottom-up. The Energy [R]evolution scenario is a "bottom-up" (technology driven) scenario and the assumed growth rates for renewable energy technology deployment are important drivers.

Around the world, however, energy modelling scenario tools are under constant development and in the future both approaches are likely to merge into one, with detailed tools employing both a high level of technical detail and economic optimisation. The Energy ERJevolution scenario uses a "classical" bottom-up model which has been constantly developed, and now includes calculations covering both the investment pathway and the employment effect (see Chapter 7).

figure 5.2: future development of renewable energy investment costs (NORMALISED TO CURRENT COST LEVELS) FOR

RENEWABLE ENERGY TECHNOLOGIES

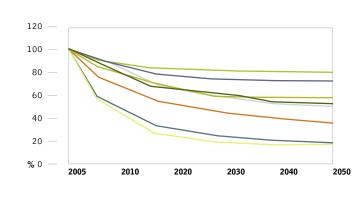
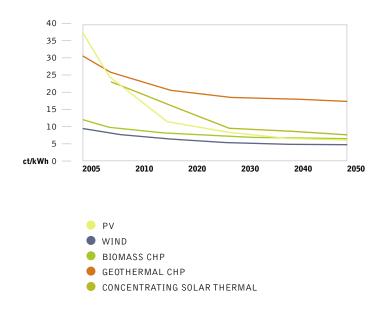



figure 5.3: expected development of electricity generation costs from fossil fuel and renewable options EXAMPLE FOR OECD NORTH AMERICA

PV

WIND ONSHORE

WIND OFFSHORE

BIOMASS CHP GEOTHERMAL CHP

OCEAN ENERGY

BIOMASS POWER PLANT


CONCENTRATING SOLAR THERMAL

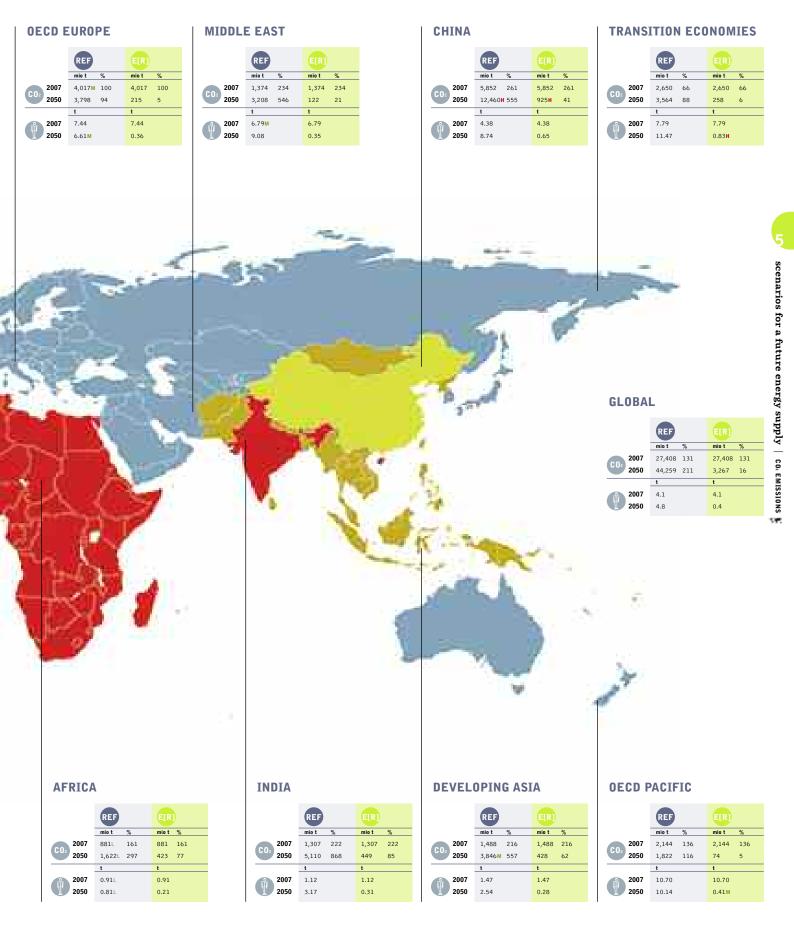
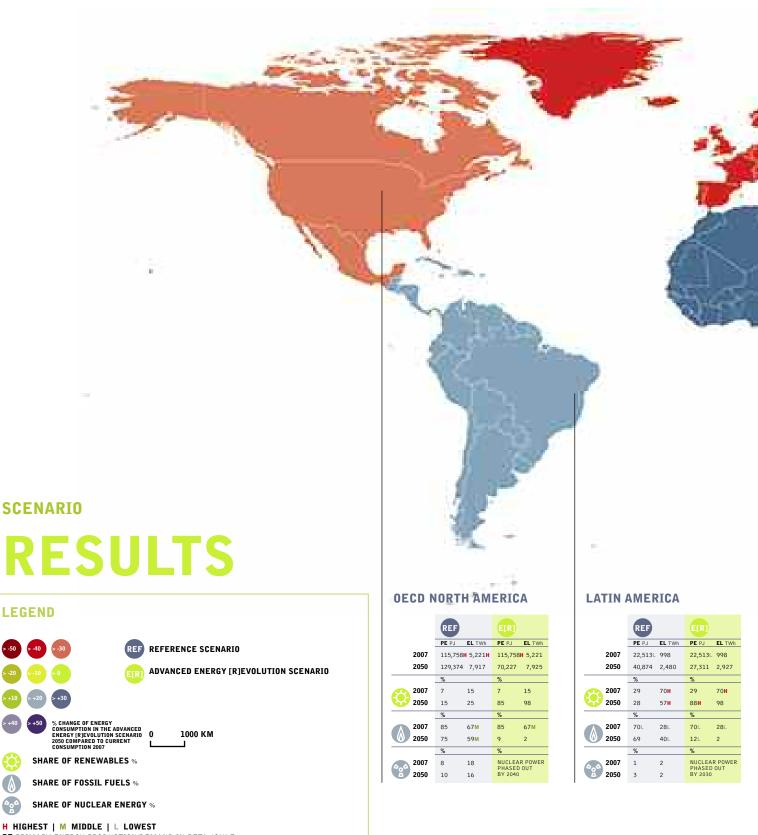


table 5.13: assumed annual average growth rates for renewable technologies

		ERGY PARAN					
REF	REF	E[R]	ADV E[R]	REF	E[R]	ADV E[R]	5
2020	27,248	25,851	25,919				_
2030	34,307	30,133	30,901				sce
2050	46,542	37,993	43,922				nari
Solar							scenarios for a future energy supply growth rates for renewable technologies
PV-2020	108	437	594	17%	37%	42%	_ or a
PV-2030	281	1,481	1,953	11%	15%	14%	fu
PV-2050	640	4,597	6,846	10%	13%	15%	Ť
CSP-2020	38	321	689	17%	49%	62%	ree
CSP-2030	121	1,447	2,734	14%	18%	17%	ene
CSP-2050	254	5,917	9,012	9%	17%	14%	rgy
Wind							supj
0n+Offshore-2020	1,009	2,168	2,849	12%	22%	26%	ply
0n+0ffshore-2030	1,536	4,539	5,872	5%	9%	8%	_
0n+Offshore-2050	2,516	8,474	10,841	6%	7%	7%	GROW
Geothermal							TH RA
2020 (power generation)	117	235	367	6%	14%	20%	TES
2030 (power generation)	168	502	1,275	4%	9%	15%	FOR
2050 (power generation)	265	1,009	2,968	5%	8%	10%	RE
2020 (heat&power)	6	65	66	13%	47%	47%	NEW
2030 (heat&power)	9	192	251	5%	13%	16%	ABL
2050 (heat&power)	19	719	1,263	9%	16%	20%	
Bio energy							HNOL
2020 (power generation)	337	373	392	8%	9%	10%	.0GI
2030 (power generation)	552	456	481	6%	2%	2%	
2050 (power generation)	994	717	580	7%	5%	2%	1012
2020 (heat&power)	186	739	742	2%	19%	19%	
2030 (heat&power)	287	1,402	1,424	5%	7%	8%	
2050 (heat&power)	483	3,013	2,991	6%	9%	9%	
Ocean							
2020	3	53	119	15%	55%	70%	
2030	11	128	420	13%	10%	15%	
2050	25	678	1,943	10%	20%	19%	
Hydro							
2020	4,027	4,029	4,059	2%	2%	2%	
2030	4,679	4,370	4,416	2%	1%	1%	
2050	5,963	5,056	5,108	3%	2%	2%	


map 5.1: CO₂ emissions reference scenario and the advanced energy [r]evolution scenario WORLDWIDE SCENARIO

map 5.2: results reference scenario and the advanced energy [r]evolution scenario WORLDWIDE SCENARIO

Qet.

PE PRIMARY ENERGY PRODUCTION/DEMAND IN PETA JOULE [PJ] EL ELECTRICITY PRODUCTION/GENERATION IN TERAWATT HOURS [TWh]

<u>م</u>

key results of the global energy [r]evolution scenario

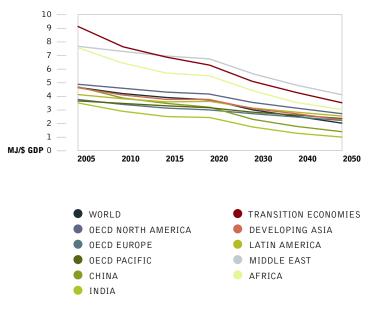
GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

HU JINTAO PRESIDENT OF CHINA image AERIAL PHOTO OF THE ANDASOL 1 SOLAR POWER STATION, EUROPE'S FIRST COMMERCIAL PARABOLIC TROUGH SOLAR POWER PLANT. ANDASOL 1 WILL SUPPLY UP TO 200,000 PEOPLE WITH CLIMATE-FRIENDLY ELECTRICITY AND SAVE ABOUT 149,000 TONNES OF CARBON DIOXIDE PER YEAR COMPARED WITH A MODERN COAL POWER PLANT.

image MAINTENANCE WORKERS FIX THE BLADES OF A WINDMILL AT GUAZHOU WIND FARM NEAR YUMEN IN GANSU PROVINCE, CHINA.

The development of future global energy demand is determined by three key factors:

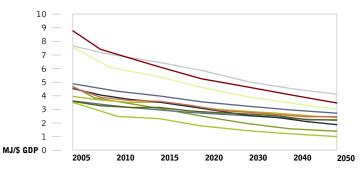

- Population development: the number of people consuming energy or using energy services.
- Economic development, for which Gross Domestic Product (GDP) is the most commonly used indicator. In general, an increase in GDP triggers an increase in energy demand.
- Energy intensity: how much energy is required to produce a unit of GDP.

The Reference and both versions of the Energy [R]evolution scenarios are based on the same projections of population and economic development. The future development of energy intensity, however, differs between the reference and the two alternative cases, taking into account the measures to increase energy efficiency under both Energy [R]evolution scenarios.

projection of energy intensity

An increase in economic activity and a growing population does not necessarily have to result in an equivalent increase in energy demand. There is still a large potential for exploiting energy efficiency measures. Under the Reference scenario we assume that energy intensity will be reduced by 1.25% on average per year, leading to a reduction in final energy demand per unit of GDP of about 56% between 2007 and 2050. Under the Energy ER]evolution scenario it is assumed that active policy and technical support for energy efficiency measures will lead to an even higher reduction in energy intensity of almost 73%.

figure 6.1: global: energy intensity by world region under the reference scenario

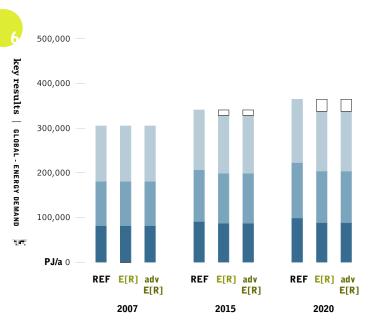

The advanced Energy [R]evolution scenario follows the same efficiency pathway, apart from in the transport sector, where a further reduction of 17% due to less vehicle use and lifestyle changes has been assumed. The increased share of electric vehicles in this scenario, with greater efficiency of electric drives, leads to a further decrease in final energy use.

development of global energy demand by sector

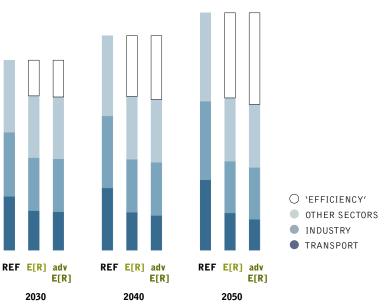
Combining the projections on population development, GDP growth and energy intensity results in future development pathways for the world's energy demand. These are shown in Figure 6.3 for the Reference and both Energy [R]evolution scenarios. Under the Reference scenario, total primary energy demand almost doubles from 490,230 PJ/a in 2007 to 783,458 PJ/a in 2050. In the Energy [R]evolution scenario, demand increases up to 2020 by 7% but then decreases slightly below today's level of 459,519 PJ/a by 2050. The advanced version leads to a demand of 500,762 PJ/a in 2030 and 465,995 PJ/a by 2050, similar to the basic Energy [R]evolution scenario.

The accelerated increase in energy efficiency, which is a crucial prerequisite for achieving a sufficiently large share of renewable energy sources in our energy supply, is beneficial not only for the environment but also for economics. Taking into account the full lifecycle costs, in most cases the implementation of energy efficiency measures saves money compared to creating an additional energy supply. A dedicated energy efficiency strategy therefore helps to compensate in part for the additional costs required during the market introduction phase of renewable energy technologies.

figure 6.2: global: energy intensity by world region under the energy [r]evolution scenario



ter:


global

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

figure 6.3: global: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

development of global energy demand by sector

Under the Energy [R]evolution scenario, electricity demand is expected to increase disproportionately, with households and services the main source of growing consumption (see Figure 6.4). With the exploitation of efficiency measures, however, an even higher increase can be avoided, leading to electricity demand of around 31,795 TWh/a in the year 2050. Compared to the Reference scenario, efficiency measures avoid the generation of about 8,549 TWh/a. This reduction in energy demand can be achieved in particular by introducing highly efficient electronic devices using the best available technology in all demand sectors. Employment of solar architecture in both residential and commercial buildings will help to curb the growing demand for active air-conditioning.

Due to the increased use of electric drives instead of combustion engines in the transport sector and the bigger role of hydrogen in transport and also industry, electricity demand is significantly higher in the advanced Energy [R]evolution scenario. By 2030 the level of production reaches 30,901 TWh/a and 43,922 TWh/a by 2050, about 5.5% below the Reference scenario but 16% above the basic Energy [R]evolution version. Efficiency gains in the heat supply sector are even larger. Under the Energy [R]evolution scenario, final demand for heat supply can even be reduced (see Figure 6.5). Compared to the Reference scenario, consumption equivalent to 49,357 PJ/a is avoided through efficiency gains by 2050. As a result of energy-related renovation of the existing stock of residential buildings, as well as the introduction of low energy standards and 'passive houses' for new buildings, enjoyment of the same comfort and energy services will be accompanied by a much lower future energy demand. The advanced version has an even lower energy demand in the heating sector, due to the increased use of electricity, for example through geothermal heat pumps.

In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will increase by 12% to around 88,743 PJ/a in 2030 and then fall slightly afterwards to 83,507 PJ/a in 2050, saving 47% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns.

In the advanced version, more electric drives are used in the transport sector and hydrogen produced by electrolysis using fluctuating renewable electricity plays a much bigger role than in the basic scenario. After 2030, the final energy share of electric vehicles on the road increases to 14% and by 2050 up to 50%. More public transport systems also use electricity as well as there being a greater shift in transporting freight from road to rail.

image A WOMAN STUDIES SOLAR POWER SYSTEMS AT THE BAREFOOT COLLEGE. THE COLLEGE SPECIALISES IN SUSTAINABLE DEVELOPMENT AND PROVIDES A SPACE WHERE STUDENTS FROM ALL OVER THE WORLD CAN LEARN TO UTILISE RENEWABLE ENERGY. THE STUDENTS TAKE THEIR NEW SKILLS HOME AND GIVE THEIR VILLAGES CLEAN ENERGY.

image AN EXCAVATOR DIGS A HOLE AT GUAZHOU WIND FARM CONSTRUCTION SITE. CHINA, WHERE IT IS PLANNED TO BUILD 134 WINDMILLS.

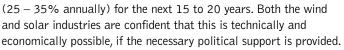

160.000 -140.000 -120,000 — 100,000 — 80,000 60,000 40.000 20,000 **PJ/a** 0 E[R] adv E[R] adv E[R] adv E[R] adv E[R] adv E[R] adv E[R] E[R] E[R] E[R] E[R] E[R] 2007 2010 2020 2030 2040 2050 ○ `EFFICIENCY' OTHER SECTORS INDUSTRY TRANSPORT

figure 6.4: global: development of electricity demand by sector (REF, E[R] & advanced E[R])

development of global electricity generation

The development of the electricity supply sector is characterised by a dynamically growing renewable energy market and an increasing share of renewable electricity. This will compensate for the phasing out of nuclear energy and reduce the number of fossil fuel-fired power plants required for grid stabilisation. By 2050, 79% (in the Energy [R]evolution scenario) resp. 95% (in the advanced Energy [R]evolution scenario) of the electricity produced worldwide will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute over 60% of electricity generation under the advanced Energy [R]evolution scenario and 79% in the basic version. The following strategy paves the way for a future renewable energy supply:

- The phasing out of nuclear energy and rising electricity demand will be met initially by bringing into operation new highly efficient gas-fired combined cycle power plants, plus an increasing capacity of wind turbines, biomass, concentrating solar power plants and solar photovoltaics. In the long term, wind will be the most important single source of electricity generation. In order to achieve the projections under the advanced Energy [R]evolution scenario, the lifetime of new coal power stations installed between 2007 and 2015 has been reduced from 40 to 20 years. This is especially important in China, where over 200,000 MW of new coal power plants have been built between 2002 and 2010. A 40 year lifetime would have led to an excessively large share of coal in the global power generation. Possible stranded investments could be addressed politically, for example through money from emissions trading or other climate and energy programmes.
- Solar energy, hydro and biomass will make substantial contributions to electricity generation. In particular, as non-fluctuating renewable energy sources, hydro and solar thermal, combined with efficient heat storage, are important elements in the overall generation mix. The advanced scenario can be achieved if annual growth rates in the renewables sector remain in the same range as over the past decade

- The installed capacity of renewable energy technologies will grow from the current 1,080 GW to 9,585 GW in 2050. Increasing renewable capacity by a factor of nine within the next 40 years requires political support and well-designed policy instruments, however. There will be a considerable demand for investment in new production capacity over the next 20 years. As investment cycles in the power sector are long, decisions on restructuring the world's energy supply system need to be taken now.
- In the advanced Energy [R]evolution scenario, the total renewable installed capacity will grow to 3,359 GW by 2020 and 13,229 GW by 2050. A significant share of the fluctuating power generation will be used to supply electricity to vehicle batteries and to produce hydrogen as secondary fuel in transport and industry. By using load management strategies, both energy demands will reduce excess electricity generation and provide balancing power and energy to the energy systems.

To achieve an economically attractive growth in renewable energy sources, a balanced and timely mobilisation of all technologies is of great importance. This mobilisation depends on technical potentials, cost reduction and technological maturity. Figure 6.6 shows the comparative evolution of the different renewable technologies over time. Up to 2020, hydro power and wind will remain the main contributors to the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaic and solar thermal (CSP) energy.

For the advanced Energy [R]evolution scenario it is vital to implement infrastructure improvements such as smart grids, greater interconnection between these grids and large scale offshore wind networks as well as increased R&D for storage technologies. All these changes need to happen about ten years in advance of the basic Energy [R]evolution version.

figure 6.5: global: development of heat demand by sector

E[R] adv

E[R] adv

E[R] adv

E[R] adv

200,000 -

160,000-

120,000

80.000-

40,000

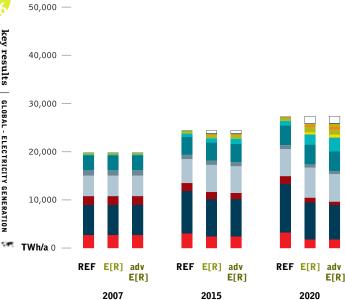
PJ/a 0

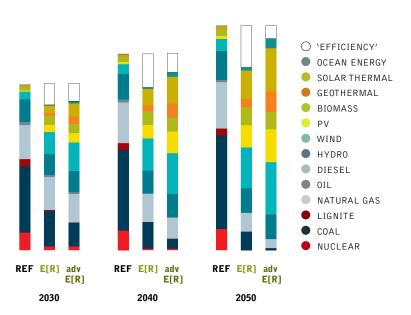
E[R] adv

E[R] adv

global

GLOBAL SCENARIO


OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA


MIDDLE EAST TRANSITION ECONOMIES INDIA

OTHER DEVELOPING ASIA CHINA OECD PACIFIC

figure 6.6: global: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

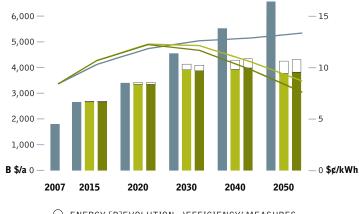
table 6.1: global: projection of renewable electricity generation capacity under both energy [r]evolution scenarios

IN GW		2007	2020	2030	2040	2050
Hydro	E[R]	922	1,206	1,307	1,387	1,438
	advanced E[R]	922	1,212	1,316	1,406	1,451
Biomass	E[R]	46	212	336	500	652
	advanced E[R]	46	214	343	501	621
Wind	E[R]	95	878	1,733	2,409	2,943
	advanced E[R]	95	1,140	2,241	3,054	3,754
Geothermal	E[R]	11	49	108	196	279
	advanced E[R]	11	69	238	469	693
PV	E[R]	6	335	1.036	1,915	2,968
	advanced E[R]	6	439	1.330	2,959	4,318
CSP	E[R]	0	105	324	647	1,002
	advanced E[R]	0	225	605	1,173	1,643
Ocean energy	E[R]	0	29	73	168	303
	advanced E[R]	0	58	180	425	748
Total	E[R]	1,080	2,813	4,917	7,224	9,585
	advanced E[R]	1,080	3,359	6,252	9,987	13,229

future costs of electricity generation

Figure 6.7 shows that the introduction of renewable technologies under the Energy [R]evolution scenario slightly increases the costs of electricity generation compared to the Reference scenario. This difference will be less than 0.5 cents/kWh up to 2020. Any increase in fossil fuel prices beyond the projection given in Table 6.1, however, will reduce the gap. Because of the lower CO₂ intensity of electricity generation, by 2020 generation costs will become economically favourable under the Energy [R]evolution scenario and by 2050 will be more than 5 cents/kWh below those in the Reference version.

In both Energy [R]evolution scenarios the specific generation costs are almost the same up to 2030. By 2050, however, the advanced version results in a reduction of 4 cents/kWh compared to the Reference scenario, mainly because of greater economies of scale in the production of renewable power equipment. Due to the increased demand for electricity, especially in the transport sector, the overall supply costs in the advanced version are \$37 billion higher in 2030 and \$40 billion higher in 2050 than in the basic Energy [R]evolution scenario.


Due to growing demand, we face a significant increase in society's overall expenditure on electricity supply. Under the Reference scenario, the unchecked growth in demand, increase in fossil fuel prices and the cost of CO₂ emissions results in total electricity supply costs rising from today's US\$ 1,750 billion per year to more than US\$ 6,460 billion in 2050. Figure 6.7 shows that both Energy [R]evolution

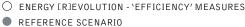
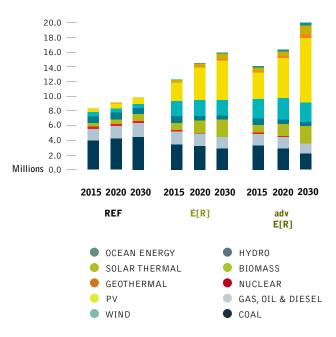

image A RICE FIELD DESTROYED BY SALT WATER FROM HUGE TIDAL SURGES DURING THE CYCLONE ALIA IN BALI ISLAND IN THE SUNDARBANS.

image PORTLAND, IN THE STATE OF VICTORIA, WAS THE FIRST AUSTRALIAN COUNCIL TO RECEIVE A DEVELOPMENT APPLICATION FOR WIND TURBINES AND NOW HAS ENOUGH IN THE SHIRE TO PROVIDE ENERGY FOR SEVERAL LOCAL TOWNS COMBINED.

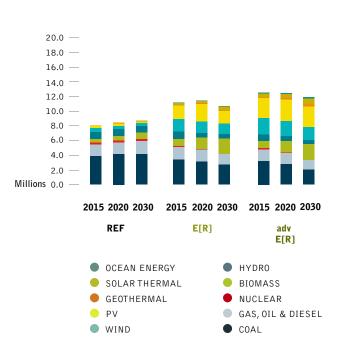
figure 6.7: global: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios



- ENERGY [R]EVOLUTION SCENARIO
- ADVANCED ENERGY [R]EVOLUTION SCENARIO

scenarios not only comply with global CO₂ reduction targets but also help to stabilise energy costs and relieve the economic pressure on society. Increasing energy efficiency and shifting energy supply to renewables leads to long term costs for electricity supply that are one third lower than in the Reference scenario. It becomes clear that pursuing stringent environmental targets in the energy sector also pays off in terms of economics.

figure 6.8a: global: employment if technology costs do not decline


future global employment

Worldwide, we would see more direct jobs created in the energy sector if we shifted to either of the Energy [R]evolution scenarios.

- By 2015 global power supply sector jobs in the Energy [R]evolution scenario are estimated to reach about 11.1 million, 3.1 million more than in the Reference scenario. The advanced version will lead to 12.5 million jobs by 2015.
- By 2020 over 6.5 million jobs in the renewables sector would be created due a much faster uptake of renewables, three-times more than today. The advanced version will lead to about one million jobs more than the basic Energy [R]evolution, due a much faster uptake of renewables.
- By 2030 the Energy [R]evolution scenario achieves about 10.6 million jobs, about two million more than the Reference scenario. Approximately 2 million new jobs are created between 2020 and 2030, twice as much as in the Reference case. The advanced scenario will lead to 12 million jobs, that is 8.5 million in the renewables sector alone. Without this fast growth in the renewable sector global power jobs will be a mere 2.4 million. Thus by implementing the E[R] there will be 3.2 million or over 33% more jobs by 2030 in the global power supply sector.

Figure 6.8a and 6.8b show the growth in employment under all scenarios for each technology up to 2020 and up to 2030. New jobs in both Energy [R]evolution scenarios are dominated by wind power and solar photovoltaics, coupled with losses in the coal sector, even in the Reference version.

figure 6.8a: global: employment if technology costs decline

global

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

table 7.8: global: employment under the reference, [r]evolution, & advanced scenarios in 2015, 2020 & 2030

	REFERENCE SCENARIO			ENERGY [R]EVOLUTION			ENERGY [R]EVOLUTION		
lobs (millions)	2015	2020	2030	2015	2020	2030	2015	2020	2030
Jobs (millions)	7 (100	1 7	1 2	2.0	2.0 m	2.0.100	2.0.40	2.4.40	2]
Construction and installation	1.6 m	1.7 m	1.3 m	3.0 m	2.8 m	2.0 m	3.8 m	3.4 m	3.1 m
Manufacturing	0.6 m	0.5 m	0.3 m	1.8 m	1.7 m	1.2 m	2.5 m	2.2 m	1.7 m
Operations and maintenance	1.6 m	1.7 m	2.0 m	1.9 m	2.6 m	3.3 m	1.9 m	2.7 m	3.6 m
Fuel supply	3.9 m	4.0 m	4.4 m	3.9 m	3.8 m	3.7 m	3.8 m	3.7 m	3.1 m
Coal and gas export	0.5 m	0.5 m	0.7 m	0.5 m	0.5 m	0.5 m	0.5 m	0.4 m	0.4 m
Total jobs	8.0 m	8.4 m	8.7 m	11.1 m	11.4 m	10.6 m	12.5 m	12.4 m	11.9 m
Global									
Coal	3.9 m	4.1 m	4.2 m	3.4 m	3.1 m	2.7 m	3.2 m	2.8 m	2.1 m
Gas, oil & diesel	1.5 m	1.6 m	1.7 m	1.7 m	1.6 m	1.4 m	1.6 m	1.5 m	1.2 m
Nuclear	0.3 m	0.3 m	0.3 m	0.2 m	0.1 m	0.0 m	0.2 m	0.1 m	0.0 m
Renewable	2.3 m	2.4 m	2.4 m	5.9 m	6.6 m	6.5 m	7.5 m	8.0 m	8.5 m
Total jobs	8.0 m	8.4 m	8.7 m	11.1 m	11.4 m	10.6 m	12.5 m	12.4 m	11.9 m
Global - Jobs									
Coal	3.93 m	4.15 m	4.20 m	3.43 m	3.13 m	2.74 m	3.22 m	2.82 m	2.11 m
Gas, oil & diesel	1.51 m	1.59 m	1.74 m	1.67 m	1.63 m	1.40 m	1.59 m	1.49 m	1.23 m
Nuclear	0.33 m	0.29 m	0.29 m	0.17 m	0.10 m	0.04 m	0.17 m	0.10 m	0.04 m
Biomass	0.48 m	0.59 m	0.86 m	0.96 m	1.51 m	2.11 m	0.96 m	1.52 m	2.14 m
Hydro	0.90 m	0.95 m	0.91 m	1.00 m	0.67 m	0.59 m	0.88 m	0.68 m	0.60 m
Wind	0.52 m	0.39 m	0.38 m	1.70 m	1.55 m	1.40 m	2.28 m	2.01 m	1.73 m
PV	0.32 m	0.40 m	0.25 m	1.85 m	2.40 m	1.71 m	2.67 m	2.99 m	2.77 m
Geothermal	0.02 m	0.02 m	0.02 m	0.07 m	0.09 m	0.12 m	0.10 m	0.18 m	0.27 m
Solar thermal	0.02 m	0.02 m	0.02 m	0.23 m	0.31 m	0.49 m	0.54 m	0.51 m	0.85 m
Ocean	0.00 m	0.00 m	0.00 m	0.05 m	0.04 m	0.06 m	0.12 m	0.12 m	0.16 m
Total jobs	8.04 m	8.40 m	8.68 m	11.13 m	11.43 m	10.65 m	12.51 m	12.43 m	11.90 m

If the Reference scenario becomes reality, the amount of jobs in the power sector would remain on todays level until 2030. This is despite an increase in electricity generation from coal to 40% by 2030. The main reason is that as prosperity and labour productivity increase, jobs per MW decrease. This is reflected in the 'regional adjustments'⁵¹, which model how electricity generation tends to be more labour intensive in poorer countries than in wealthier ones. This change, based on increasing living standards in the developing world, accounts for two thirds of the reduction in coal jobs in developing countries.

China is responsible for one third of worldwide energy sector jobs in 2015, more than three quarters in coal power. The change in China's regional adjustment accounts for about 200,000 of the coal job losses projected in the Reference scenario.⁵² A small expansion of the renewables sector would not counteract these losses. Jobs would not return to their 2010 levels, even combined with a 50% expansion in gas capacity.

The Energy [R]evolution scenario also has job losses in coal generation, because growth in capacity is almost zero. However, employment growth in renewable energy is so strong that there is a net gain of 4.1 million jobs by 2030, relative to the 2015 Reference case. The advanced case will lead to 8.5 million jobs in the renewables sector, compared to only 2.4 million in the reference case.

In both Energy [R]evolution scenarios we have been cautious in the calculations and applied 'decline factors' to represent how jobs per unit of energy can decrease over time, making the Greenpeace projections lower than in other studies. It may be the case, for example, that job creation per GWh in energy efficiency could increase as energy efficiency options are all 'used up'.

More details of the employment analysis can be found in Chapter 7.

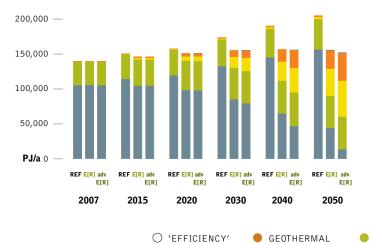
51 REGIONAL ADJUSTMENTS ARE MADE BY USING 'JOB MULTIPLIERS' WHICH DIVIDE THE PROJECTED LABOUR PRODUCTIVITY IN THE OECD COUNTRIES AS A WHOLE BY THE PROJECTED LABOUR PRODUCTIVITY IN A PARTICULAR REGION. 52 COMPARED TO THE SITUATION OF MAINTAINING THE MULTIPLIER AT 1.9 IN 2020. IF NO MULTIPLIER WAS USED AT ALL, 2010 AND 2020 TOTALS WOULD BOTH BE REDUCED SIGNIFICANTLY.

Сet

image ANDASOL 1 SOLAR POWER STATION IS EUROPE'S FIRST COMMERCIAL PARABOLIC TROUGH SOLAR POWER PLANT. IT WILL SUPPLY UP TO 200,000 PEOPLE WITH CLIMATE-FRIENDLY ELECTRICITY AND SAVE ABOUT 149,000 TONNES OF CARBON DIOXIDE PER YEAR COMPARED WITH A MODERN COAL POWER PLANT.

image WORKERS AT GANSU JINFENG WIND POWER EQUIPMENT CO. LTD. IN JIUQUAN, GANSU PROVINCE, CHINA.

development of global heat and cooling demand

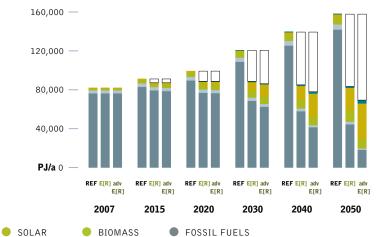

Development of renewables in the heat supply sector raises different issues. Today, renewables provide 24% of global primary energy demand for heat supply, the main contribution coming from the use of biomass. The lack of district heating networks is a severe structural barrier to the large scale utilisation of geothermal and solar thermal energy. Past experience shows that it is easier to implement effective support instruments in the grid-connected electricity sector than in the heat market, with its multitude of different actors. Dedicated support instruments are required to ensure a dynamic development.

In the Energy [R]evolution scenario, renewables provide more than 71% of global heating demand by 2050. The main elements of this shift are:

- Energy efficiency measures can decrease the current per capita demand for heat supply by 24% in spite of improving living standards.
- For direct heating, solar collectors, biomass/biogas as well as geothermal energy will increasingly substitute for fossil fuel-fired systems.
- A shift from coal and oil to natural gas in the remaining conventional applications will lead to a further reduction in CO₂ emissions.

In the Energy [R]evolution scenario 49,357 PJ/a is saved by 2050, or 24% compared to the Reference scenario. The advanced Energy [R]evolution scenario introduces renewable heating systems around five years ahead of the basic scenario. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes five to ten years earlier, resulting in a renewables share of 49% by 2030 and 91% by 2050.

figure 6.9: global: development of heat supply structure under 3 scenarios



development of global transport energy demand

In the transport sector it is assumed that, due to fast growing demand for services, energy consumption will continue to increase under the Energy ERJevolution scenario up to 2020. After that it will decrease, falling to a level of the current demand by 2050. Compared to the Reference scenario, transport energy demand is reduced overall by 47%. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns. By introducing attractive alternatives to individual cars, the global fleet of light duty vehicles grows more slowly than in the Reference scenario. In 2050, electricity will meet 28% of the transport sector's total energy demand.

To achieve the aims of the advanced Energy [R]evolution scenario more drastic changes are required. Firstly, a further reduction in transport energy demand means less travelling, achieved partly by moving working and living areas closer together. Cities must be developed with short travel distances in mind rather than a huge urban sprawl. Secondly, increasing the share of electric vehicles significantly above the basic Energy [R]evolution scenario requires a breakthrough in storage technologies. Current battery systems for electric vehicles are still too expensive and too heavy and require a lengthy charging time. Hydrogen fuel cell vehicles are introduced in the advanced version in a significant share covering in addition renewable mobility for suitable applications and markets. Thirdly, renewable power generation must be able to cover the extra electricity demand from e-mobility and renewable hydrogen, as it would not save CO₂ if this additional electricity were generated in coal power plants. What is certain is that with currently known technologies, electrification of the transport system is the only option which can move us away from inefficient combustion engines and phase out fossil fuels. If these technology challenges are overcome, a final energy share of 14% electricity in transport by 2030 and 50% by 2050 is possible. Hydrogen will cover more than 5% of the global final energy consumption in transport by 2050.

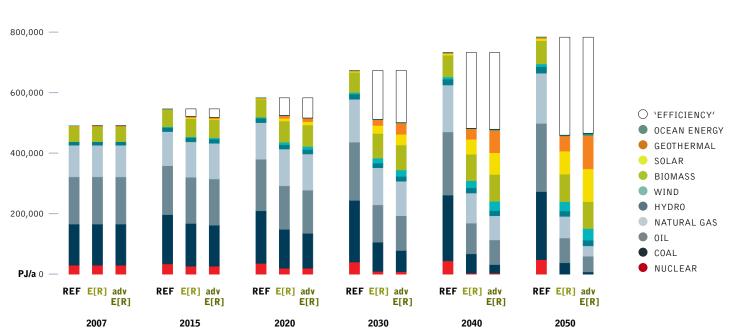
figure 6.10: global: transport under 3 scenarios

global

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

development of global primary energy consumption


Taking into account the assumptions discussed above, the resulting global primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.11. Compared to the Reference scenario, overall primary energy demand will be reduced by 41% in 2050. More than half of the remaining demand will be covered by renewable energy sources. Note that because of the 'efficiency method' used for the calculation of primary energy consumption, which postulates that the amount of electricity generation from hydro, wind, solar and geothermal energy equals the primary energy consumption, the share of renewables seems to be lower than their actual importance as energy suppliers.

MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

The advanced Energy [R]evolution scenario would even achieve a renewable energy share of 39% by 2030 and 80% by 2050. In this projection almost the entire global electricity supply, including the majority of the energy used in buildings and industry, would come from renewable energy sources. The transport sector, in particular aviation and shipping, would be the last sector to become fossil fuel free.

None of these numbers - even in the advanced Energy [R]evolution scenario - utilise the maximum known technical potential of all the renewable resources. While the deployment rate compared to the technical potential for hydro power, for example, is relatively high at 36% in both the basic and the advanced Energy [R]evolution scenario, for photovoltaics only 4.7% has been used in the basic version and 6.4% in the advanced scenario.

figure 6.11: global: development of primary energy consumption under three scenarios

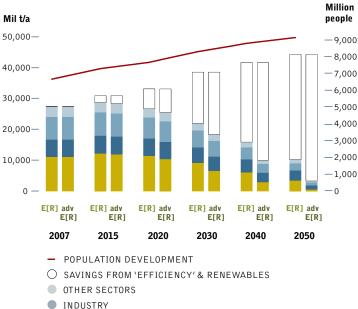

1977

image TRAFFIC JAM IN BANGKOK, THAILAND.

image 100 KW PV GENERATING PLANT NEAR BELLINZONA-LOCARNO RAILWAY LINE. GORDOLA, SWITZERLAND.

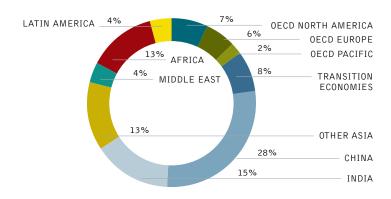
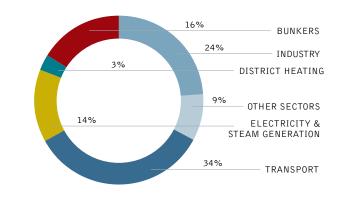


figure 6.12: global: development of CO² emissions by sector under both energy [r]evolution scenarios

- TRANSPORT
- PUBLIC ELECTRICITY & CHP

figure 6.13a: global: regional breakdown of CO² emissions in the advanced energy [r]evolution in 2050



development of global CO₂ emissions

Whilst worldwide emissions of CO_2 will almost double under the Reference scenario, under the Energy [R]evolution scenario they will decrease from 27,408 million tonnes in 2007 to 10,202 million tonnes in 2050 (excluding international bunkers). Annual per capita emissions will drop from 4.1 t to 1.1 t. In spite of the phasing out of nuclear energy and increasing demand, CO_2 emissions will decrease in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity will even reduce CO_2 emissions in the transport sector. With a share of 32% of total CO_2 in 2050, the power sector will fall significantly but remain the largest source of emissions, followed by transport.

The advanced Energy [R]evolution scenario will decrease global CO₂ emissions even further, resulting in emissions of 3,267 million tonnes CO₂/a by 2050 and a per capita level of 0.4 t CO₂/a. This would mean an overall CO₂ reduction of 84% from 1990 levels. Transport would retain the major share, accounting for 42% of all remaining energy related CO₂ emissions.

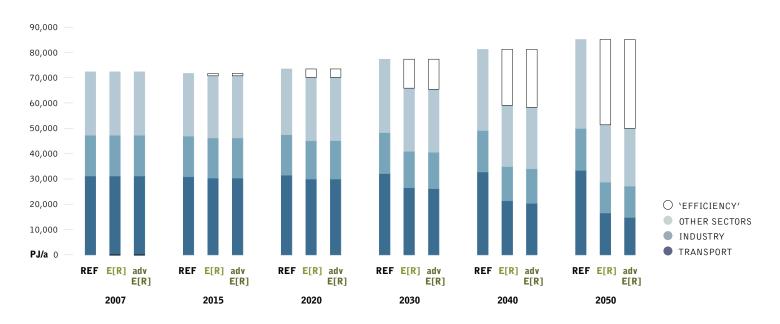
figure 6.13h: global: CO2 emissions by sector in the advanced energy [r]evolution in 2050

regional breakdown of energy [r]evolution scenario The outcome of the Energy [R]evolution scenario for each region of the world shows how the global pattern is adapted to regional circumstances both in terms of predicted demand for energy and the potential for developing different sources of future supply.

oecd north america

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA


oecd north america: energy demand by sector

Combining the projections on population development, GDP growth and energy intensity results in future development pathways for North America's final energy demand. These are shown in Figure 6.14 for the Reference and both Energy [R]evolution scenarios. Under the Reference scenario total primary energy demand increases by more than 12% from the current 115,803 PJ/a to 129,807 PJ/a in 2050. In the Energy [R]evolution scenario, primary energy demand decreases by 39% compared to current consumption and is expected to reach 70,222 PJ/a by 2050. In the advanced version, transport sector demand in OECD North America is 11% lower by 2050 than in the basic Energy [R]evolution scenario; other sectors remain basically the same.

Under the Energy [R]evolution scenario electricity demand is expected to decrease in the industry sector but to grow in the transport sector, whereas in the residential and service sectors electricity demand remains nearly constant (see Figure 6.15). Total electricity demand will rise to 5,578 TWh/a by the year 2050. Compared to the Reference scenario, efficiency measures in the industry, residential and service sectors avoid the generation of about 2,847 TWh/a. This reduction can be achieved in particular by introducing highly efficient electronic devices using the best available technology in all demand sectors. MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

Efficiency gains in the heat supply sector are even larger. Under the Energy [R]evolution scenario demand for heat supply is expected to decrease almost constantly (see Figure 6.16). Compared to the Reference scenario, consumption equivalent to 5,372 PJ/a is avoided through efficiency gains by 2050 in both Energy [R]evolution scenarios. As a result of energy-related renovation of the existing stock of residential buildings, as well as the introduction of low energy standards and 'passive houses' for new buildings, enjoyment of the same comfort and energy services will be accompanied by a much lower future energy demand.

In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will decrease by half to 16,564 PJ/a by 2050, saving 50% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns. The advanced version will further decrease demand - through lifestyle changes, increased efficiency in transport systems and a higher share of electric drives - to 44% of the reference case.

figure 6.14: oecd north america: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

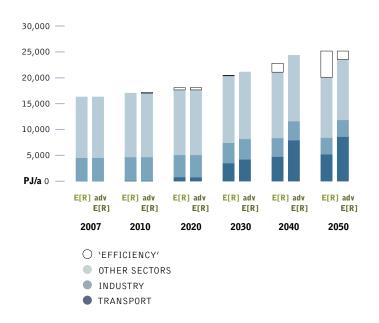

image CONTROL ROOM OF LUZ SOLAR POWER PLANT, CALIFORNIA, USA.

image LUZ INTERNATIONAL SOLAR POWER PLANT, CALIFORNIA, USA.

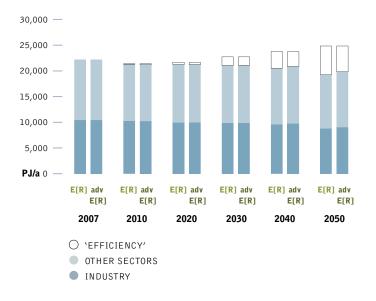
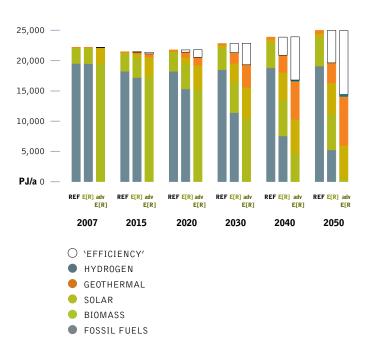


figure 6.15: oecd north america: development of electricity demand by sector (REF, E[R] & advanced E[R])

figure 6.16: oecd north america: development of heat demand by sector

oecd north america: heating and cooling supply

Today, renewables meet 12% of OECD North America's primary energy demand for heat supply, the main contribution coming from the use of biomass. The lack of district heating networks is a severe structural barrier to the large scale utilisation of geothermal and solar thermal energy. Dedicated support instruments are required to ensure a dynamic development.


In the Energy [R]evolution scenario, renewables provide 73% of OECD North America's total heating demand by 2050.

- Energy efficiency measures help to reduce the currently growing demand for heating and cooling, in spite of improving living standards.
- In the industry sector solar collectors, biomass/biogas and geothermal energy are increasingly substituted for conventional fossil-fuelled heating systems.

• A shift from coal and oil to natural gas in the remaining conventional applications leads to a further reduction of CO_2 emissions.

In the Energy [R]evolution scenario 5,372 PJ/a is saved by 2050, or 21% compared to the Reference scenario. The advanced version introduces renewable heating systems around five years ahead of the basic scenario. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes five to ten years earlier, resulting in a renewables share of 51% by 2030 and 97% by 2050.

figure 6.17: oecd north america: development of heat supply structure under 3 scenarios

oecd north america

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

oecd north america: electricity generation

The development of the electricity supply sector is characterised by a dynamically growing renewable energy market and an increasing share of renewable electricity. This will compensate for the phasing out of nuclear energy and reduce the number of fossil fuel-fired power plants required for grid stabilisation. By 2050, 95% of the electricity produced in OECD North America will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute over 68% of electricity generation. The advanced Energy [R]evolution scenario will not increase this share significantly. By 2030 77% and by 2050 98% will come from renewables, but the overall installed capacity of renewable generation (2,955 GW) will be higher than in the basic version.

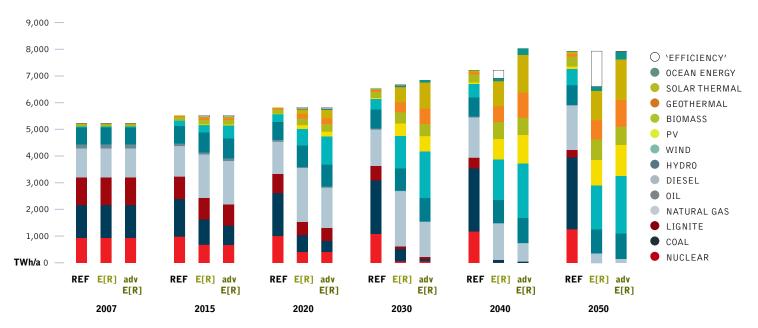

Table 6.3 shows the comparative evolution of the different renewable technologies in OECD North America over time. Up to 2020, hydro power and wind will remain the main contributors to the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaic and solar thermal (CSP) energy. MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

table 6.3: oecd north america: projection of renewable electricity generation capacity under both energy [r]evolution scenarios

IN GW 2007 2020 2030 2040 2050 Hydro E[R] 183 227 237 248 255 advanced E[R] 183 234 247 265 267 Biomass F[R] 44 74 113 136 14 advanced EER1 14 48 79 114 123 Wind F[R] 19 240 448 561 605 advanced E[R] 19 401 642 747 797 99 Geothermal E[R] 4 23 52 82 4 79 130 31 143 advanced E[R] ΡV F[R] 1 120 402 653 821 advanced E[R] 1 151 478 920 980 CSP E[R] 173 270 0 57 263 advanced E[R] 0 106 295 392 361 E[R] 0 19 52 108 156 Ocean energy advanced E[R] 0 32 85 235 284 Total E[R] 221 731 1,438 2,027 2,341 221 1,004 1,905 2,804 2,955 advanced E[R]

figure 6.18: oecd north america: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

image CONCENTRATING SOLAR POWER (CSP) AT A SOLAR FARM IN DAGGETT, CALIFORNIA, USA.

image AN OFFSHORE DRILLING RIG DAMAGED BY HURRICANE KATRINA, GULF OF MEXICO.

oecd north america: future costs of electricity generation

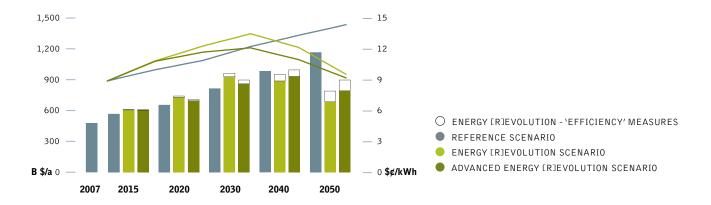
Figure 6.19 shows that the introduction of renewable technologies under the Energy [R]evolution scenario significantly decreases the future costs of electricity generation compared to the Reference scenario. Because of the lower CO_2 intensity of electricity generation, costs will become economically favourable under the Energy [R]evolution scenario and by 2050 will be more than 5 \$cents/kWh below those in the Reference version.

Under the Reference scenario, on the other hand, unchecked growth in demand, an increase in fossil fuel prices and the cost of CO₂ emissions result in total electricity supply costs rising from today's \$470 billion per year to more than \$1,150 billion in 2050. Figure 6.19 shows that the Energy [R]evolution scenario not only complies with OECD North America's CO₂ reduction targets but also helps to stabilise energy efficiency and shifting energy supply to renewables lead to long term costs for electricity supply that are one third lower than in the Reference scenario.

Despite the increased demand for electricity, especially in the transport and industry sectors, the overall supply costs in the advanced version are \$62 billion lower in 2030 but \$108 billion higher in 2050 than in the basic Energy [R]evolution scenario.

oecd north america: job results

The Energy [R]evolution scenarios lead to more energy sector jobs in OECD North America at every stage of the projection.


• There are 1.59 million power sector jobs in the Energy [R]evolution scenario and 2.01 million in the advanced version by 2015, compared to 660,000 in the Reference scenario.

• By 2020 job numbers reach over 1.6 million in the Energy ERJevolution scenario (1.85 million in the advanced version), one million more than in the Reference scenario.

• By 2030 job numbers remain roughly on 2020 levels in the Energy [R]evolution scenario to 1.4 million (1.7 million in the advanced version) and reach nearly 0.7 million in the Reference scenario.

Table 6.4 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Wind shows particularly strong growth in both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

figure 6.19: oecd north america: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

oecd north america

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

table 6.4: oecd north america: employment & investment

		RE	FERENCE	EI	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030	
Construction & installation	0.12 m	0.10 m	0.09 m	0.62 m	0.59 m	0.34 m	0.80 m	0.72 m	0.57 m	
Manufacturing	0.10 m	0.06 m	0.06 m	0.45 m	0.37 m	0.22 m	0.67 m	0.44 m	0.28 m	
Operations & maintenance	0.24 m	0.27 m	0.32 m	0.29 m	0.41 m	0.60 m	0.31 m	0.48 m	0.70 m	
Fuel	0.20 m	0.21 m	0.22 m	0.23 m	0.24 m	0.27 m	0.23 m	0.21 m	0.20 m	
Total Jobs	0.66 m	0.63 m	0.69 m	1.59 m	1.60 m	1.43 m	2.01 m	1.85 m	1.74 m	
Coal	0.15 m	0.14 m	0.14 m	0.08 m	0.05 m	0.02 m	0.07 m	0.04 m	0.01 m	
Gas, oil and diesel	0.14 m	0.14 m	0.14 m	0.22 m	0.20 m	0.21 m	0.20 m	0.15 m	0.13 m	
Nuclear	0.05 m	0.06 m	0.06 m	0.03 m	0.02 m	0.00 m	0.03 m	0.02 m	0.00 m	
Renewables	0.32 m	0.30 m	0.34 m	1.26 m	1.34 m	1.19 m	1.72 m	1.64 m	1.61 m	
Total Jobs	0.66 m	0.63 m	0.69 m	1.59 m	1.60 m	1.43 m	2.01 m	1.85 m	1.74 m	

oecd north america: transport

A key target in OECD North America is to introduce incentives for people to drive smaller cars, something almost completely absent today. In addition, it is vital to shift transport use to efficient modes like rail, light rail and buses, especially in the expanding large metropolitan areas. Together with rising prices for fossil fuels, these changes reduce the huge growth in car sales projected under the Reference scenario. Energy demand from the transport sector is reduced to 50% in the Energy [R]evolution scenario and to 44% in the advanced version compared to the Reference scenario.

Highly efficient propulsion technology with hybrid, plug-in hybrid and battery-electric power trains will bring large efficiency gains. By 2030, electricity will provide 13% of the transport sector's total energy demand in the Energy [R]evolution scenario, while in the advanced version the share will already reach 16% in 2030 and 58% by 2050.

figure 6.20: oecd north america: transport under 3 scenarios

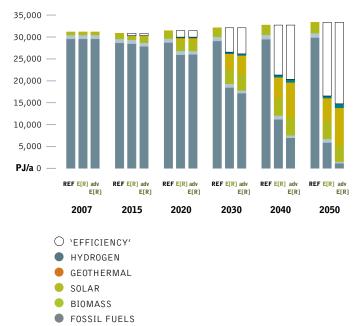


image SUN SETTING OFF THE GULF OF MEXICO.

image CONCENTRATING SOLAR POWER (CSP) AT A SOLAR FARM IN DAGGETT, CALIFORNIA, USA.

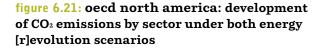
key results

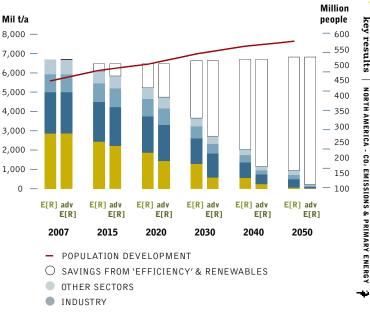
NORT

8

EMISSIONS & PRIMARY ENERGY

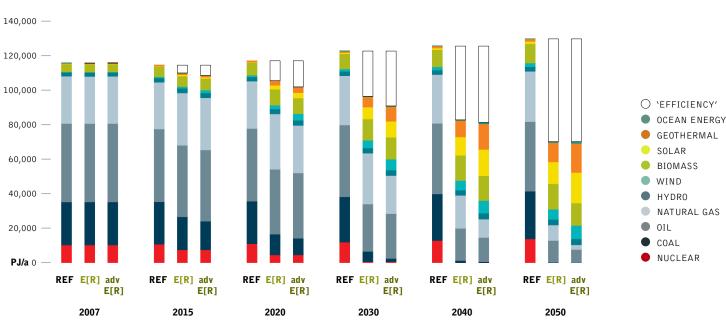
oecd north america: development of CO₂ emissions


Whilst OECD North America's emissions of CO₂ will increase by 2% between 2007 and 2050 under the Reference scenario, under the Energy [R]evolution scenario they will decrease from 6,681 million tonnes in 2007 to 942 million tonnes in 2050. Annual per capita emissions will drop from 14.9 t to 1.6 t. In spite of the phasing out of nuclear energy and increasing demand, CO2 emissions will decrease in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity in the transport sector will even reduce CO₂ emissions.


With a share of 46% of total CO₂, the transport sector will be the largest source of emissions in 2050. The advanced Energy [R]evolution scenario reduces energy related CO₂ emissions over a period ten to 15 years faster than the basic scenario, leading to 5.1 t per capita by 2030 and 0.4 t by 2050. By 2050, OECD North America's CO₂ emissions are 96% below 1990 levels.

oecd north america: primary energy consumption

Taking into account the assumptions discussed above, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.22. Compared to the Reference scenario, overall primary energy demand will be reduced to 54% in 2050. Around 69% of the remaining demand will be covered by renewable energy sources.


The advanced version phases out coal and oil about ten to 15 years faster than the basic scenario. This is made possible mainly by the replacement of new coal power plants with renewables after a 20 rather than 40 year lifetime and a faster introduction of electric vehicles in the

- TRANSPORT
- PUBLIC ELECTRICITY & CHP

transport sector to replace oil combustion engines. This leads to an overall renewable primary energy share of 44% in 2030 and 85% in 2050. Nuclear power is phased out in both Energy [R]evolution scenarios soon after 2040.

figure 6.22: oecd north america: development of primary energy consumption under three scenarios

latin america

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

latin america: energy demand by sector

Combining the projections on population development, GDP growth and energy intensity results in future development pathways for Latin America's energy demand. These are shown in Figure 6.23 for both the Reference and Energy [R]evolution scenarios. Under the Reference scenario total primary energy demand more than doubles from the current 22,733 PJ/a to 41,327 PJ/a in 2050. In the Energy [R]evolution scenario a smaller 25% increase from current consumption is expected by 2050, reaching 28,354 PJ/a and 27,326 PJ/a in the advanced version.

Under the Energy [R]evolution scenario, electricity demand is expected to increase disproportionately, with households and services the main source of growing consumption. This is due to wider access to energy services in developing countries (see Figure 6.24). With the exploitation of efficiency measures, however, an even higher increase can be avoided, leading to electricity demand of around 2,185 TWh/a in 2050. Compared to the Reference scenario, efficiency measures in the industry, residential and service sectors avoid the generation of about 388 TWh/a. This reduction can be achieved in particular by introducing highly efficient electronic devices. Employment of solar architecture in both residential and commercial buildings will help to curb the growing demand for air-conditioning. MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

The advanced Energy [R]evolution scenario introduces electric vehicles earlier, and more journeys – for both freight and passengers - are shifted to electric trains and public transport. Fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity production in the advanced version is higher, and reaches 2,502 TWh/a in 2050, 17% above the Reference case.

Efficiency gains in the heat supply sector are even larger. Under both Energy [R]evolution scenarios, final demand for heat supply can even be reduced (see Figure 6.25). Compared to the Reference scenario, consumption equivalent to 1,586 PJ/a is avoided through efficiency gains by 2050. In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will increase by a 13% to 6,089 PJ/a by 2050, saving 53% compared to the Reference scenario.

The advanced Energy [R]evolution scenario goes one step further and factors in a faster decrease in transport energy demand after a peak in 2030. This is achieved through a mix of increased public transport, reduced annual person-kilometres and wider use of more efficient engines and electric drives. While electricity demand increases, the overall final energy use falls to 21,403 PJ/a, 37% lower than in the Reference case.

35,000 30,000 25,000 20,000 15,000 10,000 ○ `EFFICIENCY' 5,000 OTHER SECTORS INDUSTRY TRANSPORT PJ/a 0 REF E[R] adv RFF E[R] adv RFF FIR1 vhc RFF FIR1 adv RFF E[R] vhc REF F[R] adv E[R] E[R] E[R] E[R] E[R] E[R] 2007 2015 2040 2020 2030 2050

figure 6.23: latin america: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

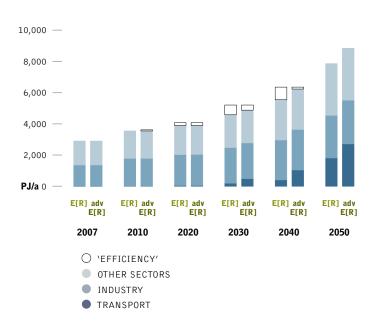

image VOLUNTEERS CHECK THE SOLAR PANELS ON TOP OF GREENPEACE POSITIVE ENERGY TRUCK, BRAZIL.

image WIND TURBINES IN FORTALEZ, CEARÀ, BRAZIL.

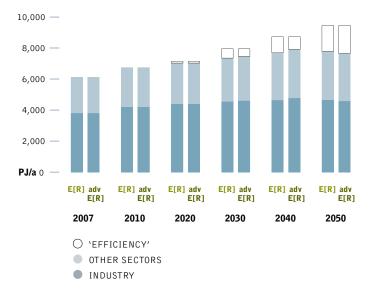


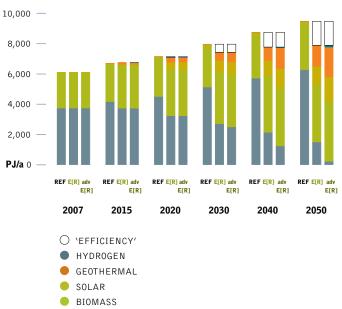
figure 6.24: latin america: development of electricity demand by sector (REF, E[R] & advanced E[R])

figure 6.25: latin america: development of heat demand by sector

latin america: heating and cooling supply

Today, renewables provide around 39% of primary energy demand for heat supply in Latin America, the main contribution coming from the use of biomass. The availability of less efficient but cheap appliances is a severe structural barrier to efficiency gains. Largescale utilisation of geothermal and solar thermal energy for heat supply will be largely restricted to the industrial sector.

In the Energy [R]evolution scenario renewables provide 81% of Latin America's total heating and cooling demand by 2050.


• Energy efficiency measures can restrict the future primary energy demand for heat and cooling supply to a 29% increase, in spite of improving living standards.

• In the industry sector solar collectors, biomass/biogas as well as geothermal energy are increasingly replacing conventional fossil-fuelled heating systems.

- A shift from coal and oil to natural gas in the remaining conventional applications leads to a further reduction of CO_2 emissions.

In the Energy [R]evolution scenario 1,586 PJ/a is saved by 2050, or 17% compared to the Reference scenario. The advanced Energy [R]evolution version introduces renewable heating systems around five years ahead of the basic scenario. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes five to ten years earlier, resulting in a renewables share of 66% by 2030 and 98% by 2050.

figure 6.26: latin america: development of heat supply structure under 3 scenarios

FOSSIL FUELS

latin america

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

latin america: electricity generation

The development of the electricity supply sector is characterised by an increasing share of renewable electricity. By 2050, 97% of the electricity produced in Latin America will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV - will contribute more than 47% of electricity generation. The installed capacity of renewable energy technologies will grow from the current 143 GW to 705 GW in 2050, increasing renewable capacity by a factor of five within the next 40 years.

Figure 6.27 shows the comparative evolution of the different renewable technologies over time. Up to 2020, hydro power and wind will remain the main contributors to the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaic and solar thermal (CSP) energy.

The advanced Energy [R]evolution scenario projects a faster market development pathway, with higher annual growth rates achieving a renewable electricity share of 89% by 2030 and 98% by 2050. The installed capacity of renewables will reach 379 GW in 2030 and 842 GW by 2050, 19% higher than in the basic version.

None of these numbers - even in the advanced Energy [R]evolution scenario - utilise the maximum known technical potential of all the renewable resources. While the deployment rate compared to the technical potential for hydro power, for example, is relatively high at 33% in the advanced Energy [R]evolution scenario, for solar only less than 1% has been used both in the basic version and in the advanced scenario.

MIDDLE EAST TRANSITION ECONOMIES INDIA

DEVELOPING ASIA CHINA **OECD PACIFIC**

table 6.5: latin america: projection of renewable electricity generation capacity under both energy [r]evolution scenarios

IN GW 2007 2020 2030 2040 2050 Hydro E[R] 138 160 164 165 172 advanced E[R] 138 160 164 165 172 Biomass 4 23 44 82 F[R] 60 advanced EER1 4 23 44 62 81 Wind F[R] 0 33 72 160 280 0 45 88 162 304 advanced E[R] 3 4 9 Geothermal E[R] 1 16 1 2 13 23 advanced E[R] 6 ΡV F[R] 0 10 51 64 118 advanced E[R] 0 20 63 114 193 CSP E[R] 0 3 30 6 10 advanced E[R] 0 6 13 29 52 Ο 1 1 3 8 Ocean energy E[R] advanced E[R] 0 1 1 8 17 Total 705 E[R] 143 233 342 473 143 258 379 554 842

advanced E[R]

figure 6.27: latin america: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

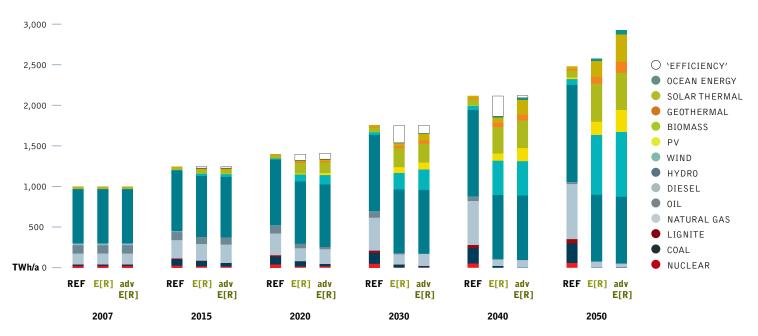
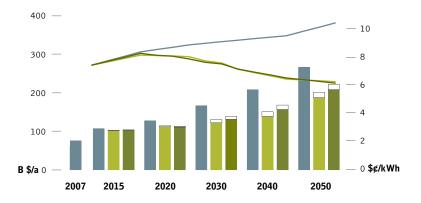


image GROUP OF YOUNG PEOPLE FEEL THE HEAT GENERATED BY A SOLAR COOKING STOVE IN BRAZIL.

image IN 2005 THE WORST DROUGHT IN MORE THAN 40 YEARS DAMAGED THE WORLD'S LARGEST RAIN FOREST IN THE BRAZILIAN AMAZON, WITH WILDFIRES BREAKING OUT, POLLUTED DRINKING WATER AND THE DEATH OF MILLIONS FISH AS STREAMS DRY UP.

latin america: future costs of electricity generation


Figure 6.28 shows that the introduction of renewable technologies under the Energy [R]evolution scenario significantly decreases the future costs of electricity generation compared to the Reference scenario. Because of the lower CO_2 intensity of electricity generation, costs will become economically favourable under the Energy [R]evolution scenario and by 2050 will be more than 4 cents/kWh below those in the Reference scenario.

Under the Reference scenario, on the other hand, unchecked growth in demand, an increase in fossil fuel prices and the cost of CO₂ emissions result in total electricity supply costs rising from today's \$75 billion per year to more than \$260 billion in 2050. Figure 6.28 shows that the Energy [R]evolution scenario not only complies with Latin America's CO₂ reduction targets but also helps to stabilise energy costs and relieve the economic pressure on society. Increasing energy efficiency and shifting energy supply to renewables leads to long term costs for electricity supply that are one third lower than in the Reference scenario.

The advanced Energy [R]evolution scenario will lead to a higher proportion of variable power generation sources (PV, wind and ocean power), accounting for 21% by 2030. Expansion in the use of smart grids, demand side management and storage capacity through an increased share of electric vehicles will therefore be introduced to ensure better grid integration and power generation management.

In both Energy [R]evolution scenarios the specific generation costs are almost the same up to 2050. Due to the increased demand for electricity, especially in the transport and industry sectors, the overall supply costs in the advanced version are \$9 billion higher in 2030 and \$21 billion higher in 2050 than in the basic Energy [R]evolution scenario.

figure 6.28: latin america: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

latin america: job results

The Energy [R]evolution scenarios result in more energy sector jobs in Latin America at every stage of the projection.

• There are 560,000 power sector jobs in the Energy [R]evolution scenario and 700,000 in the advanced version by 2015, compared to 430,000 in the Reference scenario.

• By 2020 job numbers reach over 720,000 in the Energy [R]evolution scenario (740,000 in the advanced version), 260,000 more than in the Reference scenario.

• By 2030 job numbers climb slightly in the Energy [R]evolution scenario to nearly 870,000, (980,000 in the advanced version) and reach only 570,000 in the Reference scenario.

Table 6.6 shows the change in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Wind shows particularly strong growth in both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

- ENERGY [R]EVOLUTION 'EFFICIENCY' MEASURES
 - REFERENCE SCENARIO
- ENERGY [R]EVOLUTION SCENARIO
- ADVANCED ENERGY [R]EVOLUTION SCENARIO

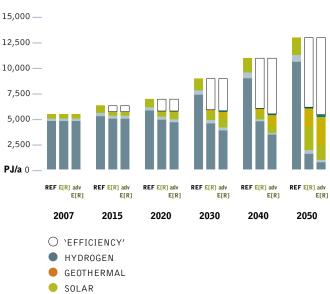
latin america

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

DEVELOPING ASIA CHINA OECD PACIFIC

table 6.6: latin america: employment & investment


		RE	FERENCE	Eľ	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030	
Construction & installation	0.11 m	0.11 m	0.11 m	0.17 m	0.21 m	0.09 m	0.29 m	0.22 m	0.18 m	
Manufacturing	0.01 m	0.01 m	0.02 m	0.06 m	0.07 m	0.13 m	0.09 m	0.07 m	0.14 m	
Operations & maintenance	0.14 m	0.16 m	0.20 m	0.18 m	0.31 m	0.50 m	0.18 m	0.32 m	0.52 m	
Fuel	0.17 m	0.19 m	0.24 m	0.15 m	0.15 m	0.15 m	0.14 m	0.13 m	0.15 m	
Total Jobs	0.43 m	0.48 m	0.57 m	0.56 m	0.72 m	0.87 m	0.70 m	0.74 m	0.98 m	
Coal	0.08 m	0.09 m	0.12 m	0.04 m	0.03 m	0.01 m	0.03 m	0.01 m	0.01 m	
Gas, oil and diesel	0.11 m	0.12 m	0.14 m	0.10 m	0.07 m	0.04 m	0.10 m	0.06 m	0.04 m	
Nuclear	0.01 m	0.01 m	0.01 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	
Renewables	0.23 m	0.26 m	0.31 m	0.42 m	0.63 m	0.82 m	0.56 m	0.66 m	0.94 m	
Total Jobs	0.43 m	0.48 m	0.57 m	0.56 m	0.72 m	0.87 m	0.70 m	0.74 m	0.98 m	

latin america: transport

Despite a huge growth in transport services, the energy consumption in the transport sector by 2050 can be limited to 42% under the Energy [R]evolution scenario and 47% in the advanced case compared to the reference case. Dependence on fossil fuels for 90% of this supply is transformed by using 37% biofuels and 30% electricity in the basic version. The advanced Energy [R]evolution scenario increases the share of electricity in the transport sector up to 51%, while the use of biomass and shifted partly towards the power sector and industrial heat processes.

Both Energy [R]evolution scenarios assume measures to change the current pattern of car sales, with one third in future taken up by medium-sized vehicles and more than half by small vehicles. Technical progress increases the share of hybrid vehicles to 50% (75% in the advanced version) by 2050. Incentives to use more efficient transport modes reduce vehicle kilometres travelled to an average of 11,000 km per annum.

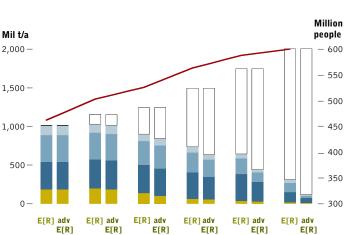
figure 6.29: latin america: transport under 3 scenarios

FOSSIL FUELS

image CHILDREN IN THE FLOODED CACAO PEREIRA VILLAGE IN THE AMAZON, BRAZIL. THE NEGRO RIVER ROSE TO 29.77 METERS, SURPASSING THE MARK OF 29.69 METERS REGISTERED IN 1953, THE LAST RECORDED FLOOD.

image MAN MADE FIRES NEAR ARAGUAYA RIVER OUTSIDE THE ARAGUAYA NATIONAL PARK. FIRES ARE STARTED TO CLEAR THE LAND FOR FUTURE CATTLE USE.

latin america: development of CO₂ emissions


Whilst Latin America's emissions of CO_2 will almost double under the Reference scenario, under the Energy [R]evolution scenario they will decrease from 1,010 million tonnes in 2007 to 312 million tonnes in 2050. Annual per capita emissions will drop from 2.2 t to 0.5 t.

The advanced Energy [R]evolution scenario will shift the peak of energy related CO_2 emissions to approximately 5 years earlier than in the basis version, leading to 1.1 t per capita by 2030 and 0.2 t by 2050. By 2050, Latin America´s CO_2 emissions will be 80% below 1990 levels.

In spite of the phasing out of nuclear energy and increasing demand, CO_2 emissions will decrease in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity in vehicles will even reduce CO_2 emissions in the transport sector. With a share of 54% of total CO_2 in 2050, the transport sector will remain the largest source of emissions.

latin america: primary energy consumption

Taking into account the assumptions discussed above, the resulting primary energy consumption under both Energy [R]evolution scenarios is shown in Figure 6.31. Compared to the Reference scenario, overall primary energy demand will be reduced by about 31%, and 34% in the advanced version, by 2050. Latin America's primary energy demand will increase from 22,513 PJ/a to 28,339 PJ/a (27,311 PJ/a in the advanced version). Under the advanced Energy [R]evolution scenario a share of around 88% of the remaining energy demand will be covered by renewable sources.

2030

2040

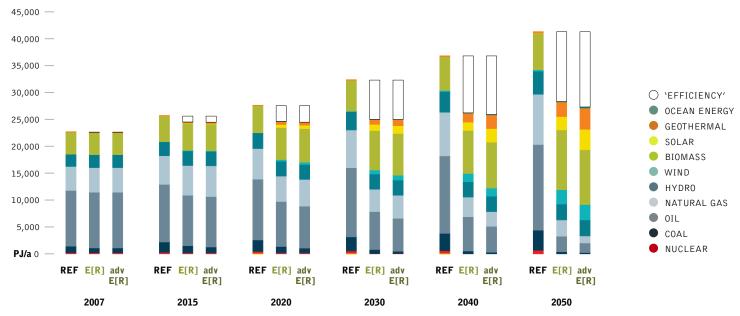
2050

figure 6.30: latin america: development of CO₂ emissions by sector under both energy [r]evolution scenarios

2015

○ SAVINGS FROM 'EFFICIENCY' & RENEWABLES

2020


OTHER SECTORS

2007

- INDUSTRY
- TRANSPORT

figure 6.31: latin america: development of primary energy consumption under three scenarios

oecd europe

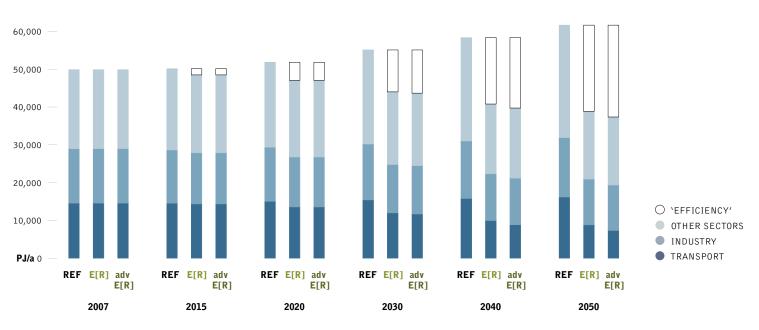
GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

oecd europe: energy demand by sector

The future development pathways for Europe's energy demand are shown in Figure 6.32 for the Reference and both Energy ER]evolution scenarios. Under the Reference scenario, total primary energy demand in OECD Europe increases by more than 7% from the current 77,585 PJ/a to 83,102 PJ/a in 2050. The energy demand in 2050 in the Energy [R]evolution scenario decreases by 36% and 38% in the advanced case, compared to current consumption. By 2050 it is expected to reach 49,853 PJ/a and 48,489 PJ/a in the advanced scenario.

Efficiency gains in the heat supply sector are larger than in the electricty sector. Under both Energy [R]evolution scenarios, final demand for heat supply can even be reduced significantly (see Figure 6.34). Compared to the Reference scenario, consumption equivalent to 7,211 PJ/a, is avoided through efficiency gains by 2050. As a result of energy-related renovation of the existing stock of residential buildings, as well as the introduction of low energy standards and 'passive houses' for new buildings, enjoyment of the same comfort and energy services will be accompanied by a much lower future energy demand.


MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

***** 🦛

Under the Energy [R]evolution scenario, electricity demand in the industry as well as in the residential and service sectors is expected to decrease after 2015 (see Figure 6.33). Because of the growing use of electric vehicles however, electricity demand increases to 3,730 TWh/a in the year 2050. Compared to the Reference scenario, efficiency measures in industry and other sectors avoid the generation of about 1,850 TWh/a. This reduction in energy demand can be achieved in particular by introducing highly efficient electronic devices using the best available technology.

In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will decrease by almost half to 8,848 PJ/a by 2050, saving 45% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility related behaviour patterns.

The advanced Energy [R]evolution scenario introduces electric vehicles earlier and more transport - both from freight and persons - will be shifted towards electric trains and public transport. Besides fossil fuels are phased out quicker from industrial process heat generation and shifted towards electric geothermal heatpumps and hydrogen. Therefore the electricity demand in the advanved Energy [R]evolution is higher and reaches 4,375 TWh/a in 2050, 8% below the reference case.

figure 6.32: oecd europe: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

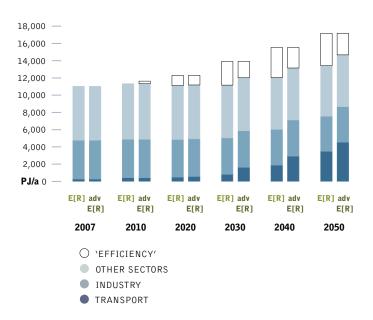

image image OFFSHORE WINDFARM, MIDDELGRUNDEN, COPENHAGEN, DENMARK.

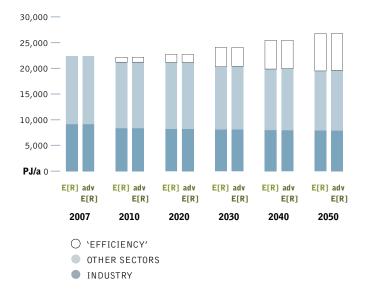
image MAN USING METAL GRINDER ON PART OF A WIND TURBINE MAST IN THE VESTAS FACTORY, CAMBELTOWN, SCOTLAND, GREAT BRITAIN.

figure 6.33: oecd europe: development of electricity demand by sector (REF, E[R] & advanced E[R])

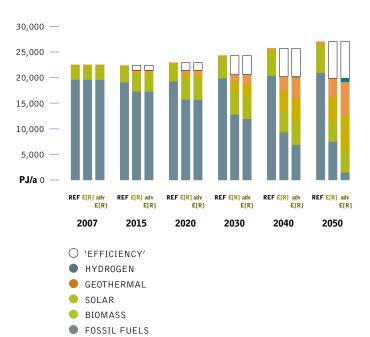
oecd europe: heating and cooling supply

Renewables currently provide 13% of OECD Europe's energy demand for heat supply, the main contribution coming from the use of biomass. The lack of district heating networks is a severe structural barrier to the large scale utilisation of geothermal and solar thermal energy. In the Energy [R]evolution scenario, renewables provide 62% of OECD Europe's total heating and cooling demand in 2050.

• Energy efficiency measures can decrease the current demand for heat supply by 27%, in spite of improving living standards.


• For direct heating, solar collectors, biomass/biogas as well as geothermal energy are increasingly substituting for fossil fuel-fired systems.

The advanced Energy [R]evolution case introduces efficiency measures e.g. via strict building standards and renewable heating systems around 5 years ahead of the Energy [R]evolution scenario.


• Energy efficiency: Compared to the Reference scenario, 7,211 PJ/a or 27% are safed by 2050.

• Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programms 5 to 10 years earlier. The total RES share thereby increases to 42% by 2030 and 92% by 2050.

figure 6.34: oecd europe: development of heat demand by sector

figure 6.35: oecd europe: development of heat supply structure under 3 scenarios

oecd europe

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

oecd europe: electricity generation

The development of the electricity supply sector in the Energy [R]evolution scenario is characterised by a dynamically growing renewable energy market. This will compensate for the phasing out of nuclear energy and reduce the number of fossil fuel-fired power plants required for grid stabilisation. By 2050, 91% of the electricity produced in OECD Europe will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute 54% of electricity generation. The installed capacity of renewable energy technologies will grow from the current 269 GW to 1,175 GW in 2050, increasing renewable capacity by a factor of 4.

The advanced Energy [R]evolution scenario takes a faster market development with higher annual growth rates into account and will achieve a renewable electricity share from 69% by 2030 and 97% by 2050. The installed capacity of renewables will reach 966 GW in 2030 and 1,506 GW by 2050, 28% higher than in the Energy [R]evolution scenario.

Figure 6.36 shows the evolution of the European electricity mix under 3 different scenarios. Up to 2020 hydro and wind will remain the main contributors of the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaics and solar thermal (CSP) energy. The advanced Energy ERJevolution scenario will lead to a higher share of fluctuating power generation source (photovoltaic, wind and ocean) of 31% by 2030, therefore the expansion of smart grids, demand side management (DSM) and storage capacity from the increased share of electric vehicles will be used for a better grid integration and power generation management.

MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

2020

2030

2040

2050

-

table 6.7: oecd europe: projection of renewable electricity generation capacity under both energy [r]evolution scenarios

IN GW 2007

	advanced E[R]	269	663	966	1,243	1,506
Total	E[R]	269	634	814	1,058	1,175
	advanced E[R]	0	3	15	26	42
Ocean energy	E[R]	0	1	3	8	13
	advanced E[R]	0	15	44	74	100
CSP	E[R]	0	9	17	27	33
	advanced E[R]	5	138	221	369	510
PV*	E[R]	5	120	179	301	348
	advanced E[R]	2	7	34	55	86
Geothermal	E[R]	2	4	8	21	29
	advanced E[R]	57	249	386	439	483
Wind	E[R]	57	249	340	413	448
	advanced E[R]	21	58	76	90	94
Biomass	E[R]	21	59	76	97	113
	advanced E[R]	185	192	190	191	191
Hydro	E[R]	185	192	190	191	191

* ACCORDING TO INDUSTRY PROJECTIONS OUTLINED IN RE-THINKING 2050, A MUCH HIGHER INSTALLED CAPACITY FIGURE FOR PV IS ASSUMED (MORE THAN 900 GW BY 2050).

figure 6.36: oecd europe: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

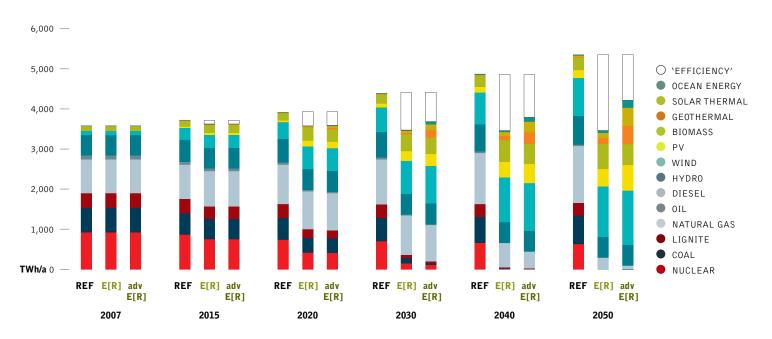


image PLANT NEAR REYKJAVIK WHERE ENERGY IS PRODUCED FROM THE GEOTHERMAL ACTIVITY.

image WORKERS EXAMINE PARABOLIC TROUGH COLLECTORS IN THE PS10 SOLAR TOWER PLANT AT SAN LUCAR LA MAYOR OUTSIDE SEVILLE, SPAIN, 2008.

oecd europe: future costs of electricity generation

Figure 6.37 shows that the introduction of renewable technologies under the Energy [R]evolution scenario slightly increases the costs of electricity generation compared to the Reference scenario. This difference will be less than 1 cent/kWh up to 2020, however. Because of the lower CO_2 intensity of electricity generation, electricity generation costs will become economically favourable under the Energy [R]evolution scenario by 2020, and by 2050 costs will be more than 4 cents/kWh below those in the Reference scenario.

Under the Reference scenario, the unchecked growth in demand, the increase in fossil fuel prices and the cost of CO_2 emissions result in total electricity supply costs rising from today's \$309 billion per year to more than \$685 billion in 2050. Figure 6.37 shows that the Energy ERJevolution scenario not only complies with Europe's CO_2 reduction targets but also helps to stabilise energy costs and relieve the economic pressure on society. Increasing energy efficiency and shifting energy supply to renewables lead to long term costs for electricity supply that are one third lower than in the Reference scenario.

In both Energy [R]evolution scenarios the specific generation costs are almost on the same level until 2030. In 2050 the advanced Energy [R]evolution scenario has with 8 cents/kWh lower generation costs, because of better economics of scale in renewable power equipment.

oecd europe: job results

• There are 1.6 million power sector jobs in both Energy ER]evolution scenarios in OECD Europe in 2015 and 820,000 in the Reference scenario.

• In 2020, job numbers reach one million in the Energy ERJevolution scenario, 1.2 million in the advanced and 750,000 in the Reference scenario.

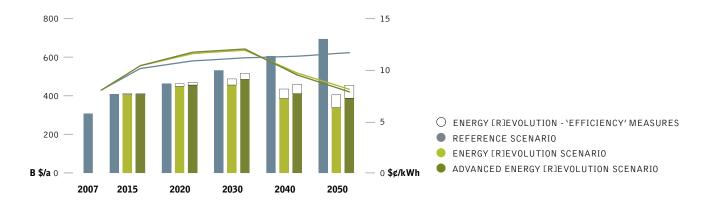

• Job numbers reach 1.6 million in 2030 in both Energy [R]evolution scenario, compared to 750,000 in the Reference scenario.

Table 6.8. shows the change in job numbers under all scenarios between 2015 and 2020, and 2020 and 2030. New renewable energy jobs in both [R]evolution scenarios are dominated by wind and solar technologies, and there are losses in the coal sector even in the reference case.

In case the decline factor in productivity for 2020 and 2030 will not factored in, the European renewable industry would employ over one million people by 2020 and 2030, compared to around 800,000.

There are more energy sector jobs in OECD Europe in both [R]evolution scenarios at every stage. In 2015, both Energy [R]evolution have about a quarter of a million jobs more than in the Reference scenario. By 2020, the [R]evolution scenarios have 250,000 (450,000 additional jobs). The gap between the two scenarios remains similar in 2030.

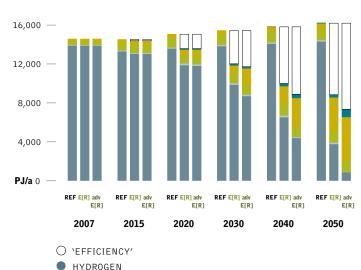
figure 6.37: oecd europe: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

oecd europe

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

table 6.8: oecd europe: employment & investment


		RE	FERENCE	EI	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030	
Construction & installation	0.11 m	0.08 m	0.08 m	0.54 m	0.13 m	0.14 m	0.49 m	0.19 m	0.17 m	
Manufacturing	0.14 m	0.10 m	0.06 m	0.43 m	0.24 m	0.19 m	0.48 m	0.33 m	0.23 m	
Operations & maintenance	0.27 m	0.29 m	0.33 m	0.30 m	0.40 m	0.45 m	0.31 m	0.40 m	0.48 m	
Fuel	0.29 m	0.28 m	0.28 m	0.34 m	0.28 m	0.19 m	0.32 m	0.27 m	0.15 m	
Total Jobs	0.82 m	0.75 m	0.75 m	1.62 m	1.03 m	0.98 m	1.59 m	1.19 m	1.04 m	
Coal	0.25 m	0.23 m	0.23 m	0.29 m	0.18 m	0.08 m	0.26 m	0.18 m	0.03 m	
Gas, oil and diesel	0.05 m	0.05 m	0.05 m	0.06 m	0.05 m	0.05 m	0.06 m	0.05 m	0.05 m	
Nuclear	0.04 m	0.03 m	0.03 m	0.03 m	0.02 m	0.01 m	0.03 m	0.02 m	0.01 m	
Renewables	0.48 m	0.43 m	0.44 m	1.24 m	0.77 m	0.84 m	1.24 m	0.94 m	0.95 m	
Total Jobs	0.82 m	0.75 m	0.75 m	1.62 m	1.03 m	0.98 m	1.59 m	1.19 m	1.04 m	

oecd europe: transport

In the transport sector, it is assumed under the Energy [R]evolution scenario that an energy demand reduction of 7,354 PJ/a can be achieved by 2050, saving 45% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns. Implementing attractive alternatives to individual cars, the car stock is growing slower than in the Reference scenario.

A slight shift towards smaller cars triggered by economic incentives together with a significant shift in propulsion technology towards electrified power trains and a reduction of vehicle kilometres travelled by 0.25% per year leads to significant final energy savings. In 2030, electricity will provide 7% of the transport sector's total energy demand in the Energy [R]evolution, while in the advanced case the share will already be 14% in 2030 and 62% by 2050.

figure 6.38: oecd europe: transport under 3 scenarios

GEOTHERMAL

SOLAR

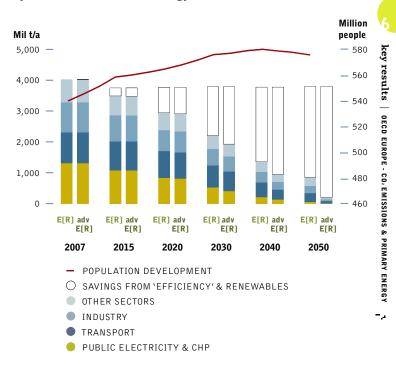
- BIOMASS
- FOSSIL FUELS

image INSTALLATION AND TESTING OF A WINDPOWER STATION IN RYSUMER NACKEN NEAR EMDEN WHICH IS MADE FOR OFFSHORE USAGE ONSHORE. A WORKER CONTROLS THE SECURITY LIGHTS AT DARK.

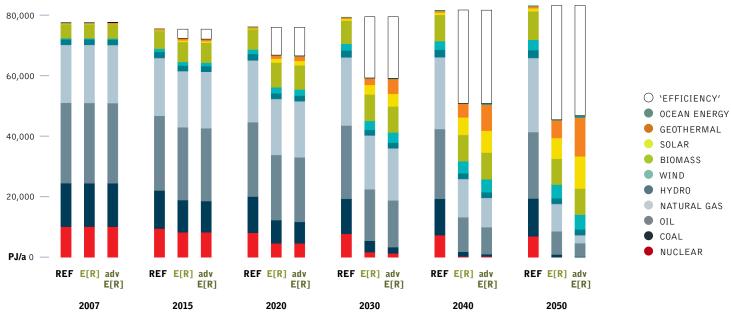
image THE MARANCHON WIND FARM IS THE LARGEST IN EUROPE WITH 104 GENERATORS, AND IS OPERATED BY IBERDROLA, THE LARGEST WIND ENERGY COMPANY IN THE WORLD.

oecd europe: development of CO₂ emissions

While CO_2 emissions in OECD Europe will decrease by 5% in the Reference scenario by 2050, under the Energy [R]evolution Scenario they will decrease from 4,017 million tonnes in 2007 to 850 million t in 2050. Annual per capita emissions will drop from 7.4 t to 1.5 t. In spite of the phasing out of nuclear energy and increasing demand, CO_2 emissions will decrease in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity in vehicles will reduce emissions in the transport sector. With a share of 7% of total CO_2 in 2050, the power sector will drop below transport and other sectors as the largest sources of emissions.


The advanced Energy [R]evolution scenario reduces energy related CO₂ emissions about 10 to 15 years faster than the Energy [R]evolution scenario, leading to 3.4 t per capita by 2030 and 0.4 t by 2050. By 2050, OECD Europe's CO₂ emissions are 5% of 1990 levels.

oecd europe: primary energy consumption


Taking into account the assumptions discussed above, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.40. Compared to the Reference scenario, overall energy demand will be reduced by 45% in 2050. Around 63% of the remaining demand will be covered by renewable energy sources.

The Advanced scenario phases out coal and oil about 10 to 15 years faster than the Energy [R]evolution scenario. Main reasons for this is a replacement of new coal power plants with renewables after 20 years rather than 40 years lifetime in the Energy [R]evolution

figure 6.39: oecd europe: development of CO₂ emissions by sector under both energy [r]evolution scenarios

scenario and a faster introduction of electric vehicles in the transport sector to replace combustion engines. This leads to a renewable energy share of 40% in 2030 and 85% in 2050. Nuclear energy is phased out in both Energy [R]evolution scenarios just after 2030.

figure 6.40: oecd europe: development of primary energy consumption under three scenarios

africa

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

africa: energy demand by sector

Future development pathways for Africa´s energy demand are shown in Figure 6.41 for the Reference and both Energy [R]evolution scenarios. Under the Reference scenario, total primary energy demand in Africa increases by more than 63% from the current 26,380 PJ/a to 42,951 PJ/a in 2050. In both Energy [R]evolution scenarios a much smaller increase from the current consumption level is expected by 2050, reaching 34,403 PJ/a in the basic and 33,721 PJ/a in the advanced scenario.

Under the Energy [R]evolution scenario, electricity demand in Africa is expected to increase disproportionately, with households and services the main source of growing consumption (see Figure 6.42). With the exploitation of efficiency measures, however an even higher increase can be avoided, leading to electricity demand of 1,490 TWh/a in the year 2050. Compared to the Reference scenario, efficiency measures in the industry, residential and service sectors avoid the generation of about 146 TWh/a.

The advanced Energy [R]evolution scenario introduces electric vehicles earlier and more transport - both from freight and passengers - are shifted to electric trains and public transport. Besides fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity demand in the advanced version is higher and reaches 1,644 TWh/a in 2050, 4% above the reference case.

MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

Efficiency gains in the heat and cooling supply sector are also significant. Under the Energy [R]evolution scenarios, final demand for heating and cooling can even be reduced (see Figure 6.43). Compared to the Reference scenario, consumption equivalent to 898 PJ/a are avoided through efficiency gains by 2050.

In the transport sector, it is assumed under both Energy [R]evolution scenarios that energy demand will almost double to 5,276 PJ/a by 2050, saving 25% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns. Because Africa, as a developing region, has a relatively low starting point for transport demand, the outcome (in terms of kilometres travelled per person and freight volumes) has not been reduced in the advanced Energy [R]evolution scenario any further than in the basic version. Due to a wider use of more efficient electric drives, however, the overall final energy demand in transport increases only to 4,376 PJ/a, 37% lower than in the Reference case.

35,000 30,000 25,000 20,000 15,000 10,000 O `EFFICIENCY' OTHER SECTORS 5,000 INDUSTRY TRANSPORT **PJ/a** 0 adv adv adv adv adv REF E[R] E[R] REF E[R] REF E[R] REF E[R] REF E[R] adv REF E[R] E[R] E[R] E[R] E[R] E[R] 2007 2015 2020 2030 2040 2050

figure 6.41: africa: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

image GARIEP DAM, FREE STATE, SOUTH AFRICA.

image WOMEN FARMERS FROM LILONGWE, MALAWI STAND IN THEIR DRY, BARREN FIELDS CARRYING ON THEIR HEADS AID ORGANISATION HANDOUTS. THIS AREA, THOUGH EXTREMELY POOR HAS BEEN SELF-SUFFICIENT WITH FOOD. NOW THESE WOMEN'S CHILDREN ARE SUFFERING FROM MALNUTRITION.

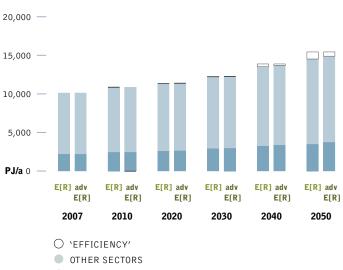


figure 6.42: africa: development of electricity demand by sector (REF, E[R] & advanced E[R])

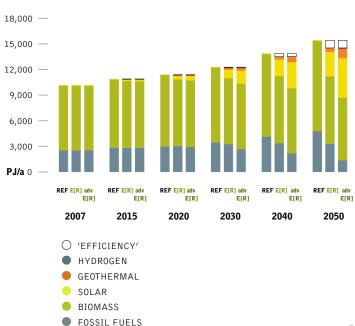
figure 6.43: africa: development of heat demand by sector

INDUSTRY

africa: heating and cooling supply

Today, renewables provide 75% of Africa's energy demand for heat supply, the main contribution coming from the use of traditional and often unsustainable biomass. The availability of less efficient but cheap appliances is a severe structural barrier to efficiency gains. Large scale utilisation of geothermal and solar thermal energy for heat supply is restricted to the industrial sector. Dedicated support instruments are required to ensure a continuously dynamic development of renewables in the heat market.

In the Energy [R]evolution scenario renewables provide 77% of Africa's total heating and cooling demand in 2050.


• Energy efficiency measures can restrict the future energy demand for heat and cooling supply to a 50% increase, in spite of improving hiving standards.

• In the industry sector solar collectors, biomass/biogas as well as geothermal energy are increasingly substituted for conventional fossil-fired heating systems.

• A shift from coal and oil to natural gas in the remaining conventional applications leads to a further reduction of CO_2 emissions.

The advanced Energy [R]evolution case introduces renewable heating and cooling systems around five years ahead of the basic scenario. Compared to the Reference scenario, 898 PJ/a or 6% are saved by 2050. North African countries can even use solar heat directly for industrial process heat. Together with the large potential for economic use of geothermal energy in the immediate future, the renewables share can rise to 78% under the advanced version by 2030 and 90% by 2050.

figure 6.44: africa: development of heat supply structure under 3 scenarios

africa

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

africa: electricity generation

The development of the electricity supply sector in the Energy [R]evolution scenario is characterised by a dynamically growing renewable energy market and an increasing share of renewable electricity.By 2050, 78% of the electricity produced in Africa will come from renewable sources. A major driver for the expansion of solar power generation capacity will be the export of solar electricity to OECD Europe. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute 66% of electricity generation. The installed capacity of renewable energy technologies will grow under the Energy [R]evolution scenario from the current 24 GW to 418 GW in 2050, increasing renewable capacity by a factor of 17.

The advanced version projects a faster market development with higher annual growth rates achieving a renewable electricity share of 52% by 2030 and 94% by 2050. The installed capacity of renewables will reach 172 GW in 2030 and 537 GW by 2050, 28% higher than in the basic version.

None of these numbers - even in the advanced Energy [R]evolution scenario - utilise the maximum known technical potential of all the renewable resources. While the deployment rate compared to the technical potential for geothermal power, for example, is relatively high at approx 2/3 in the advanced Energy [R]evolution scenario, for concentrated solar power only less than 1% has been used in the advanced version scenario. Figure 6.45 shows the cpmparative evolution of the renewable technologies over time. Up to 2020 MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

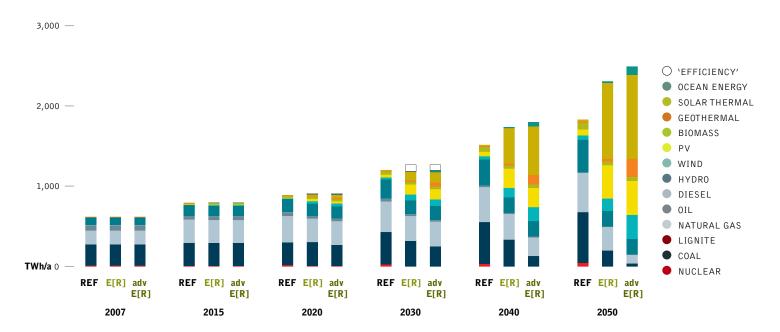

hydro and wind will remain the main contributors to the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaics and solar thermal (CSP) energy.

table 6.9: africa: projection of renewable electricity generation capacity under both energy [r]evolution scenarios

IN GW		2007	2020	2030	2040	2050
Hydro	E[R]	23	37	44	48	49
	advanced E[R]	23	37	44	48	49
Biomass	E[R]	0	4	6	7	8
	advanced E[R]	0	4	6	7	8
Wind	E[R]	1	12	24	37	44
	advanced E[R]	1	13	28	54	85
Geothermal	E[R]	0	1	3	5	6
	advanced E[R]	0	2	9	22	42
PV	E[R]	0	14	57	108	180
	advanced E[R]	0	14	57	108	185
CSP	E[R]	0	7	17	60	126
	advanced E[R]	0	14	20	83	140
Ocean energy	E[R]	0	1	2	3	4
	advanced E[R]	0	2	8	15	28
Total	E[R]	24	76	153	267	418
	advanced E[R]	24	86	172	336	537

figure 6.45: africa: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

NOI

image FLOWING WATERS OF THE TUGELA RIVER IN NORTHERN DRAKENSBERG IN SOUTH AFRICA.

image A SMALL HYDRO ELECTRIC ALTERNATOR MAKES ELECTRICITY FOR A SMALL AFRICAN TOWN.

africa: future costs of electricity generation

Figure 6.46 shows that the introduction of renewable technologies under the Energy [R]evolution scenario significantly decreases the future costs of electricity generation compared to the Reference scenario. Because of the lower CO_2 intensity of electricity generation, electricity generation costs will become economically favourable under the Energy [R]evolution scenario by 2020, and by 2050 costs will be more than 6 cents/kWh below those in the Reference scenario.

Under the Reference scenario, by contrast, unchecked demand growth, an increase in fossil fuel prices and the cost of CO₂ emissions result in total electricity supply costs rising from today's \$59 billion per year to more than \$268 billion in 2050. Figure 6.46 shows that the Energy [R]evolution scenario not only complies with Africa ´s CO₂ reduction targets but also helps to stabilise energy costs. Increasing energy efficiency and shifting energy supply to renewables leads to long term costs for electricity supply that are one third lower than in the Reference scenario.

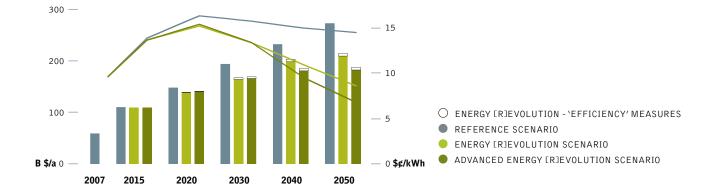
In both Energy [R]evolution scenarios the specific generation costs are almost the same up to 2030. In 2050, however, the advanced version results in a reduction of 2 cents/kWh, mainly because of better economics of scale in renewable power equipment.

Due to the increased demand for electricity, especially in the transport and industry sector, the overall supply costs in the advanced version are \$2 billion higher in 2030 than in the basic Energy [R]evolution scenario, however in 2050 they are \$27 billion lower in the advanced scenario.

africa: job results

The Energy [R]evolution scenarios lead to more energy sector jobs in Africa at every stage of the projection.

• There are 1.29 million power sector jobs in the Energy [R]evolution scenario and 1.34 million in the advanced version by 2015, compared to 910,000 in the Reference scenario.


• By 2020 job numbers reach over 1.5 million in both Energy [R]evolution scenarios, 300,000 more than in the Reference scenario.

• By 2030 job numbers climb slightly in the Energy [R]evolution scenario to nearly 1.7 million, (1.8 million in the advanced version) and reach nearly 1.5 million in the Reference scenario.

Table 6.10 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Wind shows particularly strong growth in the both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

It is assumed that all manufacturing occurs within Africa, and therefore the amount of jobs in the renewable industry will increase to over 1 million in both Energy [R]evolution scenarios, almost half a million jobs more than in the Reference scenario.

figure 6.46: africa: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

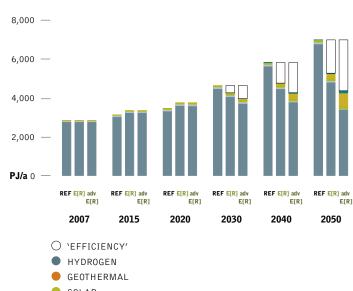
-

africa

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

table 6.10: africa: employment & investment


		RE	FERENCE	Eſ	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030	
Construction & installation	0.23 m	0.37 m	0.35 m	0.49 m	0.60 m	0.55 m	0.55 m	0.61 m	0.62 m	
Manufacturing	0.02 m	0.04 m	0.05 m	0.08 m	0.08 m	0.14 m	0.09 m	0.08 m	0.20 m	
Operations & maintenance	0.18 m	0.22 m	0.36 m	0.19 m	0.26 m	0.40 m	0.19 m	0.28 m	0.43 m	
Fuel	0.49 m	0.56 m	0.72 m	0.53 m	0.59 m	0.61 m	0.51 m	0.53 m	0.56 m	
Total Jobs	0.91 m	1.19 m	1.48 m	1.29 m	1.53 m	1.70 m	1.34 m	1.50 m	1.81 m	
Coal	0.09 m	0.16 m	0.21 m	0.10 m	0.12 m	0.13 m	0.10 m	0.09 m	0.07 m	
Gas, oil and diesel	0.47 m	0.53 m	0.65 m	0.51 m	0.56 m	0.56 m	0.48 m	0.51 m	0.53 m	
Nuclear	0.02 m	0.02 m	0.02 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	
Renewables	0.33 m	0.49 m	0.61 m	0.68 m	0.86 m	1.01 m	0.76 m	0.89 m	1.22 m	
Total Jobs	0.91 m	1.19 m	1.48 m	1.29 m	1.53 m	1.70 m	1.34 m	1.50 m	1.81 m	

africa: transport

In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will almost double to 5,276 PJ/a by 2050, saving 25% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns. The African vehicle stock, however, is projected to grow in all scenarios significantly by a factor of six.

Development of fuel efficiency is delayed by 20 years in the Energy [R]evolution scenario and by ten years in the advanced version compared to other world regions for economic reasons. By 2050, Africa will still have the lowest average fuel consumption. By 2030, electricity will provide 1% of the transport sector's total energy demand in the Energy [R]evolution, while in the advanced version the share will be 2% in 2030 and 16% by 2050.

figure 6.47: africa: transport under 3 scenarios

SOLARBIOMASS

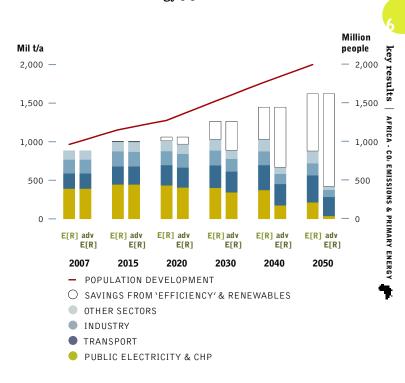
FOSSIL FUELS

image MAMA SARA OBAMA, THE US PRESIDENT'S GRANDMOTHER, FLICKS ON THE LIGHTS AFTER A GREENPEACE TEAM INSTALLED A SOLAR POWER SYSTEM AT HER HOME IN KOGELO VILLAGE.

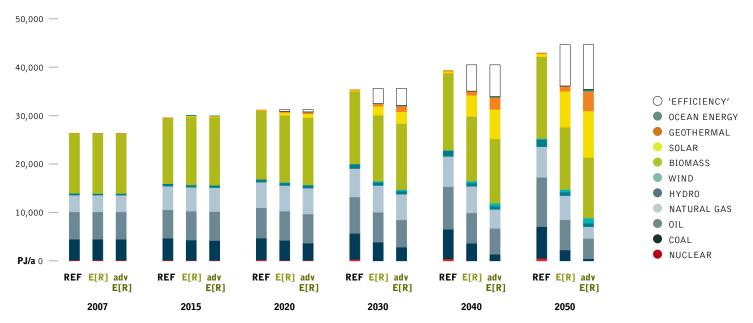
image STORM OVER SODWANA BAY, SOUTH AFRICA.

africa: development of CO2 emissions

Whilst Africa's emissions of CO_2 will almost double (+84%) under the Reference scenario by 2050, under the Energy [R]evolution scenario they will be stable (881 million t in 2007 and 880 million t in 2050). Annual per capita emissions will drop from 0.9 t to 0.4 t. In spite of increasing demand, CO_2 emissions decrease in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity in vehicles will reduce emissions in the transport sector. With a share of 25% of total CO_2 in 2050, the power sector will drop below transport as the largest source of emissions.


The advanced Energy [R]evolution scenario will shift the emissions peak for energy related CO_2 about 10 years earlier than in the basic version, leading to 0.6 t per capita by 2030 and 0.2 t by 2050. By 2050, Africa´s CO_2 emissions are 59% of 1990 levels.

africa: primary energy consumption


Taking into account the assumptions discussed above, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.49. Compared to the Reference scenario, overall energy demand will be reduced by 16% in 2050. Around 61% of the remaining demand will be covered by renewable energy sources.

The advanced version phases out coal and oil about 10 to 15 years faster than the basic scenario. This made possible by leapfrogging directly to a renewable energy future with financial help from industrialised countries. This leads to a renewable energy share of 57% in 2030 and 79% in 2050. Nuclear energy is phased out in both Energy ER]evolution scenarios just after 2020.

figure 6.48: africa: development of CO₂ emissions by sector under both energy [r]evolution scenarios

figure 6.49: africa: development of primary energy consumption under three scenarios

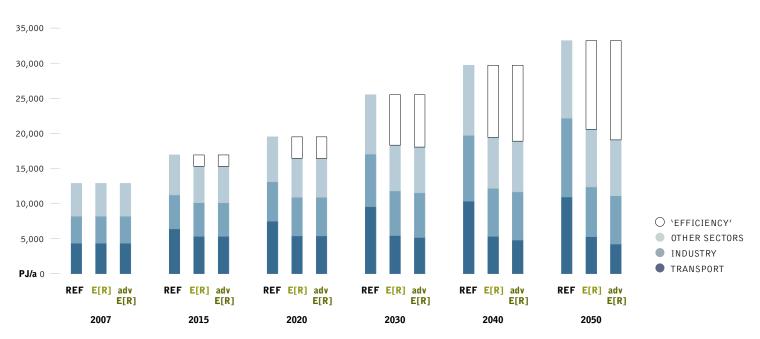
middle east

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

middle east: energy demand by sector

The future development pathways for the Middle East's final energy demand are shown in Figure 6.50 for the Reference and both Energy [R]evolution scenarios. Under the Reference, scenario total primary energy demand more than doubles from the current 21,363 PJ/a to 51,356 PJ/a in 2050. In the Energy [R]evolution scenario, a much smaller 28% increase from current consumption levels is expected by 2050, reaching 27,301 PJ/a.


Efficiency gains in the heat supply sector are even larger. Under the Energy [R]evolution scenario (see Figure 6.52), consumption equivalent to 2,005 PJ/a is avoided through efficiency measures by 2050. In the Middle East it is also possible to use concentrated solar power directly for industrial process heat; this explains the larger share of solar energy in the advanced version.

Under the Energy [R]evolution scenario, electricity demand is expected to increase disproportionately, with households and services the main source of growing consumption (see Figure 6.51), leading to an electricity demand of around 1,870 TWh/a in the year 2050. Compared to the Reference scenario, efficiency measures in the industry, residential and service sectors avoid the generation of about 754 TWh/a in industry, households, commerce and service. MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

In the transport sector it is assumed under the Energy [R]evolution scenario that energy demand will increase slightly compared to today's level, reaching 5,290 PJ/a by 2050, a saving of 52% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns.

The advanced Energy [R]evolution scenario goes one step further and factors even in a decrease in transport energy demand of 3% compared with today. This is achieved through a mix of increased public transport, reduced annual person kilometres and wider use of more efficient engines and electric drives. While electricity demand increases, the final energy use in the transport sector falls to 4,232 PJ/a, 61% lower than in the Reference case.

The advanced Energy [R]evolution scenario introduces electric vehicles earlier and more journeys – for both freight and passengers - are shifted to electric trains and public transport. Fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity demand in the advanced version is higher, and reaches 2,185 TWh/a in 2050, even 7% higher than the Reference case.

figure 6.50: middle east: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

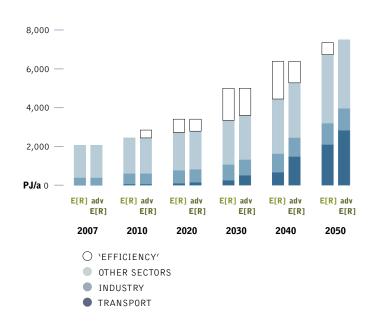

image A LARGE POWER PLANT ALONG THE ROCKY COASTLINE IN CAESAREA, ISRAEL.

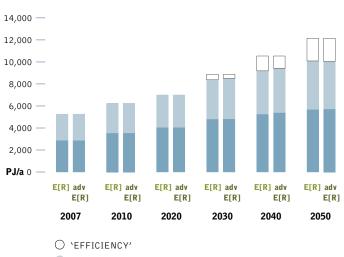
image WIND TURBINES IN THE GOLAN HEIGHTS IN ISRAEL.

figure 6.51: middle east: development of electricity demand by sector (REF, E[R] & advanced E[R])

middle east: heating and cooling supply

Renewables currently provide only 1% of primary energy demand for heat and cooling supply in the Middle East, the main contribution coming from the use of biomass and solar collectors. Dedicated support instruments are required to ensure a continuously dynamic development of renewables in the heat market.

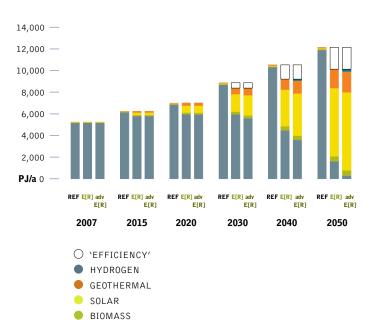
In the Energy [R]evolution scenario, renewables provide 84% of the Middle East's total heating and cooling demand in 2050.


• Energy efficiency measures can restrict the future primary energy demand for heat and cooling supply to a doubling rather than tripling, in spite of improving living standards.

• In the industry sector solar collectors, biomass/biogas as well as geothermal energy are increasingly substituting for conventional fossil-fuelled heating systems.

In the Energy [R]evolution scenario 2,005 PJ/a is saved by 2050, or 17% compared to the Reference scenario. The advanced Energy [R]evolution version introduces renewable heating systems around five years ahead of the basic scenario. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes five to ten years earlier, resulting in a renewables share of 33% by 2030 and 97% by 2050.

ic the Africa - Heating


figure 6.52: middle east: development of heat demand by sector

OTHER SECTORS

INDUSTRY

figure 6.53: middle east: development of heat supply structure under 3 scenarios

FOSSIL FUELS

middle east

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

middle east: electricity generation

The development of the electricity supply sector in the Energy [R]evolution scenarios is characterised by an increasing share of renewable electricity. By 2050, 98% of the electricity produced in the Middle East will come from renewable sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute about 91% of electricity generation. The installed capacity of renewable energy technologies will grow from the current 10 GW to 653 GW in 2050, a very large increase over the next 40 years, requiring political support and well-designed policy instruments.

The advanced Energy [R]evolution scenario will not increase this share significantly. By 2030, 58% of electricity will come from renewables and 99% by 2050. However, the overall installed capacity (873 GW) will be higher than in the basic version.

None of these numbers - even in the advanced Energy [R]evolution scenario - utilise the maximum known technical potential of all the renewable resources. In the Middle East the solar energy potential is so large that it is possible to export around 300 TWh/a solar electricity from either photovoltaic or concentrated solar power stations to Europe, Africa or the Transition Economies via a transnational super grid. The advanced Energy [R]evolution scenario uses only 0.1% of the technical potential of CSP. MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

2030

2040

2050

table 6.11: middle east: projection of renewable electricity generation capacity under both energy [r]evolution scenarios

IN GW 2007 2020

	advanced E[R]	10	97	216	561	873
Total	E[R]	10	61	168	343	653
	advanced E[R]	0	3	4	9	17
Ocean energy	E[R]	0	0	0	1	1
	advanced E[R]	0	20	63	205	330
CSP	E[R]	0	10	48	100	215
	advanced E[R]	0	12	47	210	332
PV	E[R]	0	3	31	128	283
	advanced E[R]	0	2	6	20	24
Geothermal	E[R]	0	2	5	8	12
	advanced E[R]	0	40	73	89	139
Wind	E[R]	0	25	61	80	110
	advanced E[R]	0	2	3	6	9
Biomass	E[R]	0	2	3	5	8
	advanced E[R]	10	18	20	21	22
Hydro	E[R]	10	18	20	21	22

figure 6.54: middle east: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

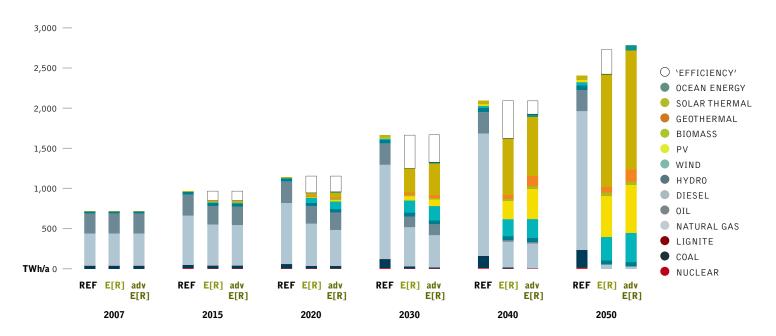


image THE BAHRAIN WORLD TRADE CENTER IN MANAMA GENERATES PART OF ITS OWN ENERGY USING WIND TURBINES.

image SUBURBS OF DUBAI, UNITED ARAB EMIRATES.

middle east: future costs of electricity generation

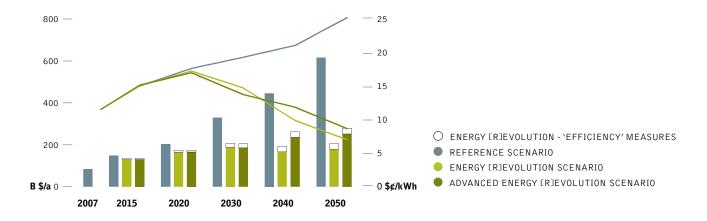
Figure 6.55 shows that the introduction of renewable technologies under the Energy [R]evolution scenario will lead to a significant reduction in electricity generation costs. Under the Reference scenario, on the other hand, the unchecked growth in demand, increase in fossil fuel prices and the cost of CO_2 emissions result in total electricity supply costs rising from today's \$82 billion per year to more than \$608 billion in 2050. Figure 6.55 shows that the Energy [R]evolution scenario also meets the Middle East's CO_2 reduction targets.

Increasing energy efficiency and shifting energy supply to renewables leads to long term costs for electricity supply that are significant lower than in the Reference scenario. This helps to stabilise energy costs and relieve the economic pressure on society.

In both Energy [R]evolution scenarios the specific generation costs are almost the same up to 2030. By 2050, however, the advanced version results in a 1.6 cents/kWh higher costs, mainly because of additional storage demand for the production of renewable power. Due to the increased electricty demand especially in the transport and industry sector the overall total supply costs in the advanced case are \$69 billion in 2040 and \$73 billion in 2050 higher than in the Energy [R]evolution scenario.

middle east: job results

The Energy [R]evolution scenarios lead to more energy sector jobs in the Middle East at every stage of the projection.


• There are 430,000 power sector jobs in the Energy [R]evolution scenario and 540,000 in the advanced version by 2015, compared to 370,000 in the Reference scenario.

• By 2020 job numbers reach over half a million in both Energy [R]evolution scenarios, 150,000 more than in the Reference scenario.

• By 2030 job numbers climb slightly in the Energy [R]evolution scenario to nearly 560,000, (750,000 in the advanced version) and reach 510,000 in the Reference scenario.

Table 6.12 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up 2030. Both scenarios show losses in the oil & gas sector, but these are outweighed by employment growth in renewable technologies and gas. Concentrated solar power shows particularly strong growth in both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

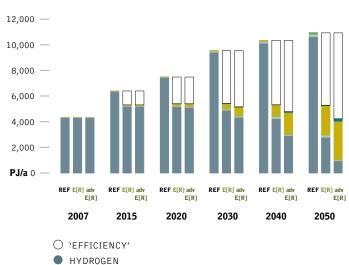
figure 6.55: middle east: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

middle east

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

DEVELOPING ASIA CHINA OECD PACIFIC


table 6.12: middle east: employment & investment

		RE	FERENCE	Eſ	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030	
Construction & installation	0.04 m	0.06 m	0.09 m	0.08 m	0.15 m	0.21 m	0.21 m	0.18 m	0.40 m	
Manufacturing	0.00 m	0.01 m	0.01 m	0.03 m	0.04 m	0.03 m	0.07 m	0.04 m	0.06 m	
Operations & maintenance	0.04 m	0.05 m	0.05 m	0.05 m	0.07 m	0.10 m	0.05 m	0.09 m	0.12 m	
Fuel	0.28 m	0.31 m	0.36 m	0.27 m	0.27 m	0.21 m	0.25 m	0.24 m	0.18 m	
Total Jobs	0.37 m	0.42 m	0.51 m	0.43 m	0.53 m	0.56 m	0.57 m	0.54 m	0.75 m	
Coal	0.01 m	0.02 m	0.02 m	0.00 m	0.00 m	0.01 m	0.01 m	0.00 m	0.00 m	
Gas, oil and diesel	0.32 m	0.35 m	0.45 m	0.29 m	0.28 m	0.21 m	0.26 m	0.25 m	0.18 m	
Nuclear	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	0.00 m	
Renewables	0.04 m	0.05 m	0.05 m	0.14 m	0.24 m	0.34 m	0.31 m	0.29 m	0.57 m	
Total Jobs	0.37 m	0.42 m	0.51 m	0.43 m	0.53 m	0.56 m	0.57 m	0.54 m	0.75 m	

middle east: transport

In an area of major indigenous oil resources, transport is currently powered 100% by fossil fuels. Under the Energy [R]evolution scenario, rising prices, together with other incentives, lead to a projected share for renewable electricity of 43% in this sector. Highly efficient electrified cars – plug-in-hybrid and battery vehicles – contribute a total of 20% in energy savings, although the car fleet is still projected to grow by a factor of five by 2050. By 2030 electricity will provide 5% of the transport sector's final energy demand in the Energy [R]evolution scenario, while in the advanced case the share will already reach 10% in 2030 and 67% by 2050.

figure 6.56: middle east: transport under 3 scenarios

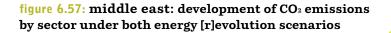
GEOTHERMAL

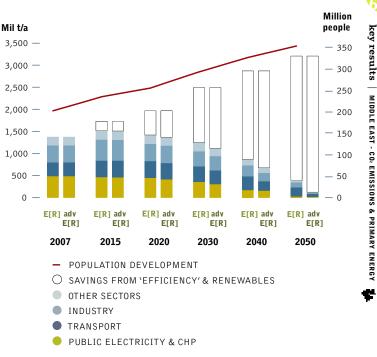
- SOLAR
- BIOMASS
- FOSSIL FUELS

image A RIVER IN AFGHANISTAN.

image GREENPEACE SURVEY OF GULF WAR OIL POLLUTION IN KUWAIT. AERIAL VIEW OF OIL IN THE SEA.

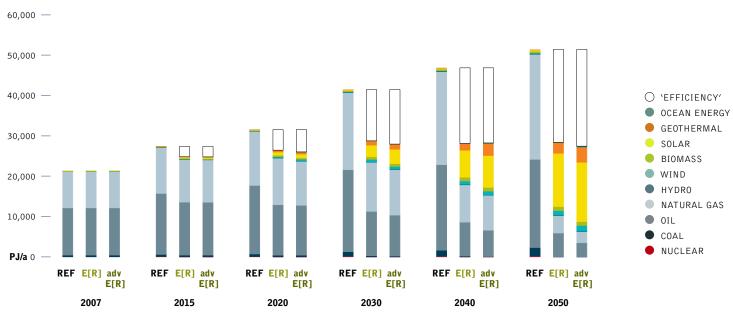
middle east: development of CO₂ emissions


While CO_2 emissions in the Middle East will more than double under the Reference scenario by 2050 and are thus far removed from a sustainable development path, under the Energy ER]evolution scenario emissions will decrease from 1,374 million tonnes in 2007 to 387 million tonnes by 2050. Annual per capita emissions will drop from 6.8 t to 1.1 t. In spite of an increasing electricity demand, CO_2 emissions will decrease strongly in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity in vehicles will even reduce CO_2 emissions in the transport sector.


The advanced Energy [R]evolution scenario will accelerate the decrease of energy related CO_2 emissions compared to the basic version, leading to 3.8 t per capita by 2030 and 0.3 t by 2050. By 2050 the Middle East's CO_2 emissions will be 21% of 1990 levels.

middle east: primary energy consumption

Taking into account the assumptions discussed above, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.58. Compared to the Reference scenario, overall energy demand will be reduced in 2050 by 45%. The Middle East's primary energy demand will increase from 21,360 PJ/a to 28,393 PJ/a. 63% of the remaining demand will be covered by renewable energy sources.


The advanced version phases out coal and oil about ten to 15 years faster than the basic scenario. This is made possible mainly by the replacement of new coal power plants with renewables after a 20

rather than 40 year lifetime and a faster introduction of electric vehicles in the transport sector to replace oil combustion engines. This leads to an overall renewable primary energy share of 22% in 2030 and 76% in 2050.

figure 6.58: middle east: development of primary energy consumption under three scenarios

transition economies

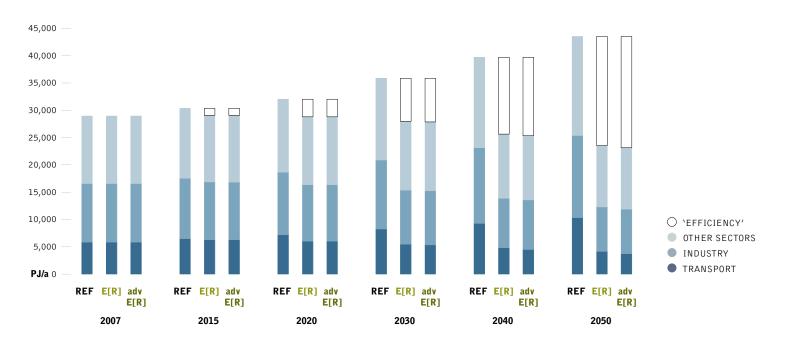
GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

transition economies: energy demand by sector

The future development pathways for the energy demand of the Transition Economies are shown in Figure 6.59 for the Reference and both Energy [R]evolution scenarios. Under the Reference scenario, total primary energy demand in the Transition Economies increases by more than 33% from the current 48,016 PJ/a to 63,988 PJ/a in 2050. The energy demand in 2050 in the Energy [R]evolution scenario decreases by 30% in the basic and 28% in the advanced case, compared to current consumption. By 2050 it is expected to reach 33,742 PJ/a and 34,697 PJ/a in the advanced scenario.

Under the Energy [R]evolution scenario, electricity demand in the industry as well as in the residential and service sectors is expected to decrease after 2015 (see Figure 6.60). Because of the growing use of electric vehicles however, electricity demand increases to 1,646 TWh/a in the year 2050. Compared to the Reference case efficiency measures avoid the generation of about 1,012 TWh/a. The advanced Energy [R]evolution scenario introduces electric vehicles earlier and more journeys – for both freight and passengers - are shifted to electric trains and public transport. Fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity demand in the advanced version is higher, and reaches 1,867 TWh/a in 2050, still 22% below the Reference case.


Efficiency gains in the heat supply sector are larger than in the electricity sector. Under both Energy [R]evolution scenarios, final demand for heat supply can even be reduced significantly (see Figure 6.61).

MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

In the Energy [R]evolution scenario, efficiency measures in industry and other sectors avoid the generation of about 1,012 TWh/a electricity. This reduction in energy demand can be achieved in particular by introducing highly efficient electronic devices using the best available technology.

Compared to the Reference scenario, heat consumption equivalent to 9,101 PJ/a is avoided through efficiency gains by 2050. In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will decrease to 4,137 PJ/a by 2050, saving 60% compared to the Reference scenario. This is achieved through a mix of increased public transport, reduced annual person-kilometres and wider use of more efficient engines and electric drives. The advanced Energy [R]evolution scenario goes one step further and factors in a faster decrease in transport energy demand of 64%. While electricity demand increases, the overall final energy use falls to 3,737 PJ/a.

figure 6.59: transition economies: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

key

results

TRANSITION

ECONOM

IES

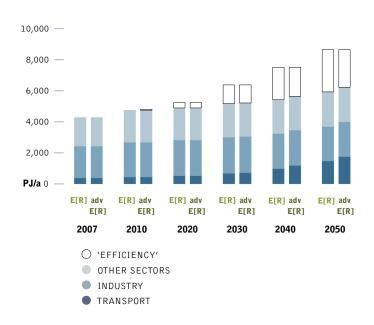

image AN INDIGENOUS NENET WOMAN WITH HER REINDEER. THE NENETS PEOPLE MOVE EVERY 3 OR 4 DAYS SO THAT THEIR HERDS DO NOT OVER GRAZE THE GROUND. THE ENTIRE REGION AND ITS INHABITANTS ARE UNDER HEAVY THREAT FROM GLOBAL WARMING AS TEMPERATURES INCREASE AND RUSSIA'S ANCIENT PERMAFROST MELTS.

image A SITE OF A DISAPPEARED LAKE AFTER PERMAFROST SUBSIDENCE IN RUSSIA.

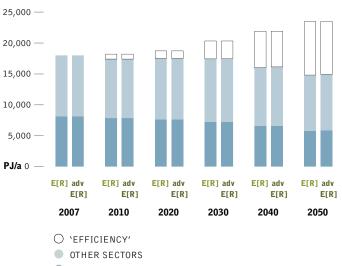
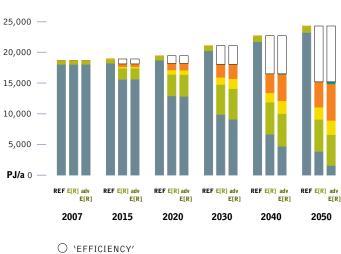


figure 6.60: transition economies: development of electricity demand by sector (REF, E[R] & advanced E[R])

figure 6.61: transition economies: development of heat demand by sector

INDUSTRY

transition economies: heating and cooling supply


Renewables currently provide 3% of Transition Economies' energy demand for heat supply, the main contribution coming from the use of biomass. The lack of modern and efficient district heating networks is a barrier to the large scale utilisation of geothermal and solar thermal energy. Dedicated support instruments are required to ensure a dynamic development. In the Energy ERJevolution scenario, renewables provide 74% of Transition Economies's total heating demand in 2050.

• Energy efficiency measures can decrease heat demand by 37% in spite of improving living standards.

• For direct heating, solar collectors, biomass/biogas as well as geothermal energy are increasingly substituting for fossil fuel-fired systems.

• A shift from coal and oil to natural gas in the remaining conventional applications will lead to a further reduction of CO_2 emissions.

The advanced Energy [R]evolution version introduces efficiency measures e.g. via strict building standards and renewable heating systems around 5 years ahead of the Energy [R]evolution scenario. Compared to the Reference scenario, 9101 PJ/a or 37% are safed by 2050. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes five to ten years earlier, resulting in a renewable share of 50% by 2030 and 89% by 2050.

figure 6.62: transition economies: development of heat supply structure under 3 scenarios

`EFFICIENCY'
 HYDROGEN
 GEOTHERMAL
 SOLAR
 BIOMASS
 FOSSIL FUELS

transition economies

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

transition economies: electricity generation

The development of the electricity supply sector in the Energy [R]evolution scenario is characterised by a dynamically growing renewable energy market. This will compensate for the phasing out of nuclear energy and reduce the number of fossil fuel-fired power plants required for grid stabilisation. By 2050, 81% of the electricity produced in the Transition Economies will come from renewable energy sources. 'New' renewables - mainly wind, solar thermal energy and PV – will contribute 33% of electricity generation. The installed capacity of renewable energy technologies will grow from the current 91 GW to 554 GW in 2050, increasing renewable capacity by a factor of 6. This will require political support and well-designed policy instruments. The advanced Energy [R]evolution scenario projects a faster market development with higher annual growth rates achieving a renewable electricity share of 53% by 2030 and 93% by 2050. The installed capacity of renewables will reach 330 GW in 2030 and 735 GW by 2050, 33% higher than in the basic version.

None of these numbers - even in the advanced Energy [R]evolution scenario - utilise the maximum known technical potential of all the renewable resources. While the deployment rate compared to the technical potential for hydro power, for example, is relatively high at 28% in the advanced Energy [R]evolution scenario, for photovoltaic only 0.4% has been used in the advanced scenario.

MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

Figure 6.63 shows the expansion rate of the different renewable technologies over time. Up to 2020, hydro power and wind will remain the main contributors to the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaic and geothermal energy.

table 6.13: transition economies: projection of renewable electricity generation capacity under both Energy [R]evolution scenarios

	2007	2020	2030	2040	2050
E[R]	90	108	110	111	110
advanced E[R]	90	108	110	112	112
E[R]	0	40	52	66	80
advanced E[R]	0	40	52	74	90
E[R]	0	12	74	149	227
advanced E[R]	0	21	100	209	323
E[R]	0	3	10	18	25
advanced E[R]	0	3	11	30	50
E[R]	0	3	42	79	100
advanced E[R]	0	3	47	121	142
E[R]	0	0	2	3	3
advanced E[R]	0	0	2	4	5
E[R]	0	4	6	7	9
advanced E[R]	0	4	9	12	13
E[R]	91	171	295	433	554
advanced E[R]	91	180	330	563	735
	E[R] advanced E[R] E[R] advanced E[R] E[R] advanced E[R] advanced E[R] E[R] advanced E[R] E[R] E[R]	EIR] 90 advanced EIR] 90 EIR] 0 advanced EIR] 0 EIR] 0 advanced EIR] 0 advanced EIR] 0 advanced EIR] 0 EIR] 0 advanced EIR] 0 EIR] 0 EIR] 0 EIR] 0 EIR] 0 EIR] 0 EIR] 0	E[R] 90 108 advanced E[R] 90 108 E[R] 0 40 advanced E[R] 0 40 advanced E[R] 0 12 advanced E[R] 0 21 E[R] 0 21 E[R] 0 31 advanced E[R] 0 3 advanced E[R] 0 3 E[R] 0 3 e[R] 0 3 e[R] 0 4 advanced E[R] 0 4 advanced E[R] 0 4 e[R] 0 4 E[R] 0 4 B[R] 0 4	E[R] 90 108 110 advanced E[R] 90 108 110 E[R] 0 40 52 advanced E[R] 0 40 52 advanced E[R] 0 40 52 E[R] 0 12 74 advanced E[R] 0 21 100 E[R] 0 3 10 advanced E[R] 0 3 10 advanced E[R] 0 3 42 advanced E[R] 0 4 6 advanced E[R] 0 4 6 advanced E[R] 0 4 9 E[R] 0 4 9	E[R] 90 108 110 111 advanced E[R] 90 108 110 112 E[R] 0 40 52 66 advanced E[R] 0 40 52 74 E[R] 0 40 52 74 E[R] 0 12 74 149 advanced E[R] 0 21 100 209 E[R] 0 3 10 18 advanced E[R] 0 3 11 30 E[R] 0 3 42 79 advanced E[R] 0 3 42 79 advanced E[R] 0 3 42 79 advanced E[R] 0 3 47 121 E[R] 0 0 2 3 advanced E[R] 0 4 6 7 advanced E[R] 0 4 9 12 E[R] 0 4 9 12 E[R] 0 4 9 <

figure 6.63: transition economies: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

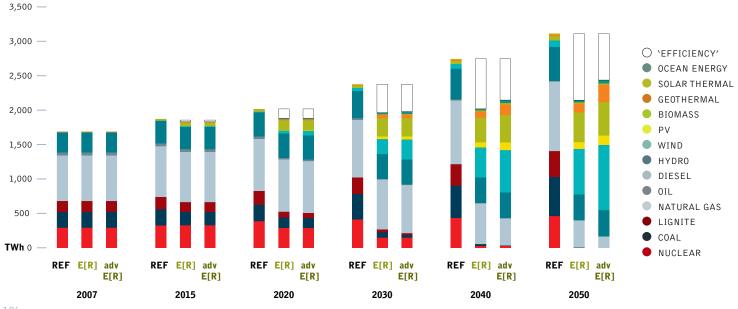


image CHERNOBYL NUCLEAR POWER
STATION, UKRAINE.

image THE SUN OVER LAKE BAIKAL, RUSSIA.

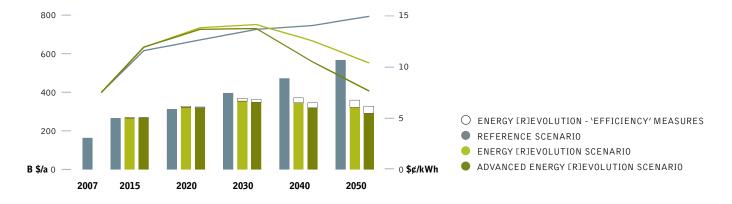
transition economies: future costs of electricity generation

Figure 6.64 shows that the introduction of renewable technologies under the Energy [R]evolution scenario slightly increases the costs of electricity generation compared to the Reference scenario. This difference will be less than 1 cent/kWh up to 2020, however. Because of the lower CO₂ intensity of electricity generation, by 2020 costs will become economically favourable under the Energy [R]evolution scenario, and by 2050 costs will be more than 5 cents/kWh below those in the Reference scenario. Due to growing demand, there will be a significant increase in society's expenditure on electricity supply. Under the Reference scenario, total electricity supply costs will rise from today's \$163 billion per year to more than \$555 billion in 2050. Figure 6.64 shows that the Energy [R]evolution scenario not only complies with Transition Economies' CO2 reduction targets but also helps to stabilise energy costs and relieve the economic pressure on society. Long term costs for electricity supply are one third lower than in the Reference scenario.

In both Energy [R]evolution scenarios the specific generation costs are almost on the same level until 2030. In 2050 the advanced Energy [R]evolution scenario has with 8 cents/kWh lower generation costs, because of greater economics of scale in renewable power equipment. Despite the increased electricity demand especially in the transport and industry sector the overall total supply costs in the advanced case are \$26 billion in 2030 and \$32 billion in 2050 lower than in the Energy [R]evolution scenario.

transition economies: job results

The Energy [R]evolution scenarios lead to more energy sector jobs in the Transition Economies at every stage of the projection.


• There are 750,000 power sector jobs in both Energy [R]evolution scenario by 2015, compared to 600,000 in the Reference scenario.

• By 2020 job numbers reach over 960,000 in both Energy [R]evolution scenarios, 350,000 more than in the Reference scenario.

• By 2030 job numbers in the renewable sector climb slightly in the advanced Energy [R]evolution scenario to nearly 700,000 and remain at around 600,000 in the basic version, while in the Reference scenario, there are only 120,000 jobs in the renewables industry – equal to the gas power sector.

Table 6.14 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Wind and biomass shows particularly strong growth in both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

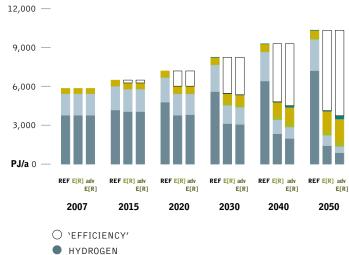
figure 6.64: transition economies: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

transition economies

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

table 6.14: transition economies: employment & investment


		REFERENCE			ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030	
Construction & installation	0.08 m	0.07 m	0.06 m	0.14 m	0.16 m	0.08 m	0.14 m	0.18 m	0.15 m	
Manufacturing	0.01 m	0.02 m	0.02 m	0.02 m	0.07 m	0.07 m	0.04 m	0.09 m	0.12 m	
Operations & maintenance	0.15 m	0.15 m	0.13 m	0.24 m	0.39 m	0.36 m	0.24 m	0.39 m	0.37 m	
Fuel	0.36 m	0.37 m	0.43 m	0.36 m	0.34 m	0.23 m	0.34 m	0.30 m	0.20 m	
Total Jobs	0.60 m	0.61 m	0.64 m	0.75 m	0.96 m	0.75 m	0.75 m	0.96 m	0.84 m	
Coal	0.27 m	0.31 m	0.36 m	0.20 m	0.13 m	0.06 m	0.19 m	0.11 m	0.03 m	
Gas, oil and diesel	0.15 m	0.14 m	0.13 m	0.18 m	0.19 m	0.12 m	0.17 m	0.16 m	0.11 m	
Nuclear	0.06 m	0.04 m	0.03 m	0.03 m	0.02 m	0.01 m	0.03 m	0.02 m	0.01 m	
Renewables	0.12 m	0.12 m	0.12 m	0.34 m	0.62 m	0.56 m	0.36 m	0.66 m	0.69 m	
Total Jobs	0.60 m	0.61 m	0.64 m	0.75 m	0.96 m	0.75 m	0.75 m	0.96 m	0.84 m	

transition economies: transport

Development of the transport sector is characterised by the diversification of energy sources towards more efficiency. Under the Energy [R]evolution scenario energy demand reduction of 6205 PJ/a can be achieved by 2050, saving 60% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns.

A slight shift towards smaller cars triggered by economic incentives together with a significant shift in propulsion technology towards electrified power trains and a reduction of vehicle kilometres travelled by 0.25% per year leads to significant final energy savings. By 2030, electricity will provide 13% of the transport sector's total energy demand in the Energy [R]evolution, while in the advanced case the share will already be 14% in 2030 and 47% by 2050.

figure 6.65: transition economies: transport under 3 scenarios

GEOTHERMAL

SOLAR

BIOMASS

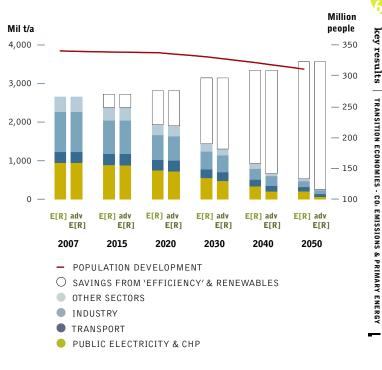
FOSSIL FUELS

image LAKE BAIKAL, RUSSIA.

image SOLAR PANELS IN A NATURE RESERVE IN CAUCASUSU, RUSSIA.

transition economies: development of CO₂ emissions

Whilst emissions of CO_2 will increase by 35% under the Reference scenario by 2050, under the Energy [R]evolution scenario they will decrease from 2650 million tonnes in 2007 to 532 million t in 2050. Annual per capita emissions will drop from 7.8 t to 1.7 t. In spite of the phasing out of nuclear energy and increasing demand, CO_2 emissions will decrease in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity in vehicles will reduce emissions in the transport sector. With a share of 40% of total CO_2 in 2050, the power sector will drop below transport and other sectors as the largest sources of emissions.


The advanced Energy [R]evolution scenario reduces energy related CO_2 emissions about 10 to 15 years faster than the basic scenario, leading to 3.9 t per capita by 2030 and 0.8 t by 2050. By 2050, Transition Economies's CO_2 emissions are 6% of 1990 levels.

transition economies: primary energy consumption

Taking into account the assumptions outlined above, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.67. Compared to the Reference scenario, overall energy demand will be reduced by 48% in 2050. Around 62% of the remaining demand will be covered by renewable energy sources.

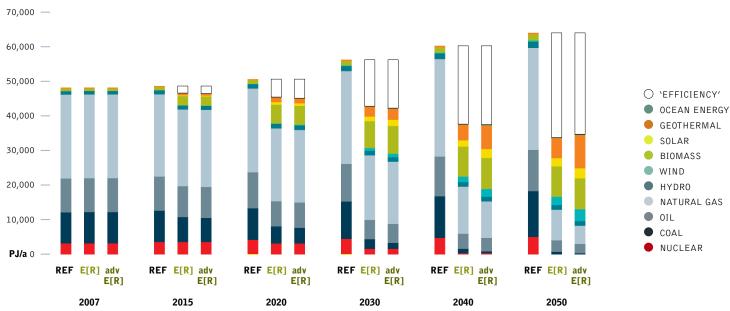

The Advanced scenario phases out coal and oil about ten years faster than the basic scenario. This is made possible mainly by a quicker replacement of coal power plants with renewables after 20 years rather than 40 years lifetime in the Energy [R]evolution scenario and a faster introduction of electric vehicles in the transport sector to

figure 6.66: transition economies: development of CO₂ emissions by sector under both energy [r]evolution scenarios

replace combustion engines. This leads to an overall renewable energy share of 37% in 2030 and 76% in 2050. Nuclear energy is phased out in both Energy [R]evolution scenarios soon after 2040.

figure 6.67: transition economies: development of primary energy consumption under three scenarios

india

GLOBAL SCENARIO

key

results

INDIA

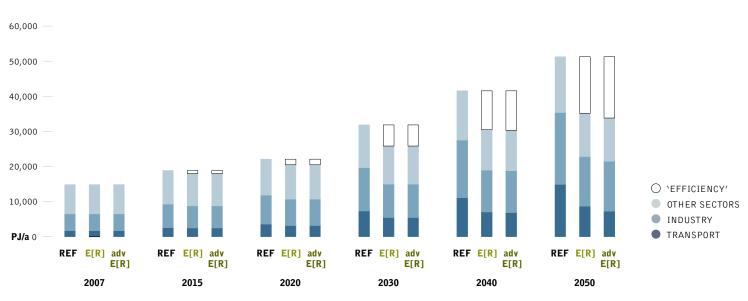
- DEMA

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

india: energy demand by sector

The potential future development pathways for India's primary energy demand are shown in Figure 6.68 for both the Reference and Energy [R]evolution scenarios. Under the Reference scenario, total energy demand triples from the current 25,203 PJ/a to 78,048 PJ/a in 2050. In the Energy [R]evolution scenario, by contrast, energy demand in India will increase by about 105% and is expected to reach 51,718 PJ/a by 2050. The advanced Energy [R]evolution scenario foresees a demand of 54,763 PJ/a by 2050 and is therefore roughly at the same level.

Under the Energy [R]evolution scenario, electricity demand is expected to increase substantially (see Figure 6.69). With the - exploitation of efficiency measures, however, a higher increase can be avoided, leading to electricity demand of around 3,439 TWh/a in 2050. Compared to the Reference scenario, efficiency measures in industry and other sectors avoid the generation of about 615 TWh/a. This reduction can be achieved in particular by introducing highly efficient electronic devices using the best available technology in all demand sectors.


The advanced Energy [R]evolution scenario introduces electric vehicles earlier while more journeys - for both freight and passengers - are shifted to electric trains and public transport. Fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity demand in the advanced version is higher, and reaches 4,047 TWh/a in 2050.

MIDDLE EAST TRANSITION ECONOMIES INDIA

DEVELOPING ASIA CHINA **OECD PACIFIC**

Efficiency gains for heat and cooling supply are also significant. Under the Energy [R]evolution scenario, final demand for heating and cooling can even be reduced (see Figure 6.70). Compared to the Reference scenario, consumption equivalent to 5,110 PJ/a is avoided through efficiency gains by 2050.

In the transport sector, it is assumed, with a fast growing economy, that under the Energy [R]evolution scenario energy demand will increase dramatically - from 1,708 PJ/a in 2007 to 8,677 PJ/a by 2050. This still saves 42% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, shifting freight transport from road to rail and by changes in travel behaviour. Because India, as a developing country, has a relatively low starting point, transport demand (in terms of kilometres per person and freight volumes) has not been reduced any further than in the basic version. Due to a wider use of more efficient electric drives, however, overall final energy demand in transport falls to 7,277 PJ/a, 51% lower than in the Reference case.

figure 6.68: india: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

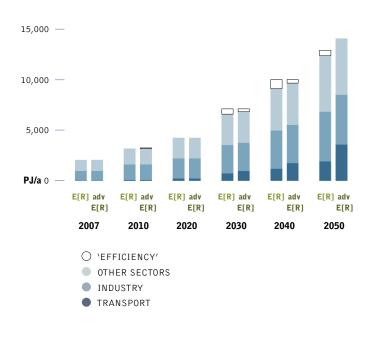
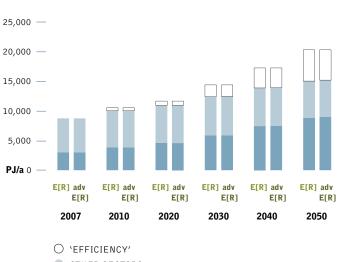

image AJIT DAS LIVES IN GHORAMARA ISLAND AND IS ONE OF THE MANY PEOPLE AFFECTED BY SEA LEVEL RISE: "WE CANNOT STAY HERE BECAUSE OF THE GANGA'S FLOODING. WE HAVE MANY PROBLEMS. WE DON'T KNOW WHERE WE WILL GO OR WHAT WE WILL DO. WE CANNOT BRING OUR GRANDCHILDREN UP HERE. WHATEVER THE GOVERNMENT DECIDES FOR US, WE SHALL FOLLOW THEIR GUIDANCE. EVERYTHING IS GOING UNDER THE WATER. WHILE THE EDGE OF THE LAND IS BREAKING IN GHORAMARA, THE MIDLE OF THE RIVER IS BECOMING SHALLOWER. WE DON'T KNOW WHERE WE WILL GO OR WHAT WE WILL DO".

image VILLAGERS ORDER THEMSELVES INTO QUEUE TO RECEIVE SOME EMERGENCY RELIEF SUPPLY PROVIDED BY A LOCAL NGO. SCIENTISTS ESTIMATE THAT OVER 70,000 PEOPLE, LIVING EFFECTIVELY ON THE FRONT LINE OF CLIMATE CHANGE, WILL BE DISPLACED FROM THE SUNDARBANS DUE TO SEA LEVEL RISE BY THE YEAR 2030.

figure 6.69: india: development of electricity demand by sector (REF, E[R] & advanced E[R])

india: heating and cooling supply

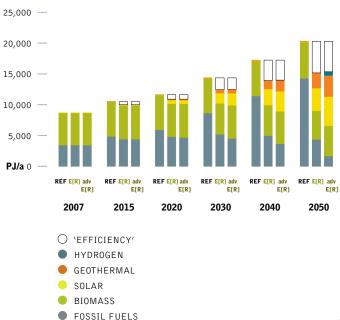
Renewables presently provide 60% of energy demand for heat and cooling supply in India, the main contribution coming from the use of biomass. Dedicated support instruments are required to ensure a continuously dynamic development of renewables in the heat market. In the Energy [R]evolution scenario, renewables will provide 71% of India's heating and cooling demand by 2050.


• Energy efficiency measures will restrict future energy demand for heat and cooling supply to an increase of 74% relative to 2005, in spite of improving living standards. This compares to 133% in the Reference scenario.

• In the industry sector solar collectors, biomass/biogas and geothermal energy are increasingly substituted for conventional fossil-fuelled heating systems.

• A shift from coal and oil to natural gas in the remaining conventional applications leads to a further reduction of CO_2 emissions.

In the Energy [R]evolution scenario 5,110 PJ/a is saved by 2050, or 25% compared to the Reference scenario. The advanced Energy [R]evolution version introduces renewable heating and cooling systems around five years ahead of the basic scenario. India can use concentrated solar energy to generate heat for industrial processes in its north western provinces.


figure 6.70: india: development of heat demand by sector

OTHER SECTORS

INDUSTRY

figure 6.71: india: development of heat supply structure under 3 scenarios

india

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

india: electricity generation

By 2050, about 62% of the electricity produced in India will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute almost 45% of electricity generation. The installed capacity of renewable energy technologies will grow from the current 44 GW to 775 GW in 2050, a substantial increase over the next 40 years.

The advanced Energy [R]evolution scenario projects a faster market development pathway, with higher annual growth rates achieving a renewable electricity share of 64% by 2030 and 93% by 2050. The installed capacity of renewables will reach 510 GW in 2030 and 1,325 GW by 2050, 71% higher than in the basic version.

Table 6.15 shows the comparative evolution of different renewable technologies over time. Up to 2030, hydro power and wind will remain the main contributors. After 2020, the continuing growth of wind will be complemented by electricity from biomass,
photovoltaic and solar thermal (CSP) energy.

While the advanced scenario uses 10% of the known technical potential for PV, 17% for tide and wave and just 5% of the solar thermal potential, the "official" figure for India's wind potential is only 100 GW. The overall installed capacity of wind power by 2050 in the advanced version is 346 GW, 3.5 times higher, however. This is because both the Global Wind Energy Council and Greenpeace International believe that India's wind potential is several times higher than officially recognised, mainly as a result of historic wind speed measurements being taken at a height of only 50 metres – and not the 80 m which is the typical height of a modern wind turbine.

MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

When the United States reworked its wind potential calculations, a change from 50 to 80 m measurement height tripled the overall potential. A new analysis for China has also shown that the wind potential will be 640 GW by 2030 (Science, Vol 325, page 1380, M.B.McElroy et al., September 2009) . We are therefore confident that the projected installed capacity of 346 GW by 2050 for India is realistic.

table 6.15: india: projection of renewable electricity generation capacity under both Energy [R]evolution scenarios

IN GW 2007 2020 2030 2040 2050 Hydro 57 36 56 57 57 F[R] 56 57 57 57 advanced EER1 36 **Biomass** F[R] 0 8 21 44 73 advanced E[R] 0 8 21 44 73 Wind E[R] 8 69 128 172 230 8 93 210 288 346 advanced E[R] Geothermal 0 2 31 F[R] 6 18 advanced E[R] 0 9 38 70 95 ΡV E[R] 0 7 41 99 245 advanced E[R] 0 30 111 237 482 CSP 3 F[R] 0 13 131 62 124 0 24 53 216 advanced E[R] 4 7 Ocean energy E[R] 0 1 2 7 advanced E[R] 0 22 31 56 Total E[R] 44 146 268 455 775 1,325 44 227 510 851 advanced E[R]

figure 6.72: india: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

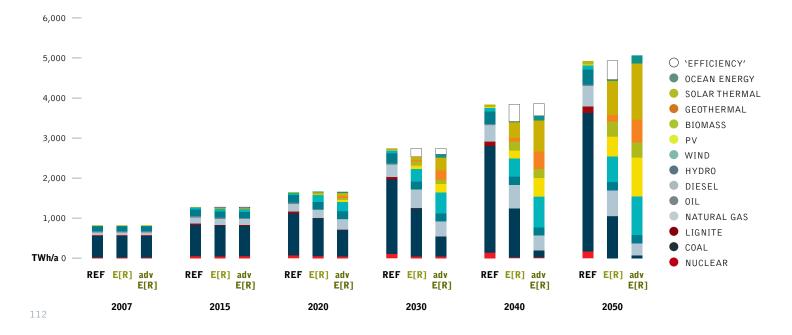


image A LOCAL BENGALI WOMAN PLANTS A MANGROVE (SUNDARI) SAPLING ON SAGAR ISLAND IN THE ECOLOGICALLY SENSITIVE SUNDERBANS RIVER DELTA REGION, IN WEST BENGAL THOUSANDS OF LOCAL PEOPLE WILL JOIN THE MANGROVE PLANTING INITIATIVE LED BY PROFESSOR SUGATA HAZRA FROM JADAVAPUR UNIVERSITY, WHICH WILL HELP TO PROTECT THE COAST FROM EROSION AND WILL ALSO PROVIDE NUTRIENTS FOR FISH AND CAPTURE CARBON IN THEIR EXTENSIVE ROOT SYSTEMS.

image FEMALE WORKER CLEANING A SOLAR OVEN AT A COLLEGE IN TILONIA, RAJASTHAN, INDIA.

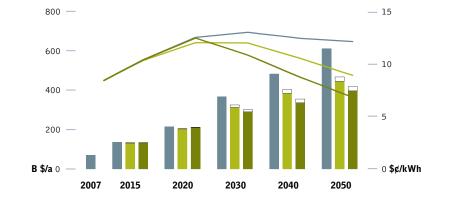
india: future costs of electricity generation

Figure 6.73 shows that the introduction of renewable technologies under the Energy [R]evolution scenario significantly decreases the future costs of electricity generation compared to the Reference scenario. Because of the lower CO_2 intensity of electricity generation, costs will become economically favourable under the Energy [R]evolution scenario and by 2050 will be more than 3 cents/kWh below those in the Reference version.

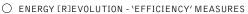
Under the Reference scenario, by contrast, a massive growth in demand, increased fossil fuel prices and the cost of CO_2 emissions result in total electricity supply costs rising from today's \$69 billion per year to more than \$605 billion in 2050. Figure 6.73 shows that the Energy [R]evolution scenario not only complies with India's CO_2 reduction targets but also helps to stabilise energy costs. Increasing energy efficiency and shifting energy supply to renewables leads to long term costs for electricity supply that are one third lower than in the Reference scenario.

In both Energy [R]evolution scenarios the specific electricity generation costs are almost the same up to 2030. By 2050, however, the advanced version results in a reduction of 7 cents/kWh, mainly because of greater economies of scale in the production of renewable power equipment. Although the demand for electricity increases, especially in the transport.

india: job results


The Energy [R]evolution scenarios lead to more energy sector jobs in India at every stage of the projection.

• There are around 1 million power sector jobs in the basic Energy [R]evolution scenario by 2015, compared to 710,000 in the Reference scenario.


• By 2020 job numbers reach over one million in the Energy ERJevolution scenario (1.26 million in the advanced version), 430,000 more than in the Reference scenario.

• By 2030 job numbers climb in the renewable sector to about half a million in both Energy [R]evolution scenarios, and only 90,000 in the Reference scenario. The decline in the renewables sector between 2020 and 2030 is due to the assumed cost reduction for renewables.

Table 6.16 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show some losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Wind, solar pv and concentrated solar power shows particularly strong growth in the both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

figure 6.73: india: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

- REFERENCE SCENARIO
- ENERGY [R]EVOLUTION SCENARIO

ADVANCED ENERGY [R]EVOLUTION SCENARIO

india

key results | INDIA - TRANSPORT

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

table 6.16: india: employment & investment

		RE	FERENCE	EI	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030	
Construction & installation	0.18 m	0.25 m	0.13 m	0.24 m	0.20 m	0.10 m	0.46 m	0.32 m	0.18 m	
Manufacturing	0.06 m	0.07 m	0.04 m	0.26 m	0.21 m	0.11 m	0.43 m	0.36 m	0.19 m	
Operations & maintenance	0.08 m	0.09 m	0.08 m	0.11 m	0.14 m	0.16 m	0.11 m	0.17 m	0.20 m	
Fuel	0.38 m	0.42 m	0.56 m	0.41 m	0.46 m	0.54 m	0.42 m	0.41 m	0.32 m	
Total Jobs	0.71 m	0.83 m	0.81 m	1.01 m	1.02 m	0.90 m	1.41 m	1.26 m	0.89 m	
Coal	0.53 m	0.64 m	0.68 m	0.50 m	0.52 m	0.52 m	0.41 m	0.39 m	0.29 m	
Gas, oil and diesel	0.04 m	0.04 m	0.03 m	0.04 m	0.04 m	0.03 m	0.05 m	0.04 m	0.03 m	
Nuclear	0.02 m	0.01 m	0.01 m	0.01 m	0.00 m	0.00 m	0.01 m	0.00 m	0.00 m	
Renewables	0.11 m	0.14 m	0.09 m	0.47 m	0.45 m	0.35 m	0.95 m	0.83 m	0.57 m	
Total Jobs	0.71 m	0.83 m	0.81 m	1.01 m	1.02 m	0.90 m	1.41 m	1.26 m	0.89 m	

India's car market is projected to grow by a factor of 16 from 2000 to 2050. The market is characterised by small cars (70%), a proportion which is maintained up to 2050. Although India will remain a low price car market for some time, the key to efficiency is through electrified power trains, hybrid, plug-in and battery electric vehicles. Stringent energy efficiency measures will also limit the growth of transport energy demand by 2050 to about a factor of 5 compared to 2007.

By 2030, electricity will provide 14% of the transport sector's total energy demand under the Energy [R]evolution scenario, while in the advanced version the share will already reach 18% in 2030 and 49% by 2050.

figure 6.74: india: transport under 3 scenarios

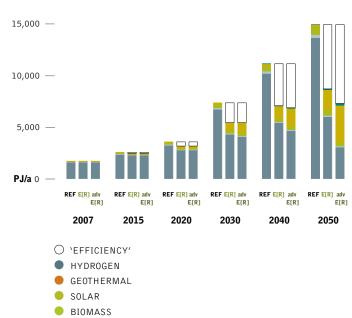
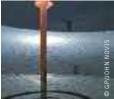
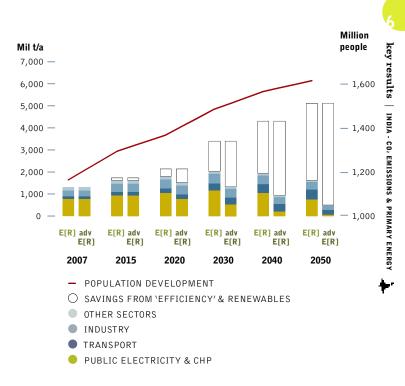



image NANLINIKANT BISWAS, FARMER AGE 43. FIFTEEN YEARS AGO NANLINIKANT'S FAMILY ONCE LIVED WHERE THE SEA IS NOW. THEY WERE AFFLUENT AND OWNED 4 ACRES OF LAND. BUT RISING SEAWATER INCREASED THE SALINITY OF THE SOIL UNTIL THEY COULD NO LONGER CULTIVATE IT, KANHAPUR, ORISSA, INDIA.

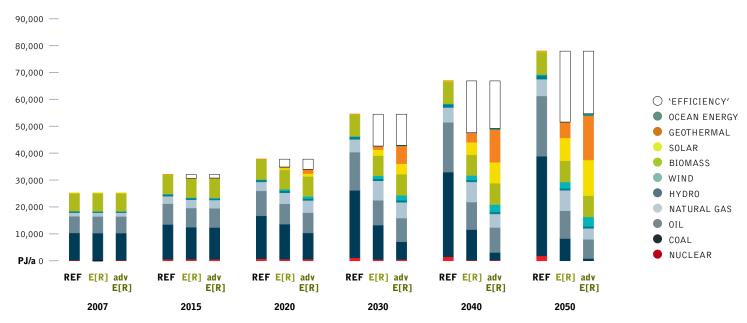
image A SOLAR DISH WHICH IS ON TOP OF THE SOLAR KITCHEN AT AUROVILLE,TAMIL NADU, INDIA.

india: development of CO₂ emissions

Whilst India's emissions of CO_2 will almost triple under the Reference scenario, under the Energy [R]evolution scenario they will increase from 1,307 million tonnes in 2007 to 1,620 mt in 2050. Annual per capita emissions will drop from 1.1 t to 1 t.


The advanced Energy [R]evolution scenario will shift the peak of energy related CO_2 emissions to more than 10 years earlier than in the basic version, leading to 0.9 t per capita by 2030 and 0.3 t by 2050. By 2050, India´s CO_2 emissions will be 85% of 1990 levels.

india: primary energy consumption


Taking into account the assumptions discussed above, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.76. Compared to the Reference Scenario, overall energy demand will be reduced by 34% in 2050. Around 49% of the remaining demand will be covered by renewable energy sources.

The advanced scenario phases out coal and oil about 10 to 15 years faster than the Energy [R]evolution scenario. Main reasons for this is a replacement of new coal power plants with renewables after 20 years rather than 40 years lifetime in the Energy [R]evolution scenario and a faster introduction of electric vehicles in the transport sector to replace oil combustion engines. This leads to a renewable energy share of 49% in 2030 and 78% in 2050. Nuclear energy is phased out in both Energy [R]evolution scenarios just after 2030.

figure 6.75: india: development of CO₂ emissions by sector under both energy [r]evolution scenarios

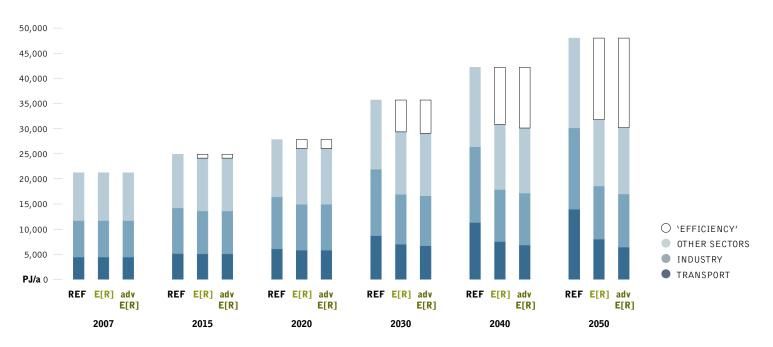
figure 6.76: india: development of primary energy consumption under three scenarios

developing asia

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

developing asia: energy demand by sector


The future development pathways for the Developing Asia region's primary energy demand are shown in Figure 6.77 for both the Reference and Energy [R]evolution scenarios. Under the Reference scenario, total energy demand more than doubles from the current 31,880 PJ/a to 69,171 PJ/a in 2050. In the Energy [R]evolution scenario, a much smaller 34% increase in consumption is expected by 2050, reaching 42,611 PJ/a. The advanced Energy [R]evolution scenario projects a demand of 40,549PJ/a by 2050 and is therefore roughly at the same level.

Under the Energy [R]evolution scenario, electricity demand is expected to increase disproportionately in Developing Asia (see Figure 6.78). With the introduction of serious efficiency measures in the industry, residential and service sectors, however, an even higher increase can be avoided, leading to electricity demand of around 2,171 TWh/a in 2050. Compared to the Reference scenario, efficiency measures avoid the generation of about 1,329 TWh/a. The advanced Energy [R]evolution scenario introduces electric vehicles earlier while more journeys – for both freight and passengers - are shifted to electric trains and public transport. Fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity demand in the advanced version is higher, and reaches 3,548 TWh/a in 2050, still 5% below the Reference case. MIDDLE EAST TRANSITION ECONOMIES INDIA **DEVELOPING ASIA** CHINA OECD PACIFIC

Efficiency gains in the heat supply sector are also significant (see Figure 6.79). Compared to the Reference scenario, consumption equivalent to 3,566 PJ/a is avoided through efficiency measures by 2050.

In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will rise to 8,016 PJ/a by 2050, saving 43% compared to the Reference scenario. As this is a developing region it has a relatively low starting point for transport energy demand. In the advanced Energy [R]evolution scenario transport demand has therefore not been reduced (in terms of kilometres per person and freight volume) any further than in the basic version. Due to a wider use of more efficient electric drives, however, electricity demand increases but the overall final energy demand falls to 6,416 PJ/a, 54% lower than in the Reference case.

figure 6.77: developing asia: projection of total final energy demand by sector (REF, E[R] & advanced E[R])

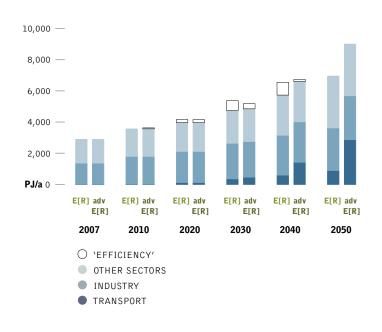

image A WOMAN PREPARING FOOD IN THE PHILIPPINES.

image AMIDST SCORCHING HEAT, AN ELDERLY FISHERWOMAN GATHERS SHELLS IN LAM TAKONG DAM, WHERE WATERS HAVE DRIED UP DUE TO PROLONGED DROUGHT. GREENPEACE LINKS RISING GLOBAL TEMPERATURES AND CLIMATE CHANGE TO THE ONSET OF ONE OF THE WORST DROUGHTS TO HAVE STRUCK THAILAND, CAMBODIA, VIETNAM AND INDONESIA IN RECENT MEMORY. SEVERE WATER SHORTAGE AND DAMAGE TO AGRICULTURE HAS AFFECTED MILLIONS.

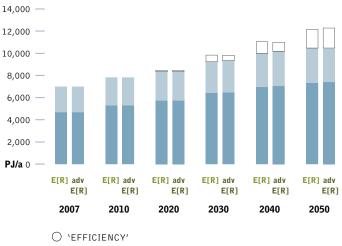


figure 6.78: developing asia: development of electricity demand by sector (REF, E[R] & advanced E[R])

figure 6.79: developing asia: development of heat demand by sector

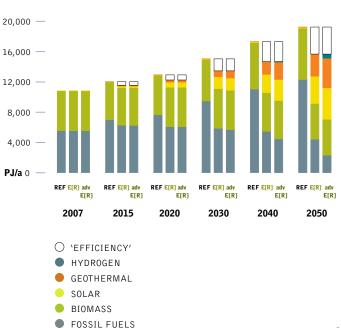
OTHER SECTORS

INDUSTRY

developing asia: heating and cooling supply

Today, renewables provide around 49% of primary energy demand for heat and cooling supply in Other Developing Asia, the main contribution coming from the use of biomass. The availability of less efficient but cheap appliances is a severe structural barrier to efficiency gains. Large-scale utilisation of geothermal and solar thermal energy for heat supply will be largely restricted to the industrial sector.

In the Energy [R]evolution scenario renewables provide 72% of Other Developing Asia's total heating and cooling demand by 2050.


• Energy efficiency measures can restrict the future primary energy demand for heat and cooling supply to a 45% increase, in spite of improving living standards.

• In the industry sector solar collectors, biomass/biogas as well as geothermal energy are increasingly replacing conventional fossil-fuelled heating systems.

• A shift from coal and oil to natural gas in the remaining conventional applications leads to a further reduction of CO_2 emissions.

In the Energy [R]evolution scenario 3,566 PJ/a is saved by 2050, or 19% compared to the Reference scenario. The advanced version introduces renewable heating systems around five years ahead of the basic scenario. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes five to ten years earlier, resulting in a renewables share of 58% by 2030 and 85% by 2050.

figure 6.80: developing asia: development of heat supply structure under 3 scenarios

developing asia

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

developing asia: electricity generation

The development of the electricity supply sector is characterised by an increasing share of renewable electricity. By 2050, 74% of the electricity produced in Other Developing Asia will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute more than 57% of electricity generation. The installed capacity of renewable energy technologies will grow from the current 48 GW to 616 GW in 2050, increasing renewable capacity by a factor of 13 within the next 40 years.

Figure 6.81 shows the comparative evolution of the different renewable technologies over time. Up to 2020, hydro power and wind will remain the main contributors to the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaics and solar thermal (CSP) energy.

The advanced Energy [R]evolution scenario projects a faster market development pathway, with higher annual growth rates achieving a renewable electricity share of 59% by 2030 and 94% by 2050. The installed capacity of renewables will reach 363 GW in 2030 and 1,037 GW by 2050, 68% higher than in the basic version.

None of these numbers - even in the advanced Energy [R]evolution scenario - utilise the maximum known technical potential of all the renewable resources. While the deployment rate compared to the technical potential for hydro power, for example, is relatively high at 20% in the advanced Energy [R]evolution scenario, for photovoltaic less than 3% has been used in the advanced scenario.

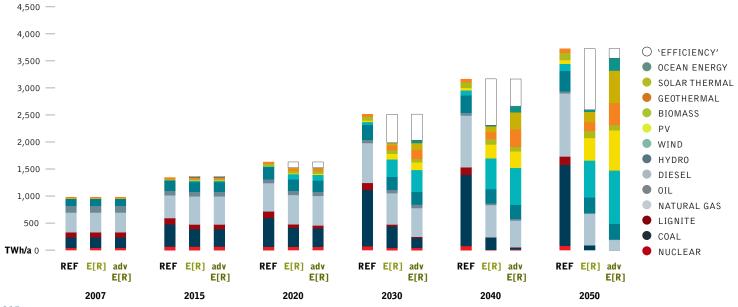

MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

table 6.17: developing asia: projection of renewable electricity generation capacity under both Energy [R]evolution scenarios

IN GW 2007 2020 2030 2040 2050 Hydro E[R] 44 71 81 89 96 71 96 advanced E[R] 44 81 89 Biomass F[R] 12 17 22 1 6 advanced EER1 1 6 11 14 17 Wind F[R] 0 33 103 178 201 advanced E[R] 0 35 130 213 291 7 3 20 26 Geothermal E[R] 13 3 7 50 26 63 advanced E[R] ΡV F[R] 0 11 59 142 231 advanced E[R] 0 13 79 172 414 CSP E[R] 0 4 8 17 30 5 advanced E[R] 0 20 49 92 E[R] 3 5 Ο Т 10 Ocean energy advanced E[R] 0 2 16 33 64 Total 48 278 468 **E**[**R**] 133 616 48 140 363 620 1,038 advanced E[R]

figure 6.81: developing asia: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

image GREENPEACE DONATES A SOLAR POWER SYSTEM TO A COASTAL VILLAGE IN ACEH, INDONESIA, ONE OF THE WORST HIT AREAS BY THE TSUNAMI IN DECEMBER 2004. IN COOPERATION WITH UPLINK, A LOCAL DEVELOPMENT NGO, GREENPEACE OFFERED ITS EXPERTISE ON ENERGY EFFICIENCY AND RENEWABLE ENERGY AND INSTALLED RENEWABLE ENERGY GENERATORS FOR ONE OF THE BADLY HIT VILLAGES BY THE TSUNAMI.

image A WOMAN GATHERS FIREWOOD ON THE SHORES CLOSE TO THE WIND FARM OF ILOCOS NORTE, AROUND 500 KILOMETERS NORTH OF MANILA.

developing asia: future costs of electricity generation

Figure 6.82 shows that the introduction of renewable technologies under the Energy [R]evolution scenario significantly decreases the future costs of electricity generation compared to the Reference scenario. Because of the lower CO_2 intensity of electricity generation, costs will become economically favourable under the Energy [R]evolution scenario and by 2050 will be more than 6 cents/kWh below those in the Reference scenario.

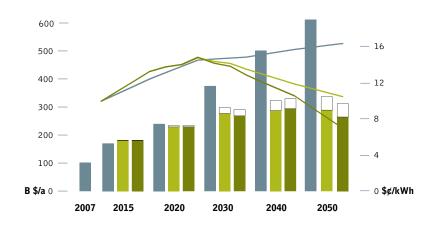
Under the Reference scenario, on the other hand, unchecked growth in demand, an increase in fossil fuel prices and the cost of CO₂ emissions result in total electricity supply costs rising from today's \$100 billion per year to more than \$612 billion in 2050. Figure 6.82 shows that the Energy [R]evolution scenario not only complies with Other Developing Asia's CO₂ reduction targets but also helps to stabilise energy costs and relieve the economic pressure on society. Increasing energy efficiency and shifting energy supply to renewables leads to long term costs for electricity supply that are one third lower than in the Reference scenario.

The advanced Energy [R]evolution scenario will lead to a higher proportion of variable power generation sources (PV, wind and ocean power), accounting for 29% by 2030. Expansion in the use of smart grids, demand side management and storage capacity through an increased share of electric vehicles will therefore be introduced to ensure better grid integration and power generation management.

In both Energy [R]evolution scenarios the specific generation costs are almost the same up to 2050. Despite the increased demand for electricity, especially in the transport and industry sectors, the overall supply costs in the advanced version are \$8 billion lower in 2030 and \$24 billion lower in 2050 than in the basic Energy [R]evolution scenario.

developing asia: job results

The Energy [R]evolution scenarios lead to more energy sector jobs in Developing Asia at every stage of the projection.


• There are around 650,000 power sector jobs in both Energy [R]evolution scenarios by 2015, compared to 610,000 in the Reference scenario.

• By 2020, job numbers in the renewables industry reach over 700,000 in the Energy [R]evolution scenario (780,000 in the advanced version), half a million more than in the Reference scenario.

• By 2030 job numbers in the renewables industry remain in both Energy [R]evolution scenario at 2020 levels. The slightly higher employment numbers in the reference scenario is due to the projected coal export. Those exports will not be possible, if other world regions will implement an energy revolution.

Table 6.18 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Solar technologies show particularly strong growth in the both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

figure 6.82: developing asia: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

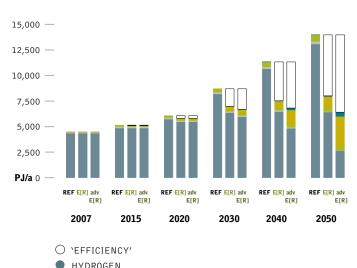
- ENERGY [R]EVOLUTION 'EFFICIENCY' MEASURES
- REFERENCE SCENARIO
- ENERGY [R]EVOLUTION SCENARIO
- ADVANCED ENERGY [R]EVOLUTION SCENARIO

developing asia

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA **DEVELOPING ASIA** CHINA OECD PACIFIC

table 6.18: developing asia: employment & investment


		RE	FERENCE	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030
Construction & installation	0.13 m	0.17 m	0.08 m	0.15 m	0.20 m	0.13 m	0.17 m	0.27 m	0.17 m
Manufacturing	0.02 m	0.04 m	0.02 m	0.05 m	0.08 m	0.08 m	0.05 m	0.11 m	0.10 m
Operations & maintenance	0.09 m	0.10 m	0.12 m	0.10 m	0.12 m	0.15 m	0.10 m	0.12 m	0.16 m
Fuel	0.38 m	0.39 m	0.48 m	0.35 m	0.30 m	0.24 m	0.33 m	0.28 m	0.17 m
Total Jobs	0.61 m	0.70 m	0.70 m	0.65 m	0.70 m	0.60 m	0.66 m	0.78 m	0.59 m
Coal	0.32 m	0.39 m	0.45 m	0.21 m	0.18 m	0.15 m	0.20 m	0.15 m	0.08 m
Gas, oil and diesel	0.15 m	0.13 m	0.09 m	0.17 m	0.15 m	0.10 m	0.17 m	0.14 m	0.09 m
Nuclear	0.01 m	0.01 m	0.01 m	0.01 m	0.00 m	0.00 m	0.01 m	0.00 m	0.00 m
Renewables	0.14 m	0.17 m	0.15 m	0.26 m	0.36 m	0.35 m	0.29 m	0.48 m	0.42 m
Total Jobs	0.61 m	0.70 m	0.70 m	0.65 m	0.70 m	0.60 m	0.66 m	0.78 m	0.59 m

developing asia: transport

Despite a huge growth in transport services, the increase in energy consumption in the transport sector by 2050 can be limited to 57% under the Energy [R]evolution scenario and 46% in the advanced case. Dependence on fossil fuels for 90% of this supply is transformed by using 7% biofuels and 11% electricity in the basic version. The advanced Energy [R]evolution scenario increases the share of electricity in the transport sector up to 45%, while the use of biofuels/biomass has been reduced and shifted towards the power sector and industrial heat processes.

Both Energy [R]evolution scenarios assume measures to change the current pattern of car sales, with one third in future taken up by medium-sized vehicles and more than half by small vehicles. Technical progress increases the share of hybrid vehicles significantly. Incentives to use more efficient transport modes reduce vehicle kilometres travelled to an average of 11,000 km per annum.

figure 6.83: developing asia: transport under 3 scenarios

BIOMASS

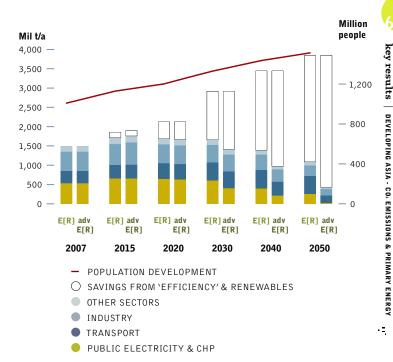
FOSSIL FUELS

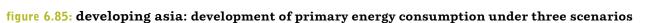
image MAJESTIC VIEW OF THE WIND FARM IN ILOCOS NORTE, AROUND 500 KILOMETRES NORTH OF MANILA. THE 25 MEGAWATT WIND FARM, OWNED AND OPERATED BY DANISH FIRM NORTHWIND, IS THE FIRST OF ITS KIND IN SOUTHEAST ASIA.

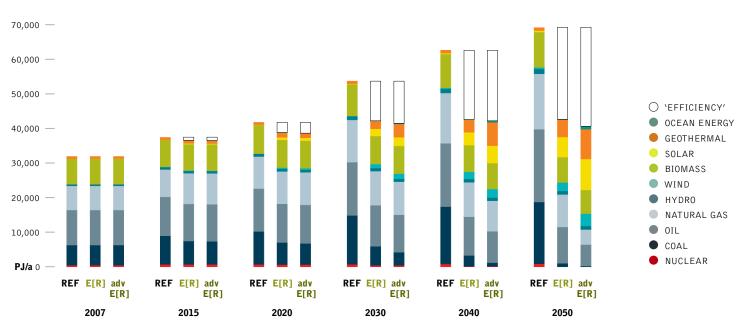
image A MAN WORKING IN A RICE FIELD IN THE PHILIPPINES.

OFFRIDE

developing asia: development of CO₂ emissions


Whilst Other Developing Asia's emissions of CO_2 will increase by 158% under the Reference scenario, under the Energy [R]evolution scenario they will decrease from 1,488 million tonnes in 2007 to 1,085 mt in 2050. Annual per capita emissions will drop from 1.5 t to 0.7 t. The advanced Energy [R]evolution scenario will induce a faster reduction of energy related CO_2 emissions than in the basic version, leading to 1.1 t per capita by 2030 - 10 years earlier than in the basis version and 0.3 t by 2050. By 2050, Other Developing Asia's CO_2 emissions are 62% of 1990 levels.


In spite of the phasing out of nuclear energy and increasing demand in the Energy [R]evolution scenario, CO_2 emissions will decrease in the electricity sector. In the long run efficiency gains and the increased use of renewable electricity in vehicles will even reduce CO_2 emissions in the transport sector. With a share of 55% of total CO_2 in 2050, the transport sector will remain the largest source of emissions.


developing asia: primary energy consumption

Taking into account the assumptions discussed above, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.85. Compared to the Reference scenario, overall energy demand in the Energy [R]evolution scenario will be reduced by 38% in 2050. Around 51% of the remaining demand will be covered by renewable energy sources. Under the advanced Energy [R]evolution scenario a share of around 73% of the remaining energy demand will be covered by renewable sources.

figure 6.84: developing asia: development of CO₂ emissions by sector under both energy [r]evolution scenarios

china

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

china: energy demand by sector

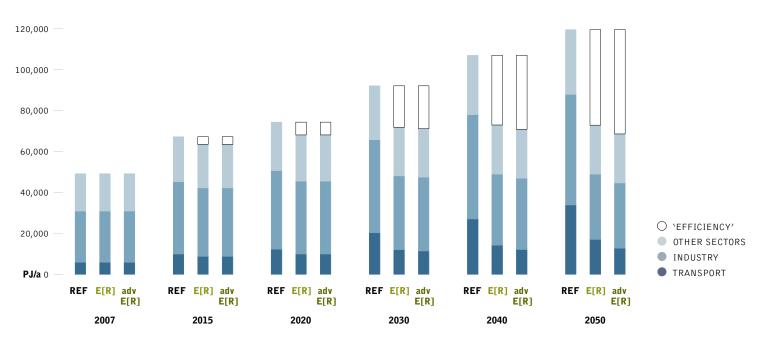
The future development pathways for China's final energy demand are shown in Figure 6.86 for both the Reference and Energy [R]evolution scenarios. Under the Reference scenario, total primary energy demand increases by a factor of 2.2 from the current 83,922 PJ/a to 183,886 PJ/a in 2050. In the Energy [R]evolution scenario, primary energy demand increases up to 2020 by 39% and then decreases to a level of 100,191 PJ/a in 2050. The advanced Energy [R]evolution scenario envisages a demand of 107,104 PJ/a by 2050 and is therefore roughly at the same level.

Under the Energy [R]evolution scenario, electricity demand is expected to increase disproportionately (see Figure 6.87). With the exploitation of efficiency measures, however, an even higher increase can be avoided, leading to electricity demand of around 7,693 TWh/a in the year 2050. Compared to the Reference scenario, efficiency measures in industry and other sectors avoid the generation of about 3,562 TWh/a. The advanced Energy [R]evolution scenario introduces electric vehicles earlier while more journeys – for both freight and passengers - are shifted to electric trains and public transport. Fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity demand in the advanced version is higher, and reaches 8,748 TWh/a in 2050. MIDDLE EAST TRANSITION ECONOMIES INDIA DEVELOPING ASIA CHINA OECD PACIFIC

Efficiency gains in the heat supply sector are also large. Compared to the Reference scenario, consumption equivalent to 12,778 PJ/a is avoided through efficiency measures by 2050 under the Energy ERJevolution scenario.

In the transport sector it is assumed under the Energy [R]evolution scenario that energy demand will increase considerably, from 5,882 PJ/a in 2007 to 17,096 PJ/a by 2050. However this still saves 50% compared to the Reference scenario. By 2030 electricity will provide 13% of the transport sector's total energy demand in the Energy [R]evolution scenario, while in the advanced version the share will already reach 19% in 2030 and 54% by 2050. The advanced scenario assumes no further transport demand reduction (passenger kilometres or freight) than in the basic version.

figure 6.86: china: projection of total final energy demand by sector (REF, E[R] & advanced E[R])



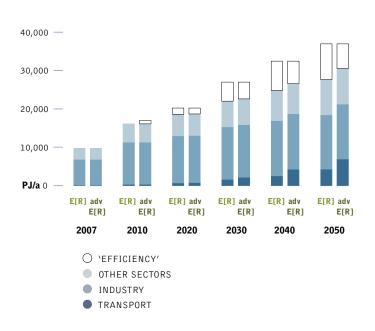

image WANG WAN YI, AGE 76, AND LINANG JUN QIN, AGE 72, EAT NOODLES IN THEIR ONE ROOM HOME CARVED OUT OF THE SANDSTONE, A TYPICAL DWELLING FOR LOCAL PEOPLE IN THE REGION. DROUGHT IS ONE OF THE MOST HARMFUL NATURAL HAZARDS IN NORTHWEST CHINA. CLIMATE CHANGE HAS A SIGNIFICANT IMPACT ON CHINA'S ENVIRONMENT AND ECONOMY.

image image THE BLADES OF A WINDMILL SIT ON THE GROUND WAITING FOR INSTALLATION AT GUAZHOU WIND FARM NEAR YUMEN IN GANSU PROVINCE.

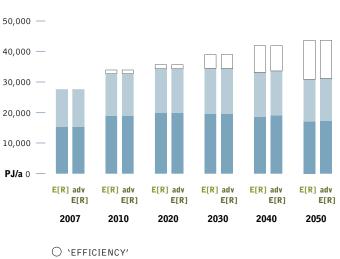


figure 6.87: china: development of electricity demand by sector (REF, E[R] & advanced E[R])

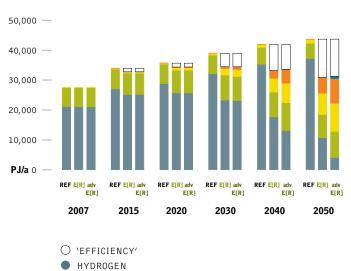
figure 6.88: china: development of heat demand by sector

OTHER SECTORS

INDUSTRY

china: heating and cooling supply

Today, renewables provide 24% of energy demand for heat and cooling supply in China, the main contribution coming from the use of biomass. In the Energy [R]evolution scenario, renewables provide 65% of China's total heating and cooling demand by 2050.


• Energy efficiency measures will restrict the future energy demand for heat and cooling supply in 2050 to an increase of 12%, compared to 58% in the Reference scenario, in spite of improving living standards.

• In the industry sector solar collectors, biomass/biogas as well as geothermal energy are increasingly substituted for conventional fossil-fired heating systems.

• A shift from coal and oil to natural gas in the remaining conventional applications leads to a further reduction of CO₂ emissions.

In the Energy [R]evolution scenario efficiency measures save 12,459 PJ/a by 2050, or 29% compared to the Reference scenario. The advanced Energy [R]evolution version introduces renewable heating and cooling systems around five years ahead of the basic scenario. China can use concentrated solar energy to generate heat for industrial processes in its north western provinces. Efficient use of heating and architecture which avoids the need for air conditioning can reduce the overall demand. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes five to ten years earlier, resulting in a renewables share of 33% by 2030 and 87% by 2050.

figure 6.89: china: development of heat supply structure under 3 scenarios

GEOTHERMAL
SOLAR

BIOMASS

FOSSIL FUELS

china

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

china : electricity generation

A dynamically growing renewable energy market will compensate for the phasing out of nuclear energy and reduce the number of fossil fuel-fired power plants required for grid stabilisation. By 2050, 65% of the electricity produced in China will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute 39% of electricity generation. The installed capacity of renewable energy technologies will grow from the current 152 GW to 1,721 GW in 2050, an enormous increase. There will be a considerable demand for investment in new production capacity over the next 20 years.

The advanced Energy [R]evolution scenario projects a faster market development pathway, with higher annual growth rates achieving a renewable electricity share of 46% by 2030 and 90% by 2050. The installed capacity of renewables will reach 1,138 GW in 2030 and 2,610 GW by 2050, 52% higher than in the basic version.

➡ Table 6.19 shows the comparative evolution of the different renewable technologies over time. Up to 2020, hydro power and wind will remain the main contributors to the growing market share. After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaic and solar thermal energy.

While the advanced scenario uses 11% of the known technical potential for CSP power and only 6% of the solar photovoltaic potential, a greater contribution is expected from hydro and wind power. The total installed capacity of wind power by 2050 in the advanced version is 703 GW, significantly higher than in the basic

MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

scenario. A new analysis by M.B.McElroy et all (Science, Vol 325, page 1380, September 2009), however, has shown that China's wind potential could reach 640 GW by 2030, enough to cover the country's current electricity demand three times over.

table 6.19: china: projection of renewable electricity generation capacity under both Energy [R]evolution scenarios

	advanced E[R]	152	513	1,138	1,946	2,610
Total	E[R]	152	456	899	1,300	1,721
	advanced E[R]	0	1	10	31	189
Ocean energy	E[R]	0	0	1	19	74
	advanced E[R]	0	21	84	177	282
CSP	E[R]	0	9	37	98	155
	advanced E[R]	0	22	155	586	803
PV	E[R]	0	11	103	221	432
	advanced E[R]	0	1	21	66	147
Geothermal	E[R]	0	1	3	10	25
	advanced E[R]	6	196	513	651	703
Wind	E[R]	6	163	403	516	541
	advanced E[R]	1	16	37	68	90
Biomass	E[R]	1	16	36	67	96
	advanced E[R]	145	256	317	369	397
Hydro	E[R]	145	256	317	369	397
IN GW		2007	2020	2030	2040	2050
IN GW						

figure 6.90: china: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

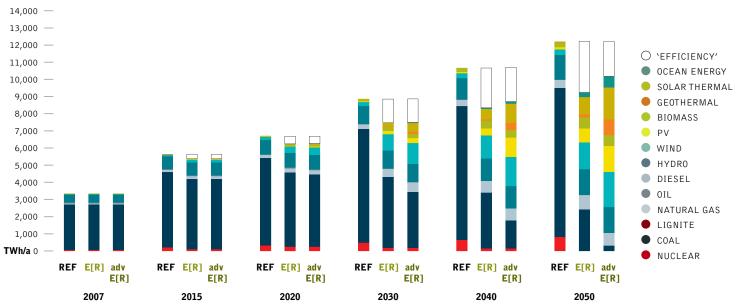


image A WORKER ENTERS A TURBINE TOWER FOR MAINTENANCE AT DABANCHENG WIND FARM. CHINA'S BEST WIND RESOURCES ARE MADE POSSIBLE BY THE NATURAL BREACH IN TIANSHAN (TIAN MOUNTAIN).

image WOMEN WEAR MASKS AS THEY RIDE BIKES TO WORK IN THE POLLUTED TOWN OF LINFEN. LINFEN, A CITY OF ABOUT 4.3 MILLION, IS ONE OF THE MOST POLLUTED CITIES IN THE WORLD. CHINA'S INCREASINGLY POLLUTED ENVIRONMENT IS LARGELY A RESULT OF THE COUNTRY'S RAPID DEVELOPMENT AND CONSEQUENTLY A LARGE INCREASE IN PRIMARY ENERGY CONSUMPTION, WHICH IS ALMOST ENTIRELY PRODUCED BY BURNING COAL.

china : future costs of electricity generation

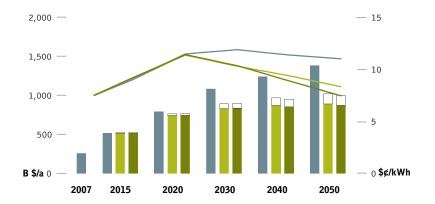
Figure 6.91 shows that the introduction of renewable technologies under the Energy [R]evolution scenario significantly decreases the future costs of electricity generation compared to the Reference scenario. Because of the lower CO₂ intensity of electricity generation, costs in China will become economically favourable under the Energy [R]evolution scenario and by 2050 will be almost 3 cents/kWh below those in the Reference scenario.

Under the Reference scenario, by contrast, the unchecked growth in demand, increase in fossil fuel prices and the cost of CO_2 emissions result in total electricity supply costs rising from today's \$256 billion per year to more than \$1,386 billion in 2050. Figure 6.91 shows that the Energy [R]evolution scenario not only complies with China's CO_2 reduction targets but also helps to stabilise energy costs. Increasing energy efficiency and shifting energy supply to renewables lead to long term costs for electricity supply that are significantly lower than in the Reference scenario.

In both Energy [R]evolution scenarios the specific generation costs are almost the same up to 2030. By 2050, however, the advanced version results in a reduction to 7 cents/kWh, mainly because of greater economies of scale in the production of renewable power equipment. Due to the increased demand for electricity, especially in the transport and industry sectors, the overall supply costs in the advanced version are \$6,8 billion higher in 2030 than in the basic Energy [R]evolution scenario.

china : job results

The Energy [R]evolution scenarios lead to more energy sector jobs in China at every stage of the projection.


• There are 2.9 million power sector jobs in the Energy [R]evolution scenario and 3.1 million in the advanced version by 2015, compared to 2.7 million in the Reference scenario.

• By 2020 job numbers in the renewables sector reach over one million in the Energy [R]evolution scenario, 870,000 more than in the Reference scenario.

• By 2030 job numbers in both Energy [R]evolution scenarios employ 290,000 people (advanced 620,000) more than in the Reference scenario.

Table 6.20 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Wind shows particularly strong growth in both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

figure 6.91: china: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

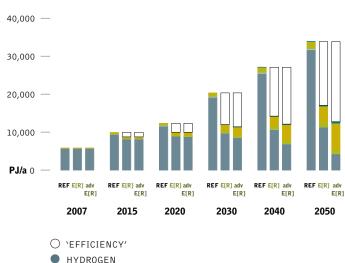
- ENERGY [R]EVOLUTION `EFFICIENCY' MEASURES
- REFERENCE SCENARIO
- ENERGY [R]EVOLUTION SCENARIO
- ADVANCED ENERGY [R]EVOLUTION SCENARIO

china

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

table 6.20: china: employment & investment


		REFERENCE			NERGY [R]E	/OLUTION	ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030
Construction & installation	0.54 m	0.47 m	0.23 m	0.46 m	0.52 m	0.29 m	0.54 m	0.63 m	0.54 m
Manufacturing	0.20 m	0.13 m	0.06 m	0.40 m	0.47 m	0.20 m	0.53 m	0.62 m	0.33 m
Operations & maintenance	0.28 m	0.30 m	0.31 m	0.32 m	0.38 m	0.42 m	0.32 m	0.40 m	0.47 m
Fuel	1.72 m	1.69 m	1.67 m	1.70 m	1.69 m	1.66 m	1.70 m	1.69 m	1.56 m
Total Jobs	2.74 m	2.58 m	2.28 m	2.89 m	3.06 m	2.57 m	3.10 m	3.34 m	2.90 m
Coal	2.19 m	2.13 m	1.93 m	1.98 m	1.87 m	1.74 m	1.92 m	1.80 m	1.56 m
Gas, oil and diesel	0.04 m	0.03 m	0.02 m	0.05 m	0.06 m	0.04 m	0.06 m	0.08 m	0.04 m
Nuclear	0.07 m	0.06 m	0.05 m	0.04 m	0.01 m	0.01 m	0.04 m	0.01 m	0.01 m
Renewables	0.44 m	0.35 m	0.28 m	0.82 m	1.12 m	0.78 m	1.08 m	1.45 m	1.29 m
Total Jobs	2.74 m	2.58 m	2.28 m	2.89 m	3.06 m	2.57 m	3.10 m	3.34 m	2.90 m

china : transport

In 2050, the car fleet in China will be 20 times larger than today. Today, more medium to large-sized cars are driven in China with an unusually high annual mileage. With growing individual mobility, an increasing share of small efficient cars is projected, with vehicle kilometres driven resembling industrialised countries averages. More efficient propulsion technologies, including hybrid-electric power trains, and lightweight construction, will help to limit the growth in total transport energy demand to a factor of 2.9, reaching 17,096 PJ/a in 2050. As China already has a large fleet of electric vehicles, this will grow to the point where almost 25% of total transport energy is covered by electricity.

By 2030 electricity will provide 13% of the transport sector's total energy demand under the Energy [R]evolution scenario, while in the advanced version the share will already reach 19% in 2030 and 54% by 2050.

figure 6.92: china: transport under 3 scenarios

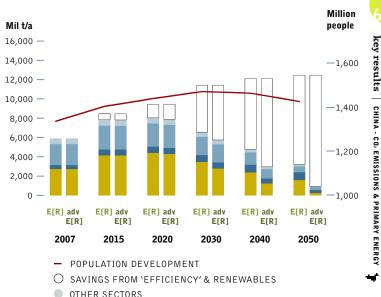
- SOLAR
- BIOMASS
- FOSSIL FUELS

key results | CHINA - TRANSPORT

image A MAINTENANCE ENGINEER INSPECTS A WIND TURBINE AT THE NAN WIND FARM IN NAN'AO. GUANGDONG PROVINCE HAS ONE OF THE BEST WIND RESOURCES IN CHINA AND IS ALREADY HOME TO SEVERAL INDUSTRIAL SCALE WIND FARMS. MASSIVE INVESTMENT IN WIND POWER WILL HELP CHINA OVERCOME ITS RELIANCE ON CLIMATE DESTROYING FOSSIL FUEL POWER AND SOLVE ITS ENERGY SUPPLY PROBLEM.

image image A LOCAL TIBETAN WOMAN WHO HAS FIVE CHILDREN AND RUNS A BUSY GUEST HOUSE IN THE VILLAGE OF ZHANG ZONG USES SOLAR PANELS TO SUPPLY ENERGY FOR HER BUSINESS.

china: development of CO₂ emissions


Whilst China's emissions of CO_2 will almost more than double under the Reference scenario, under the Energy [R]evolution scenario they will decrease from 5,852 million tonnes in 2007 to 3,209 million tonnes in 2050. Annual per capita emissions will drop from 4.4 t to 2.3 t.

The advanced Energy [R]evolution scenario will shift the peak of energy related CO_2 emissions to 2025 a few years earlier than in the basic version, leading to 3.9 t per capita by 2030 and 0.6 t by 2050. By 2050, China's CO_2 emissions will then be 41% of 1990 levels.

china: primary energy consumption

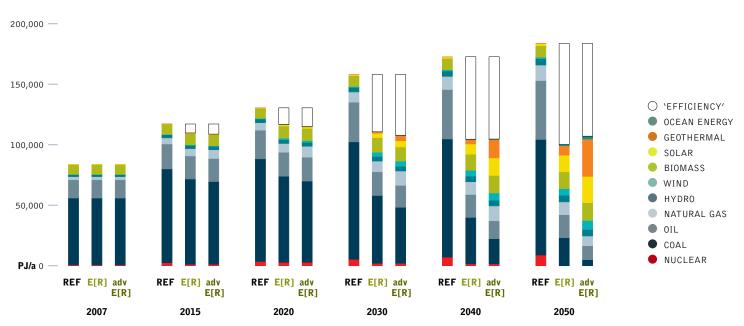

Taking into account the above assumptions, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.94. Compared to the Reference scenario, overall primary energy demand will be reduced by 46% in 2050. Around 47% of the remaining demand will be covered by renewable energy sources. The advanced version phases out coal and oil about ten to 15 years faster than the basic scenario. This is made possible mainly by the replacement of new coal power plants with renewables after a 20 rather than 40 year lifetime and a faster introduction of electric vehicles in the transport sector to replace combustion engines. This leads to an overall renewable energy share of 27% in 2030 and 77% in 2050.

figure 6.93: china: development of CO² emissions by sector under both energy [r]evolution scenarios

- TRANSPORT
- PUBLIC ELECTRICITY & CHP

figure 6.94: china: development of primary energy consumption under three scenarios

oecd pacific

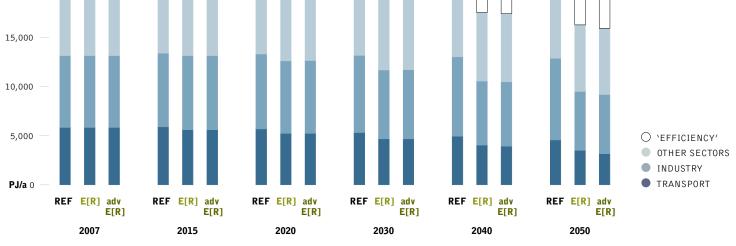
GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

oecd pacific: energy demand by sector

The future development pathways for OECD Pacific's final energy demand are shown in Figure 6.95 for the Reference and both Energy [R]evolution scenarios. Under the Reference scenario, total primary energy demand in OECD Pacific increases by more than 9% from the current 37,588 PJ/a to 40,793 PJ/a in 2050. In the Energy [R]evolution scenario, by contrast, energy demand decreases by 40% and 43% in the advanced case, compared to current consumption and it is expected by 2050 to reach 22,417 PJ/a and 21,299 PJ/a in the advanced scenario. Under the Energy [R]evolution scenario, electricity demand in the industrial, residential and services sectors is expected to fall slightly below the current level (see Figure 6.96). The growing use of electric vehicles however, leads to an increased demand reaching a level of 1,994 TWh/a 2050. Electricity demand in the Reference scenario is still 763 TWh/a lower than in the Reference scenario in 2050.

The advanced Energy [R]evolution scenario introduces electric vehicles earlier while more journeys - for both freight and persons - will be shifted towards electric trains and public transport. Fossil fuels for industrial process heat generation are also phased out more quickly and replaced by electric geothermal heat pumps and hydrogen. This means that electricity demand in the advanved Energy [R]evolution is higher and reaches 2,139 TWh/a in 2050, still 10% below the Reference case.


MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

Efficiency gains in the heat supply sector are larger than in the electricty sector. Under both Energy [R]evolution scenarios, final demand for heat supply can even be reduced significantly (see Figure 6.97). Compared to the Reference scenario, consumption equivalent to 1,730 PJ/a is avoided through efficiency measures by 2050.

In the transport sector, it is assumed under the Energy [R]evolution scenario that energy demand will decrease by 40% to 3,514 PJ/a by 2050, saving 23% compared to the Reference scenario. The advanced version factors in a faster decrease of the final energy demand for transport. This can be achieved through a mix of increased public transport, reduced annual person kilometres and wider use of more efficient engines and electric drives. While electricity demand increases, the overall final energy use falls to 3,163 PJ/a, 46% lower than in the Reference case.

25,000 - 20,000 - 25,0

figure 6.95: oecd pacific: projection of total final energy demand by sector (REF, E[R] & advanced E[R])


image PORTLAND, IN THE STATE OF VICTORIA, WAS THE FIRST AUSTRALIAN COUNCIL TO RECEIVE A DEVELOPMENT APPLICATION FOR WIND TURBINES AND NOW HAS ENOUGH IN THE SHIRE TO PROVIDE ENERGY FOR SEVERAL LOCAL TOWNS COMBINED.

image THE FORTUNES OF THE TOWN OF INNAMINCKA ARE ABOUT TO CHANGE, BECAUSE THEY ARE SITTING ON THE EDGE OF THE COOPER BASIN. IT MAY BE SIZZLING ABOVE GROUND, BUT THE ROCKS FIVE KILOMETRES BELOW INNAMINCKA ARE SUPER-HEATED, PROVIDING A NEW AND CLEAN SOURCE OF ENERGY. RESIDENT LEON, THE PUBLICAN SAYS, EVERYONE IN TOWN IS EXCITED, EVERYONE HAS TO LIVE NEXT TO A NOISY GENERATOR. AND ANYTHING YOU DO OUT HERE IS EXPENSIVE, IT ALL HAS TO BE FREIGHTED IN. ANYWHERE YOU CAN SAVE SOME MONEY IS GREAT. UP UNTIL NOW, THE PUB HAS BEEN USING BETWEEN AROUND 3,000 LITRES OF DIESEL FUEL EVERY WEEK. WHEN THE NEW GENERATOR IS SWITCHED ON THAT SHOULD DROP TO ZERO.

figure 6.96: oecd pacific: development of electricity demand by sector (REF, E[R] & advanced E[R])

oecd pacific: heating and cooling supply

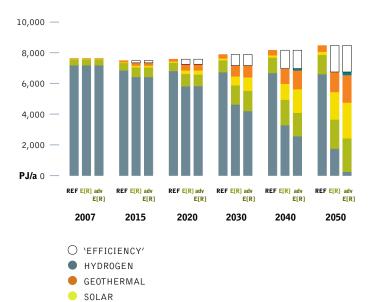
Renewables currently provide 6% of OECD Pacific's energy demand for heat supply, the main contribution coming from biomass. Dedicated support instruments are required to ensure a dynamic future development. In the Energy [R]evolution scenario, renewables provide 74% of OECD Pacific's total heating and cooling demand in 2050.

• Energy efficiency measures can decrease the current demand for heat supply by 12%, in spite of improving living standards.

• For direct heating, solar collectors, biomass/biogas as well as geothermal energy are increasingly substituting for fossil fuel-fired systems.

• A shift from coal and oil to natural gas in the remaining conventional applications will lead to a further reduction of CO_2 emissions.

The advanced Energy [R]evolution case introduces renewable heating and cooling systems around 5 years ahead of the Energy [R]evolution scenario. Solar collectors and geothermal heating systems achieve economies of scale via ambitious support programmes 5 to 10 years earlier and reach a share of 41% by 2030 and 96% by 2050.


figure 6.97: oecd pacific: development of heat demand by sector

OTHER SECTORS

INDUSTRY

figure 6.98: oecd pacific: development of heat supply structure under 3 scenarios

BIOMASS FOSSIL FUELS key results | OECD PACIFIC - HEATING

oecd pacific

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA

oecd pacific: electricity generation

A dynamically growing renewable energy market will compensate for the phasing out of nuclear energy and reduce the number of fossil fuel-fired power plants required for grid stabilisation. By 2050, 78% of the electricity produced in OECD Pacific will come from renewable energy sources. 'New' renewables – mainly wind, solar thermal energy and PV – will contribute 43% of electricity generation.

The installed capacity of renewable energy technologies will grow from the current 77 GW to 627 GW in 2050, increasing renewable capacity by a factor of 8. The advanced Energy [R]evolution scenario projects a faster market development with higher annual growth rates achieving a renewable electricity share of 35% by 2030 and 98% by 2050. The installed capacity of renewables will reach 273 GW in 2030 and 810 GW by 2050, 29% higher than in the basic version.

To achieve an economically attractive growth in renewable energy sources a balanced and timely mobilisation of all technologies is of great importance. Figure 6.99 shows the comparative of the different renewable technologies over time. Up to 2020 hydro and wind will remain the main contributors of the growing market share.

After 2020, the continuing growth of wind will be complemented by electricity from biomass, photovoltaics and solar thermal (CSP) energy. The advanced Energy [R]evolution scenario will lead to a higher share of fluctuating power generation source (photovoltaic, wind and ocean) of 17% by 2030, therefore the expansion of smart grids, demand side management (DSM) and storage capacity from the increased share of electric vehicles will be used for a better grid integration and power generation management.

MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

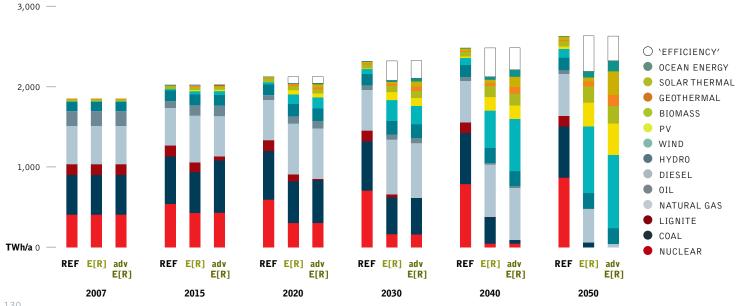

None of these numbers - even in the advanced Energy [R]evolution scenario - utilise the maximum known technical potential of all the renewable resources. While the deployment rate compared to the technical potential for geothermanl power, for example, is relatively high at 27% in the advanced Energy [R]evolution scenario, for PV only 0.4% has been used in the advanced scenario.

table 6.21: oecd pacific: projection of renewable electricity generation capacity under both Energy [R]evolution scenarios

IN GW 2007 2020 2030 2040 2050 Hydro E[R] 81 87 89 89 68 advanced E[R] 68 81 87 89 89 4 8 14 23 33 Biomass F[R] advanced EER1 4 8 15 23 35 Wind E[R] 4 41 79 144 257 4 48 71 202 283 advanced E[R] 4 5 9 Geothermal F[R] 1 3 3 8 13 advanced E[R] 1 21 ΡV F[R] 0 36 71 121 211 advanced E[R] 0 36 71 121 279 CSP E[R] 4 0 3 6 8 advanced E[R] 0 13 11 36 66 Ocean energy E[R] 0 1 4 11 21 0 advanced E[R] 3 10 24 37 399 Total E[R] 77 173 263 627 77 191 273 509 810 advanced E[R]

figure 6.99: oecd pacific: development of electricity generation structure under 3 scenarios

(REFERENCE, ENERGY [R]EVOLUTION AND ADVANCED ENERGY [R]EVOLUTION) ["EFFICIENCY" = REDUCTION COMPARED TO THE REFERENCE SCENARIO]

1

image SOLAR PANELS ON CONISTON STATION, NORTH WEST OF ALICE SPRINGS, NORTHERN TERRITORY.

image THE "CITIZENS' WINDMILL" IN AOMORI, NORTHERN JAPAN. PUBLIC GROUPS, SUCH AS CO-OPERATIVES, ARE BUILDING AND RUNNING LARGE-SCALE WIND TURBINES IN SEVERAL CITIES AND TOWNS ACROSS JAPAN.

oecd pacific: future costs of electricity generation

Figure 6.100 shows that the introduction of renewable technologies under the Energy [R]evolution scenario slightly increases the costs of electricity generation in the OECD Pacific compared to the Reference scenario. This difference will be small (1.3 cent/kWh) up to 2020, however. Because of the lower CO_2 intensity of electricity generation, electricity generation costs will become economically favourable under the Energy [R]evolution scenarios and by 2050 costs will be more than 2 cents/kWh below those in the Reference scenario.

Under the Reference scenario, by contrast, unchecked growth in demand, an increase in fossil fuel prices and the cost of CO₂ emissions result in total electricity supply costs rising from today's \$163 billion per year to more than \$322 billion in 2050. Figure 6.100 shows that the Energy [R]evolution scenario not only complies with OECD Pacific´s CO₂ reduction targets but also helps to stabilise energy costs. Increasing energy efficiency and shifting energy supply to renewables lead to long term costs for electricity supply that are one third lower than in the Reference scenario.

The advanced Energy [R]evolution scenario will lead to a higher proportion of variable power generation sources (PV, wind and ocean power), reaching 17% by 2030 and 62% by 2050. Expansion of smart grids, demand side management and storage capacity through an increased share of electric vehicles will therefore be used to ensure better grid integration and power generation management.

oecd pacific: job results

The Energy [R]evolution scenarios lead to more energy sector jobs in OECD Pacific at every stage of the projection.

• There are 340,000 power sector jobs in the Energy [R]evolution scenario and 360,000 in the advanced version by 2015, compared to 200,000 in the Reference scenario.

• By 2020 job numbers in the renewables industry reach 180,000 in both Energy [R]evolution scenarios, 110,000 more than in the Reference scenario.

• By 2030 job numbers climb slightly in the Energy [R]evolution scenario to 290,000, (350,000 in the advanced version) and reach nearly 240,000 million in the Reference scenario. The employment in the renewables sector reaches around a quarter million in both Energy [R]evolution scenarios, about 4-times more than the regions coal industry.

Table 6.22 shows the increase in job numbers under both Energy [R]evolution scenarios for each technology up to 2020 and up to 2030. Both scenarios show some losses in coal generation, but these are outweighed by employment growth in renewable technologies and gas. Wind and solar shows particularly strong growth in the both Energy [R]evolution scenarios by 2020, but by 2030 there is significant employment across a range of renewable technologies.

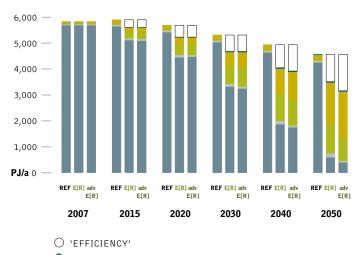
figure 6.100: oecd pacific: development of total electricity supply costs & development of specific electricity generation costs under 3 scenarios

oecd pacific

GLOBAL SCENARIO

OECD NORTH AMERICA LATIN AMERICA OECD EUROPE AFRICA MIDDLE EAST TRANSITION ECONOMIES INDIA OTHER DEVELOPING ASIA CHINA OECD PACIFIC

table 6.22: oecd pacific: employment & investment


		RE	FERENCE	ENERGY [R]EVOLUTION			ADVANCED ENERGY [R]EVOLUTION		
Jobs	2015	2020	2030	2015	2020	2030	2015	2020	2030
Construction & installation	0.04 m	0.03 m	0.05 m	0.14 m	0.08 m	0.07 m	0.16 m	0.08 m	0.09 m
Manufacturing	0.01 m	0.01 m	0.01 m	0.04 m	0.03 m	0.04 m	0.04 m	0.02 m	0.07 m
Operations & maintenance	0.08 m	0.08 m	0.10 m	0.09 m	0.10 m	0.12 m	0.09 m	0.10 m	0.13 m
Fuel	0.07 m	0.08 m	0.08 m	0.07 m	0.07 m	0.06 m	0.07 m	0.06 m	0.06 m
Total Jobs	0.20 m	0.20 m	0.24 m	0.34 m	0.28 m	0.29 m	0.36 m	0.27 m	0.35 m
Coal	0.05 m	0.05 m	0.06 m	0.04 m	0.05 m	0.03 m	0.04 m	0.04 m	0.03 m
Gas, oil and diesel	0.04 m	0.04 m	0.05 m	0.05 m	0.04 m	0.04 m	0.05 m	0.04 m	0.04 m
Nuclear	0.04 m	0.05 m	0.06 m	0.02 m	0.01 m	0.01 m	0.02 m	0.01 m	0.01 m
Renewables	0.06 m	0.06 m	0.07 m	0.23 m	0.18 m	0.22 m	0.25 m	0.18 m	0.28 m
Total Jobs	0.20 m	0.20 m	0.24 m	0.34 m	0.28 m	0.29 m	0.36 m	0.27 m	0.35 m

oecd pacific: transport

In the transport sector, it is assumed under the Energy [R]evolution scenario that an energy demand reduction of 1,050 PJ/a can be achieved by 2050, saving 23% compared to the Reference scenario. This reduction can be achieved by the introduction of highly efficient vehicles, by shifting the transport of goods from road to rail and by changes in mobility-related behaviour patterns. Implementing attractive alternatives to individual cars, the car stock is growing slower than in the Reference scenario.

A shift towards smaller cars triggered by economic incentives together with a significant shift in propulsion technology towards electrified power trains and a reduction of vehicle kilometres travelled by 0.25% per year leads to significant final energy savings. In 2030, electricity will provide 11% of the transport sector's total energy demand in the Energy [R]evolution, while in the advanced case the share will be 12% in 2030 and 56% by 2050.

figure 6.101: oecd pacific: transport under 3 scenarios

HYDROGEN
 GEOTHERMAL

- SOLAR
- BIOMASS
- FOSSIL FUELS

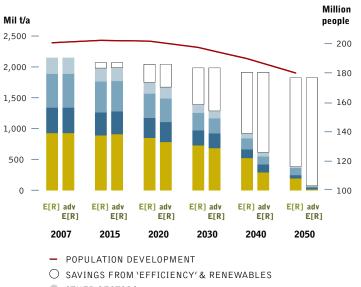
image GEOTHERMAL POWER STATION, NORTH ISLAND, NEW ZEALAND.

image WIND FARM LOOKING OVER THE OCEAN AT CAPE JERVIS, SOUTH AUSTRALIA.

oecd pacific: development of CO₂ emissions

Whilst the OECD Pacific's emissions of CO2 will decrease by 15% under the Reference scenario, under the Energy [R]evolution scenario they will decrease from 2,144 million tonnes in 2007 to 385 million t in 2050. Annual per capita emissions will fall from 10.7 t to 2.1 t. In the long run efficiency gains and the increased use of renewable electricity in vehicles will even reduce emissions in the transport sector. With a share of 51% of total CO₂ in 2050, the power sector will remain the largest sources of emissions.

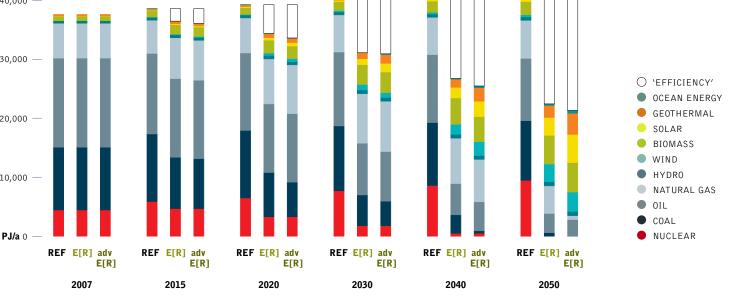
The advanced Energy [R]evolution scenario reduces energy related CO2 emissions about ten to 15 years faster than the basic scenario, leading to 6.5 t per capita by 2030 and 0.4 t by 2050. By 2050, OECD Pacific's CO₂ emissions are 5% of 1990 levels.


oecd pacific: primary energy consumption

10,000

Taking into account the above assumptions, the resulting primary energy consumption under the Energy [R]evolution scenario is shown in Figure 6.103. Compared to the Reference scenario, overall energy demand will be reduced by 45% in 2050. Around 62% of the remaining demand will be covered by renewable energy sources.

The advanced version phases out coal and oil about 10 to 15 years faster than the basic scenario. This is made possible mainly by replacement of coal power plants with renewables after 20 rather than 40 years lifetime and a faster introduction of electric vehicles in the transport sector to replace oil combustion engines. This leads to an overall renewable primary energy share of 26% in 2030 and 84% in 2050. Nuclear energy is phased out in both Energy [R]evolution scenarios just after 2030.


figure 6.102: oecd pacific: development of CO2 emissions by sector under both Energy R]evolution scenarios

- OTHER SECTORS
- INDUSTRY
- TRANSPORT
- PUBLIC ELECTRICITY & CHP

40,000 — 30,000 20,000 -

figure 6.103: oecd pacific: development of primary energy consumption under three scenarios

future investment and employment

GLOBAL SCENARIO

THE GLOBAL RENEWABLE ENERGY MARKET EMPLOYMENT IN GLOBAL RENEWABLE ENERGY EMPLOYMENT PROJECTIONS EMPLOYMENT FACTORS FUTURE INVESMENT FUTURE GROWTH RATES KEY RESULTS BY TECHNOLOGY FOSSIL FUELS AND NUCLEAR

"I often ask myself why this whole question needs to be so difficult, why governments have to be dragged kicking and screaming even when the cost is miniscule."

LYN ALLISON

LEADER OF THE AUSTRALIAN DEMOCRATS, SENATOR 2004-2008

image THE DABANCHENG WIND POWER ALONG THE URUMQI-TURPAN HIGHWAY, XINJIANG PROVINCE, CHINA. HOME TO ONE OF ASIA'S BIGGEST WIND FARMS AND A PIONEER IN THE INDUSTRY XINJIANG'S DABANCHENG IS CURRENTLY ONE OF THE LARGEST WIND FARMS IN CHINA, WITH 100 MEGAWATTS OF INSTALLED POWER GENERATING CAPACITY.

the global renewable energy market

The renewable energy sector has been growing substantially over the last four years. In 2008, the increases in the installation level of both wind and solar power were particularly impressive. The total amount of renewable energy installed worldwide is reliably tracked by the Renewable Energy Policy Network for the 21st Century (REN21). Its latest global status report (2009) shows how the technologies have grown.

table 7.1: annual growth rates of global renewable energy

	Wind	1 29% in 2008	1 600% since 2004
	Solar photovoltaic (PV)	1 70% in 2008	1 250% since 2004
8	Small hydro power	1 8% in 2008	175% since 2004

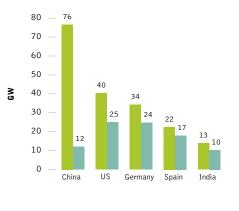

The global installed capacity of renewable energy at the end of 2008 was 1,128 GW. Of this, large hydro power made up around three quarters and wind approximately 11%. The new capacity commissioned in 2008 alone amounted to roughly 40 GW (excluding large hydro power), with the highest growth in wind power.

figure 7.1: new renewable energy installed worldwide, 2008, after REN 21 Renewable Energy Outlook 2008

The top five countries for new renewable energy in 2008 were China, the United States, Germany, Spain and India. China doubled its wind power capacity for the fifth year in a row. The growth of gridconnected solar PV in Spain was five times the level in 2007.

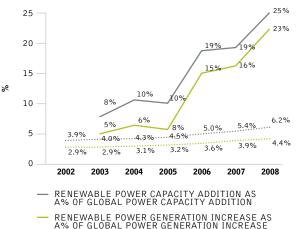
figure 7.2: top five countries for renewable energy installation in 2008, from Ren21 Renewable Energy Outlook 2008

TOTAL RENEWABLE ENERGY CAPACITY
 WIND

making the switch For the first time in 2008 both the United States and the European Union added more capacity from renewable energy sources than from conventional generation (including gas, coal, oil and nuclear). By the end of the year renewable energy made up just 6.2% of the world's total installed energy capacity and 4.4% of generation. If large hydropower is included the total rises to 18%. However, new installations of renewable energy made up one quarter of the total fresh capacity⁵³, compared to just 10% in 2004. If large hydropower is included the total for the renewable sector increases to more than half of all newly commissioned capacity.⁵⁴

Total global investment in renewable energy was \$120 billion in 2008⁵⁵, at least four times more than in 2004. The United States contributed around 20% of this total. According to the United Nations Environment Programme (UNEP), total new investment in developed countries was \$82.3 billion, and \$36.6 billion in developing countries during 2008, an increase of 37% on 2007 levels.⁵⁶ For the first time, investment in renewable energy (including large hydropower) was greater than that in fossil fuel technologies by a margin of about \$10 billion.

In 2008 there was crisis in the world's financial system and a number of banks, mortgage lenders and insurance companies failed. For renewable energy this meant there was less finance available for new projects. The full effects are not yet known, but early indications suggest that renewable energy has weathered the crisis better than most sectors. Wind energy in particular seems to have been relatively unaffected. In several developed countries, economic stimulus packages have included incentives for large scale renewable energies and energy efficiency programmes.


⁵³ UNITED NATIONS ENVIRONMENT PROGRAMME (UNEP) AND NEW ENERGY FINANCE (2009) GLOBAL TRENDS IN SUSTAINABLE ENERGY INVESTMENT 2009 - ANALYSIS OF TRENDS AND ISSUES IN THE FINANCING OF RENEWABLE ENERGY AND ENERGY EFFICIENCY. 54 REN21 (2009) RENEWABLES GLOBAL STATUS REPORT 2009 55 REN21 (2009) IBID

 $^{{\}bf 56}$ united nations environment programme (unep) and new energy finance (2009) ${\it IB1D}$

policies and incentives The world policy landscape includes an increasing number of measures to encourage renewable energy. Examples include new solar PV subsidy programmes introduced in Australia, China, Japan, Luxembourg, the Netherlands and the United States. New laws and policy provisions for renewable energy have also been adopted in many developing countries, including Brazil, Chile, Egypt, Mexico, the Philippines, South Africa, Syria and Uganda. Several hundred cities and local governments around the world are actively planning or implementing renewable energy policies and frameworks linked to carbon dioxide emissions reduction.

The drivers of renewable energy are climate change, energy insecurity, fossil fuel depletion and new technology development. The price of many of these technologies is falling due to the global supply-demand equation; UNEP predicted, for example, that the price of solar panels would fall by 43% during 2009.⁵⁷ This economic resilience, combined with more and more firm policies mandates requiring a commitment to renewables, such as feed-in tariffs and renewable portfolio standards, mean that renewable energy will continue to grow.

figure 7.3: renewable power generation and capacity as a proportion of global power, 2003-2008%

- A% OF GLOBAL POWER GENERATION INCREASE
- ····· RENEWABLE POWER AS A% OF GLOBAL POWER CAPACITY ····· RENEWABLE POWER AS A% OF GLOBAL POWER GENERATION

SOURCE "GLOBAL TRENDS IN SUSTAINABLE ENERGY INVESTMENT 2009", UNEP/SEFI. (EXCLUDING LARGE HYDRO).

employment in global renewable energy

By the end of 2009 global employment in renewable energy was approximately 1.9 million. Although in the last ten years the advanced economies have shown leadership in encouraging renewable energy, developing countries are playing a growing role. China and Brazil, for example, account for a large share of the global total, with a strong commitment to both solar thermal and biomass development. Many jobs are created are in installation, operation and maintenance, as well as in biofuel feedstocks. The outlook for the future is bright: developing countries, such as Kenya with its solar technology potential, are expected to generate substantial numbers of jobs.

table 7.2: renewable electricity employment – selected countries and world

ENERGY SOURCE	SELECTED COUNTRIE	ËS
Wind	United States Spain Denmark Germany India	85,000ª 32,906 ^b 21,612 ^c 87,100 ^d 10,000 ^e
	World estimate	400,000 ª
Solar PV	United States Spain Germany	6,800ª 26,449 ^b 79,600 ^d
	World estimate	170,000 ^r
Solar Thermal electricity	United States Spain	800ª 968 ^b
Biomass power	United States Spain Germany	66,000ª 4,948⁵ 109,600ď
Hydropower	Europe United States Spain (small hydro)	20,000 8,000ª 6,661 ^b
Geothermal	United States Germany	9,000 ^g 9,300 ^a
All sectors	World estimate	1.7 ^f - 1.9 ^g million

a 2009 data: GWEC 2010

b 2007 data: Nieto Sáinz J 2007, in UNEP 2008 Table 11.1-4.

c 2006 data: Danish Wind Industry Association d 2009 data: BMU 2010

e 2007 data: Suzion 2007

e 2006 data: REN21 2008 p7

f UNEP 2008 p295; the world total for renewable sector is the UNEP figure minus estimated jobs in solar thermal as these are nearly all in

solar water heating. g Greenpeace International, Sven Teske – based on own research and

"Working for the Climate, September 2009, Amsterdam/Sydney

To ensure that the renewables sector provides large scale employment, a strong policy environment is essential. Some countries have already shown that renewable energy can form an important part of national economic strategies. Germany, for instance, views its investment in wind and solar PV as making a crucial contribution to its export markets. The government's intention is to gain a major slice of the world market in the coming decades, with most German jobs in these industries depending on export of wind turbines and solar panels. Although only a few countries currently have the requisite scientific and manufacturing know-how to develop such a strategy, the markets for wind and solar equipment in particular are experiencing rapid growth.

employment projections - methodology and assumptions

Greenpeace engaged the Australian-based Institute for Sustainable Futures (ISF) to model the employment effects of our 2009 sustainable future energy scenario compared to business as usual. The results, published in 2009 as "Working for the climate – Renewable Energy & The Green Job [R]evolution", form the basis for the calculations in the 2010 Energy [R]evolution scenarios.

57 united nations environment programme (unep) and new energy finance (2009) IBID

image A WORKER SURVEYS THE EQUIPMENT AT ANDASOL 1 SOLAR POWER STATION, WHICH IS EUROPE'S FIRST COMMERCIAL PARABOLIC TROUGH SOLAR POWER PLANT. ANDASOL 1 WILL SUPPLY UP TO 200,000 PEOPLE WITH CLIMATE-FRIENDLY ELECTRICITY AND SAVE ABOUT 149,000 TONNES OF CARBON DIOXIDE PER YEAR COMPARED WITH A MODERN COAL POWER PLANT.

The model calculates indicative numbers for jobs that would either be created or lost under both the Energy [R]evolution and Reference scenarios, with the over-arching aim of showing the effect on employment if the world re-invents its energy mix to dramatically cut carbon emissions. While the basic Energy [R]evolution scenario assumes a four-fold increase in renewable energy, replacing nuclear and a proportion of coal-fired power, plus widespread energy efficiency improvements, the advanced scenario speeds up introduction of the renewables power market by about ten years. The Reference ('business as usual') scenario is based on the International Energy Agency 2009 reference projections.⁵⁸

This section provides a simplified overview of how the calculations were performed and the employment factors determined. The detailed methodology is available in a separate report.⁵⁹ Chapters 5 and 6 contain all the data on how the scenarios were developed.

To calculate how many jobs will either be lost or created under the three scenarios requires a series of assumptions. These are summarised below.

- Start with the amount of electrical capacity that would be installed each year, and the amount of electricity generated per year under the Reference (business as usual) and the two Energy [R]evolution scenarios.
- Use 'employment factors' for each technology, which are the number of jobs per unit of electrical capacity (fossil as well as renewable), separated into manufacturing, construction, operation and maintenance and fuel supply.

- Take into account the 'local manufacturing' and 'domestic fuel production' for each region, in order to allocate the level of local jobs, and also to allocate imports to other regions.
- Multiply the electrical capacity and generation figures by the employment factors for each of the energy technologies.
- For non-OECD regions, apply a "regional job multiplier", which adjusts the OECD employment factors for different levels of labour-intensity in different parts of the world. Regional factors are used for coal mining, so no regional adjustment is needed in this case.
- For the 2020 and 2030 calculations, reduce the employment factors by a 'decline factor' for each technology; this reflects how employment falls as technology efficiencies improve.

The model used a range of inputs, including data from the International Energy Agency, US Energy Information Association, European Renewable Energy Council, European Wind Energy Association, US National Renewable Energy Laboratory, Renewable Energy Policy Project, census data from the United States, Australia and Canada, and the International Labour Organisation

These calculations only take into account direct employment, for example the construction team needed to build a new wind farm. They do not cover indirect employment, for example the extra services provided in a town to accommodate construction teams. Indirect employment provides significant numbers of jobs, but calculating the numbers is extremely speculative, particularly in a global study where conditions and technologies are so varied. However, including indirect job numbers could at least double the jobs created.⁶⁰

JOBS IN REGION 2020 JOBS IN REGION 2030	=			OLOGY DECLINE FACTOR ^{10 (} OLOGY DECLINE FACTOR ²⁰				
JOBS IN REGION 2010	=	JOBS IN REGION						
JOBS IN REGION	=	MANUFACTURING	+	CONSTRUCTION	+	OPERATION & Maintenance (0&M)	+	FUEL SUPPLY
FUEL SUPPLY (GAS)	=	ELECTRICITY GENERATION + NET GAS EXPORTS	×	FUEL EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER	X	% OF LOCAL PRODUCTION
FUEL SUPPLY (COAL)	=	ELECTRICITY GENERATION + NET COAL EXPORTS	×	REGIONAL FUEL EMPLOYMENT FACTOR	×	% OF LOCAL PRODUCTION		
FUEL SUPPLY (NUCLEAR, OIL, DIESEL, BIOMASS)	=	ELECTRICITY GENERATION	×	FUEL EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
OPERATION & Maintenance	=	CUMULATIVE CAPACITY	×	O&M EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
CONSTRUCTION	=	MW INSTALLED PER YEAR	×	CONSTRUCTION EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
MANUFACTURING (FOR EXPORT)	=	MW EXPORTED PER YEAR	×	MANUFACTURING EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER		
MANUFACTURING (FOR DOMESTIC USE)	=	MW INSTALLED PER YEAR	×	MANUFACTURING EMPLOYMENT FACTOR	×	REGIONAL JOB MULTIPLIER	Х	% OF LOCAL MANUFACTURIN

table 7.3: methodology overview

58 IEA 2009 WORLD ENERGY OUTLOOK.

 $\begin{array}{l} 59 \text{ Rutovitz, J. and usher, J. 2010..Methodology for calculating energy}\\ \text{Sector jobs prepared for greenpeace international by the institute for}\\ \text{sustainable futures, university of technology, sydney australia.}\\ 60 \text{ for example, bedzek r. 2007. Renewable energy and energy efficiency:}\\ \text{economic drivers fort he 21st century. Report prepared for the american solar energy society.} \end{array}$

employment factors

The "employment factors" have been used to calculate how many jobs are required per unit of electrical capacity. They take into account jobs in manufacturing, construction, operation and maintenance and fuel. The tables below list the employment factors used in the calculations. These factors are calculated for OECD countries. For other regions, a regional adjustment was used.

Because of its dominance in current electricity supply, regional employment factors were calculated for coal mining in the 2009 analysis. The calculations included figures from national employment data where available, and historic coal production, with most data for 2006/2007. These employment factors have been projected to 2010 using the 2009 GDP growth data from IEA 2009, but the coal production and employment figures have not been updated.

It is important to note that coal is mined using extremely different methods around the world, and employment per unit of electricity also varies according to the type of coal and the efficiency of generation. In Australia, for example, coal is extracted at an average of 13,800 tonnes per person per year using highly mechanised processes while in Europe the average coal miner is responsible for only 1,800 tonnes per year. China is a special case: even though it currently has a very low average rate of extraction per person (700 tonnes per employee per year) this will change very soon, as thousands of small mines close and new super-mines open. For this reason, the model uses US employment factors (above current levels) for future coal production in China (for a detailed discussion of the coal employment factors see Rutovitz and Atherton, 2009).

table 7.5: employment factors for coal production

and employment (MINING AND ASSOCIATED JOBS)

	EMPLOYMENT FACTOR (EXISTING GENERATION) Jobs per GWh	EMPLOYMENT FACTOR (NEW GENERATION) Jobs per GWh
World average ^a	0.4	0.25
0ECD North America	0.03	0.02
OECD Europe	0.36	0.17
OECD Pacific	0.05	0.02
India	0.59	0.25
China	0.52	0.02
Africa	0.11	0.07
Transition economies	0.46	0.19
Developing Asia	Use world average as no en	nployment data available
Latin America	Use world average as no en	nployment data available
Middle east	Use world average as no en	nployment data available

source From Rutovitz and Atherton, 2009, projected to 2010 using 2009 figures for per capita GDP growth

table 7.4: summary of employment factors for use in global analysis

FUEL	CONSTRUCTION, MANUFACTURING & INSTALLATION Person years/MW	OPERATION & MAINTENANCE Jobs/MW	FUEL Jobs/GWh	MAIN REFERENCE
Coal	7.7	0.1	Regional factors used	NREL (JEDI model)
Gas	1.5	0.05	0.12	NREL (JEDI model)
Nuclear	16	0.3	0.001	Rutovitz and Atherton 2009
Biomass	4.3	3.1	0.2	EPRI 2001, DTI 2004
Hydro	11.3	0.2		Pembina 2004
Wind	15	0.4		EWEA 2009
PV	38.4	0.4		EPIA 2008A, BMU 2008a
Geothermal	6.4	0.7		GEA 2005
Solar thermal	10	0.3		EREC 2008
Ocean	10	0.3		SERG 2007/ SP0K ApS 2008
Multiplier for CHP		1.3		

The factors for gas generation were taken from a publicly available model called JEDI, developed by the National Renewable Energy Laboratory in Washington to help work out local benefits of different types of energy supply.

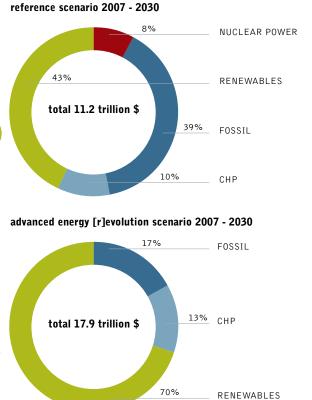
For nuclear energy, the factors for construction, manufacturing and installation were derived from a Nuclear Energy Institute 2009 factsheet, while operations and maintenance was calculated using Energy Information Administration data. Fuel employment was calculated from Australian census data.

For the renewable energies, employment factors were taken from industry data where available, as listed in Table 7.5, or derived, depending on the maturity of the technology.

A number of 'adjustment' factors were used to make the employment calculations more realistic, including:

- **regional job multipliers** The employment factors used in this model for all processes apart from coal mining reflect the situation in the (typically wealthier) OECD regions, so regional multipliers are applied to make the jobs per MW more realistic for other parts of the world. In developing countries it typically means more jobs per unit of electricity because of more labour intensive practices. The regional multipliers are the ratio of labour productivity in the region to labour productivity in the OECD. The multipliers change over the study period in line with the projections for GDP per capita. This reflects the fact that as prosperity increases, labour intensity tends to fall.
- **learning adjustments or 'decline factors'** This accounts for the projected reduction in the employment per MW of renewable and fossil fuel technologies over time, as technologies and companies become more efficient and production processes are scaled up. Decline factors are calculated from the cost reduction projected in the energy modelling, as generally, jobs per MW would fall in parallel with this trend.
- **local manufacturing and fuel production** Some regions do not manufacture the equipment needed for wind power or PV, for example, nor do they produce sufficient coal for their needs. The model takes into account the percentage of each technology which is made locally. The jobs in manufacturing components for export are counted in the region where they originate. The same applies to coal and gas, because they are traded internationally, so the model shows the region where the jobs are actually located.

future investment


investment in new power plants The overall global level of investment required in new power plants up to 2030 will be in the region of \$15 trillion. A major driving force for investment in new generation capacity will be the ageing fleet of power plants in OECD countries. Utilities must choose which technologies to opt for within the next five to ten years based on national energy policies, in particular market liberalisation, renewable energy and CO₂ reduction targets. Within Europe, the EU emissions trading scheme could have a major impact on whether the majority of investment goes into fossil fuelled power plants or renewable energy and co-generation. In developing countries, international financial institutions will play a major role in future technology choices, as well as whether the investment costs for renewable energy become competitive with conventional power plants. In regions with a good wind regime, for example, wind farms can already produce electricity at the same cost levels as coal or gas power plants.

It would require \$14.8 trillion in global investment for the Energy [R]evolution Scenario to become reality – approximately 27% higher than in the Reference Scenario (\$11.2 trillion). The advanced Energy [R]evolution scenario would need \$17.9 trillion, approximately 20% of the basic version. Under the Reference scenario, the levels of investment in renewable energy and fossil fuels are almost equal, about \$4.8 trillion each up to 2030. Under the Energy [R]evolution Scenarios, however, the world shifts about 80% of investment towards renewables and cogeneration, whilst the advanced version makes the shift approximately five to ten years earlier. By then, the fossil fuel share of power sector investment would be focused mainly on combined heat and power and efficient gas-fired power plants.

The average annual investment in the power sector under the basic Energy [R]evolution Scenario between 2007 and 2030 would be approximately \$644 billion and \$782 billion in the advanced version. This is equal to the current amount of subsidies paid for fossil fuels globally in less than three years. Most investment in new power generation would occur in China, followed by North America and Europe. South Asia, including India, and East Asia, including Indonesia, Thailand and the Philippines, would also be 'hot spots' of new power generation investment.

fossil fuel power generation investment Under the Reference scenario, the main market expansion for new fossil fuel power plants would be in China, followed by North America, where the volume required would be equal to India and Europe combined. The advanced Energy [R]evolution Scenario would mean a far lower overall investment in fossil fuel power stations up to 2030; this would total of around \$3.9 trillion, compared to \$6.2 trillion required under the Reference Scenario.

In all scenarios, China will be by far the largest investor in coal power plants. Under the Reference scenario the current growth trend would continue up to 2030, although under the Energy [R]evolution scenario growth slows down significantly between 2011 and 2030. The advanced version would phase out new build coal power plants after 20 years of lifetime rather than 40, which could lead to stranded investments, depending on coal prices and CO_2 costs after 2030. In the Reference scenario the massive expansion of coal firing is due to activity in China, followed by the USA, India, East Asia and Europe.

figure 7.4: investment shares - reference versus energy [r]evolution

energy [r]evolution scenario 2007 - 2030

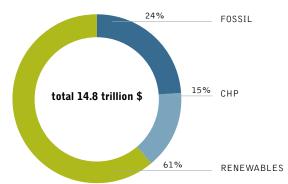
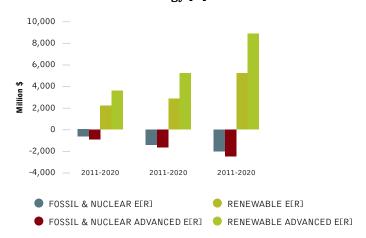
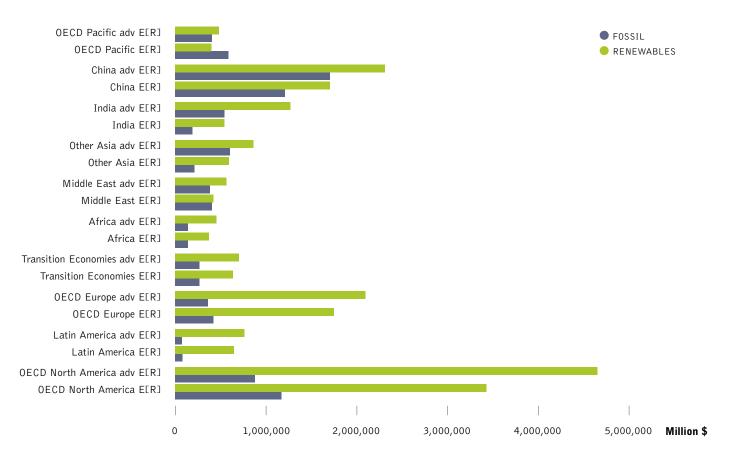



figure 2.4: change in cummulative power plant investment in both Energy [R]evolution scenarios


fuel cost savings with renewable energy The total fuel cost savings in the Energy [R]evolution Scenario reach a total of \$4.1 trillion, or \$180 billion per year. The advanced Energy [R]evolution has even higher fuel cost savings of \$6.5 trillion, or \$282 billion per year. This is because renewable energy has no fuel costs. Under the Reference scenario, the average annual additional fuel costs are higher than the additional investment requirements of the basic as well as the advanced Energy [R]evolution.

So in both cases the additional investment for renewable power plants refinance entirely via the fuel cost savings, which add up to \$3.6 trillion (\$6.9 trillion advanced) from today until 2030. This is enough to compensate for the entire investment in renewable and cogeneration capacity required to implement both of the Energy ERJevolution scenarios. These renewable energy sources would then go on to produce electricity without any further fuel costs beyond 2030, while the costs for coal and gas will continue to be a burden on national economies. Part of this money could be used to cover stranded investments in developing countries which may emerge under the advanced Energy ERJevolution scenario.

image A LOCAL WOMAN WORKS WITH TRADITIONAL AGRICULTURE PRACTICES JUST BELOW 21ST CENTURY ENERGY TECHNOLOGY. THE JILIN TONGYU TONGFA WIND POWER PROJECT, WITH A TOTAL OF 118 WIND TURBINES, IS A GRID CONNECTED RENEWABLE ENERGY PROJECT.

figure 7.5: cumulative power plant investments by region 2007-2030 in the energy [r]evolution scenarios

table 7.6: fuel cost savings and investment costs under the reference, energy[r]evolution and advanced energy [r]evolution

INVESTMENT COST	DOLLAR	2007-2010	2011-2020	2021-2030	2007-2030	2007-2030 AVERAGE PER YEAR
WORLD (2010) DIFFERENCE E[R] VERSUS REF						
Conventional (fossil & nuclear)	billion \$	-11.4	-585	-1,149	-1,719	-75
Renewables (incl. CHP)	billion \$	0	2,327	2,939	5,266	229
Total	billion \$		1,768	1,790	3,547	154
WORLD (2010) DIFFERENCE ADV E[R] VERSUS REF						
Conventional (fossil & nuclear)	billion \$	-11.4	-806	-1,443	-2,261	-98
Renewables (incl. CHP)	billion \$	0	3,680	5,286	8,966	390
Total	billion \$		2,874	3,843	6,705	292
CUMMULATED FUEL COST SAVINGS						
Fuel oil	billion \$/a		138	560	698	30
Gas	billion \$/a		-452	-144	-596	-26
Hard coal	billion \$/a		676	3,181	3,857	168
Lignite	billion \$/a		40	140	180	8
Total	billion \$/a		402	3,737	4,139	180
SAVINGS ADV EERI CUMMULATED IN \$						
Fuel oil	billion \$/a		137	589	727	32
Gas	billion \$/a		-264	756	492	21
Hard coal	billion \$/a		887	4,165	5,052	220
Lignite	billion \$/a		50	155	205	9
Total	billion \$/a		810	5,666	6,476	282

future growth rates

annual market potential for renewable power Annual market growth rates for renewable electricity in the Reference and Energy [R]evolution scenarios are very different, with the latter's projections based on recent experience in the market. The photovoltaic industry, for example, had an average annual growth rate of 35% between 1998 and 2008 (EPIA 2009), whilst the wind industry experienced a 30% annual growth rate over the same time period (GWEO 2009). Advanced technology roadmaps produced for the photovoltaic, concentrating solar power and wind industries further indicate that these growth rates can be maintained over the next decade, and then decline to between 20% and 10% from 2020 to 2030 and below 10% after that. Both Energy [R]evolution scenarios in fact assume lower annual growth rates for all renewable power technologies, in the range of about 20% up to 2025

and further declining to 10% or lower afterwards. Only concentrating solar power and ocean energy has higher annual growth rate projections.

In order to gain a better understanding of what different technologies can deliver, however, it is necessary to examine more closely how future production capacities can be achieved from the current baseline. The wind industry, for example, has a current annual production capacity of about 39,000 MW. If this output were not expanded, total capacity would reach about 1000 GW by the year 2050. This includes the need for "repowering" of older wind turbines after 20 years. But according to this scenario the share of wind electricity in global production by 2050 would need to grow from today's 1% to 5.4% under the Reference scenario and to 22.3% and 24.7% under the two Energy ER]evolution pathways. A relatively modest expansion from today's 39 GW production capacity, however, to about 74 GW (1010 GW, advanced) by 2020 and 178 GW (229 GW, advanced) in 2030 would

table 7.7: required production capacities for renewable energy technologies in different scenarios

	ANNUAL M	ARKET VOI	LUME (GW/A)	ELECTRICITY SHARE			
Solar	REF	E[R]	ADV E[R]	REF	E[R]	ADV EER	
PV-2020	5	26	36	0.4%	1.7%	2.3%	
PV-2030	18	91	124	0.8%	4.9%	6.3%	
PV-2050	40	141	211	1.4%	12.1%	15.6%	
CSP-2020	1	5	12	0.1%	1.2%	2.7%	
CSP-2030	2	24	45	0.4%	4.8%	8.8%	
CSP-2050	4	44	66	0.5%	15.6%	20.5%	
Wind							
On+Offshore-2020	26	74	101	3.7%	8.4%	11.0%	
0n+Offshore-2030	60	178	229	4.5%	15.1%	19.0%	
On+Offshore-2050	47	158	202	5.4%	22.3%	24.7%	
Geothermal							
2020 (power generation)	1	2	4	0.4%	0.9%	1.4%	
2030 (power generation)	2	7	18	0.5%	1.7%	4.1%	
2050 (power generation)	2	7	21	0.6%	2.7%	6.8%	
2020 (heat&power)	0	1	1	0.0%	0.3%	0.3%	
2030 (heat&power)	0	3	5	0.0%	0.6%	0.8%	
2050 (heat&power)	0	6	11	0.0%	1.9%	2.9%	
Bio energy							
2020 (power generation)	3	4	4	1.2%	1.4%	1.5%	
2030 (power generation)	10	8	8	1.6%	1.5%	1.6%	
2050 (power generation)	6	5	4	2.1%	1.9%	1.3%	
2020 (heat&power)	1	13	13	0.7%	2.9%	2.9%	
2030 (heat&power)	6	26	27	0.8%	4.7%	4.6%	
2050 (heat&power)	4	26	25	1.0%	7.9%	6.8%	
Ocean							
2020	0	2	4	0.0%	0.2%	0.5%	
2030	0	3	12	0.0%	0.4%	1.4%	
2050	0	10	27	0.1%	1.8%	4.4%	
Hydro							
2020	20	20	21	14.8%	15.6%	15.7%	
2030	135	126	127	13.6%	14.5%	14.3%	
2050	78	66	67	12.8%	13.3%	11.6%	
Total renewables							
2020 (power generation incl CHP)	57	148	197	21.4%	32.6%	38.1%	
2030 (power generation incl CHP)	232	466	593	22.3%	48.2%	60.9%	
2050 (power generation incl CHP)	181	462	634	24.0%	79.4%	94.6%	

tort

image WORKERS BUILD A WIND TURBINE IN A FACTORY IN PATHUM THANI, THAILAND. THE IMPACTS OF SEA-LEVEL RISE DUE TO CLIMATE CHANGE ARE PREDICTED TO HIT HARD ON COASTAL COUNTRIES IN ASIA, AND CLEAN RENEWABLE ENERGY IS A SOLUTION.

lead to a total installed capacity of 1,700 GW (2,200 GW, advanced) in 2030, providing between 15% of world electricity in the basic version and 19% in the advanced case.

Table 7.7 provides an overview of the annual market volume of manufacturing capacity required to implement the quantity of renewable energy generation within the three scenarios. The good news is that the Energy [R]evolution demand does not even come close to the limit of the renewable industries' own projections. However, the scenario does assume that at the same time strong energy efficiency measures are taken in order to save resources and develop a more cost optimised energy supply.

key results by technology

future employment – key results by technology Table 7.8 shows that by 2020 there will be 3 million more jobs overall in the power sector under the Energy [R]evolution scenario - and 4 million more in the advanced version - than there would be under the Reference scenario. This does not include jobs in the energy efficiency scector, as these have not been calculated. In all scenarios there would be fewer jobs in coal between 2010 and 2020. Under the Energy [R]evolution scenarios the job losses in coal would be greater, however, and there is far stronger growth in the renewable energy sector, resulting in more overall employment.

By 2020 more than half of the direct electricity sector employment in the Energy [R]evolution scenario comes from renewable energy, even though renewables account for only 33% of electricity generation. The advanced version would result in two thirds of all jobs in renewable energy, based on 38% of the electricity generation. In the Reference scenario, on the other hand, renewable energy accounts for 30% of energy sector jobs and 21% of electricity generation. This relationship between electricity output and jobs reflects the fact that the renewables sector has greater "labour intensity" – or more people per unit of power produced. Coal is the largest employer in the reference scenario, making up nearly half of energy sector jobs throughout the period. In the Energy [R]evolution scenarios coal employment drops to 26% by 2030, and in the Advanced scenario to just 18%. This reduction is more than compensated for by the strong growth in the renewables sector.

In all scenarios, biomass employment grows the most by 2030. In the Energy [R]evolution scenarios, jobs are much more evenly spread across technologies than in the Reference scenario, with coal and biomass the largest employers at 2030 in the [R]evolution scenario, and with PV and biomass the largest employers in the Advanced scenario. The employment potential for each renewable technology and fuel is now examined in more detail.

	RE	FERENCE S	CENARIO	EN	ERGY [R]E	OLUTION	ENERGY [R]EVOLUTION			
Jobs (millions)	2015	2020	2030	2015	2020	2030	2015	2020	2030	
. ,	1 (17 00	1.2 m	2.0 m	2.0 m	2.0.m	2 0 100	2.4 m	21 m	
Construction and installation	1.6 m	1.7 m	1.3 m	3.0 m	2.8 m	2.0 m	3.8 m	3.4 m	3.1 m	
Manufacturing	0.6 m	0.5 m	0.3 m	1.8 m	1.7 m	1.2 m	2.5 m	2.2 m	1.7 m	
Operations and maintenance	1.6 m	1.7 m	2.0 m	1.9 m	2.6 m	3.3 m	1.9 m	2.7 m	3.6 m	
Fuel supply	3.9 m	4.0 m	4.4 m	3.9 m	3.8 m	3.7 m	3.8 m	3.7 m	3.1 m	
Coal and gas export	0.5 m	0.5 m	0.7 m	0.5 m	0.5 m	0.5 m	0.5 m	0.4 m	0.4 m	
Total jobs	8.0 m	8.4 m	8.7 m	11.1 m	11.4 m	10.6 m	12.5 m	12.4 m	11.9 m	
Global										
Coal	3.9 m	4.1 m	4.2 m	3.4 m	3.1 m	2.7 m	3.2 m	2.8 m	2.1 m	
Gas, oil & diesel	1.5 m	1.6 m	1.7 m	1.7 m	1.6 m	1.4 m	1.6 m	1.5 m	1.2 m	
Nuclear	0.3 m	0.3 m	0.3 m	0.2 m	0.1 m	0.0 m	0.2 m	0.1 m	0.0 m	
Renewable	2.3 m	2.4 m	2.4 m	5.9 m	6.6 m	6.5 m	7.5 m	8.0 m	8.5 m	
Total jobs	8.0 m	8.4 m	8.7 m	11.1 m	11.4 m	10.6 m	12.5 m	12.4 m	11.9 m	
Global - Jobs										
Coal	3.93 m	4.15 m	4.20 m	3.43 m	3.13 m	2.74 m	3.22 m	2.82 m	2.11 m	
Gas, oil & diesel	1.51 m	1.59 m	1.74 m	1.67 m	1.63 m	1.40 m	1.59 m	1.49 m	1.23 m	
Nuclear	0.33 m	0.29 m	0.29 m	0.17 m	0.10 m	0.04 m	0.17 m	0.10 m	0.04 m	
Biomass	0.48 m	0.59 m	0.86 m	0.96 m	1.51 m	2.11 m	0.96 m	1.52 m	2.14 m	
Hydro	0.90 m	0.95 m	0.91 m	1.00 m	0.67 m	0.59 m	0.88 m	0.68 m	0.60 m	
Wind	0.52 m	0.39 m	0.38 m	1.70 m	1.55 m	1.40 m	2.28 m	2.01 m	1.73 m	
PV	0.32 m	0.40 m	0.25 m	1.85 m	2.40 m	1.71 m	2.67 m	2.99 m	2.77 m	
Geothermal	0.02 m	0.02 m	0.02 m	0.07 m	0.09 m	0.12 m	0.10 m	0.18 m	0.27 m	
Solar thermal	0.02 m	0.02 m	0.02 m	0.23 m	0.31 m	0.49 m	0.54 m	0.51 m	0.85 m	
Ocean	0.00 m	0.00 m	0.00 m	0.05 m	0.04 m	0.06 m	0.12 m	0.12 m	0.16 m	
Total jobs	8.04 m	8.40 m	8.68 m	11.13 m	11.43 m	10.65 m	12.51 m	12.43 m	11.90 m	

table 7.8: global: employment under the reference, [r]evolution, and advanced scenarios in 2015, 2020 and 2030.

solar photovoltaics (pv)

The worldwide photovoltaics (PV) market has been growing at over 35% per annum in recent years and it can now make a significant contribution to electricity generation. Development work is focused on increasing the energy efficiency and reducing material usage of systems and modules. New technologies are developing quickly, including PV thin film (using alternative semiconductor materials) or dye sensitive solar cells, and these present a huge potential for cost reduction.

Photovoltaics have been following a fairly consistent pattern of cost reduction of 20% each time the capacity doubles; this scenario assumes a level of 5 to 10 ct/kWh by 2050, depending on the world region. Over the next five to ten years PV will become competitive with retail electricity prices in many parts of the world and competitive with fossil fuel costs by 2050.

Solar PV is a critical part of the energy mix – it can be used in decentralized or centralized formats, it is useful in an urban environment and has huge potential for cost reduction.

employment in pv Under the basic Energy [R]evolution scenario, solar PV would provide 5% of total electricity generation by 2030, and employs 1.7 million people. The advanced case would achieve a share of 6.3% and 2.8 million employees by 2030. In the Reference scenario, there are only 0.3 million employed in PV in 2015. Jobs in PV stay nearly constant from 2015 to 2030 in the three scenarios as the cost reduction in the technology and the projected increase in GDP per capita means the increase in capacity just keeps pace with the reduction in jobs per MW, so the employment advantage of the [R]evolution scenario is maintained.

concentrating solar power (csp)

Concentrating solar power is currently experiencing massive expansion, and costs are expected to be 6 to 10 ct/kWh in the long term.

Solar thermal 'concentrating' power stations (CSP) are suitable for areas with high levels of direct sunlight. The technical potential of North Africa for CSP, for example, is much greater than local demand.

There are various types of solar thermal technologies, offering good prospects for further development and cost reductions. The 'Fresnel' collectors have a simple design, and their costs are expected to fall with mass production. For central receiver systems, efficiency can be increased by producing compressed air at a temperature of up to 1,000°C; this is then used to run a combined gas and steam turbine.

Developments in storing heat will also reduce CSP electricity generation costs. The Spanish Andasol 1 plant, for example, is equipped with molten salt storage with a capacity of 7.5 hours. A higher level of full load operation can be realised by using a thermal storage system and a large collector field. These components increase initial investment costs but reduce the cost of electricity generation.

Employment in csp Under the Reference scenario, jobs in solar thermal technologies hold steady at around 20,000 over three decades. If the Energy [R]evolution was followed through, then by 2030 we would see more than a 20-fold increase in the employment opportunities from this technology. The highest proportion of jobs would be in construction and manufacturing. The advanced version could lead to 500,000 jobs and a total annual investment of US\$296 billion by 2020.

table 7.9: capacity, investment and direct jobs - PV

		REF	CENARIO	ENERGY [R]EVOLUTION SCENARIO						
Energy parameters	UNIT	2015	2020	2030	2015		2020		2030	
					BASE AD	OVANCED	BASE	ADVANCED	BASE	ADVANCED
Installed capacity	GW	44	80	184	98	108	335	439	1,036	1,330
Generated electricity	TWh/a	55	108	281	121	132	437	594	1,481	1,953
Share of total supply	%	0.2%	0.4%	0.8%	0.5%	0.6%	1.7%	2.3%	4.9%	6.3%
Market & Investment										
Annual increase in capacity	GW/a	5	18	18	26	36	91	124	141	211
Annual investment	bill.\$/a	33	20	20	73	95	98	124	177	226
Employment										
Direct jobs in construction manufaction, operation and maintenance		0.3 m	0.4 m	0.3 m	1.9 m	2.7 m	2.4 m	3.0 m	1.7 m	2.8 m

image TEST WINDMILL N90 2500, BUILT BY THE GERMAN COMPANY NORDEX, IN THE HARBOUR OF ROSTOCK. THIS WINDMILL PRODUCES 2.5 MEGA WATT AND IS TESTED UNDER OFFSHORE CONDITIONS. TWO TECHNICIANS WORKING INSIDE THE TURBINE.

table 7.10: capacity, investment and direct jobs - CSP

		REF	ERENCE S	CENARIO			ENERGY [R]EVOLUTION SCENARIO					
	UNIT	2015	2020	2030	201	5	20)20	2030			
Energy parameters					BASE ADVANCED		BASE ADVANCED		BASE	ADVANCED		
Installed capacity	GW	5	12	27	25	28	105	5 225	324	605		
Generated electricity	TWh/a	12	38	121	66	75	321	689	1,447	2,734		
Share of total supply	%	0.1%	0.1%	0.4%	0.3%	0.3%	1.2%	2.7%	4.8%	8.8%		
Market & Investment												
Annual increase in capacity	GW/a	1	2	4	5	12	24	45	44	66		
Annual investment	bill. \$/a	9	10	20	56	119	101	176	158	296		
Employment												
Direct jobs in construction manufaction, operation and maintenance		0.02 m	0.02 m	0.02 m	0.23 m	0.54 m	0.31 m	n 0.51 m	0.49 m	0.85 m		

wind

There is a flourishing global market for wind power, and the development costs are expected to fall by 30% on land and 50% for offshore installations.

The world's largest wind turbines, several of which have been installed in Germany, have a capacity of 6 MW. Favourable policy incentives in Europe have driven the global market. In 2009, however, more than 70% of the annual market was outside Europe and this trend is likely to continue.

There have been supply constraints following a boom in demand for wind power technology and this means that the cost of new systems has increased recently. The industry is now resolving those bottlenecks in the supply chain through expansion of production capacities, for example in China. **employment in wind energy** Under the Energy [R]evolution scenario, wind would provide 15% of total electricity generation by 2030, and reach the same share in the advanced version just after 2020. Jobs in this sector would grow to 1.7 million in 2015 and to over 2 million in the Advanced scenario. By 2030 in the basic [R]evolution scenario jobs would fall back to 1.4 million (1.7 million in the advanced version). Under the Reference scenario, wind jobs reach only 0.5 million in 2015, and fall back to 0.4 million in 2030.

The effect of decline factors on wind power jobs is less marked, because the technology is further along the commercialisation path. If decline factors were not used, wind jobs would be 0.7 - 0.8 million higher in 2030 in the [R]evolution scenarios.

table 7.11: capacity, investment and direct jobs - wind

		REF	ERENCE S	CENARIO			ENERGY [R]EVOLUTION SCENARIO						
	UNIT	2015	2020	2030	2015		20)20	2030				
Energy parameters					BASE	ADVANCED	BASE	ADVANCED	BASE	ADVANCED			
Installed capacity	GW	293	417	595	407	494	878	3 1,140	1,733	2,241			
Generated electricity	TWh/a	677	1,009	1,536	941	1,165	2,168	3 2,849	4,539	5,872			
Share of total supply	%	2.8%	3.7%	4.5%	4.0%	4.9%	8.4%	11.0%	15.1%	19.0%			
Market & Investment													
Annual increase in capacity	GW/a	26	74	101	74	101	178	3 229	158	202			
Annual investment	bill.\$/a	42	32	92	90	122	10]	126	209	266			
Employment													
Direct jobs in construction manufaction, operation and maintenance		0.5 m	0.4 m	0.4 m	1.7 m	2.3 m	1.5 m	n 2.0 m	1.4 m	1.7 m			

wave and tidal

The current cost of energy from tidal and wave energy projects has been estimated to be in the range of 15-55 cents/kWh, and for initial tidal stream farms in the range of 11-22 cents/kWh. For future plants, generation costs of 10-25cents/kWh are expected by 2020, with dynamic growth following the same pattern as wind energy.

Ocean energy, particularly offshore wave power, is a significant resource which could satisfy an important percentage of electricity supply worldwide. Globally, the potential for ocean energy has been estimated at enough to generate around 90,000 TWh/year. The most significant advantages are its vast availability and high predictability, plus technology with very low visual impact and no CO₂ emissions. Many different concepts and devices have been developed, with some at an advanced phase of research and development; large scale prototypes have been deployed in real sea conditions and some have reached pre-market deployment. A number of these are grid connected, fully operational generating plants.

Future areas for development will include concept design, optimisation of the device configuration, reduction of capital costs by exploring the use of alternative structural materials, economies of scale and learning from operation. According to the latest research findings, the learning factor is estimated to be 10-15% for offshore wave and 5-10% for tidal stream. In the medium term, ocean energy has the potential to become one of the most competitive and cost effective forms of generation. Present cost estimates are based on analysis from the European NEEDS project.

employment in wave and tidal energy Under the Reference scenario, this innovative clean technology would only employ approximately 1,000 people. Under the Energy [R]evolution projections, however, it would become a new entrant to the energy market, providing around 60,000 jobs in the basic scenario and 160,000 jobs in the advanced version by 2030.

geothermal

Geothermal power is considered to be a key element in future renewable energy supply. It has been used since the beginning of the last century for electricity generation, and even longer for supplying heat from below the earth. New intensive research and development work is widening the potential of sites that could be used to produce power. Specific new developments include large underground heat exchange surfaces (Enhanced Geothermal Systems) and the improvement of low temperature power conversion, for example with the Organic Rankine Cycle. The economics of geothermal electricity will also be improved by advanced heat and power cogeneration plants and further development of innovative drilling technology.

For conventional geothermal plants, costs are expected to drop from 7 cents/kWh to about 2 cents/kWh. Enhanced Geothermal Systems presently have high costs (about 20 cents/kWh), but these are expected to come down to around 5 cents/kWh in the long term, depending on the payments for heat supply. These price reductions assume a global average market growth for geothermal power capacity of 9% per year up to 2020, leveling out to 4% beyond 2030.

Geothermal energy has a non-fluctuating supply and a grid load operating almost 100% of the time. Until now we have just used a marginal part of the geothermal heating and cooling potential. Shallow geothermal drilling could deliver heating and cooling at any time anywhere, and can be used for thermal energy storage.

employment in geothermal energy Geothermal energy could contribute a significant proportion of the world's energy supply, quadrupling under the basic Energy [R]evolution scenario by 2030, and increasing 10-times in the advanced version, compared to the Reference scenario. This would correspond to triple the amount of jobs, around 120,000 (basic) and 270,000 (advanced) in 2030.

ADVANCED

180

420

27

50

0.16 m

1.4%

REFERENCE SCENARIO ENERGY [R]EVOLUTION SCENARIOS 2030 UNIT 2015 2020 2030 2015 2020 ADVANCED BASE ADVANCED BASE BASE **Energy parameters** GW Installed capacity 9 1 1 3 9 29 58 73 Generated electricity TWh/a 2 3 13 53 119 128 11 13 Share of total supply 0.4% % 0.0% 0.0% 0.0% 0.1% 0.1% 0.2% 0.5% Market & Investment Annual increase in capacity GW/a 2 4 2 4 3 12 0 10 Annual investment bill. \$/a 0 1 1 10 20 11 30 22 Employment 0.001 m 0.001 m 0.002 m 0.05 m Direct jobs in construction 0.12 m 0.04 m 0.12 m 0.06 m manufaction, operation and maintenance

table 7.12: capacity, investment and direct jobs - ocean energy

image THE BIOENERGY VILLAGE OF JUEHNDE, WHICH IS THE FIRST COMMUNITY IN GERMANY THAT PRODUCES ALL ITS ENERGY NEEDED FOR HEATING AND ELECTRICITY WITH CO: NEUTRAL BIOMASS.

		REF	ERENCE S	CENARIO			ENE	RGY [R]EVO	LUTION S	CENARIOS
	UNIT	2015	2020	2030	201	15	20	20	2030	
Energy parameters					BASE ADVANCED		BASE ADVANCED		BASE	ADVANCED
Installed capacity	GW	16	20	27	23	23	49	69	108	238
Generated electricity	TWh/a	99	123	176	140	145	300	432	695	1,526
Share of total supply	%	0.4%	0.5%	0.5%	0.6%	0.6%	1.2%	1.7%	2.3%	4.9%
Market & Investment										
Annual increase in capacity	GW/a	1	10	11	4	5	10	22	6	11
Annual investment	bill. \$/a	10	9	25	28	48	30	108	64	162
Employment										
Direct jobs in construction manufaction, operation and maintenance		0.02 m	0.02 m	0.02 m	0.07 m	0.10 m	0.09 m	0.18 m	0.12 m	0.27 m

table 7.13: capacity, investment and direct jobs – geothermal

biomass

There is a broad spectrum of energy generation costs for biomass, reflecting the different feedstocks used. Costs range from a negative cost (or credit) for some waste woods to low cost for residual materials and then to more expensive energy crops. Using waste wood in steam turbine/combined heat and power (CHP) plants is one of the cheapest options. Gasification of solid biomass has a wide range of applications but is still relatively expensive.

In the long term it is expected that using wood generated gas both in micro-CHP units (engines and fuel cells) and in gas-and-steam power plants will be economically favorable. There is good potential to use solid biomass for heat generation in both small and large heating centers linked to local heating networks. In recent years converting crops into ethanol and 'bio diesel' made from rapeseed methyl ester (RME) has become increasingly important, for example in Brazil, the USA and Europe. Processes for obtaining synthetic fuels from biogenic synthesis gases will also play a larger role.

Latin and North America, Europe and the Transition Economies all have the potential to exploit modern technologies either in stationary appliances or the transport sector. In the long term, Europe and the Transition Economies will realise 20-50% of the potential for biomass from energy crops, whilst biomass use in all the other regions will have to rely on forest residues, industrial wood waste and straw. In Latin America, North America and Africa in particular, an increasing residue potential will be available.

In other regions, such as the Middle East and all Asian regions, the additional use of biomass is restricted, either due to a generally low availability or already high traditional use. For the latter a cleaner option is to use modern, more efficient technologies, improving sustainability and avoiding the current negative effects of indoor pollution and heavy workloads to transport the fuel.

employment in the biomass industry Biomass power could be supporting 2.1 million jobs in 2030 under both Energy [R]evolution scenarios, compared to less than 1 million in the Reference scenario.

		REF	ERENCE S	CENARIO			ENERGY [R]EVOLUTION SCENARIOS						
	UNIT	2015	2020	2030	2015	5	20	20	2030				
Energy parameters					BASE ADVANCED		BASE ADVANCED		BASE	ADVANCED			
Installed capacity	GW	71	88	140	115	115	212	214	336	343			
Generated electricity	TWh/a	409	523	839	619	617	1,112	1,134	1,858	1,906			
Share of total supply	%	1.7%	1.9%	2.4%	2.6%	2.6%	4.3%	4.4%	6.2%	6.2%			
Market & Investment													
Annual increase in capacity	GW/a	4	34	29	17	18	34	35	30	29			
Annual investment	bill. \$/a	8	12	26	10	10	8	8	23	24			
Employment													
Direct jobs in construction manufaction, operation and maintenance		0.5 m	0.6 m	0.9 m	1.0 m	1.0 m	1.5 m	1.5 m	2.1 m	2.1 m			

table 7.14: capacity, investment and direct jobs - biomass

fossil fuels and nuclear

An understanding of the international coal trade and the decreasing labour intensity of coal mining is essential to make projections for how a switch to renewable energy will affect energy sector jobs around the world. The full report for the 2009 employment study by the Institute for Sustainable Futures (Rutovitz and Atherton, 2009) provides detail of all the methodology to calculate employment related to coal-fired electricity generation.

The global trend for energy production from coal is for bigger mines that employ fewer people. China, for example, is expected to close at least 10,000 small mines and develop 16 'super mines' that will produce an average of 70 million tonnes per year each. Compared with a miner in a traditional rural Chinese mine, who produces 100 tonnes per year, a single worker in one of the large super mines is expected to produce 30,000 tonnes per year. Examples of average production in other countries is 14,000 tonnes per year in the US and 13,800 tonnes per year in Australia.

coal Under the Reference scenario jobs in coal fall by 6% from 2010 to 2020, and then stay virtually static from 2015 to 2030, despite a 40% increase in power generation. The main reasons are:

- Jobs per MW across all technologies falls as prosperity and labour productivity increases. In the model, regional job multipliers are applied to OECD employment factors in non-OECD regions to reflect this. The regional multipliers are higher in the early years and decrease over the study period as the difference between labour productivity in the OECD and other regions falls. As labour productivity reaches a par with OECD countries, employment per MW falls to OECD levels. If no regional multiplier is used in the model, coal employment at 2020 would be predicted to increase by 4% rather than decrease by 6% relative to 2010. That would model a future where China's projected rapid increase in prosperity and labour productivity does not occur.
- table 7.15: capacity, investment and direct jobs coal

• The decline factors applied to each technology reflect the reduction in costs. An annual decline of 0.3% is applied between 2010 and 2020 and 0.2% between 2020 and 2030. This relatively low annual decline does not affect coal sector employment substantially. If no decline factors are used then coal employment falls by 3% rather than 4% between 2010 and 2020.

Under the Energy [R]evolution scenario, growth in coal generating capacity is almost zero. By 2030 there is a slight fall in coal capacity, so there would be a corresponding reduction in coal sector jobs. The result is that installation and manufacturing jobs in the coal sector fall to almost zero. Under the advanced version there would be no growth in coal capacity up to 2015 and a decline immediately afterwards. By 2030, coal capacity contributes only 15% of global energy supply, a fall reflected in the reduced number of jobs. As the scenarios emphasise, however, any losses are offset by very high growth in employment in renewable energy, which would not occur if coal is allowed to continue to dominate the global energy mix.

gas, oil/diesel and nuclear

- For gas, global employment is between 1.5 million and 1.7 million jobs between 2015 and 2020 in all scenarios. Under the Energy [R]evolution, gas plays an important role as a transition fuel, so the same amount of employees are needed as under business as usual. By 2030, however, there are 1.7 million gas jobs in the reference case, with around 300,000 less in the basic Energy [R]evolution scenario (500,000 less in the Advanced scenario). This is because the transition to renewable energy is accelerated in these scenarios due to the requirement to cut greenhouse gas emissions as fast as possible after 2015.
- For nuclear, annual investment would drop to zero by 2030 in both Energy [R]evolution scenarios, with a corresponding sharp decline in employment in the nuclear sector.

		REF	ERENCE S	CENARIO			ENERGY [R]EVOLUTION SCENARIOS					
	UNIT	2015	2020	2030	2015		20)20	2030			
Energy parameters					BASE	ADVANCED	BASE	ADVANCED	BASE	ADVANCED		
Installed capacity	GW	1,604	1,836	2,465	1,480	1,430	1,430) 1,308	1,410	954		
Generated electricity	TWh/a	8,752	10,117	13,756	7,938	7,716	7,700	6,989	7,269	4,829		
Share of total supply	%	35.9%	37.1%	40.1%	33.4%	32.4%	29.8%	27.0%	24.1%	15.6%		
Market & Investment												
Annual increase in capacity	GW/a	47	63		-	-	-		-			
Annual investment	bill. \$/a	104	107	280	56	44	27	/ 10	25	6 8		
Employment												
Direct jobs in construction manufaction, operation and maintenance		3.9 m	4.1 m	4.2 m	3.4 m	3.2 m	3.1 m	n 2.8 m	2.7 m	2.1 m		

table 7.16: capacity, investment and direct jobs – gas, oil, diesel and nuclear

	REF	ERENCE S	CENARIO			ENERGY [R]EVOLUTION SCENARIOS					
	2015	2020	2030	201	15	2	020	203	30		
Jobs				BASE A	ADVANCED	BASE	ADVANCED	BASE	ADVANCED		
Gas, oil & diesel	1.51 m	1.59 m	1.74 m	1.67 m	1.63 m	1.40 n	n 1.59 m	1.49 m	1.23 m		
Nuclear	0.33 m	0.29 m	0.29 m	0.17 m	0.10 m	0.04 n	n 0.17 m	0.10 m	0.04 m		
Total jobs	1.84 m	1.88 m	2.03 m	1.84 m	1.73 m	1.43 n	n 1.76 m	1.59 m	1.26 m		

energy resources & security of supply

GLOBAL

STATUS OF GLOBAL FUEL SUPPLIES

GLOBAL POTENTIAL FOR SUSTAINABLE BIOMASS

"the issue of security of supply is now at the top of the energy policy agenda."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN The issue of security of supply is now at the top of the energy policy agenda. Concern is focused both on price security and the security of physical supply. At present around 80% of global energy demand is met by fossil fuels. The unrelenting increase in energy demand is matched by the finite nature of these resources. At the same time, the global distribution of oil and gas resources does not match the distribution of demand. Some countries have to rely almost entirely on fossil fuel imports. The maps on the following pages provide an overview of the availability of different fuels and their regional distribution. Information in this chapter is based partly on the report `Plugging the Gap'⁶¹, as well as information from the International Energy Agency's World Energy Outlook 2008 and 2009 reports.

status of global fuel supplies

Oil is the lifeblood of the modern global economy, as the effects of the supply disruptions of the 1970s made clear. It is the number one source of energy, providing 32% of the world's needs and the fuel employed almost exclusively for essential uses such as transportation. However, a passionate debate has developed over the ability of supply to meet increasing consumption, a debate obscured by poor information and stirred by recent soaring prices.

the reserves chaos

Public data about oil and gas reserves is strikingly inconsistent, and potentially unreliable for legal, commercial, historical and sometimes political reasons. The most widely available and quoted figures, those from the industry journals *Oil & Gas Journal and World Oil*, have limited value as they report the reserve figures provided by companies and governments without analysis or verification. Moreover, as there is no agreed definition of reserves or standard reporting practice, these figures usually stand for different physical and conceptual magnitudes. Confusing terminology - 'proved', 'probable', 'possible', 'recoverable', 'reasonable certainty' - only adds to the problem.

Thistorically, private oil companies have consistently underestimated their reserves to comply with conservative stock exchange rules and through natural commercial caution. Whenever a discovery was made, only a portion of the geologist's estimate of recoverable resources was reported; subsequent revisions would then increase the reserves from that same oil field over time. National oil companies, mostly represented by OPEC (Organisation of Petroleum Exporting Countries), have taken a very different approach. They are not subject to any sort of accountability and their reporting practices are even less clear. In the late 1980s, the OPEC countries blatantly overstated their reserves while competing for production quotas, which were allocated as a proportion of the reserves. Although some revision was needed after the companies were nationalised, between 1985 and 1990, OPEC countries increased their apparent joint reserves by 82%. Not only were these dubious revisions never corrected, but many of these countries have reported untouched reserves for years, even if no sizeable discoveries were made and production continued at the same pace. Additionally, the Former Soviet Union's oil and gas reserves have been overestimated by about 30% because the original assessments were later misinterpreted.

Whilst private companies are now becoming more realistic about the extent of their resources, the OPEC countries hold by far the majority of the reported reserves, and their information is as unsatisfactory as ever. Their conclusions should therefore be treated with considerable caution. To fairly estimate the world's oil resources a regional assessment of the mean backdated (i.e. 'technical') discoveries would need to be performed.

non-conventional oil reserves

A large share of the world's remaining oil resources is classified as 'non-conventional'. Potential fuel sources such as oil sands, extra heavy oil and oil shale are generally more costly to exploit and their recovery involves enormous environmental damage. The reserves of oil sands and extra heavy oil in existence worldwide are estimated to amount to around 6 trillion barrels, of which between 1 and 2 trillion barrels are believed to be recoverable if the oil price is high enough and the environmental standards low enough.

One of the worst examples of environmental degradation resulting from the exploitation of unconventional oil reserves is the oil sands that lie beneath the Canadian province of Alberta and form the world's second-largest proven oil reserves after Saudi Arabia. Producing crude oil from these 'tar sands' - a heavy mixture of bitumen, water, sand and clay found beneath more than 54,000 square miles⁶² of prime forest in northern Alberta, an area the size of England and Wales - generates up to four times more carbon dioxide, the principal global warming gas, than conventional drilling. The booming oil sands industry will produce 100 million tonnes of CO_2 a year (equivalent to a fifth of the UK's entire annual emissions) by 2012, ensuring that Canada will miss its emission targets under the Kyoto treaty. The oil rush is also scarring a wilderness landscape: millions of tonnes of plant life and top soil are scooped away in vast opencast mines and millions of litres of water diverted from rivers. Up to five barrels of water are needed to produce a single barrel of crude and the process requires huge amounts of natural gas. It takes two tonnes of the raw sands to produce a single barrel of oil.

gas

Natural gas has been the fastest growing fossil energy source over the last two decades, boosted by its increasing share in the electricity generation mix. Gas is generally regarded as an abundant resource and public concerns about depletion are limited to oil, even though few in-depth studies address the subject. Gas resources are more concentrated, and a few massive fields make up most of the reserves. The largest gas field in the world holds 15% of the Ultimate Recoverable Resources (URR), compared to 6% for oil. Unfortunately, information about gas resources suffers from the same bad practices as oil data because gas mostly comes from the same geological formations, and the same stakeholders are involved.

61 `PLUGGING THE GAP - A SURVEY OF WORLD FUEL RESOURCES AND THEIR IMPACT ON THE DEVELOPMENT OF WIND ENERGY', GLOBAL WIND ENERGY COUNCIL/RENEWABLE ENERGY SYSTEMS, 2006.

62 THE INDEPENDENT, 10 DECEMBER 2007

image PLATFORM/OIL RIG DUNLIN IN THE NORTH SEA SHOWING OIL POLLUTION.

image ON A LINFEN STREET, TWO MEN LOAD UP A CART WITH COAL THAT WILL BE USED FOR COOKING, LINFEN, A CITY OF ABOUT 4.3 MILLION, IS ONE OF THE MOST POLLUTED CITIES IN THE WORLD. CHINA'S INCREASINGLY POLLUTED ENVIRONMENT IS LARGELY A RESULT OF THE COUNTRY'S RAPID DEVELOPMENT AND CONSEQUENTLY A LARGE INCREASE IN PRIMARY ENERGY CONSUMPTION, WHICH IS ALMOST ENTIRELY PRODUCED BY BURNING COAL.

Most reserves are initially understated and then gradually revised upwards, giving an optimistic impression of growth. By contrast, Russia's reserves, the largest in the world, are considered to have been overestimated by about 30%. Owing to geological similarities, gas follows the same depletion dynamic as oil, and thus the same discovery and production cycles. In fact, existing data for gas is of worse quality than for oil, with ambiguities arising over the amount produced, partly because flared and vented gas is not always accounted for. As opposed to published reserves, the technical ones have been almost constant since 1980 because discoveries have roughly matched production.

shale gas⁶³

Natural gas production, especially in the United States, has recently involved a growing contribution from non-conventional gas supplies such as shale gas. Conventional natural gas deposits have a welldefined geographical area, the reservoirs are porous and permeable, the gas is produced easily through a wellbore and does not generally require artificial stimulation. Non-conventional deposits, on the other hand, are often lower in resource concentration, more dispersed over large areas and require well stimulation or some other extraction or conversion technology. They are also usually more expensive to develop per unit of energy.

table 8.1: overview of fossil fuel reserves and resources

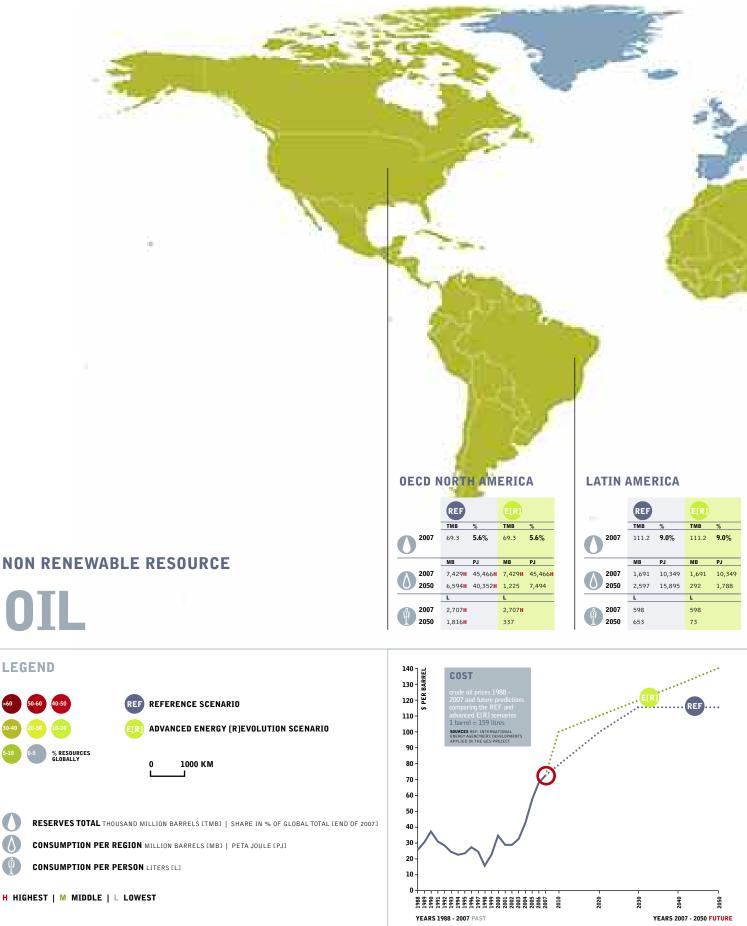
ENERGY CARRIER	WE0 2009, WE0 2008, WE0 2007	BROWN, 2002 EJ	IEA, 2002c EJ	IPC	C,2001a EJ		KICENOVIC AL., 2000	U N [2 0 0	OP ET AL.,	ВG	R,1998 EJ
	EJ	20	20		20		EJ		EJ		20
Gas reserves	182 tcmª	5,600	6,200	С	5,400	С	5,900	С	5,500	С	5,300
				nc	8,000	nc	8,000	nc	9,400	nc	100
resources	405 tcm ^a	9,400	11,100	С	11,700	С	11,700	С	11,100	С	7,800
				nc	10,800	nc	10,800	nc	23,800	nc⁴	111,900
additional occurrences	921 tcmª				796,000		799,700		930,000		
Oil reserves	2,369 bb⁵	5,800	5,700	С	5,900	С	6,300	С	6,000	С	6,700
				nc	6,600	nc	8,100	nc	5,100	nc	5,900
resources		10,200	13,400	С	7,500	С	6,100	С	6,100	С	3,300
				nc	15,500	nc	13,900	nc	15,200	nc	25,200
additional occurrences					61,000		79,500		45,000		
Coal reserves	847 bill tonnes ^c	23,600	22,500		42,000		25,400		20,700		16,300
resources		26,000	165,000		100,000		117,000		179,000		179,000
additional occurrences	921 tcm [°]				121,000		125,600				
Total resource (reserves + reso	ources)	180,600	223,900		212,200		213,200		281,900		361,500
Total occurrence					1,204,200		1,218,000		1,256,000		

sources & notes A) WEO 2009, B) OIL WEO 2008, PAGE 205 TABLE 9.1 C) IEA WEO 2008, PAGE 127 & WEC 2007. D) INCLUDING GAS HYDRATES. SEE TABLE FOR ALL OTHER SOURCES. **63** INTERSTATE NATURAL GAS ASSOCIATION OF AMERICA (INGAA), "AVAILABILITY, ECONOMICS AND PRODUCTION POTENTIAL OF NORTH AMERICAN UNCONVENTIONAL NATURAL GAS SUPPLIES", NOVEMBER 2008

Pasaarch and investment in page car

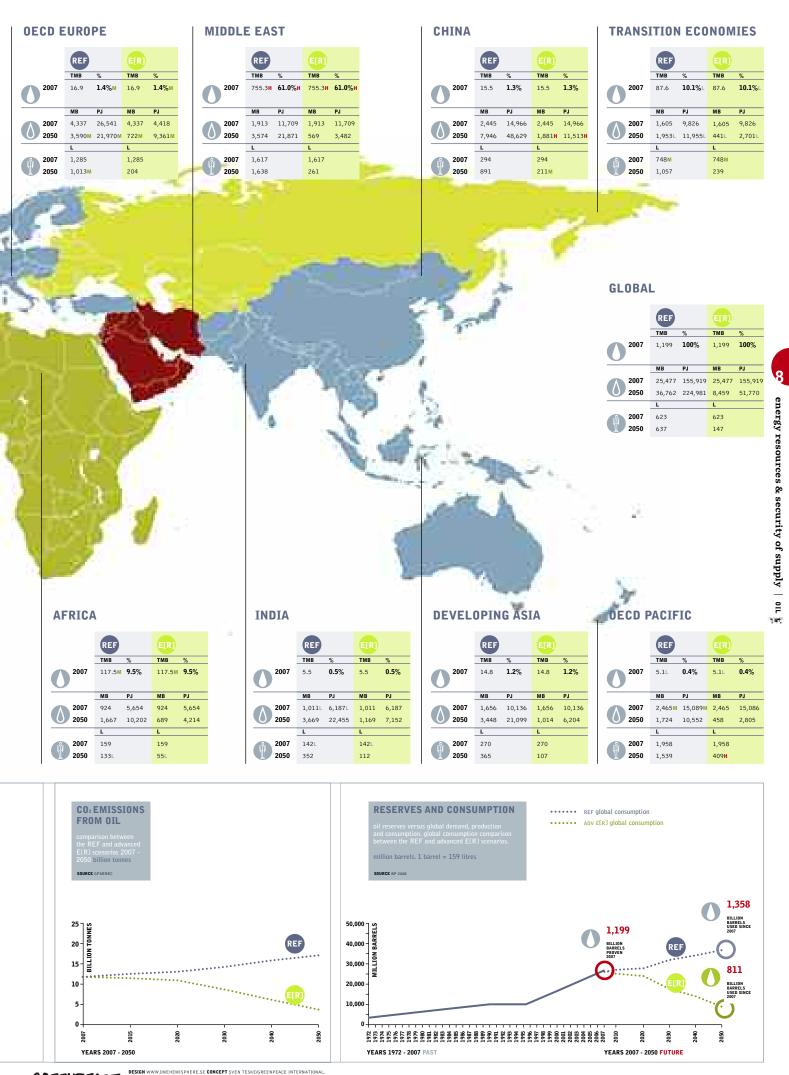
Research and investment in non-conventional gas resources has increased significantly in recent years due to the rising price of conventional natural gas. In some areas the technologies for economic production have already been developed, in others it is still at the research stage. Extracting shale gas, however, usually goes hand in hand with environmentally hazardous processes. Even so, it is expected to increase.

coal


Coal was the world's largest source of primary energy until it was overtaken by oil in the 1960s. Today, coal supplies almost one quarter of the world's energy. Despite being the most abundant of fossil fuels, coal's development is currently threatened by environmental concerns; hence its future will unfold in the context of both energy security and global warming.

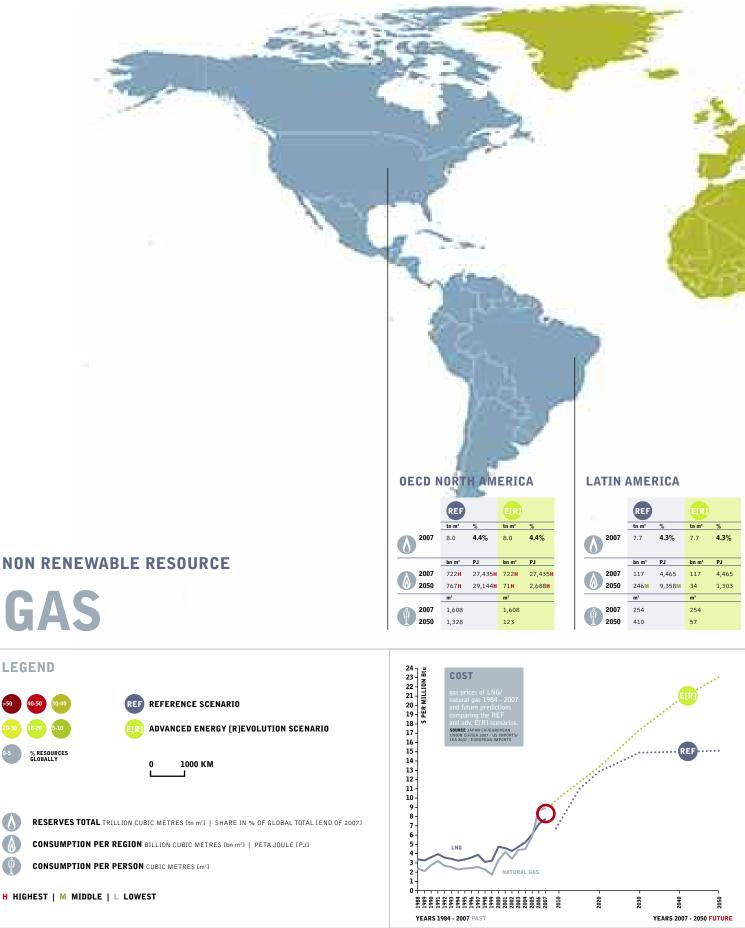
Coal is abundant and more equally distributed throughout the world than oil and gas. Global recoverable reserves are the largest of all fossil fuels, and most countries have at least some. Moreover, existing and prospective big energy consumers like the US, China and India are self-sufficient in coal and will be for the foreseeable future. Coal has been exploited on a large scale for two centuries, so both the product and the available resources are well known; no substantial new deposits are expected to be discovered. Extrapolating the demand forecast forward, the world will consume 20% of its current reserves by 2030 and 40% by 2050. Hence, if current trends are maintained, coal would still last several hundred years.

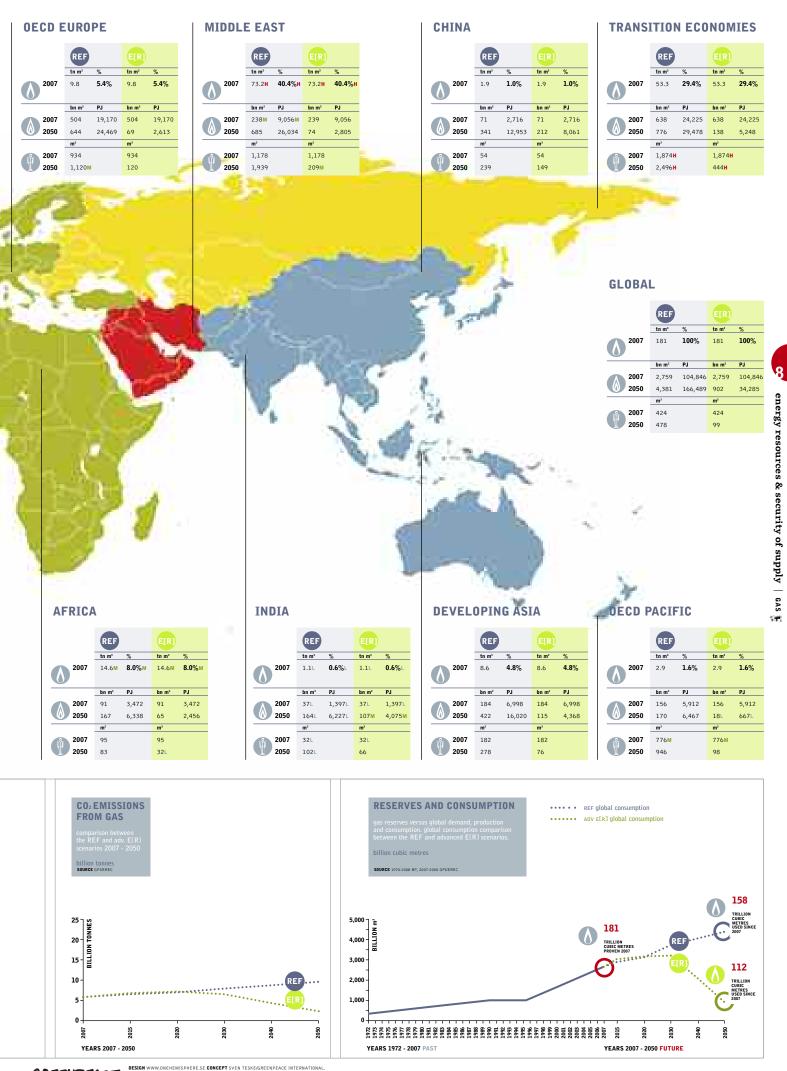
ner:


map 8.1: oil reference scenario and the advanced energy [r]evolution scenario

WORLDWIDE SCENARIO

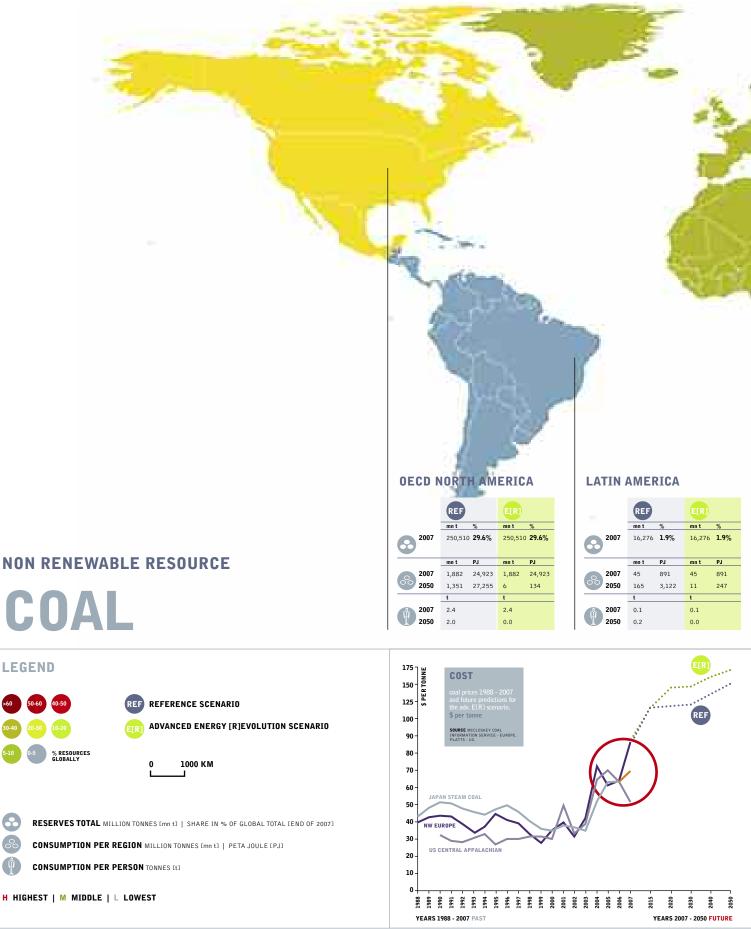
()


Ŵ

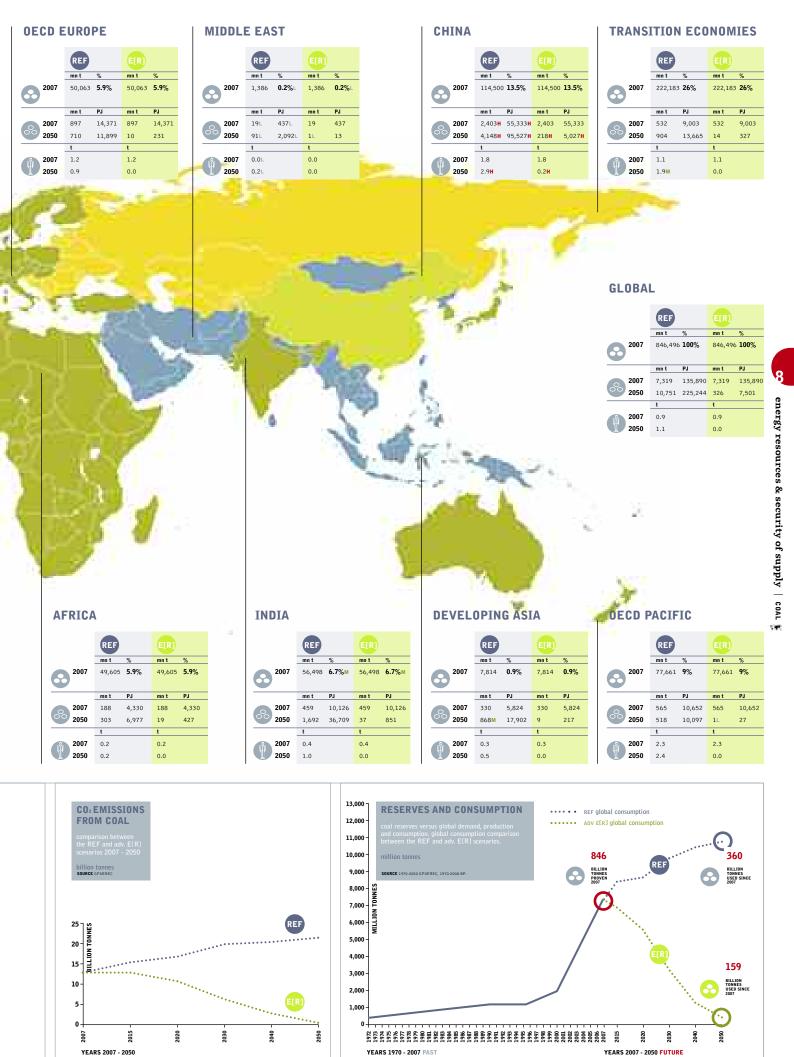

GREENPEACE DESIGN WWW.ONEHEMI

map 8.2: gas reference scenario and the advanced energy [r]evolution scenario

WORLDWIDE SCENARIO

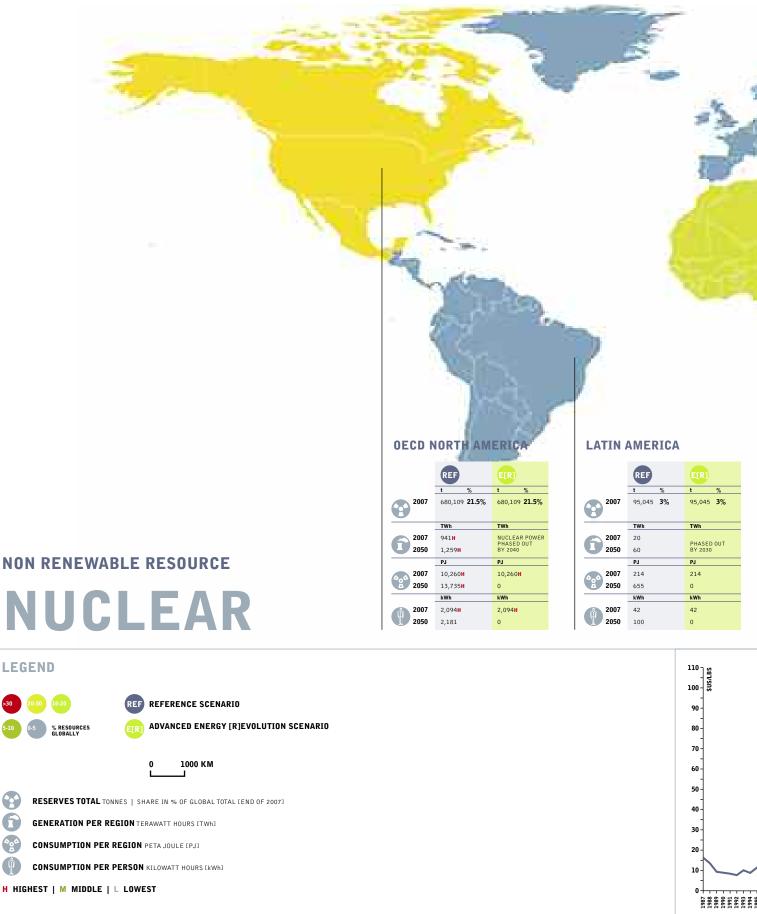

Ŵ

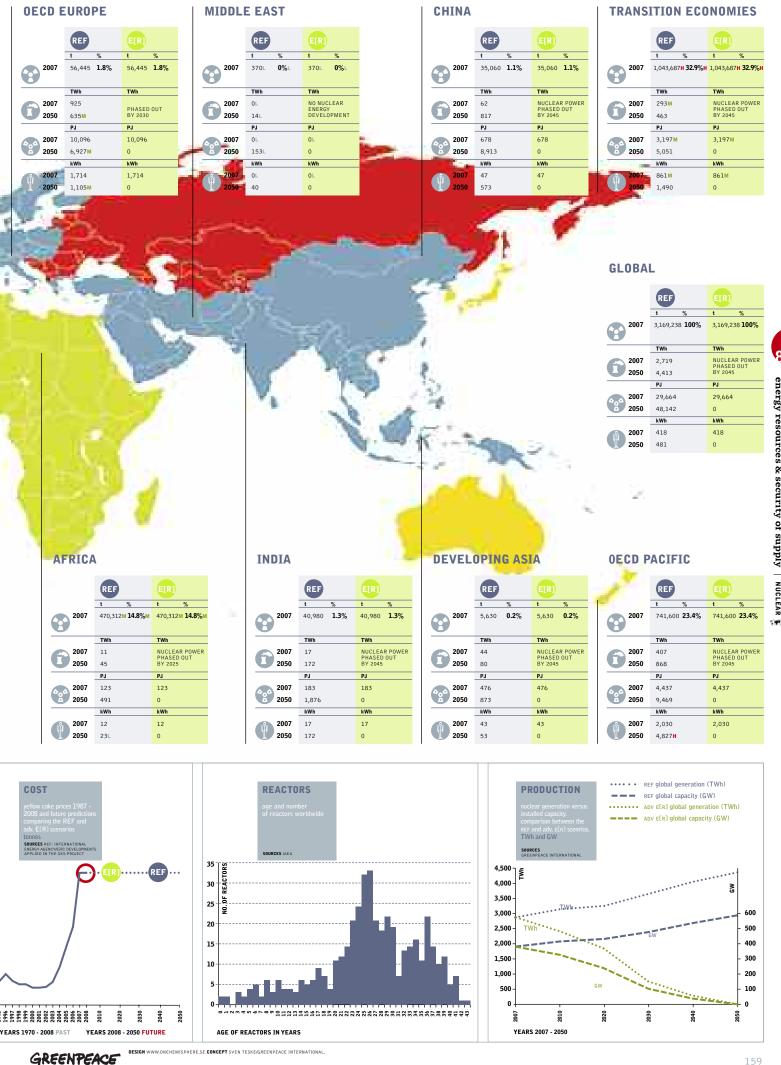
GREENPEACE


map 8.3: coal reference scenario and the advanced energy [r]evolution scenario

WORLDWIDE SCENARIO

8


Ŵ


GREENPEACE DESIGN WWW.onehemisphere.se CONCEPT sven teskeagreenpeace international.

map 8.4: nuclear reference scenario and the advanced energy [r]evolution scenario

WORLDWIDE SCENARIO

хæ

159

energy resources & security of supply | NUCLEAR

table 8.2: assumptions on fossil fuel use in the energy [r]evolution scenario

Oil	2007	2015	2020	2030	2040	2050
Reference [PJ]	155,920	161,847	170,164	192,431	209,056	224,983
Reference [million barrels]	25,477	26,446	27,805	31,443	34,159	36,762
E[R] [PJ]		153,267	143,599	123,756	101,186	81,833
E[R] [million barrels]		25,044	23,464	20,222	16,534	13,371
Adv E[R] [PJ]		152,857	142,747	115,002	81,608	51,770
Adv E[R] [million barrels]		24,977	23,325	18,791	13,335	8,459
Gas	2007	2015	2020	2030	2040	2050
Reference [PJ]	104,845	112,931	121,148	141,706	155,015	166,487
Reference [billion cubic metres = 10E9m ³]	2,759	2,972	3,188	3,729	4,079	4,381
E[R] [PJ]		116,974	121,646	122,337	99,450	71,383
E[R] [billion cubic metres = 10E9m ³]		3,078	3,201	3,219	2,617	1,878
Adv E[R] [PJ]		118,449	119,675	114,122	79,547	34,285
Adv E[R] [billion cubic metres = $10E9m^3$]		3,117	3,149	3,003	2,093	902
Coal	2007	2015	2020	2030	2040	2050
Reference [PJ]	135,890	162,859	162,859	204,231	217,356	225,245
Reference [million tonnes]	7,319	8,306	8,306	9,882	10,408	10,751
E[R][PJ]		140,862	140,862	96,846	64,285	37,563
- E[R] [million tonnes]		7,217	7,217	4,407	2,810	1,631
Adv E[R] [PJ]		135,005	135,005	69,871	28,652	7,501
Adv E[R] [million tonnes]		6,829	6,829	3,126	1,250	326

nuclear

Uranium, the fuel used in nuclear power plants, is a finite resource whose economically available reserves are limited. Its distribution is almost as concentrated as oil and does not match global

consumption. Five countries - Canada, Australia, Kazakhstan, Russia and Niger - control three quarters of the world's supply. As a significant user of uranium, however, Russia's reserves will be exhausted within ten years.

Secondary sources, such as old deposits, currently make up nearly half of worldwide uranium reserves. These will soon be used up, however. Mining capacities will have to be nearly doubled in the next few years to meet current needs.

A joint report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency⁶⁴ estimates that all existing nuclear power plants will have used up their nuclear fuel, employing current technology, within less than 70 years. Given the range of scenarios for the worldwide development of nuclear power, it is likely that uranium supplies will be exhausted sometime between 2026 and 2070. This forecast includes the use of mixed oxide fuel (MOX), a mixture of uranium and plutonium.

renewable energy

Nature offers a variety of freely available options for producing energy. Their exploitation is mainly a question of how to convert sunlight, wind, biomass or water into electricity, heat or power as efficiently, sustainably and cost-effectively as possible.

On average, the energy in the sunshine that reaches the earth is about one kilowatt per square metre worldwide. According to the Research Association for Solar Power, power is gushing from renewable energy sources at a rate of 2,850 times more energy than is needed in the world. In one day, the sunlight which reaches the earth produces enough energy to satisfy the world's current power requirements for eight years. Even though only a percentage of that potential is technically accessible, this is still enough to provide just under six times more power than the world currently requires.

Before looking at the part renewable energies can play in the range of scenarios in this report, however, it is worth understanding the upper limits of their potential. To start with, the overall technical potential of renewable energy – the amount that can be produced taking into account the primary resources, the socio-geographical constraints and the technical losses in the conversion process – is huge and several times higher than current total energy demand. image SOLON AG PHOTOVOLTAICS FACILITY IN ARNSTEIN OPERATING 1,500 HORIZONTAL AND VERTICAL SOLAR "MOVERS". LARGEST TRACKING SOLAR FACILITY IN THE WORLD. EACH "MOVER" CAN BE BOUGHT AS A PRIVATE INVESTMENT FROM THE S.A.G. SOLARSTROM AG, BAYERN, GERMANY.

 $\mathbf{image} \text{ WIND ENERGY PARK NEAR DAHME. WIND TURBINE IN THE SNOW OPERATED BY VESTAS.}$

Assessments of the global technical potential vary significantly from 2,477 Exajoules per annum (EJ/a) (Nitsch 2004) up to 15,857 EJ/a (UBA 2009). Based on the global primary energy demand in 2007 (IEA 2009) of 503 EJ/a, the total technical potential of renewable energy sources at the upper limit would exceed demand by a factor of 32. However, barriers to the growth of renewable energy technologies may come from economical, political and infrastructural constraints. That is why the technical potential will never be realised in total.

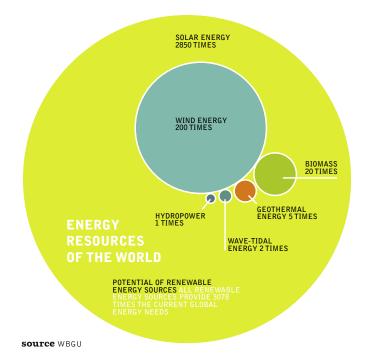
Assessing long term technical potentials is subject to various uncertainties. The distribution of the theoretical resources, such as the global wind speed or the productivity of energy crops, is not always well analysed. The geographical availability is subject to variations such as land use change, future planning decisions on where certain technologies are allowed, and accessibility of resources, for example underground geothermal energy. Technical performance may take longer to achieve than expected. There are also uncertainties in terms of the consistency of the data provided in studies, and underlying assumptions are often not explained in detail.

The meta study by the DLR (German Aerospace Agency), Wuppertal Institute and Ecofys, commissioned by the German Federal Environment Agency, provides a comprehensive overview of the technical renewable energy potential by technologies and world region.⁶⁶ This survey analysed ten major studies of global and regional potentials by organisations such as the United Nations Development Programme and a range of academic institutions. Each of the major renewable energy sources was assessed, with special attention paid to the effect of environmental constraints on their overall potential. The study provides data for the years 2020, 2030 and 2050 (see Table 8.3).

The complexity of calculating renewable energy potentials is particularly great because these technologies are comparatively young and their exploitation involves changes to the way in which energy is both generated and distributed. Whilst a calculation of the theoretical and geographical potentials has only a few dynamic parameters, the technical potential is dependent on a number of uncertainties.

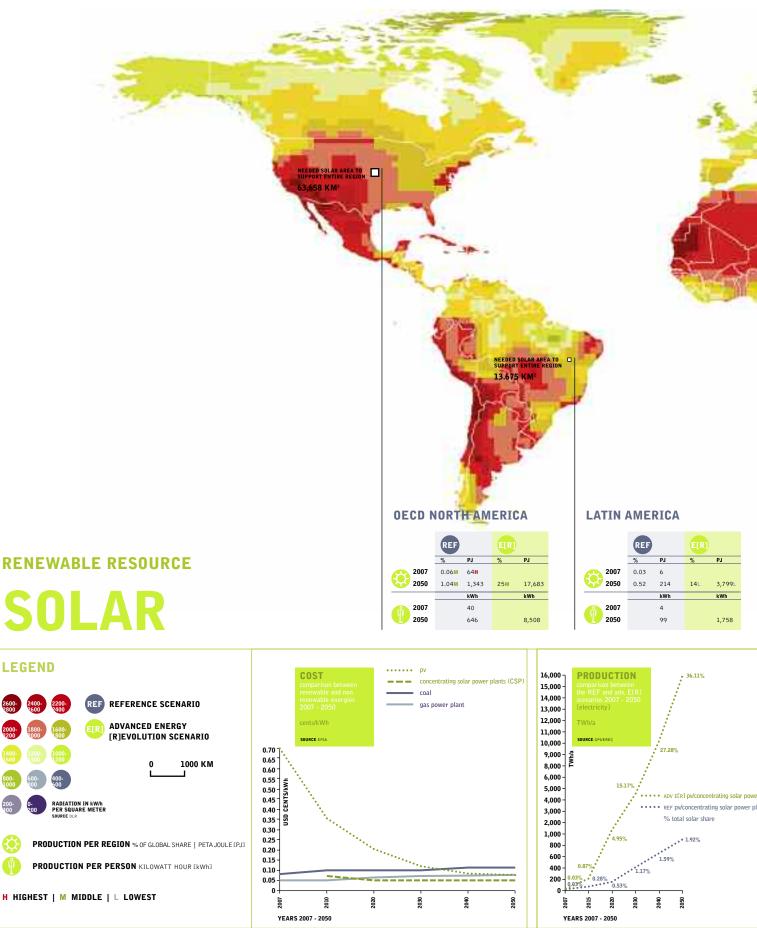
definition of types of energy resource potential⁶⁵

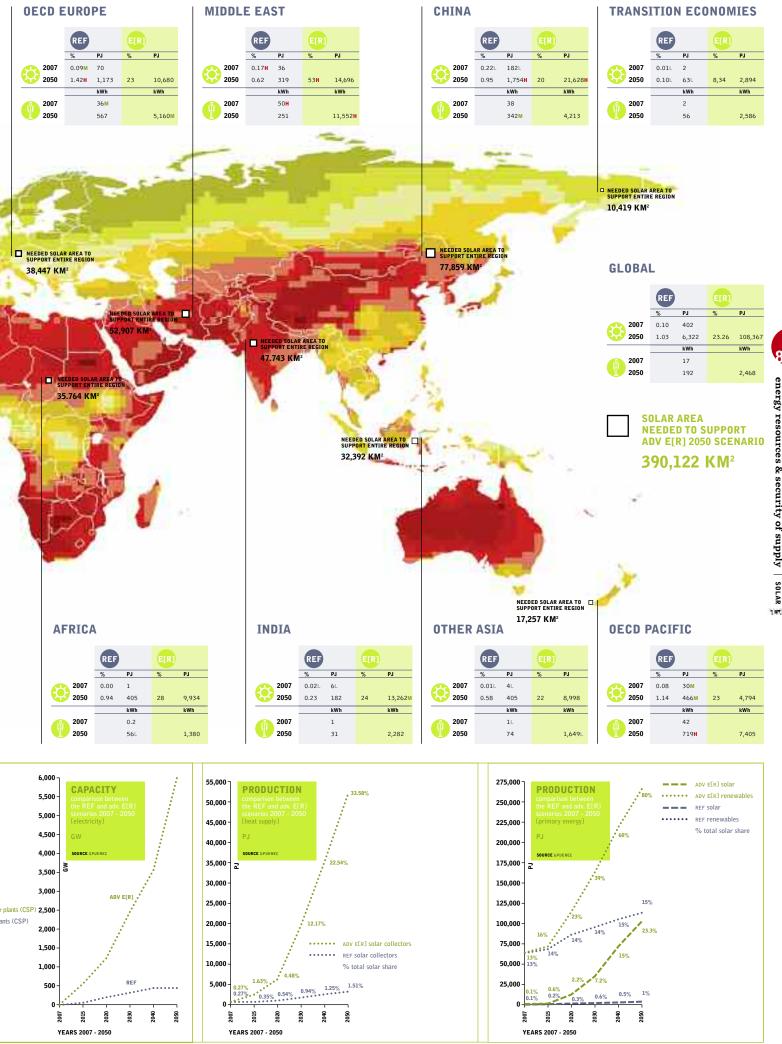
theoretical potential The theoretical potential identifies the physical upper limit of the energy available from a certain source. For solar energy, for example, this would be the total solar radiation falling on a particular surface.


conversion potential This is derived from the annual efficiency of the respective conversion technology. It is therefore not a strictly defined value, since the efficiency of a particular technology depends on technological progress.

technical potential This takes into account additional restrictions regarding the area that is realistically available for energy generation. Technological, structural and ecological restrictions, as well as legislative requirements, are accounted for.

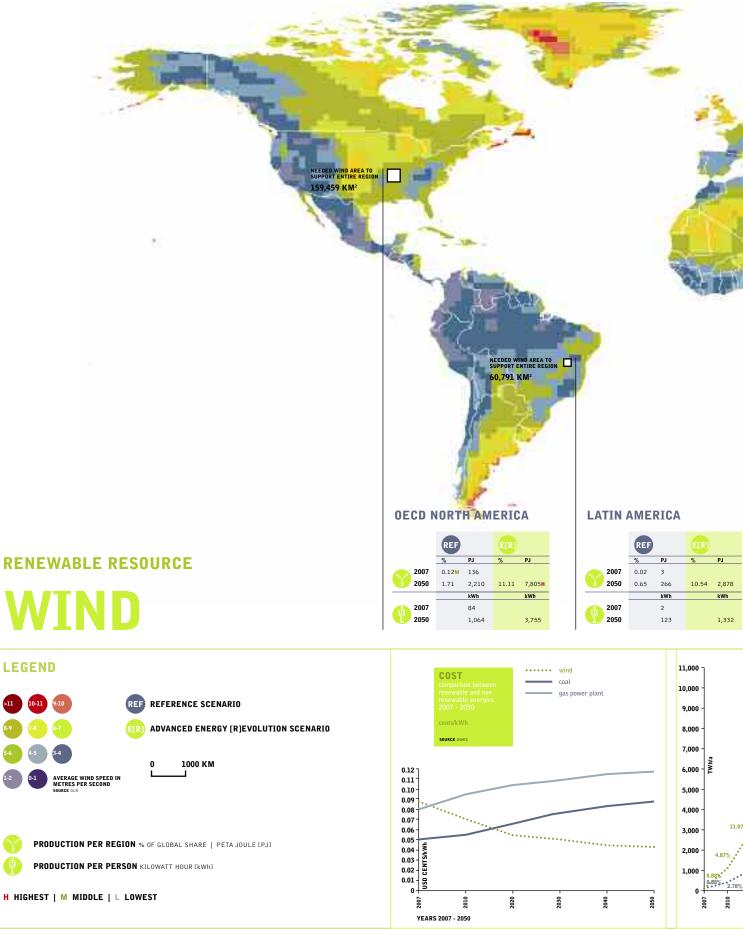
economic potential The proportion of the technical potential that can be utilised economically. For biomass, for example, those quantities are included that can be exploited economically in competition with other products and land uses.

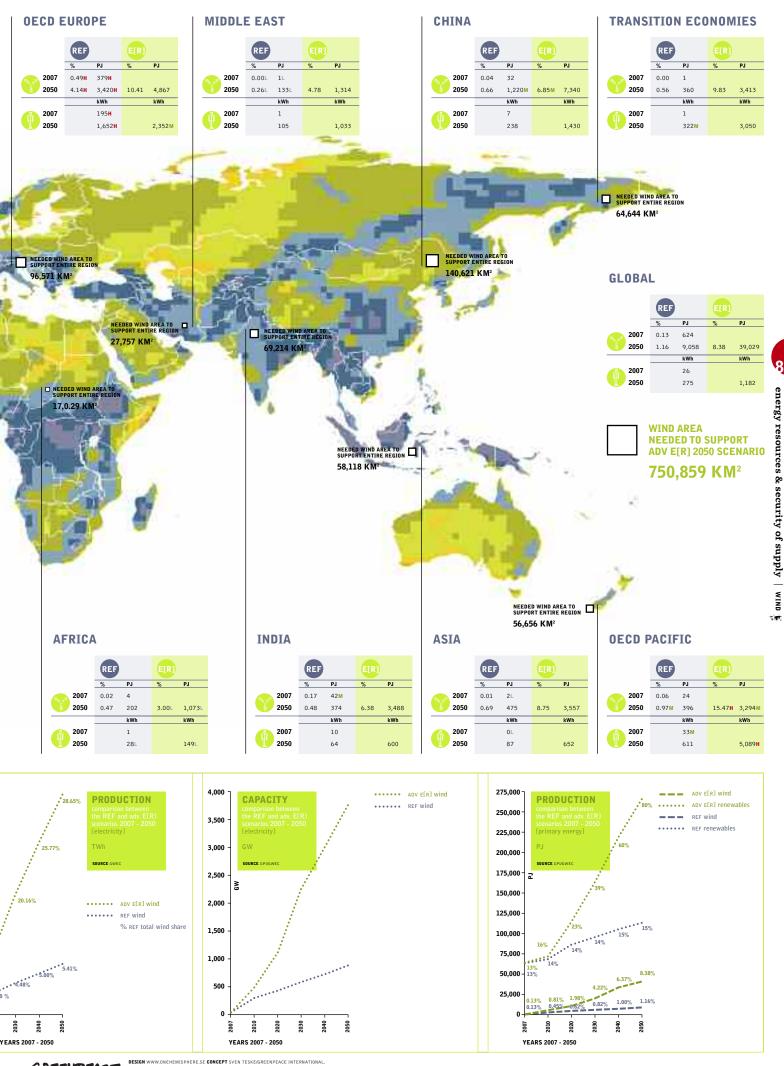

sustainable potential This limits the potential of an energy source based on evaluation of ecological and socio-economic factors.


figure 8.1: energy resources of the world

map 8.5: solar reference scenario and the advanced energy [r]evolution scenario

WORLDWIDE SCENARIO




DESIGN WWW.ONEHEMISPHERE.SE CONCEPT SVEN TESKE/GREENPEACE INTERNATIONAL

map 8.6: wind reference scenario and the advanced energy [r]evolution scenario

WORLDWIDE SCENARIO

2020

				TECHNIC			ECTRICITY RIC POWER	TECHNICAL F	POTENTIAL HEAT EJ/A	T POTENTIAL EN		
	SOLAR CSP	SOLAR PV	HYDRO POWER	WIND ON- SHORE	WIND OFF- SHORE	ENERGY	GEO- THERMAL ELECTRIC	GEO- THERMAL DIRECT USES	SOLAR WATER HEATING	BIOMASS RESIDUES	BIOMASS ENERGY CROPS	TOTAL
World 2020	1,125.9	5,156.1	47.5	368.6	25.6	66.2	4.5	498.5	113.1	58.6	43.4	7,505
World 2030	1,351.0	6,187.3	48.5	361.7	35.9	165.6	13.4	1,486.6	117.3	68.3	61.1	9,897
World 2050	1,688.8	8,043.5	50.0	378.9	57.4	331.2	44.8	4,955.2	123.4	87.6	96.5	15,857
World energy demand 2007: 502.9 EJ/	aª											
Technical potential in 2050 versus world primary energy demand 2007.	3.4	16.0	0.1	0.8	0.1	0.7	0.1	9.9	0.2	0.2	0.2	32

table 8.3: technical potential by renewable energy technology for 2020, 2030 and 2050

SOURCE DLR, WUPPERTAL INSTITUTE, ECOFYS; ROLE AND POTENTIAL OF RENEWABLE ENERGY AND ENERGY EFFICIENCY FOR GLOBAL ENERGY SUPPLY; COMMISSIONED BY THE GERMAN FEDERAL ENVIRONMENT AGENCY FKZ 3707 41 108, MARCH 2009; POTENTIAL VERSUS ENERGY DEMAND: S. TESKE a IEA 2009

A technology breakthrough, for example, could have a dramatic impact, changing the technical potential assessment within a very short time frame. Considering the huge dynamic of technology development, many existing studies are based on out of date information. The estimates in the DLR study could therefore be updated using more recent data, for example significantly increased average wind turbine capacity and output, which would increase the technical potentials still further.

Given the large unexploited resources which exist, even without having reached the full development limits of the various technologies, it can be concluded that the technical potential is not a limiting factor to expansion of renewable energy generation.

It will not be necessary to exploit the entire technical potential, however, nor would this be unproblematic. Implementation of renewable energies has to respect sustainability criteria in order to achieve a sound future energy supply. Public acceptance is crucial, especially bearing in mind that the decentralised character of many renewable energy technologies will move their operation closer to consumers. Without public acceptance, market expansion will be difficult or even impossible. The use of biomass, for example, has become controversial in recent years as it is seen as competing with other land uses, food production or nature conservation. Sustainability criteria will have a huge influence on whether bioenergy in particular can play a central role in future energy supply.

As important as the technical potential of worldwide renewable energy sources is their market potential. This term is often used in different ways. The general understanding is that market potential means the total amount of renewable energy that can be implemented in the market taking into account the demand for energy, competing technologies, any subsidies available as well as the current and future costs of renewable energy sources. The market potential may therefore in theory be larger than the economic potential. To be realistic, however, market potential analyses have to take into account the behaviour of private economic agents under specific prevailing conditions, which are of course partly shaped by public authorities. The energy policy framework in a particular country or region will have a profound impact on the expansion of renewable energies.

the global potential for sustainable biomass

As part of background research for the Energy [R]evolution Scenario, Greenpeace commissioned the German Biomass Research Centre, the former Institute for Energy and Environment, to investigate the worldwide potential for energy crops up to 2050. In addition, information has been compiled from scientific studies of the global potential and from data derived from state of the art remote sensing techniques, such as satellite images. A summary of the report's findings is given below; references can be found in the full report.^a

assessment of biomass potential studies

Various studies have looked historically at the potential for bio energy and come up with widely differing results. Comparison between them is difficult because they use different definitions of the various biomass resource fractions. This problem is particularly significant in relation to forest derived biomass. Most research has focused almost exclusively on energy crops, as their development is considered to be more significant for satisfying the demand for bio energy. The result is that the potential for using forest residues (wood left over after harvesting) is often underestimated.

Data from 18 studies has been examined, with a concentration on those which report the potential for biomass residues. Among these there were ten comprehensive assessments with more or less detailed documentation of the methodology. The majority focus on the long-term potential for 2050 and 2100. Little information is available for 2020 and 2030. Most of the studies were published within the last ten years. Figure 8.2 shows the variations in potential by biomass type from the different studies.

Looking at the contribution of different types of material to the total biomass potential, the majority of studies agree that the most promising resource is energy crops from dedicated plantations. Only six give a regional breakdown, however, and only a few quantify all types of residues separately. Quantifying the potential of minor fractions, such as animal residues and organic wastes, is difficult as the data is relatively poor.

a SEIDENBERGER T., THRÄN D., OFFERMANN R., SEYFERT U., BUCHHORN M. AND ZEDDIES J. (2008). GLOBAL BIOMASS POTENTIALS. INVESTIGATION AND ASSESSMENT OF DATA. REMOTE SENSING IN BIOMASS POTENTIAL RESEARCH. COUNTRY-SPECIFIC ENERGY CROP POTENTIAL. GERMAN BIOMASS RESEARCH CENTRE (DBFZ). FOR GREENPEACE INTERNATIONAL. 137 P.

image THE BIOENERGY VILLAGE OF JUEHNDE WHICH WAS THE FIRST COMMUNITY IN GERMANY TO PRODUCE ALL ITS ENERGY NEEDED FOR HEATING AND ELECTRICITY, WITH CO2 NEUTRAL BIOMASS.

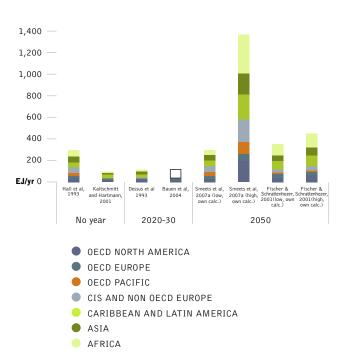
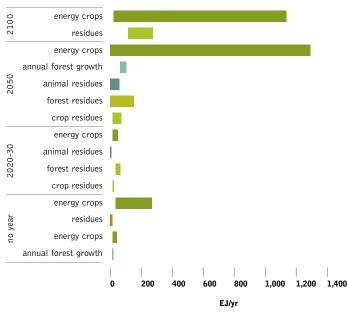

image A NEWLY DEFORESTED AREA WHICH HAS BEEN CLEARED FOR AGRICULTURAL EXPANSION IN THE AMAZON, BRAZIL.

figure 8.3: bio energy potential analysis from different authors

('EFFICIENCY' = REDUCTION COMPARED TO THE REFERENCE SCENARIO)



SOURCE GERMAN BIOMASS RESEARCH CENTRE (DBFZ)

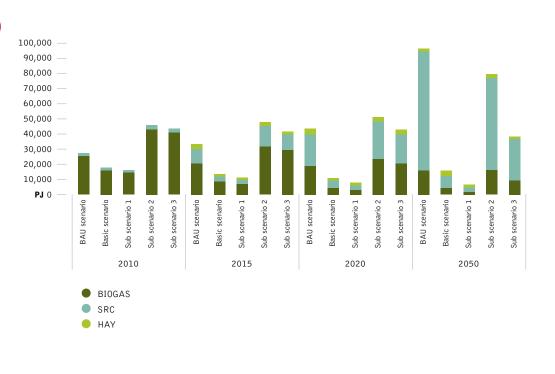
The result is that the global biomass potential from energy crops in 2050 falls within a range from 6 EJ in Sub-scenario 1 up to 97 EJ in the BAU scenario.

The best example of a country which would see a very different future under these scenarios in 2050 is Brazil. Under the BAU scenario large agricultural areas would be released by deforestation, whereas in the Basic and Sub 1 scenarios this would be forbidden, and no agricultural areas would be available for energy crops. By contrast a high potential would be available under Sub-scenario 2 as a consequence of reduced meat consumption. Because of their high populations and relatively small agricultural areas, no surplus land is available for energy crop production in Central America, Asia and Africa. The EU, North America and Australia, however, have relatively stable potentials.

figure 8.2: ranges of potential for different biomass types

source GERMAN BIOMASS RESEARCH CENTRE (DBFZ)

potential of energy crops


Apart from the utilisation of biomass from residues, the cultivation of energy crops in agricultural production systems is of greatest significance. The technical potential for growing energy crops has been calculated on the assumption that demand for food takes priority. As a first step the demand for arable and grassland for food production has been calculated for each of 133 countries in different scenarios. These scenarios are:

- Business as usual (BAU) scenario: Present agricultural activity continues for the foreseeable future
- Basic scenario: No forest clearing; reduced use of fallow areas for agriculture
- Sub-scenario 1: Basic scenario plus expanded ecological protection areas and reduced crop yields
- Sub-scenario 2: Basic scenario plus food consumption reduced in industrialised countries
- Sub-scenario 3: Combination of sub-scenarios 1 and 2

In a next step the surpluses of agricultural areas were classified either as arable land or grassland. On grassland, hay and grass silage are produced, on arable land fodder silage and Short Rotation Coppice (such as fast-growing willow or poplar) are cultivated. Silage of green fodder and grass are assumed to be used for biogas production, wood from SRC and hay from grasslands for the production of heat, electricity and synthetic fuels. Country specific yield variations were taken into consideration.

The results of this exercise show that the availability of biomass resources is not only driven by the effect on global food supply but the conservation of natural forests and other biospheres. So the assessment of future biomass potential is only the starting point of a discussion about the integration of bioenergy into a renewable energy system.

The total global biomass potential (energy crops and residues) therefore ranges in 2020 from 66 EJ (Sub-scenario 1) up to 110 EJ (Sub-scenario 2) and in 2050 from 94 EJ (Sub-scenario 1) to 184 EJ (BAU scenario). These numbers are conservative and include a level of uncertainty, especially for 2050. The reasons for this uncertainty are the potential effects of climate change, possible changes in the worldwide political and economic situation, a higher yield as a result of changed agricultural techniques and/or faster development in plant breeding.

figure 8.4: world wide energy crop potentials in different scenarios

The Energy [R]evolution takes a precautionary approach to the future use of biofuels. This reflects growing concerns about the greenhouse gas balance of many biofuel sources, and also the risks posed by expanded bio fuels crop production to biodiversity (forests, wetlands and grasslands) and food security. In particular, research commissioned by Greenpeace in the development of the Energy [R]evolution suggests that there will be acute pressure on land for food production and habitat protection in 2050. As a result, the Energy [R]evolution does not include any biofuels from energy crops at 2050, restricting feedstocks to a limited quantity of forest and agricultural residues. It should be stressed, however, that this conservative approach is based on an assessment of today's technologies and their associated risks. The development of advanced forms of biofuels which do not involve significant land-take, are demonstrably sustainable in terms of their impacts on the

wider environment, and have clear greenhouse gas benefits, should be an objective of public policy, and would provide additional flexibility in the renewable energy mix.

Concerns have also been raised about how countries account for the emissions associated with biofuels production and combustion. The lifecycle emissions of different biofuels can vary enormously. Rules developed under the Kyoto Protocol mean that under many circumstances, countries are not held responsible for all the emissions associated with land-use change or management. At the same time, under the Kyoto Protocol and associated instruments such as the European Emissions Trading scheme, biofuels is 'zero-rated' for emissions as an energy source. To ensure that biofuels are produced and used in ways which maximize its greenhouse gas saving potential, these accounting problems will need to be resolved in future.

energy technologies

GLOBAL

FOSSIL FUEL TECHNOLOGIES RENEWABLE ENERGY TECHNOLOGIES

"the technology is here, all we need is political will."

CHRIS SUPORTER, AUSTRALIA This chapter describes the range of technologies available now and in the future to satisfy the world's energy demand. The Energy ERJevolution scenario is focused on the potential for energy savings and renewable sources, primarily in the electricity and heat generating sectors.

fossil fuel technologies

The most commonly used fossil fuels for power generation around the world are coal and gas. Oil is still used where other fuels are not readily available, for example islands or remote sites, or where there is an indigenous resource. Together, coal and gas currently account for over half of global electricity supply.

coal combustion technologies In a conventional coal-fired power station, pulverised or powdered coal is blown into a combustion chamber where it is burned at high temperature. The resulting heat is used to convert water flowing through pipes lining the boiler into steam. This drives a steam turbine and generates electricity. Over 90% of global coal-fired capacity uses this system. Coal power stations can vary in capacity from a few hundred megawatts up to several thousand.

A number of technologies have been introduced to improve the environmental performance of conventional coal combustion. These include coal cleaning (to reduce the ash content) and various 'bolton' or 'end-of-pipe' technologies to reduce emissions of particulates, sulphur dioxide and nitrogen oxide, the main pollutants resulting from coal firing apart from carbon dioxide. Flue gas desulphurisation (FGD), for example, most commonly involves 'scrubbing' the flue gases using an alkaline sorbent slurry, which is predominantly lime or limestone based.

More fundamental changes have been made to the way coal is burned to both improve its efficiency and further reduce emissions of pollutants. These include:

- **integrated gasification combined cycle:** Coal is not burned directly but reacted with oxygen and steam to form a synthetic gas composed mainly of hydrogen and carbon monoxide. This is cleaned and then burned in a gas turbine to generate electricity and produce steam to drive a steam turbine. IGCC improves the efficiency of coal combustion from 38-40% up to 50%.
- **supercritical and ultrasupercritical:** These power plants operate at higher temperatures than conventional combustion, again increasing efficiency towards 50%.
- **fluidised bed combustion:** Coal is burned in a reactor comprised of a bed through which gas is fed to keep the fuel in a turbulent state. This improves combustion, heat transfer and the recovery of waste products. By elevating pressures within a bed, a high-pressure gas stream can be used to drive a gas turbine, generating electricity. Emissions of both sulphur dioxide and nitrogen oxide can be reduced substantially.
- **pressurised pulverised coal combustion:** Mainly being developed in Germany, this is based on the combustion of a finely ground cloud of coal particles creating high pressure, high temperature steam for power generation. The hot flue gases are used to generate electricity in a similar way to the combined cycle system.

Other potential future technologies involve the increased use of coal gasification. Underground Coal Gasification, for example, involves converting deep underground unworked coal into a combustible gas which can be used for industrial heating, power generation or the manufacture of hydrogen, synthetic natural gas or other chemicals. The gas can be processed to remove CO₂ before it is passed on to end users. Demonstration projects are underway in Australia, Europe, China and Japan.

gas combustion technologies Natural gas can be used for electricity generation through the use of either gas or steam turbines. For the equivalent amount of heat, gas produces about 45% less carbon dioxide during its combustion than coal.

Gas turbine plants use the heat from gases to directly operate the turbine. Natural gas fuelled turbines can start rapidly, and are therefore often used to supply energy during periods of peak demand, although at higher cost than baseload plants.

Particularly high efficiencies can be achieved through combining gas turbines with a steam turbine in combined cycle mode. In a **combined cycle gas turbine (CCGT)** plant, a gas turbine generator produces electricity and the exhaust gases from the turbine are then used to make steam to generate additional electricity. The efficiency of modern CCGT power stations can be more than 50%. Most new gas power plants built since the 1990s have been of this type.

At least until the recent increase in global gas prices, CCGT power stations have been the cheapest option for electricity generation in many countries. Capital costs have been substantially lower than for coal and nuclear plants and construction time shorter.

carbon reduction technologies Whenever a fossil fuel is burned, carbon dioxide (CO_2) is produced. Depending on the type of power plant, a large quantity of the gas will dissipate into the atmosphere and contribute to climate change. A hard coal power plant discharges roughly 720 grammes of carbon dioxide per kilowatt hour, a modern gas-fired plant about 370g CO_2 /kWh. One method, currently under development, to mitigate the CO_2 impact of fossil fuel combustion is called carbon capture and storage (CCS). It involves capturing CO_2 from power plant smokestacks, compressing the captured gas for transport via pipeline or ship and pumping it into underground geological formations for permanent storage.

While frequently touted as the solution to the carbon problem inherent in fossil fuel combustion, CCS for coal-fired power stations is unlikely to be ready for at least another decade. Despite the 'proof of concept' experiments currently in progress, as a fully integrated process the technology remains unproven in relation to all of its operational components. Suitable and effective capture technology has not been developed and is unlikely to be commercially available any time soon; effective and safe long-term storage on the scale necessary has not been demonstrated; and serious concerns attach to the safety aspects of transport and injection of CO₂ into designated formations, while long term retention cannot reliably be assured.

Deploying the technology on coal power plants is likely to double construction costs, increase fuel consumption by 10-40%, consume more water, generate more pollutants and ultimately require the public sector to ensure that the CO_2 stays where it has been buried. In a similar way to the disposal of nuclear waste, CCS envisages creating a scheme whereby future generations monitor in perpetuity the climate pollution produced by their predecessors.

carbon dioxide storage In order to benefit the climate, captured CO_2 has to be stored somewhere permanently. Current thinking is that it can be pumped under the earth's surface at a depth of over 3,000 feet into geological formations, such as saline aquifers. However, the volume of CO_2 that would need to be captured and stored is enormous – a single coal-fired power plant can produce 7 million tonnes of CO_2 annually.

It is estimated that a single 'stabilisation wedge' of CCS (enough to reduce carbon emissions by 1 billion metric tonnes per year by 2050) would require a flow of CO_2 into the ground equal to the current flow out of the ground – and in addition to the associated infrastructure to compress, transport and pump it underground. It is still not clear that it will be technically feasible to capture and bury this much carbon, both in terms of the number of storage sites and whether they will be located close enough to power plants.

Even if it is feasible to bury hundreds of thousands of megatons of CO_2 there is no way to guarantee that storage locations will be appropriately designed and managed over the timescales required. The world has limited experience of storing CO_2 underground; the longest running storage project at Sleipner in the Norweigian North Sea began operation only in 1996. This is particularly concerning because as long as CO_2 is present in geological sites, there is a risk of leakage. Although leakages are unlikely to occur in well-characterised, managed and monitored sites, permanent storage stability cannot be guaranteed since tectonic activity and natural leakage over long timeframes are impossible to predict.

Sudden leakage of CO_2 can be fatal. Carbon dioxide is not itself poisonous, and is contained (approx. 0.04%) in the air we breathe. But as concentrations increase it displaces the vital oxygen in the air. Air with concentrations of 7 to 8% CO_2 by volume causes death by suffocation after 30 to 60 minutes.

There are also health hazards when large amounts of CO_2 are explosively released. Although the gas normally disperses quickly after leaking, it can accumulate in depressions in the landscape or closed buildings, since carbon dioxide is heavier than air. It is equally dangerous when it escapes more slowly and without being noticed in residential areas, for example in cellars below houses.

The dangers from such leaks are known from natural volcanic CO_2 degassing. Gas escaping at the Lake Nyos crater lake in Cameroon, Africa in 1986 killed over 1,700 people. At least ten people have died in the Lazio region of Italy in the last 20 years as a result of CO_2 being released.

carbon storage and climate change targets Can carbon storage contribute to climate change reduction targets? In order to avoid dangerous climate change, global greenhouse gas emissions need to peak by between 2015 and 2020 and fall dramatically thereafter. Power plants capable of capturing and storing CO_2 are still being developed, however, and won't become a reality for at least another decade, if ever. This means that even if CCS works, the technology would not make any substantial contribution towards protecting the climate before 2020.

Power plant CO₂ storage will also not be of any great help in attaining the goal of at least an 80% greenhouse gas reduction by 2050 in OECD countries. Even if CCS were to be available in 2020, most of the world's new power plants will have just finished being modernised. All that could then be done would be for existing power plants to be retrofitted and CO₂ captured from the waste gas flow. Retrofitting power plants would be an extremely expensive exercise. 'Capture ready' power plants are equally unlikely to increase the likelihood of retrofitting existing fleets with capture technology.

The conclusion reached in the Energy [R]evolution scenario is that renewable energy sources are already available, in many cases cheaper, and lack the negative environmental impacts associated with fossil fuel exploitation, transport and processing. It is renewable energy together with energy efficiency and energy conservation – and not carbon capture and storage – that has to increase worldwide so that the primary cause of climate change – the burning of fossil fuels like coal, oil and gas – is stopped.

Greenpeace opposes any CCS efforts which lead to:

- Public financial support to CCS, at the expense of funding renewable energy development and investment in energy efficiency.
- The stagnation of renewable energy, energy efficiency and energy conservation improvements
- Inclusion of CCS in the Kyoto Protocol's Clean Development Mechanism (CDM) as it would divert funds away from the stated intention of the mechanism, and cannot be considered clean development under any coherent definition of this term.
- The promotion of this possible future technology as the only major solution to climate change, thereby leading to new fossil fuel developments especially lignite and black coal-fired power plants, and an increase in emissions in the short to medium term.

nuclear technologies

Generating electricity from nuclear power involves transferring the heat produced by a controlled nuclear fission reaction into a conventional steam turbine generator. The nuclear reaction takes place inside a core and surrounded by a containment vessel of varying design and structure. Heat is removed from the core by a coolant (gas or water) and the reaction controlled by a moderating element or "moderator".

Across the world over the last two decades there has been a general slowdown in building new nuclear power stations. This has been caused by a variety of factors: fear of a nuclear accident, following the events at Three Mile Island, Chernobyl and Monju, increased scrutiny of economics and environmental factors, such as waste management and radioactive discharges.

nuclear reactor designs: evolution and safety issues At the beginning of 2005 there were 441 nuclear power reactors operating in 31 countries around the world. Although there are dozens of different reactor designs and sizes, there are three broad categories either currently deployed or under development. These are:

Generation I: Prototype commercial reactors developed in the 1950s and 1960s as modified or enlarged military reactors, originally either for submarine propulsion or plutonium production.

Generation II: Mainstream reactor designs in commercial operation worldwide.

Generation III: New generation reactors now being built.

Generation III reactors include the so-called Advanced Reactors, three of which are already in operation in Japan, with more under construction or planned. About 20 different designs are reported to be under development⁶⁷, most of them 'evolutionary' designs developed from Generation II reactor types with some modifications, but without introducing drastic changes. Some of them represent more innovative approaches. According to the World Nuclear Association, reactors of Generation III are characterised by the following:

- A standardised design for each type to expedite licensing, reduce capital cost and construction time.
- A simpler and more rugged design, making them easier to operate and less vulnerable to operational upsets.
- Higher availability and longer operating life, typically 60 years.
- Reduced possibility of core melt accidents.
- Minimal effect on the environment.
- Higher burn-up to reduce fuel use and the amount of waste.
- Burnable absorbers ('poisons') to extend fuel life.

To what extent these goals address issues of higher safety standards, as opposed to improved economics, remains unclear.

Of the new reactor types, the European Pressurised Water Reactor (EPR) has been developed from the most recent Generation II designs to start operation in France and Germany.⁶⁸ Its stated goals are to improve safety levels - in particular to reduce the probability of a severe accident by a factor of ten, achieve mitigation from severe accidents by restricting their consequences to the plant itself, and reduce costs. Compared to its predecessors, however, the EPR displays several modifications which constitute a reduction of safety margins, including:

- The volume of the reactor building has been reduced by simplifying the layout of the emergency core cooling system, and by using the results of new calculations which predict less hydrogen development during an accident.
- The thermal output of the plant has been increased by 15% relative to existing French reactors by increasing core outlet temperature, letting the main coolant pumps run at higher capacity and modifying the steam generators.
- The EPR has fewer redundant pathways in its safety systems than a German Generation II reactor.

Several other modifications are hailed as substantial safety improvements, including a 'core catcher' system to control a meltdown accident. Nonetheless, in spite of the changes being envisaged, there is no guarantee that the safety level of the EPR actually represents a significant improvement. In particular, reduction of the expected core melt probability by a factor of ten is not proven. Furthermore, there are serious doubts as to whether the mitigation and control of a core melt accident with the core catcher concept will actually work.

Finally, **Generation IV** reactors are currently being developed with the aim of commercialisation in 20-30 years.

image SOLAR PROJECT IN PHITSANULOK, THAILAND. SOLAR FACILITY OF THE INTERNATIONAL INSTITUTE AND SCHOOL FOR RENEWABLE ENERGY.

 \mathbf{image} solar panels on coniston station, north west of alice springs, northern territory.

renewable energy technologies

Renewable energy covers a range of natural sources which are constantly renewed and therefore, unlike fossil fuels and uranium, will never be exhausted. Most of them derive from the effect of the sun and moon on the earth's weather patterns. They also produce none of the harmful emissions and pollution associated with `conventional' fuels. Although hydroelectric power has been used on an industrial scale since the middle of the last century, the serious exploitation of other renewable sources has a more recent history.

solar power (photovoltaics) There is more than enough solar radiation available all over the world to satisfy a vastly increased demand for solar power systems. The sunlight which reaches the earth's surface is enough to provide 2,850 times as much energy as we can currently use. On a global average, each square metre of land is exposed to enough sunlight to produce 1,700 kWh of power every year. The average irradiation in Europe is about 1,000 kWh per square metre, however, compared with 1,800 kWh in the Middle East.

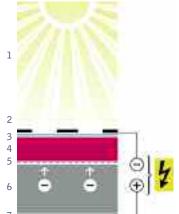
Photovoltaic (PV) technology involves the generation of electricity from light. The essence of this process is the use of a semiconductor material which can be adapted to release electrons, the negatively charged particles that form the basis of electricity. The most common semiconductor material used in photovoltaic cells is silicon, an element most commonly found in sand. All PV cells have at least two layers of such semiconductors, one positively charged and one negatively charged. When light shines on the semiconductor, the electric field across the junction between these two layers causes electricity to flow. The greater the intensity of the light, the greater the flow of electricity. A photovoltaic system does not therefore need bright sunlight in order to operate, and can generate electricity even on cloudy days. Solar PV is different from a solar thermal collecting system (see below) where the sun's rays are used to generate heat, usually for hot water in a house, swimming pool etc.

The most important parts of a PV system are the cells which form the basic building blocks, the modules which bring together large numbers of cells into a unit, and, in some situations, the inverters used to convert the electricity generated into a form suitable for everyday use. When a PV installation is described as having a capacity of 3 kWp (peak), this refers to the output of the system under standard testing conditions, allowing comparison between different modules. In central Europe a 3 kWp rated solar electricity system, with a surface area of approximately 27 square metres, would produce enough power to meet the electricity demand of an energy conscious household.

There are several different PV technologies and types of installed system.

technologies

- **crystalline silicon technology** Crystalline silicon cells are made from thin slices cut from a single crystal of silicon (mono crystalline) or from a block of silicon crystals (polycrystalline or multi crystalline). This is the most common technology, representing about 80% of the market today. In addition, this technology also exists in the form of ribbon sheets.
- thin film technology Thin film modules are constructed by depositing extremely thin layers of photosensitive materials onto


a substrate such as glass, stainless steel or flexible plastic. The latter opens up a range of applications, especially for building integration (roof tiles) and end-consumer purposes. Four types of thin film modules are commercially available at the moment: Amorphous Silicon, Cadmium Telluride, Copper Indium/Gallium Diselenide/Disulphide and multi-junction cells.

• **other emerging cell technologies** (at the development or early commercial stage): These include Concentrated Photovoltaic, consisting of cells built into concentrating collectors that use a lens to focus the concentrated sunlight onto the cells, and Organic Solar Cells, whereby the active material consists at least partially of organic dye, small, volatile organic molecules or polymer.

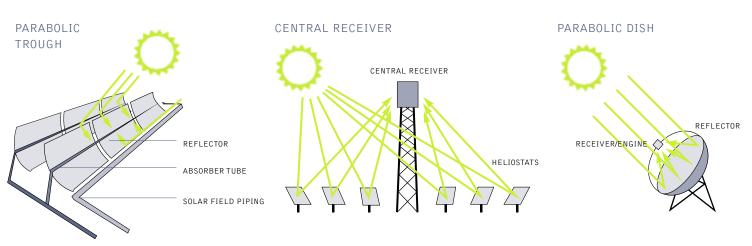
systems

- grid connected The most popular type of solar PV system for homes and businesses in the developed world. Connection to the local electricity network allows any excess power produced to be sold to the utility. Electricity is then imported from the network outside daylight hours. An inverter is used to convert the DC power produced by the system to AC power for running normal electrical equipment.
- grid support A system can be connected to the local electricity network as well as a back-up battery. Any excess solar electricity produced after the battery has been charged is then sold to the network. This system is ideal for use in areas of unreliable power supply.
- **off-grid** Completely independent of the grid, the system is connected to a battery via a charge controller, which stores the electricity generated and acts as the main power supply. An inverter can be used to provide AC power, enabling the use of normal appliances. Typical off-grid applications are repeater stations for mobile phones or rural electrification. Rural electrification means either small solar home systems covering basic electricity needs or solar mini grids, which are larger solar electricity systems providing electricity for several households.
- **hybrid system** A solar system can be combined with another source of power a biomass generator, a wind turbine or diesel generator to ensure a consistent supply of electricity. A hybrid system can be grid connected, stand alone or grid support.

figure 9.1: photovoltaics technology

- 1. LIGHT (PHOTONS)
- 2. FRONT CONTACT GRID
- 3. ANTI-REFLECTION COATING
- 4. N-TYPE SEMICONDUCTOR
- 5. BOARDER LAYOUT 6. P-TYPE SEMICONDUCTOR
- 6. P-TYPE SEMICONDUCTO
- 7. BACKCONTACT

concentrating solar power (CSP) Concentrating solar power (CSP) plants, also called solar thermal power plants, produce electricity in much the same way as conventional power stations. They obtain their energy input by concentrating solar radiation and converting it to high temperature steam or gas to drive a turbine or motor engine. Large mirrors concentrate sunlight into a single line or point. The heat created there is used to generate steam. This hot, highly pressurised steam is used to power turbines which generate electricity. In sun-drenched regions, CSP plants can guarantee a large proportion of electricity production.


Four main elements are required: a concentrator, a receiver, some form of transfer medium or storage, and power conversion. Many different types of system are possible, including combinations with other renewable and non-renewable technologies, but there are four main groups of solar thermal technologies:

parabolic trough Parabolic trough plants use rows of parabolic trough collectors, each of which reflect the solar radiation into an absorber tube. Synthetic oil circulates through the tubes, heating up to approximately 400°C. This heat is then used to generate electricity. Some of the plants under construction have been designed to produce power not only during sunny hours but also to store energy, allowing the plant to produce an additional 7.5 hours of nominal power after sunset, which dramatically improves their integration into the grid. Molten salts are normally used as storage fluid in a hot-and-cold two-tank concept. Plants in operation in Europe: Andasol 1 and 2 (50 MW +7.5 hour storage each); Puertollano (50 MW); Alvarado (50 MW) and Extresol 1 (50 MW + 7.5 hour storage).

• **central receiver or solar tower** A circular array of heliostats (large individually tracking mirrors) is used to concentrate sunlight on to a central receiver mounted at the top of a tower. A heat-transfer medium absorbs the highly concentrated radiation reflected by the heliostats and converts it into thermal energy to be used for the subsequent generation of superheated steam for turbine operation. To date, the heat transfer media demonstrated include water/steam, molten salts, liquid sodium and air. If pressurised gas or air is used at very high temperatures of about 1,000°C or more as the heat transfer medium, it can even be used to directly replace natural gas in a gas turbine, thus making use of the excellent efficiency (60%+) of modern gas and steam combined cycles.

After an intermediate scaling up to 30 MW capacity, solar tower developers now feel confident that grid-connected tower power plants can be built up to a capacity of 200 MWe solar-only units. Use of heat storage will increase their flexibility. Although solar tower plants are considered to be further from commercialisation than parabolic trough systems, they have good longer-term prospects for high conversion efficiencies. Projects are being developed in Spain, South Africa and Australia.

- **parabolic dish** A dish-shaped reflector is used to concentrate sunlight on to a receiver located at its focal point. The concentrated beam radiation is absorbed into the receiver to heat a fluid or gas to approximately 750°C. This is then used to generate electricity in a small piston, Stirling engine or micro turbine attached to the receiver. The potential of parabolic dishes lies primarily for decentralised power supply and remote, standalone power systems. Projects are currently planned in the United States, Australia and Europe.
- **linear fresnel systems** Collectors resemble parabolic troughs, with a similar power generation technology, using a field of horizontally mounted flat mirror strips, collectively or individually tracking the sun. There is one plant currently in operation in Europe: Puerto Errado (2 MW).

figures 9.2: csp technologies: parabolic trough, central receiver/solar tower and parabolic dish

image SOLAR PANELS FEATURED IN A RENEWABLE ENERGY EXHIBIT ON BORACAY ISLAND, ONE OF THE PHILIPPINES' PREMIER TOURIST DESTINATIONS.

 \mathbf{image} VESTAS VM 80 WIND TURBINES AT AN OFFSHORE WIND PARK IN THE WESTERN PART OF DENMARK.

solar thermal collectors Solar thermal collecting systems are based on a centuries-old principle: the sun heats up water contained in a dark vessel. Solar thermal technologies on the market now are efficient and highly reliable, providing energy for a wide range of applications - from domestic hot water and space heating in residential and commercial buildings to swimming pool heating, solar-assisted cooling, industrial process heat and the desalination of drinking water.

Although mature products exist to provide domestic hot water and space heating using solar energy, in most countries they are not yet the norm. Integrating solar thermal technologies into buildings at the design stage or when the heating (and cooling) system is being replaced is crucial, thus lowering the installation cost. Moreover, the untapped potential in the non-residential sector will be opened up as newly developed technology becomes commercially viable.

solar domestic hot water and space heating Domestic hot water production is the most common application. Depending on the conditions and the system's configuration, most of a building's hot water requirements can be provided by solar energy. Larger systems can additionally cover a substantial part of the energy needed for space heating. There are two main types of technology:

- **vacuum tubes** The absorber inside the vacuum tube absorbs radiation from the sun and heats up the fluid inside. Additional radiation is picked up from the reflector behind the tubes. Whatever the angle of the sun, the round shape of the vacuum tube allows it to reach the absorber. Even on a cloudy day, when the light is coming from many angles at once, the vacuum tube collector can still be effective.
- **flat panel** This is basically a box with a glass cover which sits on the roof like a skylight. Inside is a series of copper tubes with copper fins attached. The entire structure is coated in a black substance designed to capture the sun's rays. These rays heat up a water and antifreeze mixture which circulates from the collector down to the building's boiler.

solar assisted cooling Solar chillers use thermal energy to produce cooling and/or dehumidify the air in a similar way to a refrigerator or conventional air-conditioning. This application is well-suited to solar thermal energy, as the demand for cooling is often greatest when there is most sunshine. Solar cooling has been successfully demonstrated and large-scale use can be expected in the future.

figure 9.3: flat panel solar technology

wind power Over the last 20 years, wind energy has become the world's fastest growing energy source. Today's wind turbines are produced by a sophisticated mass production industry employing a technology that is efficient, cost effective and quick to install. Turbine sizes range from a few kW to over 5,000 kW, with the largest turbines reaching more than 100m in height. One large wind turbine can produce enough electricity for about 5,000 households. State-of-the-art wind farms today can be as small as a few turbines and as large as several hundred MW.

The global wind resource is enormous, capable of generating more electricity than the world's total power demand, and well distributed across the five continents. Wind turbines can be operated not just in the windiest coastal areas but in countries which have no coastlines, including regions such as central Eastern Europe, central North and South America, and central Asia. The wind resource out at sea is even more productive than on land, encouraging the installation of offshore wind parks with foundations embedded in the ocean floor. In Denmark, a wind park built in 2002 uses 80 turbines to produce enough electricity for a city with a population of 150,000.

Smaller wind turbines can produce power efficiently in areas that otherwise have no access to electricity. This power can be used directly or stored in batteries. New technologies for using the wind's power are also being developed for exposed buildings in densely populated cities.

wind turbine design Significant consolidation of wind turbine design has taken place since the 1980s. The majority of commercial turbines now operate on a horizontal axis with three evenly spaced blades. These are attached to a rotor from which power is transferred through a gearbox to a generator. The gearbox and generator are contained within a housing called a nacelle. Some turbine designs avoid a gearbox by using direct drive. The electricity output is then channelled down the tower to a transformer and eventually into the local grid network.

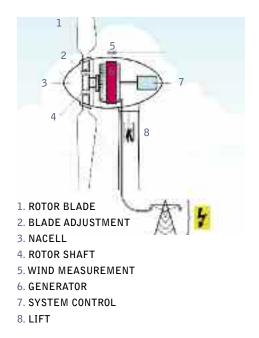
Wind turbines can operate from a wind speed of 3-4 metres per second up to about 25 m/s. Limiting their power at high wind speeds is achieved either by 'stall' regulation – reducing the power output – or 'pitch' control – changing the angle of the blades so that they no longer offer any resistance to the wind. Pitch control has become the most common method. The blades can also turn at a constant or variable speed, with the latter enabling the turbine to follow more closely the changing wind speed.

The main design drivers for current wind technology are:

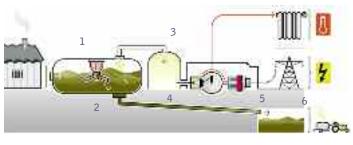
- high productivity at both low and high wind sites
- grid compatibility
- acoustic performance
- aerodynamic performance
- visual impact
- offshore expansion

Although the existing offshore market represents only just over 1% of the world's land-based installed wind capacity, the latest developments in wind technology are primarily driven by this emerging potential. This means that the focus is on the most effective ways to make very large turbines.

Modern wind technology is available for a range of sites - low and high wind speeds, desert and arctic climates. European wind farms operate with high availability, are generally well integrated into the environment and accepted by the public. In spite of repeated predictions of a levelling off at an optimum mid-range size, and the fact that wind turbines cannot get larger indefinitely, turbine size has increased year on year - from units of 20-60 kW in California in the 1980s up to the latest multi-MW machines with rotor diameters over 100 m. The average size of turbine installed around the world during 2009 was 1,599 kW, whilst the largest machine in operation is the Enercon E126, with a rotor diameter of 126 metres and a power capacity of 6 MW.


This growth in turbine size has been matched by the expansion of both markets and manufacturers. More than 150,000 wind turbines now operate in over 50 countries around the world. The US market is currently the largest, but there has also been impressive growth in Germany, Spain, Denmark, India and China. **biomass energy** Biomass is a broad term used to describe material of recent biological origin that can be used as a source of energy. This includes wood, crops, algae and other plants as well as agricultural and forest residues. Biomass can be used for a variety of end uses: heating, electricity generation or as fuel for transportation. The term 'bio energy' is used for biomass energy systems that produce heat and/or electricity and 'bio fuels' for liquid fuels used in transport. Biodiesel manufactured from various crops has become increasingly used as vehicle fuel, especially as the cost of oil has risen.

Biological power sources are renewable, easily stored, and, if sustainably harvested, CO_2 neutral. This is because the gas emitted during their transfer into useful energy is balanced by the carbon dioxide absorbed when they were growing plants.


Electricity generating biomass power plants work just like natural gas or coal power stations, except that the fuel must be processed before it can be burned. These power plants are generally not as large as coal power stations because their fuel supply needs to grow as near as possible to the plant. Heat generation from biomass power plants can result either from utilising a Combined Heat and Power (CHP) system, piping the heat to nearby homes or industry, or through dedicated heating systems. Small heating systems using specially produced pellets made from waste wood, for example, can be used to heat single family homes instead of natural gas or oil.

biomass technology A number of processes can be used to convert energy from biomass. These divide into thermal systems, which involve direct combustion of solids, liquids or a gas via pyrolysis or gasification, and biological systems, which involve decomposition of solid biomass to liquid or gaseous fuels by processes such as anaerobic digestion and fermentation.

figure 9.4: wind turbine technology

figure 9.5: biomass technology

- 1. HEATED MIXER
- 2. CONTAINMENT FOR FERMENTATION
- 3. BIOGAS STORAGE
- 4. COMBUSTION ENGINE
- 5. GENERATOR
- 6. WASTE CONTAINMENT

image THROUGH BURNING OF WOOD CHIPS THE POWER PLANT GENERATES ELECTRICITY, ENERGY OR HEAT. HERE WE SEE THE STOCK OF WOOD CHIPS WITH A CAPACITY OF 1000 M3 ON WHICH THE PLANT CAN RUN, UNMANNED, FOR ABOUT 4 DAYS. LELYSTAD, THE NETHERLANDS.

thermal systems

Direct combustion is the most common way of converting biomass into energy, for heat as well as electricity. Worldwide it accounts for over 90% of biomass generation. Technologies can be distinguished as either fixed bed, fluidised bed or entrained flow combustion. In **fixed bed combustion**, such as a grate furnace, primary air passes through a fixed bed, in which drying, gasification and charcoal combustion takes place. The combustible gases produced are burned after the addition of secondary air, usually in a zone separated from the fuel bed. In **fluidised bed combustion**, the primary combustion air is injected from the bottom of the furnace with such high velocity that the material inside the furnace becomes a seething mass of particles and bubbles. **Entrained flow combustion** is suitable for fuels available as small particles, such as sawdust or fine shavings, which are pneumatically injected into the furnace.

Gasification Biomass fuels are increasingly being used with advanced conversion technologies, such as gasification systems, which offer superior efficiencies compared with conventional power generation. Gasification is a thermochemical process in which biomass is heated with little or no oxygen present to produce a low energy gas. The gas can then be used to fuel a gas turbine or combustion engine to generate electricity. Gasification can also decrease emission levels compared to power production with direct combustion and a steam cycle.

Pyrolysis is a process whereby biomass is exposed to high temperatures in the absence of air, causing the biomass to decompose. The products of pyrolysis always include gas ('biogas'), liquid ('bio-oil') and solid ('char'), with the relative proportions of each depending on the fuel characteristics, the method of pyrolysis and the reaction parameters, such as temperature and pressure. Lower temperatures produce more solid and liquid products and higher temperatures more biogas.

• biological systems

These processes are suitable for very wet biomass materials such as food or agricultural wastes, including farm animal slurry.

Anaerobic digestion Anaerobic digestion means the breakdown of organic waste by bacteria in an oxygen-free environment. This produces a biogas typically made up of 65% methane and 35% carbon dioxide. Purified biogas can then be used both for heating and electricity generation.

Fermentation Fermentation is the process by which growing plants with a high sugar and starch content are broken down with the help of micro-organisms to produce ethanol and methanol. The end product is a combustible fuel that can be used in vehicles.

Biomass power station capacities typically range up to 15 MW, but larger plants are possible of up to 400 MW capacity, with part of the fuel input potentially being fossil fuel, for example pulverised coal. The world's largest biomass fuelled power plant is located at Pietarsaari in Finland. Built in 2001, this is an industrial CHP plant producing steam (100 MWth) and electricity (240 MWe) for the local forest industry and district heat for the nearby town. The boiler is a circulating fluidised bed boiler designed to generate steam from bark, sawdust, wood residues, commercial bio fuel and peat. A 2005 study commissioned by Greenpeace Netherlands concluded that it was technically possible to build and operate a 1,000 MWe biomass fired power plant using fluidised bed combustion technology and fed with wood residue pellets.⁶⁹

biofuels Converting crops into ethanol and bio diesel made from rapeseed methyl ester (RME) currently takes place mainly in Brazil, the USA and Europe. Processes for obtaining synthetic fuels from 'biogenic synthesis' gases will also play a larger role in the future. Theoretically bio fuels can be produced from any biological carbon source, although the most common are photosynthetic plants. Various plants and plant-derived materials are used for bio fuel production.

Globally bio fuels are most commonly used to power vehicles, but can also be used for other purposes. The production and use of bio fuels must result in a net reduction in carbon emissions compared to the use of traditional fossil fuels to have a positive effect in climate change mitigation. Sustainable bio fuels can reduce the dependency on petroleum and thereby enhance energy security.

- **bioethanol** is a fuel manufactured through the fermentation of sugars. This is done by accessing sugars directly (sugar cane or beet) or by breaking down starch in grains such as wheat, rye, barley or maize. In the European Union bio ethanol is mainly produced from grains, with wheat as the dominant feedstock. In Brazil the preferred feedstock is sugar cane, whereas in the USA it is corn (maize). Bio ethanol produced from cereals has a by-product, a protein-rich animal feed called Dried Distillers Grains with Solubles (DDGS). For every tonne of cereals used for ethanol production, on average one third will enter the animal feed stream as DDGS. Because of its high protein level this is currently used as a replacement for soy cake. Bio ethanol can either be blended into gasoline (petrol) directly or be used in the form of ETBE (Ethyl Tertiary Butyl Ether).
- **biodiesel** is a fuel produced from vegetable oil sourced from rapeseed, sunflower seeds or soybeans as well as used cooking oils or animal fats. If used vegetable oils are recycled as feedstock for bio diesel production this can reduce pollution from discarded oil and provides a new way of transforming a waste product into transport energy. Blends of bio diesel and conventional hydrocarbon-based diesel are the most common products distributed in the retail transport fuel market.

Most countries use a labelling system to explain the proportion of bio diesel in any fuel mix. Fuel containing 20% biodiesel is labelled B20, while pure bio diesel is referred to as B100. Blends of 20% bio diesel with 80% petroleum diesel (B20) can generally be used in unmodified diesel engines. Used in its pure form (B100) an engine may require certain modifications. Bio diesel can also be used as a heating fuel in domestic and commercial boilers. Older furnaces may contain rubber parts that would be affected by bio diesel's solvent properties, but can otherwise burn it without any conversion.

climate protection | KYOTO PROTOCOL

tion.

geothermal energy Geothermal energy is heat derived from deep underneath the earth's crust. In most areas, this heat reaches the surface in a very diffuse state. However, due to a variety of geological processes, some areas, including the western part of the USA, west and central Eastern Europe, Iceland, Asia and New Zealand are underlain by relatively shallow geothermal resources. These are classified as either low temperature (less than 90°C), moderate temperature (90° - 150°C) or high temperature (greater than 150°C). The uses to which these resources can be put depend on the temperature. The highest temperature is generally used only for electric power generation. Current global geothermal generation capacity totals approximately 10,700 MW, and the leading country is currently the USA, with over 3,000 MW, followed by the Philippines (1,900 MW) and Indonesia (1,200 MW). Low and moderate temperature resources can be used either directly or through ground-source heat pumps.

Geothermal power plants use the earth's natural heat to vaporise water or an organic medium. The steam created then powers a turbine which produces electricity. In the USA, New Zealand and Iceland this technique has been used extensively for decades. In Germany, where it is necessary to drill many kilometres down to reach the necessary temperatures, it is only in the trial stages. **Geothermal heat plants** require lower temperatures and the heated water is used directly.

hydro power Water has been used to produce electricity for about a century. Today, around one fifth of the world's electricity is produced from hydro power. Large hydroelectric power plants with concrete dams and extensive collecting lakes often have very negative effects on the environment, however, requiring the flooding of habitable areas. Smaller 'run-of-the-river' power stations, which are turbines powered by one section of running water in a river, can produce electricity in an environmentally friendly way.

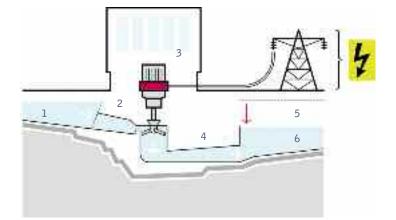

The main requirement for hydro power is to create an artificial head so that water, diverted through an intake channel or pipe into a turbine, discharges back into the river downstream. Small hydro power is mainly 'run-of-the-river' and does not collect significant amounts of stored water, requiring the construction of large dams and reservoirs. There are two broad categories of turbines. In an impulse turbine (notably the Pelton), a jet of water impinges on the runner designed to reverse the direction of the jet and thereby extracts momentum from the water. This turbine is suitable for high heads and 'small' discharges. Reaction turbines (notably Francis and Kaplan) run full of water and in effect generate hydrodynamic 'lift' forces to propel the runner blades. These turbines are suitable for medium to low heads and medium to large discharges.

figure 9.6: geothermal technology

1. PUMP

- 2. HEAT EXCHANGER
- 3. GAS TURBINE & GENERATOR
- 4. DRILLING HOLE FOR COLD WATER INJECTION
- 5. DRILLING HOLE FOR WARM WATER EXTRACTION

figure 9.7: hydro technology

1. INLET 2. SIEVE 3. GENERATOR 4. TURBINE 5. HEAD 6. OUTLET image GEOTHERMAL POWER STATION, NORTH ISLAND, NEW ZEALAND. image GEOTHERMAL ACTIVITY.

ocean energy

tidal power Tidal power can be harnessed by constructing a dam or barrage across an estuary or bay with a tidal range of at least five metres. Gates in the barrage allow the incoming tide to build up in a basin behind it. The gates then close so that when the tide flows out the water can be channelled through turbines to generate electricity. Tidal barrages have been built across estuaries in France, Canada and China but a mixture of high cost projections coupled with environmental objections to the effect on estuarial habitats has limited the technology's further expansion.

wave and tidal stream power In wave power generation, a structure interacts with the incoming waves, converting this energy to electricity through a hydraulic, mechanical or pneumatic power take-off system. The structure is kept in position by a mooring system or placed directly on the seabed/seashore. Power is transmitted to the seabed by a flexible submerged electrical cable and to shore by a sub-sea cable.

In **tidal stream** generation, a machine similar to a wind turbine rotor is fitted underwater to a column fixed to the sea bed; the rotor then rotates to generate electricity from fast-moving currents. 300 kW prototypes are in operation in the UK.

Wave power converters can be made up from connected groups of smaller generator units of 100 - 500 kW, or several mechanical or hydraulically interconnected modules can supply a single larger turbine generator unit of 2 - 20 MW. The large waves needed to make the technology more cost effective are mostly found at great distances from the shore, however, requiring costly sub-sea cables to transmit the power. The converters themselves also take up large amounts of space. Wave power has the advantage of providing a more predictable supply than wind energy and can be located in the ocean without much visual intrusion.

There is no commercially leading technology on wave power conversion at present. Different systems are being developed at sea for prototype testing. The largest grid-connected system installed so far is the 2.25 MW Pelamis, with linked semi-submerged cyclindrical sections, operating off the coast of Portugal. Most development work has been carried out in the UK.

Wave energy systems can be divided into three groups, described below.

- shoreline devices are fixed to the coast or embedded in the shoreline, with the advantage of easier installation and maintenance. They also do not require deep-water moorings or long lengths of underwater electrical cable. The disadvantage is that they experience a much less powerful wave regime. The most advanced type of shoreline device is the oscillating water column (OWC). One example is the Pico plant, a 400 kW rated shoreline OWC equipped with a Wells turbine constructed in the 1990s. Another system that can be integrated into a breakwater is the Seawave Slot-Cone converter.
- near shore devices are deployed at moderate water depths (~20-25 m) at distances up to ~500 m from the shore. They have the same advantages as shoreline devices but are exposed to stronger, more productive waves. These include 'point absorber systems'.
- **offshore devices** exploit the more powerful wave regimes available in deep water (>25 m depth). More recent designs for offshore devices concentrate on small, modular devices, yielding high power output when deployed in arrays. One example is the AquaBuOY system, a freely floating heaving point absorber system that reacts against a submersed tube, filled with water. Another example is the Wave Dragon, which uses a wave reflector design to focus the wave towards a ramp and fill a higher-level reservoir.

images 1. BIOMASS CROPS. 2. OCEAN ENERGY. 3. CONCENTRATING SOLAR POWER (CSP).

energy efficiency - more with less

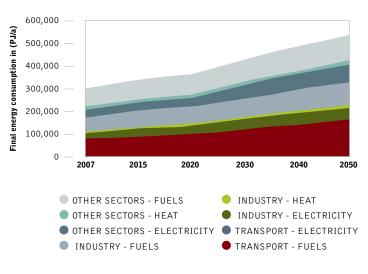
GLOBAL

ENERGY EFFICIENT IMPROVEMENTS HOUSEHOLDS THE LOW ENERGY HOUSEHOLD THE STANDARD HOUSEHOLD ELECTRICITY SAVINGS BY APPLICATION TOTAL HOUSEHOLD SAVINGS ENERGY EFFICIENCY STANDARDS

"today, we are wasting two thirds (61%) of the electricity we consume, mostly due to bad product design."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN Using energy efficiently is cheaper than producing new energy from scratch and often has many other positive effects. An efficient clothes washing machine or dishwasher, for example, uses less power and less water. Efficiency also usually provides a higher level of comfort. A well-insulated house, for instance, will feel warmer in the winter, cooler in the summer and be healthier to live in. An efficient refrigerator will make less noise, have no frost inside, no condensation outside and will probably last longer. Efficient lighting will offer you more light where you need it. Efficiency is thus really better described as 'more with less'.

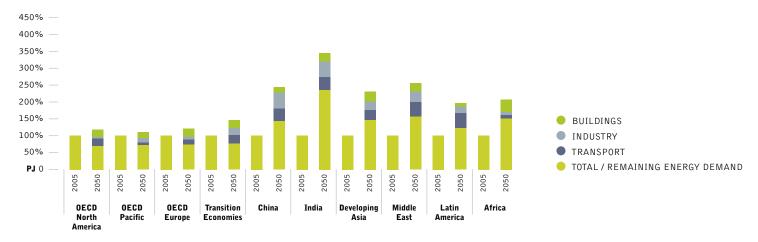
There are very simple steps every householder can take, such as putting additional insulation in the roof, using super-insulating glazing or buying a high-efficiency washing machine when the old one wears out. All of these examples will save both money and energy. But the biggest savings will not be found in such incremental steps. The real gains come from rethinking the whole concept - 'the whole house', 'the whole car' or even 'the whole transport system'. When you do this, energy needs can often be cut back by four to ten times.


In order to find out the global and regional energy efficiency potential, the Dutch institute Ecofys developed energy demand scenarios for the Greenpeace Energy [R]evolution analysis in 2008. These scenarios cover energy demand over the period 2005-2050 for ten world regions. Two low energy demand scenarios for energy efficiency improvements have been defined. The first is based on the best technical energy efficiency potentials and is called 'Technical'. The second is based on more moderate energy savings, taking into account implementation constraints in terms of costs and other barriers. This scenario is called 'Revolution'. The main results of the study are summarised below.

For the 2010 update of the Energy [R]evolution scenario, including the advanced version, this analysis has been reconfigured using the latest IEA statistics from World Energy Outlook 2009. The levels of final energy demand have therefore been adjusted, resulting in particular in lower overall fuel consumption in the industrial sector than previously assumed. In addition, an increased share of electric vehicles in the advanced scenario results in a lower final energy demand required to meet the same level of transport activity. Apart from that, the overall efficiency targets for each technology (based on actual demand in PJ/a) for the years 2030, 2040 and 2050 have not been changed.

The starting point for the original Ecofys analysis (based on the IEA's WEO 2007) was that worldwide final energy demand was expected to grow by 95% between 2005 and 2050, from 290 EJ to 570 EJ, if we continue with business as usual. Based on the 2009 figures, the extrapolation of final energy demand in the Reference scenario results in 531 EJ by the year 2050.

figure 10.1: energy demand growth under the reference scenario, 2007-2050 by sector IEA WE0 2009


Growth in the transport sector is projected to be the largest, with energy demand expected to grow from 84 EJ in 2007 to 183 EJ by 2050. Demand from buildings and agriculture is expected to grow the least, from 91 EJ in 2007 to 124 EJ by 2050.

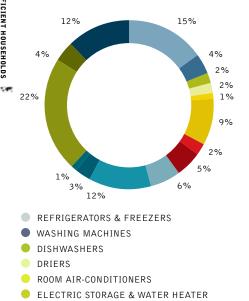
Under the Energy [R]evolution scenario, however, growth in energy demand can be limited to an increase of 28% up to 2050 in comparison to the 2007 level, whilst taking into account implementation constraints in terms of costs and other barriers.

In Figure 10.2 the potential for energy efficiency improvements under this scenario are presented. The baseline is 2005 final energy demand per region. Table 10.1 shows that total worldwide energy demand has reduced to 376 PJ by 2050, with a breakdown by sector.

table 10.1: change in energy demand by 2050 in comparison to 2005 level

Total	+12%	+74%
Buildings and Agriculture	+14%	+60%
Transport	+2%	+93%
Industry	+17%	+77%
SECTOR	[R]EVOLUTION SCENARIO	REFERENCE SCENARIO

figure 10.2: potential for energy efficiency improvements per world region in energy [r]evolution scenario ENERGY DEMAND FOR ALL SECTORS (NORMALISED BASED ON 2005 PJ)


energy efficient households

A breakdown of domestic electricity use by end-use equipment in the core EU-15 countries is shown in Figure 10.3 and of electricity use in the EU services sector in Figure 10.4.

Based on the results from three studies⁷⁰, we have assumed the following breakdowns for energy use in households (fuel and electricity) under the Reference scenario in 2050. Insufficient information is available to enable a breakdown by world region. We assume, however,

figure 10.3: breakdown of electricity use for residential end-use equipment in EU-15 countries in 2004

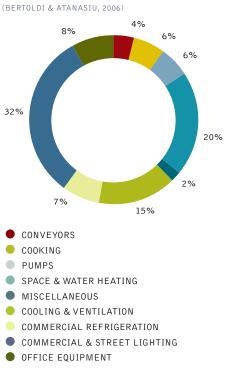
(BERTOLDI & ATANASIU, 2006)

- ELECTRIC OVENS
- ELECTRIC HOBS
- CONSUMER ELECTRONICS & OTHER EQUIPMENT STAND-BY
- LIGHTING
- TV ON MODE
- OFFICE EQUIPMENT
- RESIDENTIAL ELECTRIC HEATING
- CENTRAL HEATING CIRCULATION PUMPS
- MISCELLANEOUS

energy efficiency ENERGY EFFICIENT HOUSEHOLDS

number of degrees that a day's average temperature is under 18° Celsius, the temperature below which buildings need to be heated.

per heating degree day (HDD). Heating degree days indicate the


that the pattern for different regions will converge over the years.

Since an estimated 80% of fuel use in buildings is for space heating,

the energy efficiency improvement potential here is considered to be

large. In order to determine the potential for improvement in space heating efficiency we looked at the energy demand per m² floor area

figure 10.4: breakdown of electricity consumption in the EU services sector

70 BERTOLDI, P. AND B. ATANASIU. 'ELECTRICITY CONSUMPTION AND EFFICIENCY TRENDS IN THE ENLARGED EUROPEAN UNION - STATUS REPORT 2006', INSTITUTE FOR ENVIRONMENT AND SUSTAINABILITY, IEA (2006), ENERGY TECHNOLOGY PERSPECTIVES 2006 - SCENARIOS AND STRATEGIES TO 2050 AND WBCSD (2005), PATHWAYS TO 2050 - ENERGY AND CLIMATE CHANGE. WORLD BUSINESS COUNCIL ON SUSTAINABLE DEVELOPMENT, SWITZERLAND. WWW.WBCSD.ORG/PLUGINS/DOCSEARCH/DETAILS.ASP?TYPE=D0CDET&0BJECTID=MTCZNZA

image A ROOM AT A NEWLY CONSTRUCTED HOME IS SPRAYED WITH LIQUID INSULATING FOAM BEFORE THE DRYWALL IS ADDED

image FUTURISTIC SOLAR HEATED HOME MADE FROM CEMENT AND PARTIALLY COVERED IN THE EARTH.

table 10.2: break down of energy use in households

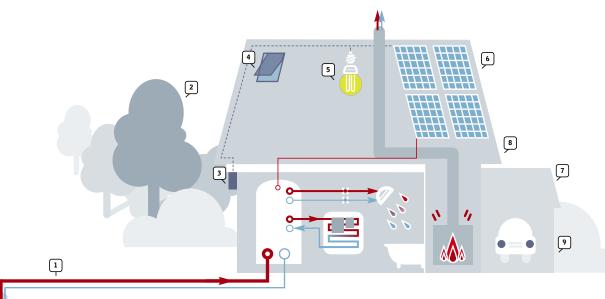
FUEL USE 2050	ELECTRICITY USE 2050
Hot water (15%)	Air conditioning (8%)
Cooking (5%)	Lighting (15%)
Space heating (80%)	Standby (8%)
	Cold appliances (15%)
	Appliances (30%)
	Other (e.g. electric heating) (24%)

The typical current heating demand for dwellings is 70-120 kJ/m.⁷¹ Dwellings with a low energy use consume below 32 kJ/m²/HDD, however, more than 70% less than the current level. An example of how a low energy household would operate is shown below.

the low energy household

Technologies to reduce energy demand applied in this typical household are72:

• Triple-glazed windows with low emittance coatings. These windows greatly reduce heat loss to 40% compared to windows with one layer. The low emittance coating also prevents energy waves in sunlight coming through, reducing the need for cooling.


- Insulation of roofs, walls, floors and basement. Proper insulation reduces heating and cooling demand by 50% in comparison to typical energy demand.
- Passive solar techniques make use of the sun's rays throughout the building's design - both siting and window orientation. The term 'passive' indicates that no mechanical equipment is used. All solar gains come through the windows.
- Balanced ventilation with heat recovery means that heated indoor air is channelled to a heat recovery unit and used to heat incoming outdoor air.

Current space heating demands in kJ per square metre per heating degree day for OECD dwellings are given in the table below.

table 10.3: space heating demands in OECD dwellings in 2004

source OECD/IEA, 2007	
OECD Pacific	52
OECD North America	78
OECD Europe	113
REGION	SPACE HEATING (KJ/M/HDD)

figure 10.5: elements of new building design that can substantially reduce energy use (WBCSD, 2005)

- HEAT PUMP SYSTEMS THAT UTILISE THE STABLE TEMPERATURE IN THE GROUND TO SUPPORT AIR CONDITIONING 1. IN SUMMER AND HEATING OR HOT WATER SUPPLY IN WINTER.
- 3.
- TREES TO PROVIDE SHADE AND COOLING IN SUMMER, AND SHIELD AGAINST COLD WIND IN WINTER. NEW BATTERY TECHNOLOGY FOR THE STORAGE OF THE ELECTRICITY PRODUCED BY SOLAR PANELS. TRANSPARENT DESIGN TO REDUCE THE NEED FOR LIGHTING. "LOW-E" GLASS COATING TO REDUCE THE AMOUNT OF HEAT ABSORBED 4. FROM SUNLIGHT THROUGH THE WINDOWS (WINDOWS WITH THE REVERSE EFFECT CAN BE INSTALLED IN COLDER CLIMATES). EFFICIENT LIGHT BULBS.
- SOLAR PHOTOVOLTAIC PANELS FOR ELECTRICITY PRODUCTION AND SOLAR THERMAL PANELS FOR WATER HEATING. 6.
- ROOMS THAT ARE NOT NORMALLY HEATED (E.G. A GARAGE) SERVING AS ADDITIONAL INSULATION. VENTILATED DOUBLE SKIN FAÇADES TO REDUCE HEATING AND COOLING REQUIREMENTS. 7
- 8.
- WOOD AS A BUILDING MATERIAL WITH ADVANTAGEOUS INSULATION PROPERTIES, WHICH ALSO STORES CARBON 9. AND IS OFTEN PRODUCED WITH BIOMASS ENERGY.

71 BASED ON IEA, 2007 ENERGY USE IN THE NEW MILLENIUM - TRENDS IN IEA COUNTRIES, INTERNATIONAL ENERGY AGENCY, PARIS.

72 BASED ON WBCSD (2005), IEA (2006), JOOSEN ET AL (2002). SECTORAL OBJECTIVES OF EMISSION REDUCTION. ASSIGNMENT FOR EUROPEAN COMMISSION. HTTP://EC.EURO PA.EU/ENVIRONMENT/ENVECO/CLIMATE_CHANGE/PDF/TOP_DOWN_ANALYSIS_XSUM.PDF

space heating savings for new buildings We have assumed under the Energy [R]evolution scenario that all new dwellings in OECD regions will be low energy buildings using 48 kJ/m²/HDD. Since there is no data on current average energy consumption for dwellings in non-OECD countries, we have had to make assumptions for these regions. The potential for fuel savings⁷³ is considered to be small in developing regions and about the same as the OECD in the Transition Economies. For this study we have taken the potential for developing regions to be equal to a 1.4% energy efficiency improvement per year, including replacing existing homes with more energy efficient housing (retrofitting). In the Transition Economies we have assumed the average OECD savings potential. For new homes, the savings compared to the average current dwelling are given in Table 10.4.

table 10.4: space heating savings in new buildings in comparison to typical current dwellings

REGION	[R]EVOLUTION SCENARIO
OECD Europe	58%
OECD North America	38%
OECD Pacific	8%
Transition Economies	35%

space heating savings by retrofit As well as constructing efficient new buildings there is a large savings potential to be found in retrofitting existing buildings. Important retrofit options are more efficient windows and insulation. According to the OECD/IEA, the first can save 39% of space heating energy demand while the latter can save 32% of space heating or cooling. Energy consumption in existing buildings in Europe could therefore decrease by more than 50%.⁷⁴ In all regions of the world we have assumed the same relative reductions as for new buildings, but taking into account the current average efficiency of dwellings in different regions. For existing homes, the savings compared to the average current dwelling are given in the table below.

table 10.5: space heating savings in existing buildings in comparison to typical current dwellings

REGION	[R]EVOLUTION SCENARIO
OECD Europe	40%
0ECD North America	26%
OECD Pacific	5%
Transition Economies	24%

In order to calculate the overall potential we need to know the share of new and existing buildings in 2050. The United Nations Economic Commission for Europe (UNECE) database⁷⁵ contains data on the total housing stock, including the increase from new construction. We have assumed that the total housing stock grows at the same pace as the population. The number of existing dwellings also decreases each year due to a certain level of replacement. On average this is about 1.3% of the total housing stock per year, meaning a 40% replacement over 40 years, the equivalent of an average house lifetime of 100 years.

Table 10.6 illustrates that new dwellings in OECD Europe make up 7% of the total housing stock in 2050 and retrofits account for 41%. Although the UNECE database does not include data for countries in all regions of the world, the percentages of new and retrofit houses in 2050 are not dependent on the absolute number of dwellings but only on the rate of population growth and the 1.3% assumption. This means that we can use the rate of population growth to make forecasts for other regions (see 10.6).

Total savings for space heating energy demand are calculated by multiplying the savings potentials for new and existing houses by the forecast share of dwellings in 2050 to obtain a weighed percentage reduction. For fuel use for hot water we have assumed the same annual percentage reduction as for space heating. For cooking we have assumed a 1.5% per year efficiency improvement.

table 10.6: forecast share of new dwellings in the housing stock in 2050

EXISTING UILDINGS	NEW DWELLINGS DUE TO REPLACEMENT OF OLD BUILDINGS AS SHARE OF TOTAL DWELLINGS IN 2050	NEW DWELLINGS DUE TO POPULATION GROWTH AS SHARE OF TOTAL IN 2050
52%	41%	7%
ica 36%	29%	35%
55%	44%	1%
ies 55%	45%	0%
32%	25%	43%
49%	39%	12%
29%	23%	48%
33%	27%	40%
22%	17%	61%
16%	13%	71%
	52% ica 36% 55% 32% 49% 29% 33% 22%	SUILDINGSDUE TO REPLACEMENT OF OLD BUILDINGS AS SHARE OF TOTAL DWELLINGS IN 205052%41%ica36%29%55%44%ies55%45%32%25%49%39%29%23%33%27%22%17%

73 ÜRGE-VORSATZ & NOVIKOVA (2008). POTENTIALS AND COSTS OF CARBON DIOXIDE MITIGATION IN THE WORLD'S BUILDINGS. ENERGY POLICY 36, PP. 642-661. **74** OECD/IEA,2006.

75 UNECE, 'HUMAN SETTLEMENT DATABASE', 2008.

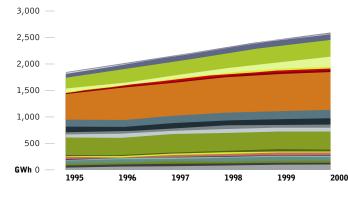
electricity savings by application

In order to determine savings for electricity demand in buildings, we examined the energy use and potential savings for the following different elements of power consumption:

- Standby
- Lighting
- Set-top boxes
- Freezers/fridges
- Computers/servers
- Air conditioning

1. standby power consumption Standby power consumption is the "lowest power consumption which cannot be switched off (influenced) by the user and may persist for an indefinite time when an appliance is connected to the mains electricity supply".⁷⁶ In other words, the energy available when an appliance is connected to the power supply is not being used. Some appliances also consume energy when they are not on standby and are also not being used for their primary function, for example when an appliance has reached the end of a cycle but the 'on' button is still engaged. This consumption does not fit into the definition of standby power but could still account for a substantial amount of energy use.

Reducing standby losses provides a major opportunity for costeffective energy savings. Nowadays, many appliances can be remotely and/or instantly activated or have a continuous digital display, and therefore require a standby mode. Standby power accounts for 20–90W per home in developed nations, ranging from 4 to 10% of total residential electricity use⁷⁷ and 3-12% of total residential electricity use worldwide.⁷⁸ Printers use 30-40% of their full power requirement when idle, as do televisions and music equipment. Set-top boxes used in conjunction with televisions tend to consume even more energy on standby than in use. Typical standby use for different types of electrical devices is shown in Figure 10.8.


In developing nations, the quantity of appliances per household is growing substantially. In China, standby energy use has grown from almost zero in 1980 to a level of 50–200 kWh per year in an average urban home by the year 2000. Levels of standby power use in Chinese homes (on average 29W) are still below those in developed countries, but relatively large because Chinese appliances have a higher level of standby operation. Existing technologies are available to greatly reduce standby power at a low cost.

By 2050, if it remains unchecked, standby use is expected to be responsible for 8% of total electricity demand across all regions of the world. The World Business Council for Sustainable Development has assessed that a worldwide savings potential in standby use of between 72% and 82% is feasible. This is confirmed by research in the Netherlands⁷⁹, which showed that reducing the amount of power available for standby in all devices to just 1W would led to a saving of approximately 77%. We have adopted these reduction percentages for the Energy [R]evolution scenario (72% reduction). This results in an energy efficiency improvement of 3.1% per year.

figure 10.8: electricity use of standby power for different devices

(HARMELINK ET AL., 2005)

DECODER

OVEN CLOCK

NIGHT LAMP (CHILDREN)

STATELLITE SYSTEM

COFFEE MAKER CLOCK

MICROWAVE CLOCK

ANSWERING MACHINE

CORDLESS TELEPHONE

CRUMB-SWEEPER

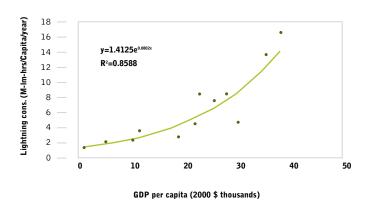
ELECTRONIC CLOCK RADIO

DOORBELL TRANSFORMER

- WASHING MACHINE/DRIER
- ELECTRIC TOOTH BRUSH
- TELEVISION
- ELECTRONIC SYSTEM BOILER
- MODEM
- PRINTER
- PERSONAL COMPUTER
- ALARM SYSTEM
- STANDBY VIDEO
- STANDBY AUDIO
- ELECTRONIC CONTROL WHITE GOODS
- SENSOR LAMP

76 UNITED KINGDOM MARKET TRANSFORMATION PROGRAMME, 'BNXS15: STANDBY POWER CONSUMPTION - DOMESTIC APPLIANCES', 2008.

77 MEIER, A., J. LIN, J. LIU, T. LI, 'STANDBY POWER USE IN CHINESE HOMES', ENERGY AND BUILDINGS 36, PP. 1211-1216, 2004.


78 MEIER, A, 'A WORLDWIDE REVIEW OF STANDBY POWER IN HOMES', LAWRENCE BERKELEY NATIONAL LABORATORY, UNIVERSITY OF CALIFORNIA, 2001.
79 HARMELINK M., K. BLOK, M. CHANG, W. GRAUS, S. JOOSEN, 'OPTIONS TO SPEED UP ENERGY SAVINGS IN THE NETHERLANDS (MOGELIJKHEDEN VOOR VERSNELLING VAN ENERGIEBESPARING IN NEDERLAND)', ECOFYS, UTRECHT, 2005 **2. lighting** Incandescent bulbs have been the most common lamps for a more than 100 years. These are the most inefficient type of lighting, however, since up to 95% of the electricity is converted into heat.⁸⁰ Incandescent lamps have a relatively short life-span (average of approximately 1,000 hours) but have a low initial cost and optimal colour rendering. Compact Fluorescent Lamps (CFLs) are more expensive than incandescent bulbs but they use about 75% less energy, produce 75% less heat and last about ten times longer.⁸¹ Many governments have therefore passed measures to prohibit the sale of incandescent light bulbs, with the aim of encouraging use of more energy efficient lighting alternatives, both CFLs and Light Emitting Diode (LED) lamps. Brazil and Venezuela started to phase out incandescent bulbs in 2005, and other nations are planning scheduled phase-outs: Australia, Ireland and Switzerland in 2009; Argentina, Italy, Russia and the United Kingdom by 2011; Canada in 2012; the European Union by September 2009; and the USA between 2012 and 2014. It is very likely that the market share of CFLs will therefore increase significantly beyond 2015.

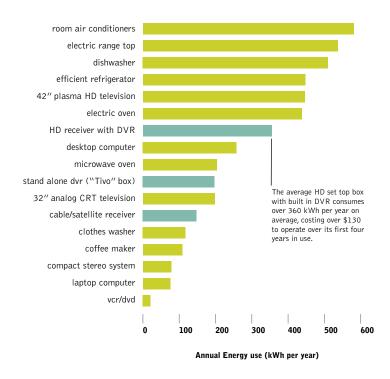
Globally, people consume 3 Mega-lumen-hrs (MImh) of residential electric light per capita/year. The average North American uses 13.2 MImh, the average Chinese 1.5 MImh - still 300 times the average artificial per capita light use in England in the nineteenth century. The average Japanese uses 18.5 MImh and the average European or Australian 2.7 MImh. There is a clear relationship between GDP per capita and lighting consumption in MImh/cap/yr (see Figure 10.6).

Saving energy in lighting is not just a question of using more efficient lamps, however. Other approaches include making smarter use of daylight, reducing light absorption by luminaires (the fixture in which the lamp is housed), optimising lighting levels (levels in OECD countries commonly exceed recommended values), using automatic controls (turn off when no one is present, dim artificial light in response to rising daylight) and retrofitting buildings to make better use of daylight. Buildings designed to optimise daylight can receive up to 70% of their annual illumination needs from daylight, while a typical building will only get 20 to 25%.⁸²

The IEA publication "Light's Labour's Lost" (2006) projects that the cost-effective savings potential from energy efficient lighting in 2030 is at least 38% of lighting electricity consumption, even disregarding newer and promising solid state lighting technologies such as LEDs. In order to determine the savings potential for lighting, it is important to know the percentage of households with energy efficient lamps and the penetration level of these lamps. In a study by Bertoldi & Atanasiu (2006), national lighting consumption and CFL penetration data is presented for the EU-27 countries (and candidate country Croatia). We used this data as the basis for household penetration rates and lighting electricity consumption in OECD Europe. Based on this and other studies already cited we estimate that a maximum of 80% savings can result from the introduction of efficient residential lighting compared to the present situation. These savings not only result from using energy efficient lamps but from behavioural changes and maximising daylight use. Since the penetration of energy efficient lamps differs per household, we have assumed an attainable savings potential of 70% in the Revolution scenario.

figure 10.6: lighting consumption Mlmh/capita/yr as a function of GDP per capita (WAIDE, 2006)

3. set-top boxes Set-top boxes (STBs) are used to decode satellite or cable television programmes and are a major new source of energy demand. More than a billion are projected to be purchased worldwide over the next decade. The energy use of an average set-top box is 20-30 W, but it uses nearly the same amount of energy when switched off.⁸³ In the USA, STB energy use is estimated at 15 TWh/year, or about 1.3% of residential electricity use.⁸⁴ With more advanced uses, for instance digital video recorders (DVRs), STB energy use is forecast to triple to 45 TWh/year by 2010 – an 18% annual growth rate and 4% of 2010 residential electricity use.


Because of their short lifetimes (on average five years) and high ownership growth rates, STBs provide an opportunity for significant short term energy savings. Cable/satellite boxes without DVRs use 100 to 200 kWh of electricity per year, whilst combined with DVRs they use between 200 and 400 kWh per year. Media receiver boxes use less energy (around 35 kWh per year) but must be used in conjunction with existing audiovisual equipment and computers, thus adding another 35 kWh to the annual energy use of existing home electronics. Figure 10.7 shows the annual energy use of common household appliances. This shows that the energy use of some set-top boxes approaches that of existing major energy consuming appliances.

Reducing the energy use of set-top boxes is complicated by their complex operating and communication modes. Although improvements in power supply design and efficiency will be effective in reducing energy use, the greatest savings will be obtained through energy management measures. The study by Rainer et al. (2004) reports a savings potential of between 32% and 54% over five years (2005-2010). Assuming that these drastic measures have not yet been applied, and due to lack of data for other regions, we have taken these reduction percentages as the global potential up to 2050.

- **80** HENDEL-BLACKFORD ET AL., 2007. ENERGY EFFICIENCY IN LIFESTYLES: EUROPE AND JAPAN. ECOFYS. UTRECHT. NETHERLANDS.
- **81** ENERGY STAR, 'COMPACT FLUORESCENT LIGHT BULBS', 2008.
- **82** IEA, 2006.
- $\boldsymbol{83}$ OECD/IEA, 2006; HOROWITZ, 2007, NRDC STUDY OF SET TOP BOX AND GAME CONSOLE POWER USE
- **84** RAINER ET AL., 2004.

figure 10.7: annual energy use of common household appliances

(HOROWITZ, 2007)

4. cold appliances The average household in OECD Europe consumed 700 kWh/year of electricity for food refrigeration in 2000, compared with 1,000 kWh/year in Japan and 1,300 kWh/year in OECD North America. These figures illustrate differences in average household storage capacities, the ratio of frozen to fresh food storage capacity, ambient temperatures and humidity, and food storage temperatures and control (IEA, 2003). European households typically either have a refrigerator-freezer in the kitchen (sometimes with an additional freezer or refrigerator), or they have a refrigerator and a separate freezer. Practical height and width limits place constraints on the available internal storage space for an appliance. Similar constraints apply in Japanese households, where ownership of a single refrigerator-freezer is the norm, but are less pressing in OECD North America and Australia. In these countries almost all households have a refrigerator-freezer and many also have a separate freezer and occasionally a separate refrigerator (IEA, 2003).

The anticipated energy efficiency improvement for cold appliances is based on the situation in the EU. In 2003, 103 TWh were consumed by household cold appliances in the EU-15 countries (15% of total 2004 residential end use). An average energy label A++ cold appliance uses 120 kWh per year, while a comparable appliance of energy label B uses on average 300 kWh per year and a C label 600 kWh (EuroTopten project, 2008). The average energy label of appliances sold in EU-15 countries is still label B. If only A++ appliances were sold, energy consumption would be 60% less. The average lifetime of a cold appliance is 15 years, meaning that 15 years from the introduction of only A++ labelled appliances, 60% less energy would be used in EU-15 countries.

The European Commission (2005) has estimated a savings potential for cold appliances of 3.5% per year for the period 2003-2010. We have used this improvement rate for the technical potential in 2050 for all regions. This means that for the EU-15 countries the average cold appliance would use 72 kWh per year in 2050. For the Revolution scenario we have assumed a 2.5% per year efficiency improvement, corresponding to 64% in 2050.

5. computers and servers The average desktop computer uses about 120 W per hour - the monitor 75 W and the central processing unit 45 W - and the average laptop 30 W per hour. Current best practice monitors⁸⁵ use only 18 W (15 inch screen), which is 76% less than the average. Savings for computers are especially important in the commercial sector. According to a 2006 US study, computers and monitors have the highest energy consumption in an office after lighting. In Europe, office equipment use is considered to be less important , but estimates differ widely.⁸⁶ Some studies have shown that automatic and/or manual power management of computers and monitors can significantly reduce their energy consumption.

A power managed computer consumes less than half the energy of a standard machine⁸⁷, depending on how your computer is used; power management can reduce the annual energy consumption of a computer and monitor by as much as 80%.⁸⁸ Approximately half of all office computers are left on overnight and at weekends (75% of the time). Apart from switching off at night, using Liquid Crystal Display (LCD) monitors requires less energy than a Cathode Ray Tube (CRT). An average LCD screen uses 79% less energy than an average CRT monitor if both are power-managed.⁸⁹ Further savings can be made by ensuring computers enter low power mode when they are idle during the day. Another benefit of decreasing the power consumption of computers and monitors is that it reduces the load for air conditioning. According to a 2002 study by Roth et al (2002)⁹⁰, office equipment increases the air conditioning load by 0.2-0.5 kW per kW of office equipment power consumption.

The average computer with a CRT monitor in constant operation uses 1,236 kWh/y (482kWh/y for the computer and 754kWh/y for the monitor). With power management this reduces to 190 kWh/y (86+104). Effective power management can save 1,046 kWh per computer and CRT monitor per year, a reduction of 84%, or 505 kWh per computer and monitor per year. These examples illustrate that power management can have a greater effect than simply using more efficient equipment. The German website EcoTopten, for example, says that more efficient computers save 50-70% compared with older models and efficient flat-screens use 70% less energy than CRTs.

references

- 85 BEST OF EUROPE, 2008.
- 86 SEE BERTOLDI & ATANASIU, 2006 FOR A MORE ELABORATE ACCOUNT. 87 WEBBER, C., J. ROBERSON, M. MCWHINNEY, R. BROWN, M. PINCKARD, J. BUSCH. (2006)

AFTER-HOURS POWER STATUS OF OFFICE EQUIPMENT IN THE USAR, ENERGY 31, PP. 2823–2838. WWW.ENOVASYSTEMS.COM/INDEX.CFM?SECTION=NEWS&LINKID=25&NEWSID=53 88 WEBBER ET AL., 2006.

89 WEBBER ET AL., 2006.

90 ROTH, K. W., GOLDSTEIN, F. AND KLEINMAN, J. (2002), 'ENERGY CONSUMPTION BY OFFICE AND TELECOMMUNICATIONS EQUIPMENT IN COMMERCIAL BUILDINGS: VOLUME I', ARTHUR D. LITTLE, INC. (REFERENCE: 72895-00), REPORT FOR OFFICE OF BUILDING EQUIPMENT, MASSA-CHUSETTS.

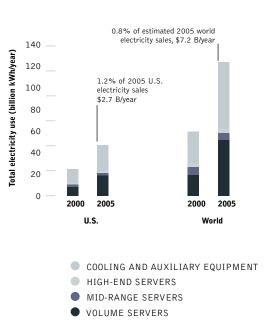
table 10.7: peak power breakdown by component for a typical server

COMPONENT

PEAK POWER (WATTS)

Total	251
PSU losses	38
Fan	10
Motherboard	25
Peripheral slots	50
Disks	12
Memory	36
CPU	80

source (FAN ET AL., 2007, US EPA, 2007A). PSU = POWER SUPPLY UNIT


Servers are multiprocessor systems running commercial workloads.⁹¹ The typical breakdown of peak power server use is shown in Figure 10.8.

Data centres are facilities that primarily contain electronic equipment used for data processing, data storage and communications networking.⁹² 80% of servers are located in these data centres.⁹³ Worldwide, about three million data centres and 32 million servers are in operation. Approximately 25% of servers are located in the EU, but only 10% of data centres, meaning that on average each data centre hosts a relatively large number of servers (Fichter, 2007). The installed base of servers is growing rapidly due to an increasing demand for data processing and storage. New digital services such as music downloads, video-on-demand, online banking, electronic trading, satellite navigation and internet telephony spur this rapid growth, as well as the increasing penetration of computers and the internet in developing countries. Since systems have become more and more complex to handle increasingly large amounts of data, power and energy consumption (about 50% used for cooling⁹⁴) have grown in parallel. The power density of data centres is rising by approximately 15% each year.⁹⁵ Aggregate electricity use for servers doubled over the period 2000 to 2005 both in the US and worldwide (see 10.13). Data centres accounted for roughly 1% of global electricity use in 2005 (14 GW) (Koomey, 2007).96

Power and energy consumption are key concerns for internet data centres and there is a significant potential for energy efficiency improvements. Existing technologies and design strategies have been shown to reduce the energy use of a typical server by 25% or more.⁹⁷ Energy management efforts in existing data centres could reduce their energy usage by around 20%, according to the US Environmental Protection Agency (EPA). The US EPA scenario for reducing server energy use includes measures such as enabling power management, consolidating servers and storage, using liquid instead of air cooling, improving the efficiency of chillers, pumps, fans and transformers and using combined heat and power. This bundle of measures could reduce electricity use by up to 56% compared to current efficiency trends (or 60% compared to historical trends), the EPA concludes. This assumes that only 50% of current data centres can introduce these measures. A significant savings potential is therefore available for servers and data centres around the world by

figure 10.8: total electricity use for servers in the US and world in 2000 and 2005, including associated cooling and auxiliary equipment

(K00MEY, 2007)

2050. For computers and servers we have based the savings potential on the WBCSD 2005 report and other sources mentioned in this section. For the Technical scenario this would result in 70% savings, for the Revolution scenario 55% savings.

6. air conditioning In the USA about 14% of total electrical consumption is used to air condition buildings.⁹⁸ Increasing use of small air conditioning units (less than 12 kW output cooling power) in southern European cities, mainly during the summer months, is also driving up electricity consumption. Total residential electricity consumption for air conditioners in the EU-25 in 2005 was estimated to be between 7 and 10 TWh per year.⁹⁹ However, we should not underestimate the consumption level in developing countries. Many of these are located in warm climatic zones. With the rapid development of its economy and improving living standards, central air conditioning units are now widely used in China, for example. They currently account for about 20% of total Chinese electricity consumption.¹⁰⁰

references

91 LEFURGY, C., K. RAJAMANI, F. RAWSON, W. FELTER, M. KISTLER, AND T. KELLER (2003). EN-ERGY MANAGEMENT FOR COMMERCIAL SERVERS. COMPUTER 12, PP. 39-48. 92 US EPA, 2007A, REPORT TO CONGRESS ON SERVER AND DATA CENTER ENERGY EFFICIENCY - PUBLIC LAW 109-431.

HTTP://WWW.ENERGYSTAR.GOV/IA/PARTNERS/PROD_DEVELOPMENT/DOWNLOADS/EPA_DA TACENTER_REPORT_CONGRESS_FINAL1.PDF

- 99 BERTOLDI & ATANASIU, 2006.
- **100** LU, 2007.

⁹³ FICHTER, K. 2007, ENERGIEBEDARF VON RECHENZENTREN TRENDS, EFFIZIENZPOTENZIALE, ZUKUNFTSMÄRKTE. BITKOM ANWENDERFORUM "IT-

INFRASTRUKTUR & ENERGIEEFFIZIENZ". WWW.BORDERSTEP.DE 94 US EPA, 2007A

⁹⁵ HUMPHREYS, J, AND J. SCARAMELLA. (2006). THE IMPACT OF POWER AND COOLING ON DATA CENTER INFRASTRUCTURE. IDC.

⁹⁶ koomey, J. (2007). Estimating total power consumption by servers in the U.S. and the world. Lawrence berkeley national laboratory.

⁹⁷ US EPA, 2007A.

⁹⁸ US DOE/EIA, 2007

image COMPACT FLUORESCENT LAMP LIGHT BULB. image WASHING MACHINE.

There are several options for technical savings in air conditioning equipment. One is to use a different refrigerant. Tests with the refrigerant Ikon B show possible energy consumption reductions of 20-25% compared to the commonly used liquids.¹⁰¹ However, behavioural changes should not be overlooked. One example of a smart alternative to cooling a whole house was developed by the company Evening Breeze. This combined a mosquito net, bed and air conditioning so that only the bed had to be cooled instead of the whole bedroom.

There are also other options for cooling, such as geothermal cooling by heat pumps. This uses the same principle as geothermal heating - that the temperature at a certain depth below the earth's surface remains constant all year round. In winter we can therefore use this relatively high temperature to warm our houses. Conversely, we can use the relatively cold temperature in the summer to cool our houses. There are several technical concepts available, but all rely on transferring the heat from the air in a building to the earth. A refrigerant is used as the heat transfer medium. This concept is cost-effective.¹⁰² Heat pumps have been gaining market share in a number of countries.¹⁰³

Solar energy can also be used for cooling through the use of solar thermal energy or solar electricity to power a cooling appliance. Basic types of solar cooling technologies include absorption cooling (uses solar thermal energy to vaporise the refrigerant); desiccant cooling (uses solar thermal energy to regenerate the desiccant); vapour compression cooling (uses solar thermal energy to operate a Rankine-cycle heat engine); evaporative cooling; and heat pumps and air conditioners that can be powered by solar photovoltaic systems. To drive the pumps only 0.05 kWh of electricity is needed, instead of 0.35 kWh for regular air conditioning¹⁰⁴, representing a savings potential of 85%.

Not only is it important to use efficient air conditioning equipment, it is equally important to reduce the need for air conditioning in the first place. Important ways to reduce cooling demand are to use

insulation to prevent heat from entering the building, to reduce the amount of inefficient appliances present in the house - such as incandescent lamps or old refrigerators that give off unusable heat, to use cool exterior finishes such as 'cool roof' technology or light-coloured wall paint, to improve windows, to use vegetation to reduce the amount of heat that comes into the house and to use ventilation instead of air conditioning units. For air conditioning we have assumed that the savings potential based on the 2005 WBCSD study and other sources mentioned in this section will amount to 55% savings under both the Energy [R]evolution scenarios.

total household savings

The technical savings potential up to 2050 from all the measures described so far is summarised in Table 10.8. Since it is not clear what assumptions the IEA WEO reference scenario was based on, we have assumed an efficiency improvement of 1% per year. Table 10.9 shows the energy efficiency improvements per year measured against the Reference scenario and used to derive the final energy demand in the Energy [R]evolution scenario. Electricity use in the 'other' sector is assumed to decline at the same rate as residential use (lighting, appliances, cold appliances, computers/servers and air conditioning). We have assumed a minimum energy efficiency improvement of 1.2% in the Technical scenario and 1.1% in the Revolution scenario, including autonomous improvements. For services and agriculture we have assumed the same percentage savings potential as for the household sector.

The new Reference scenario based on WEO 2009 data now includes a lower level of energy demand in the residential sector. Therefore the savings used in the new Energy [R]evolution scenarios are lower than the figures shown in the tables below. The resulting final energy demand reduction for the Energy [R]evolution scenarios compared to the Reference scenario is shown in Table 10.10 for each world region.

table 10.8: technical savings potential for different types of energy use in the buildings sector

(SAVINGS POTENTIALS ASSUMED FOR THE 2008 ENERGY [R]EVOLUTION STUDY ARE IN BRACKETS)

	HEATING NEW	HEATING RETROFIT	STANDBY	LIGHTING	APPLIANCES	COLD APPLIANCES	AIR CONDITIONING	COMPUTER/ SERVER	OTHER
OECD Europe	72 (58)	50 (40)	82 (72)	68 (60)	70 (50)	77 (64)	70 (55)	70 (55)	71 (57)
OECD North America	59 (38)	41 (26)		48 (42)	-	_			67 (53)
OECD Pacific	38 (8)	26 (5)		56 (49)		_			69 (55)
Transition Economies	56 (35)	39 (24)		76 (67)	·	_			73 (58)
China	43 (38)			20 (18)		_			61 (48)
India		—		76 (67)	. –	_			73 (58)
Other dev. Asia	_	_				_	_		
Middle East						-			
Latin America		_		_		_			
Africa									

references

101 US DOE EERE (UNITED STATES DEPARTMENT OF ENERGY; ENERGY EFFICIENCY AND RENEW-ABLE ENERGY) (2008) INVENTIONS & INNOVATION PROJECT FACT SHEET. HIGH ENERGY EFFICIENCY AIR CONDITIONING.

HTTP://WWW1.EERE.ENERGY.GOV/INVENTIONS/PDFS/NIMITZ.PDF.

102 DUFFIELD, W.A., AND J.H. SASS, 2004, GEOTHERMAL ENERGY - CLEAN POWER FROM THE EARTH'S HEAT: U.S. GEOLOGICAL SURVEY CIRCULAR 1249, 43 P.

103 OECD/IEA, 2006

104 AUSTRIAN ENERGY AGENCY (2006). KEEP COOL - LOCAL AND INDIVIDUAL ADAPTATION. HTTP://WWW.ENERGYAGENCY.AT/PUBL/PDF/KEEPCOOL_ADAPTATION.PDF

(ENERGY LRJEVOLUTION 2)	008 POTENTIAL	IN BRACKETS).	PERCENTAGES	ARE IOIAL EFF	-ICIENCY IMPROV	ENTENT PERYEA	R (INCLUDING 1%	AUTUNUMUUS	
IMPROVEMENT)	HEATING NEW	HEATING RETROFIT	STANDBY	LIGHTING	APPLIANCES	COLD APPLIANCES	AIR CONDITIONING	COMPUTER/ SERVER	OTHER
OECD Europe	3.1 (2.1)	1.7 (1.3)	4.2 (3.1)	2.8 (2.3)	3.0 (1.7)	3.5 (2.5)	3.0 (2.0)	3.0 (2.0)	3.1 (2.1)
OECD North America	2.2 (1.2)	1.3 (1.1)		2.0 (1.7)					2.9 (2.0)
OECD Pacific	1.2 (1.1)	1.2 (1.1)		1.6 (1.4)					2.8 (1.9)
Transition Economies	2.2 (1.4)	1.2 (1.1)		3.5 (2.7)		_			3.2 (2.2)
China	1.4 (1.2)			1.2 (1.1)		_			2.8 (1.9)
India		-		3.5 (2.7)	-	_			3.2 (2.2)
Other dev. Asia	_	-				_			-
Middle East		-				_			_
Latin America		-				_			_
Africa	_	-				_			-

table 10.9: savings potential for different types of energy use in the buildings sector in the energy [r]evolution scenario 2008 (ENERGY EDEVICE UTION 2020 DOTENTIAL IN DRACKETS) DEDOENTAGES ARE TOTAL SECTORAL MEDDOVEMENT DED VEAD (INCLUDING 20% AUTONOMOUS

energy efficiency standards - steps towards an energy equity

the standard household In order to enable a specific level of energy demand as a basic "right" for all people in the world, we have developed the model of an efficient Standard Household. A fully equipped OECD household (including fridge, oven, TV, radio, music centre, computer, lights etc.) currently consumes between 1,500 and 3,400 kWh/a per person. With an average of two to four people per household the total consumption is therefore between 3,000 and 12,000 kWh/a. This demand could be reduced to about 550 kWh/a per person just by using the most efficient appliances available on the market today. This does not even include any significant lifestyle changes. Based on this assumption, the 'overconsumption' of all households in OECD countries totals more than 2,100 billion kilowatt-hours. Comparing this figure with the current me per capita consumption in developing countries, they would have the

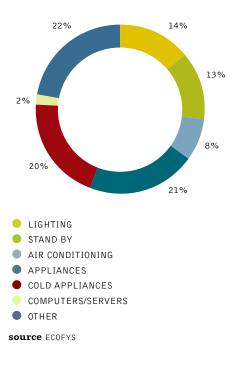
right to use about 1,350 billion kilowatt-hours more. The 'oversupply' of OECD households could therefore fill the gap in energy supply to developing countries one and a half times over!

By implementing a strict technical standard for all electrical appliances, in order to achieve a level of 550 kWh/a per capita consumption, it would be possible to switch off more than 340 coal power plants in OECD countries.

table 10.10: reduction of final energy demand in other sectors (households, services and agriculture) by 2050 under the Energy [R]evolution scenarios compared to the Reference scenario (BASED ON WEO 2009)

	OTHER SECTORS ELECTRICITY	OTHER SECTORS FINAL ENERG OTHER THAN ELECTRICIT		
OECD Europe	-46%	-36%		
OECD North America	-42%	-28%		
OECD Pacific	-33%	-28%		
Transition Economies	-45%	-36%		
China	-27%	-23%		
India	-12%	-29%		
Other developing Asia	-39%	-15%		
Middle East	-36%	-15%		
Latin America	-16%	-18%		
Africa	-6%	-7 %		

image WASHING MACHINE.
image COMPUTER.


energy efficiency standards - the potential is huge

Setting energy efficiency standards for electrical equipment could have a huge impact on the world's power sector. A large number of power plants could be switched off if strict technical standards were brought into force. Figure 10.10 below provides an overview of the theoretical potential for using efficiency standards based on currently available technology. The Energy [R]evolution scenario has not been calculated on the basis of this potential. However, this overview illustrates how many power plants producing electricity would not be needed if all global appliances were brought up to the highest efficiency standards.

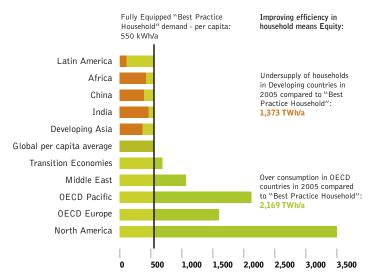


figure 10.10: electricity savings in households [energy [r]evolution versus reference] in 2050

energy efficiency | ENERGY EFFICIENCY STANDARDS

figure 10.9: energy equity through efficiency standards

source SVEN TESKE/WINA GRAUS

table 10.11: effect on number of global operating power plants by introducing strict energy efficiency standards* BASED ON CURRENTLY AVAILABLE TECHNOLOGY

	ELECTRICITY LIGHTING	ELECTRICITY STAND BY	ELECTRICITY AIR CONDITIONING	ELECTRICITY SET TOP BOXES	ELECTRICITY OTHER APPLIANCES	ELECTRICITY COLD APPLIANCES	ELECTRICITY COMPUTERS/ SERVERS	ELECTRICITY OTHER
			нс	USEHOLDS				
OECD Europe	16	11	11	2	27	15	2	23
0ECD North America	32	19	19	3	47	26	4	42
0ECD Pacific	5	5	5	1	13	7	1	11
China	3	3	3	1	7	4	1	6
Latin America	5	2	3	0	6	3	1	6
Africa	3	2	2	0	4	2	0	4
Middle East	5	2	3	0	6	3	1	6
Transition Economies	6	3	3	1	7	4	1	7
India	2	1	1	0	3	2	0	3
Other dev. Asia	4	2	2	0	6	3	1	5
World	80	50	52	9	126	69	11	113

ENERGY EFFICIENT STANDARDS

205

* 1 POWER PLANT = 750 MW source ECOFYS 2008.

table 10.12: effect on number of global operating power plants by introducing strict energy efficiency standards* continued BASED ON CURRENTLY AVAILABLE TECHNOLOGY ELECTRICITY ELECTRICITY ELECTRICITY ELECTRICITY ELECTRICITY SERVICES SERVICES AIR SERVICES SERVICES AGRICULTURE COMPUTERS LIGHTING CONDITIONING COLD OTHER TOTAL NUMBER INDUSTRY TOTAL INCL OF COAL FIRED POWER PLANTS

	COMPUTERS	LIGHTING	CONDITIONING	APPLIANCES	APPLIANCES		POWER PLANTS PHASED OUT DUE TO STRICT EFFICIENCY STANDARDS		
0ECD Europe	8	30	18	6	33	7	209	106	315
OECD North Americ	a 15	62	34	11	60	21	397	107	503
OECD Pacific	5	11	10	3	18	1	69	52	148
China	1	3	3	1	5	21	61	144	205
Latin America	2	8	4	1	7	3	52	39	90
Africa	1	3	1	0	2	6	30	23	53
Middle East	1	6	3	1	5	10	51	8	59
Transition Economie	s 2	9	4	1	7	8	62	63	125
India	0	2	1	0	1	14	31	23	54
Other dev. Asia	2	7	3	1	6	6	50	33	83
World	3	140	81	27	144	98	1,038	613	1,651

INDUSTRY

* 1 POWER PLANT = 750 MW

source ECOFYS 2008.

transport

GLOBAL

THE FUTURE OF THE TRANSPORT SECTOR IN THE ENERGY [R]EVOLUTION SCENARIO THE DLR PASSENGER CARS STUDY SUMMARY OF ENERGY SAVINGS IN THE TRANSPORT SECTOR SUMMARY OF SCENARIO RESULTS FOR CARS

"...a mix of lifestyle changes and new technologies."

WINA GRAUS ECOFYS, THE NETHERLANDS Transport is a key element in reducing the level of greenhouse gases produced by energy consumption. 27% of current energy use comes from the transport sector – road, rail and sea. In order to assess the present status of global transport, including its carbon footprint, a special study was undertaken for the 2008 Energy ERJevolution report. Demand projections for both the basic and advanced scenarios in this year's report have been based on this analysis, although the reference year has been updated on the basis of IEA WEO 2009 figures. For the advanced Energy ERJevolution scenario, overall energy demand for private vehicles has been reduced further by 17%. This reflects the lower final energy demand resulting from an increased share of electric cars.

This section provides an overview of the selected measures required to develop a more energy efficient and sustainable transport system in the future. Some technologies will have to be modified to achieve more energy efficiency. In other situations, a simple modification will not be enough. The transport of people in megacities and urban areas will have to be almost entirely reorganised and public transport systems mixed with individual modes. Car sharing and public transport on demand are only the beginning of the transition needed to produce a more effective system that carries more people faster to their destination and using less energy.

For the 2008 Energy [R]evolution scenario, the Dutch research institute Ecofys and the German DLR Institute for Vehicle Concepts undertook a detailed analysis of the entire global transport sector, broken down by the ten IEA regions. Further details can be found at www.energy blueprint.info. This report uses those findings as the basic for its calculations.

the future of the transport sector in the energy [r]evolution scenario

Our analysis¹⁰⁵ shows that changes in patterns of passenger travel are partly a consequence of growing wealth. As GDP per capita increases, people tend to migrate towards faster, more flexible and more expensive travel modes (from buses and trains to cars and air). With faster modes, people also tend to travel further and do not reduce the amount of time spent travelling.¹⁰⁶ There is also a strong correlation between GDP growth and increases in freight transport. More economic activity will mean more transport of raw materials, intermediary products and final consumer goods.

Both a modal shift and a slowing of growth in forecast transport are therefore of great importance if serious emissions reductions are to be achieved. Furthermore, it is very important to make the remaining transport as clean as possible, signalling the role of energy efficiency improvements. Unlimited growth in the transport sector is simply not an option. A shift towards a sustainable energy system, which respects natural limits and saves the world's climate, requires a mix of lifestyle changes and new technologies. We basically need to use our cars less, fly less and use more public transport, as well as cutting down the transport kilometres for freight transport whilst introducing more new and highly efficient vehicles.

references

105 SEE ENERGY [R]EVOLUTION 10/2008, CHAPTER 11 & 12 AS WELL AS ECOFYS ANALYSIS 2008 -> WWW.ENERGYBLUEPRINT.INFO. 106 0ECD/IEA. 2007.

technical potentials

We have looked at three options for decreasing energy demand in the transport sector:

- Reduction of transport demand.
- Modal shift from high energy intensive transport modes to low energy intensity.
- Energy efficiency improvements.

table 11.1: selection of measures and indicators

MEASURE	REDUCTION OPTION	INDICATOR
Reduction of transport demand	Reduction in volume of passenger transport in comparison to the Reference Scenario	r Passenger km/capita
	Reduction in volume of freight transport in comparison to Reference Scenario	Tonne-km/unit of GDP
Modal shift	Modal shift from trucks to rail	MJ/tonne km
	Modal shift from cars to public transport	MJ/passenger km
Energy efficiency improvements	Efficient passenger cars (hybrid fuel cars)	MJ/vehicle km
	Efficient buses	MJ/passenger km
	Efficiency improvements in aircraft	MJ/passenger km
	Efficient freight vehicles	MJ/tonne km
	Efficiency improvements in ships	MJ/tonne km

step 1: reduction of transport demand

A reduction in transport demand involves cutting both passengerkilometres per capita and limiting freight transport demand. The amount of freight transport is to a large extent linked to GDP development and therefore difficult to influence. However, by improved logistics, for example optimal load profiles for trucks, the demand can be limited.

passenger transport The first step is to look at reducing passenger transport demand. For this we need to examine the transport demand per capita today. This shows that in 2007, transport demand was highest in OECD North America, followed by the OECD Pacific, and lowest per capita in Africa and India.

The potential for reducing passenger transport demand is difficult to determine. For OECD countries, however, we have assumed that transport demand per capita can be reduced by 10% by 2050 in comparison to the Reference scenario. For the non-OECD countries we have assumed in both Energy [R]evolution scenarios – as a matter of equity – that no reduction in transport demand will take place because current demand is already quite low. We have made an exception for the Transition Economies, where we assume that demand can be reduced by 5% in 2050.

The table below shows the profile of passenger transport demand per capita in 2005, what would happen under the Reference scenario by 2050 and the reduced level of demand made possible by the Energy [R]evolution scenario, broken down by world region.

table 11.2: market share (by final energy consumption) of transport modes per region in 2050 in the energy [r]evolution and advanced energy [r]evolution scenarios

E[R]	OECD NORTH AMERICA	OECD EUROPE	OECD PACIFIC	TRANSITION ECONOMIES	CHINA	INDIA	OTHER DEVELOPING ASIA	MIDDLE EAST	LATIN AMERICA	AFRICA
Road	76.8%	87.4%	84.9%	78.0%	65.6%	87.3%	93.1%	97.3%	87.8%	89.5%
of which electric vehicle	19.1%	7.0%	18.0%	8.4%	9.0%	10.0%	0.5%	3.0%	7.7%	0.5%
of which gas vehicle	0.6%	1.3%	4.0%	1.5%	0.2%	1.6%	0.6%	3.0%	5.9%	0.6%
of which hybrid vehicle	52.5%	55.0%	52.0%	72.0%	50.2%	48.8%	45.0%	60.0%	74.3%	22.0%
of which hydrogen car	4.0%	3.6%	1.0%	1.9%	1.8%	1.0%	0.8%	0.8%	2.2%	0.7%
of which conventional vehi	icle 11.7%	31.2%	4.0%	15.1%	37.5%	33.5%	51.6%	32.3%	1.3%	75.5%
Rail	5.0%	5.4%	9.1%	13.9 %	14.9 %	8.0%	3.5%	1.8%	0.8%	3.0%
of which diesel train	8.5%	1.0%	13.0%	4.0%	45.0%	27.0%	10.0%	0.0%	50.0%	8.0%
of which electric train	91.5%	99.0%	87.0%	96.0%	55.0%	73.0%	90.0%	100.0%	50.0%	92.0%
Aviation (domestic)	16.4%	4.3%	6.0%	6.5%	12.0%	3.0%	1.1%	0.9%	5.0%	6.2%
Navigation (domestic)	1.8%	2.9 %	0.0%	1.6%	7.5%	1.7%	2.3%	0.0%	6.4%	1.3%
ADV E[R]										
Road	76.2 %	82.8%	85.4%	76.2%	65.0%	86.1%	91.1%	97.2%	79.6 %	88.5 %
of which electric vehicle	43.0%	19.0%	23.4%	10.0%	27.0%	21.0%	16.0%	18.4%	19.4%	0.5%
of which gas vehicle	0.5%	0.0%	1.5%	1.0%	0.2%	1.6%	0.6%	1.5%	4.8%	0.6%
of which hybrid vehicle	38.7%	67.0%	63.4%	72.0%	66.2%	69.4%	55.0%	75.0%	50.6%	43.7%
of which hydrogen car	8.2%	13.0%	1.0%	10.0%	5.0%	3.0%	7.0%	4.9%	5.0%	3.0%
of which conventional vehi	icle 0.2%	0.0%	0.2%	5.9%	0.4%	2.0%	19.9%	0.2%	0.2%	52.0%
Rail	7.8%	9.5%	9.1%	16.0%	15.5%	9.2 %	5.5%	1.8%	9.0%	4.0%
of which diesel train	2.0%	0.5%	1.0%	2.0%	8.8%	20.0%	6.0%	0.0%	1.0%	7.0%
of which electric train	98.0%	99.5%	99.0%	98.0%	91.2%	80.0%	94.0%	100.0%	99.0%	93.0%
Aviation (domestic)	14.1%	4.5%	5.5%	6.3%	10.1%	3.0%	1.1%	1.0%	5.0%	6.2%
Navigation (domestic)	1.9%	3.2%	0.0%	1.5%	9.4%	1.7%	2.3%	0.0%	6.3%	1.4%

Policy measures for reducing passenger transport demand could include:

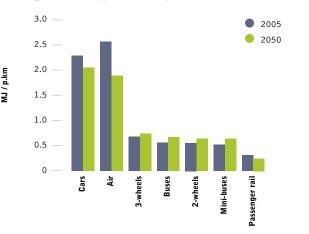
- Price incentives that increase transport costs
- Incentives for working from home
- Stimulating the use of video conferencing in businesses
- Improved cycle paths in cities

freight transport In the Reference scenario the largest absolute increase in freight transport demand is expected in the Transition Economies, whilst the largest percentage increase is forecast in China (383%). The potential for reducing demand for freight transport by improved logistics is difficult to estimate. For the Energy [R]evolution scenario we have assumed that freight transport demand can be reduced by 5% in comparison to the Reference scenario, although only through measures in the OECD and Transition Economies.

step 2: changes in transport mode

In order to decide which vehicles or transport systems are the most effective for each purpose, an analysis of the different technologies is needed. To calculate the energy savings achieved by shifting transport mode we need to know the energy use and intensity for each type of transport.¹⁰⁷ The following information is needed:

- Passenger transport: Energy demand per passenger kilometre, measured in MJ/p-km.
- Freight transport: Energy demand per kilometre of transported tonne of goods, measured in MJ/ tonne-km.


Passenger transport includes cars, minibuses, two and three wheelers, buses, passenger rail and air transport. Freight transport includes medium trucks, heavy trucks, national marine and freight rail. While there is a huge difference today between, for example, India and the USA in terms of car ownership versus the use of two-wheeled transport or buses, it is assumed under both Energy [R]evolution scenarios that these differences will be more evened out by 2050. There is a clear trend towards more public transport and less private cars.

references

107 WBCSD PROVIDES ESTIMATES FOR ENERGY INTENSITIES PER MODE.

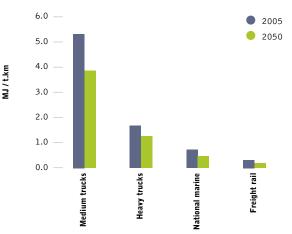
travelling by rail is the most efficient Figure 11.1 shows the worldwide average specific energy consumption by transport mode under the Reference scenario in 2005 and 2050. This data differs considerably by world region, with large variations in specific energy consumption for each transport mode, but passenger transport by rail will consume 85% less energy in 2050 than car transport and by bus nearly 70% less energy. This means that there is a large energy savings potential to be realised by a modal shift.

figure 11.1: world average (stock-weighted) passenger transport energy intensity for 2005 and 2050.

modal shift for passengers in the Energy [R]evolution scenario

From the figures above we can conclude that in order to reduce transport energy demand by modal shift, passengers have to move from cars and air transport to the lower intensity rail and bus transport. As an indication of the action required we can take Japan as a 'best practice country'. In 2004, Japan had achieved a large share of passenger-km by rail (29%) thanks to the fact that it had established a strong urban and regional rail system.¹⁰⁸ Comparing different regions with the example of Japan, and assuming that 40 years is enough time to build up an extensive rail network, the following modal shifts have been assumed:

table 11.3: passenger modal shifts assumed in [r]evolution scenario


TRANSPORT [R]EVOLUTION SCENARIO

2.5%
2.5%
2.5%

This means that in the Energy [R]evolution scenario 2.5% of car transport shifts to rail and 2.5% to bus. In total this means a reduction in car transport of 7.5% in comparison to the Reference scenario.

freight transport The existing breakdown of freight transport shows a wide variation in total tonnes-km per year across the world regions. Both the Transition Economies and China have a very large proportion of rail transport, while Other Developing Asia and the Middle East have a very small share. The share of heavy and medium trucks is very large in the Other Developing Asia countries and OECD Europe. National marine transport plays an important role in the OECD Pacific. In the Reference scenario it is assumed that the difference between 2005 and 2050 is relatively small.

figure 11.2: world average (stock-weighted) freight transport energy intensity in 2005 and 2050

transporting goods by rail is the most efficient Figure 11.2 shows the energy intensity for world average freight transport in 2005 and 2050 under the Reference scenario. Again, transporting goods by rail is the most energy efficient mode. Energy intensity for all modes of transport is expected to decrease by 2050.

modal shift for transporting goods in the Energy [R]evolution scenario From the figures above we can conclude that in order to reduce transport energy demand by modal shift, freight has to move from medium and heavy duty trucks to the less energy intensive freight rail and national marine. Canada is a 'best practice' country in this respect, with 29% of freight transported by trucks, 39% by rail and 32% by ships. Since the use of ships largely depends on the geography of the country, we do not propose a modal shift for national ships but instead a shift towards freight rail. China, OECD Pacific and the Transition Economies already have a low share of truck usage, so for these regions we will not assume a modal shift. For the other regions we have assumed the following changes:

table 11.4: freight modal shift in both Energy [R]evolution scenarios for all regions

EXCEPT CHINA, THE TRANSITION ECONOMIES AND OECD PACIFIC

TRANSPORT	LRJEVOLUTION SCENARIO
From medium trucks to rail	+ 5%
From heavy trucks to rail	+ 2.5%

references 108 OECD/IEA, 2007. **marine transport** Since the WBCSD does not provide estimates for total national marine tonnes-km per year or energy intensities per region, we have calculated these ourselves. Data for energy intensity for the year 2005 in OECD countries was found in OECD/IEA 2007. For other regions we have assumed that the highest OECD estimate would hold. The 2050 intensities were extrapolated from 2005 data using a 1% per year autonomous efficiency improvement. The amount of t-km per year could then be calculated using the Reference scenario energy use divided by the energy intensity in MJ/t-km.

step 3: efficiency improvements or travelling with less energy

Energy efficiency improvements are the third important way of reducing transport energy demand. This section explains the possibilities for improving energy efficiency¹⁰⁹ up to 2050 for each type of transport.

air transport Savings for air transport have been taken from Akerman, 2005.¹¹⁰ He reports that a 65% reduction in fuel use is technically feasible by 2050. This has been applied to 2005 energy intensity data in order to calculate the potential. It is assumed that all regions have the same energy intensities in 2005 and 2050 due to lack of regionally-differentiated data. The projection of future energy intensity is based on IEA data over the 1990-2000 period, when intensity improved at about 0.7% per year.

passenger and freight trains Savings for passenger and freight rail transport have been taken from Fulton & Eads (2004). They report a historic improvement in the fuel economy of passenger rail of 1% per year and for freight rail of between 2 and 3% per year. Since no other studies are available we have therefore assumed a 1% improvement in energy efficiency per year for passenger rail and 2.5% for freight rail. Energy intensities for passenger rail transport are assumed to be the same for all regions due to a lack of sufficiently detailed data. The differentiation in energy intensity for freight rail is based on the assumption that regions with longer average freight transport distances (such as the US and former Soviet Union), and where more raw materials are transported (such as coal), will have a lower energy intensity than others. Future projections use ten year historic IEA data. Rail intensities are and will remain highest in OECD Europe and OECD Pacific and lowest in India.

buses and minibuses The company Enova Systems is promoting a 'clean bus' with a 100% improvement in fuel economy. We have adopted this improvement and applied it to 2005 energy intensity numbers per region. For minibuses the American Council for an Energy Efficient Economy reports¹¹¹ a fuel economy improvement of 55% by 2015. Since this is a very ambitious target and will most likely not be reached, we have extended it up to 2050 and adopted it as the technical potential. Currently, buses in North America consume far and away the most energy. The Reference scenario predicts an increase in all regions between 2005 and 2050. Although in general more efficient buses are being produced, this is offset by increases in average bus size, weight and power. OECD buses have much more powerful engines than non-OECD buses, but the latter are likely to catch up over this period.

case study: wind powered ships

Introduced to commercial operation in 2007, the SkySails system allows wind power, which has no fuel costs, to contribute to the motive power of large freight-carrying ships, which currently use increasingly expensive and environmentally damaging oil. Instead of a traditional sail fitted to a mast, the system uses large towing kites to contribute to the ship's propulsion. Shaped like paragliders, they are tethered to the vessel by ropes and can be controlled automatically, responding to wind conditions and the ship's trajectory.

The kites can operate at altitudes of between 100 and 300 metres, where stronger and more stable winds prevail. By means of dynamic flight patterns, the SkySails are able to generate five times more power per square metre of sail area than conventional sails. Depending on the prevailing winds, the company claims that a ship's average annual fuel costs can be reduced by 10 to 35%. Under optimal wind conditions, fuel consumption can temporarily be cut by up to 50%.

On the first voyage of the Beluga SkySails, a 133m long specially built cargo ship, the towing kite propulsion system was able to temporarily substitute for approximately 20% of the vessel's main engine power, even in moderate winds. The company is now planning a kite twice the size of this $160m^2$ pilot. The designers say that virtually all sea-going cargo vessels can be fitted with the SkySails propulsion system without extensive modifications. If 1,600 ships would be equipped with these sails by 2015, it would save over 146 million tonnes of CO₂ a year, equivalent to about 15% of Germany's total emissions.

references

109 FOR THE REVOLUTION SCENARIO WE BASE THE POTENTIAL ON IMPLEMENTING 80% OF THE ENERGY EFFICIENCY IMPROVEMENTS, UNLESS OTHERWISE SPECIFIED.
110 AKERMAN, J. (2005) SUSTAINABLE AIR TRANSPORT-ON TRACK IN 2050.
TRANSPORTATION RE-SEARCH PART D 10, PP. 111-125.
111 DECICCO ET AL.. 2001.

trucks (freight by road) Elliott et al., 2006¹¹² give possible savings for heavy and medium-duty freight trucks. This list of reduction options is expanded in Lensink and De Wilde, 2007.¹¹³ For medium duty trucks a fuel economy saving of 50% is reported by 2030 (mainly due to hybridisation). We applied this percentage to 2005 energy intensity data, calculated the fuel economy improvement per year and extrapolated this yearly growth rate up to 2050. For heavy duty trucks we applied the same methodology, arriving at a 39% savings. Current intensities are highest in the Middle East, India and Africa and lowest in OECD North America. The Reference scenario predicts that future values will converge, assuming past improvement percentages and assuming a higher learning rate in developing regions. The figures below show the energy intensity per region in the Reference scenario and in the two low energy demand scenarios.

marine transport National marine transport savings have also been taken from the Lensink and De Wilde study. They report 20% savings in 2030 for inland navigation as a realistic potential with currently available technology, and ultimate efficiency savings of up to 30% for the current fleet. To arrive at the potential in 2050, we used the same approach as described for road freight above. OECD Pacific has the lowest current energy intensity due to the fact that they have a large proportion of long haul trips where larger (less energy intensive) boats can be used. All energy intensities are expected to improve by 1% per year up to 2050.

motorcycles For two wheelers we have based the potential on IEA/SMP (2004)¹¹⁴, where 0.3 MJ/p.km is the lowest value. For three wheelers we have assumed that the technical potential is 0.5 MJ/p.km in 2050. The uncertainty in these potentials is high, although two and three wheelers only account for 1.5% of transport energy demand.

passenger cars This section is based on a special study conducted by the DLR's Institute for Vehicle Concepts to investigate the potential for improving the efficiency of existing cars and moving towards greater use of hybrid or electric vehicles. Cars contribute about 45% of the greenhouse gas emissions from the entire transport sector, the largest proportion of any mode.

Many technologies can be used to improve the fuel efficiency of passenger cars. Examples include improvements in engines, weight reduction and friction and drag reduction.¹¹⁵ The impact of the various measures on fuel efficiency can be substantial. Hybrid vehicles, combining a conventional combustion engine with an electric engine, have relatively low fuel consumption. The most well-known is the Toyota Prius, which originally had a fuel efficiency of

about five litres of gasoline-equivalent per 100 km (litres ge/100 km). Recently, Toyota presented an improved version with a lower fuel consumption of 3.9 litres ge/100 km. There are suggestions that employing new lightweight materials, in combination with the new propulsion technologies, can bring fuel consumption levels down to 1 litre ge/100 km.

table 11.5: efficiency of cars and new developments

(BLOK, 2004, GE = GASOLINE EQUIVALENT)

BEST PRACTICE CURRENT & FUTURE EFFICIENCIES	FUEL CONSUMPTION (LITRES GE/100 KM)	SOURCE
Present average	10.4	IEA/SMP (2004)
Hybrids on the market (medium-sized cars)	~5 (1997) 4.3 (2003) 3.9 (2009)	EPA (2003) Toyota (2009)
Improved hybrids or fuel cell cars (average car)	2 – 3	USCAR (2002) Weiss et al (2000)
Ultralights	0.8 - 1.6	Von Weizsäcker et al (1998)

Based on SRU (2005)¹¹⁶, the technical potential in 2050 for a diesel fuelled car is 1.6 and for a petrol car 2.0 litres ge/100 km. Based on the sources in Table 11.5, we have assumed 2.0 litres as the technical potential for Europe and adopted the same improvement in efficiency (about 3% per year) for other regions. In order to reach this target in time, these more efficient cars need to be on the market by 2030 – assuming that the maximum lifetime of a car is 20 years.

The figure below shows the energy intensity for cars in the Reference scenario and in the two alternative scenarios, after introducing the measures described in more detail below.

The energy intensities for car passenger transport are currently highest in OECD North America and Africa and lowest in OECD Europe. The Reference scenario shows a decrease in energy intensities in all regions, but the division between highest and lowest will remain the same, although there will be some convergence.

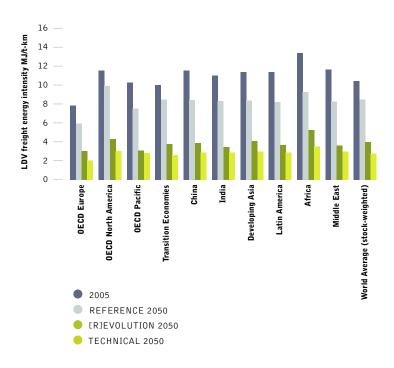
references

112 ELLIOTT, R.N., T. LANGER, S. NADEL. JAN 2006. REDUCING OIL USE THROUGH ENERGY EFFI-CIENCY: OPPORTUNITIES BEYOND CARS AND LIGHT TRUCKS. AMERICAN COUNCIL FOR AN EN-ERGY EFFICIENT ECONOMY (ACEEE). HTTP://WWW.ACEEE.ORG/PUBS/E061.HTM

113 LENSINK, S.M AND H. DE WILDE. MARCH 2007. KOSTENEFFICIENTIE VAN (TECHNISCHE) OPTIES VOOR ZUINIGER VRACHTVERKEER. ENERGY RESEARCH CENTRE OF THE NETHERLANDS (ECN).

HTTP://WWW.ECN.NL/DOCS/LIBRARY/REPORT/2007/E07003.PDF

114 IEA/SMP (2004). IEA/SMP MODEL DOCUMENTATION AND REFERENCE CASE PROJECTION. L. FULTON (IEA) AND G. EADS (CRA) FOR WBCSD'S SUSTAINABLE MOBILITY PROJECT (SMP), JULY 2004.


115 SMOKERS, R., R. VERMEULEN, R. VAN MIEGHEM, R. GENSE, I. SKINNER, M. FERGUSSON, E. MACKAY, P. TEN BRINK, G. FONTARAS, AND Z. SAMARAS (2006). REVIEW AND ANALYSIS OF THE REDUCTION POTENTIAL AND COSTS OF TECHNOLOGICAL AND OTHER MEASURES TO REDUCE CO.-EMISSIONS FROM PASSENGER CARS. TNO, IEEP AND LAT ON BEHALF OF THE EUROPEAN COMMISSION (DG-ENTR).

116 SRU (GERMAN ADVISORY COUNCIL ON THE ENVIRONMENT) (2005). REDUCING CO2 EMIS-SIONS FROM CARS. SECTION FROM THE SPECIAL REPORT ENVIRONMENT AND ROAD TRANSPORT.

WWW.LOWCVP.ORG.UK/ASSETS/REPORTS/REDUCING_C02_EMISSIONS%20AUG%2005.PDF

figure 11.3: energy intensities (litres ge/v-km) for cars in the reference and [r]evolution scenarios

the DLR passenger cars study

Since the global use of privately owned cars (light duty vehicles) currently accounts for more carbon dioxide emissions than any other form of transport, the DLR's Institute for Vehicle Concepts was commissioned for the 2008 Energy [R]evolution study to look specifically at the potential for reductions in this sector. Both the basic and advanced scenarios in this report are based on this analysis.

The starting point for this study is that the door has already been opened for both major technological changes and shifts in personal habits. Rising oil prices, increasing concern about climate change and, in some regions, legislation on everything from bio fuels to vehicle emissions, have together combined to put pressure on international vehicle manufacturers to investigate solutions. Numerous technical fixes are already in production which can improve the efficiency of the predominant internal combustion engine, as well as moving towards alternatives no longer based on fossil fuels.

Overall, the study concludes that a number of measures could help reduce the CO_2 emissions from cars very significantly to a target level of about 80g CO_2 per km within the European Union. These measures include a major shift to vehicles powered by (renewable) electricity, a range of efficiency improvements to the power trains of existing internal combustion engines and behavioural changes leading to an overall reduction in kilometres travelled.

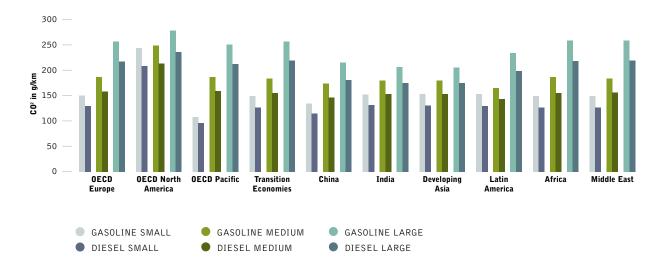
methodology

DLR developed a global scenario for cars based on a detailed bottomup model covering ten world regions. The aim was to produce a challenging but feasible scenario which would lower global CO₂ emissions within the context of the overall emission reduction objective. This approach takes into account a vast range of technical measures to reduce the energy consumption of vehicles, but also considers the dramatic increase in vehicle ownership and annual mileage taking place in developing countries. The turnover of replacement vehicles has been modelled over five year stages from 2005 to 2050. The scenario assumes that a large share of renewable electricity is available in the future. The major parameters for achieving increased efficiency are:

- vehicle technology
- alternative fuels
- changes in sales by vehicle size
- changes in vehicle kilometres travelled

As a reference scenario for the starting point in 2005, the analysis in the IEA/SMP model¹¹⁷ has been used. This is the most comprehensive and detailed model available for CO₂ emissions from the global transport sector. For those technologies not included in the SMP model, we had to decide starting points for today's performance values (see below). We then created so-called 'target reference vehicles' (TRVs), which project the energy consumption feasible for each of the main fuel conversion technologies. This is described in the section 'Future vehicle technologies'. The TRVs will be introduced in the different regions of the world over a varying timescale. In general, the technologies to achieve the TRVs are aimed to be available for sale in 2050 - 40 years from now.

In general, we have first introduced the most recent - and most expensive - technologies in the currently industrialised countries, and postponed their introduction in the rest of the world. We have then used the option to change the energy source used to fuel light duty transport.


reference scenario

The IEA reference scenario developed for the Mobility 2030 project¹¹⁸ was used as the starting point for the year 2005 key data and for comparison as a 'business as usual' scenario. It is important to note that for this scenario no major new policies were assumed to be implemented beyond those already introduced by 2003. While for some areas, such as pollution control, further so called policy trajectories have been assumed, this was not the case for fuel consumption. Trends in future fuel consumption are therefore based on historical (non-policy driven) trends.¹¹⁹ If the serious discussions taking place in Europe and the United States on the regulation of fuel economy in new vehicles, together with legal guidelines and proposed long term targets, were taken into account, the business as usual case would be different. However, it is beyond the scope of this project to redefine the status quo. Nevertheless, we include the most recent political targets in our scenario.

Current starting point values for the world's regions and vehicle types are presented in Figure 11.4.

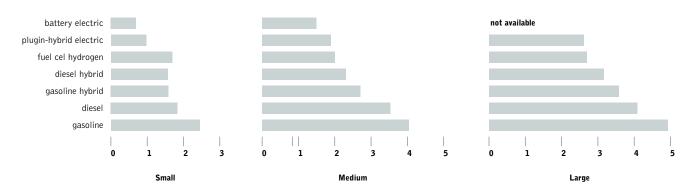
references

 $\begin{array}{l} \textbf{115} \mbox{ Fulton, L. (2004): THE IEA/SMP TRANSPORTATION MODEL; Fulton, L. AND G. EADS (2004): IEA/SMP MODEL DOCUMENTATION AND REFERENCE CASE PROJECTION.\\ \textbf{116} \mbox{ WBCSD (2004): MOBILITY 2030: MEETING THE CHALLENGES TO SUSTAINABILITY, WORLD BUSINESS COUNCIL FOR SUSTAINABLE DEVELOPMENT.\\ \textbf{117} \mbox{ Fulton, L. AND G. EADS (2004): IEA/SMP MODEL DOCUMENTATION AND REFERENCE CASE PROJECTION \end{array}$

figure 11.4: reference values for CO_2 emissions for 2005 sales averages per vehicle segment, gasoline and diesel, and world region

cars of the future

The DLR study confirms that there is a huge potential for technical options to make today's vehicles more efficient while lowering their CO₂ emissions. A car today converts the energy in its fuel into mechanical energy in order to take the compartment we sit in from point A to B, but in a very inefficient way. Only 25% to 35% of the chemical energy in the fuel is converted into mechanical energy by the engine. The rest is lost as waste heat. Hybrid technologies mark an important starting point for making vehicles more efficient, whilst technologies to lower energy demand, such as lightweight design, reduced rolling resistance wheels and improved aerodynamics, will contribute to the achievement of very low fuel consumptions.


Renewable electricity can be produced almost everywhere in the world, and with declining costs in the future. Taking into account the enormous development in batteries in recent years, we believe that electric mobility as offered by battery electric cars and plug-in hybrid electric vehicles is the preferred way to make major reductions in the CO_2 emissions of cars.

Consumer behaviour is the third major key to a lower carbon world for the transport sector. Here we have relied on programmes, incentives and policy measures to support a shift towards low carbon emitting vehicles as well as reducing demand in general.

future vehicle technologies

The global vehicle market, with about 55 million vehicles sold per year, is enormous. Around five hundred automobile plants produce this huge quantity. Regional markets differ in the size of vehicles and fuel type used, but the propulsion technology used in all new cars globally does not differ very much. For the sake of simplicity, therefore, we have defined the reference target vehicles, which we use throughout the world, on the basis of their energy consumption 'tank-to-wheel', independent of the fuel used. The energy consumption for the reference target vehicles is presented in Figure 11.5.

figure 11.5: energy consumption of reference target vehicles for three size segments in litres of gasoline equivalent per 100 km (values given for the new European drive cycle (nedc) test cycle).

QФ.

image 4 WHEEL DRIVE.
image PARKING SPACE FOR
HYBRIDS ONLY.

Differences in energy consumption 'tank-to-wheel' shown in Figure 11.5 reflect the different efficiencies with which vehicles convert fuel energy into movement. The various fuels and energy sources have different qualities, depending on their upstream production processes. This is taken into account in the model. In the light of high energy prices and thus growing costs for individual mobility, we foresee a market for dedicated small commuter vehicles. These cars would serve predominantly for the transport of a single person, reflecting today's car usage in industrialised countries, although there will still be seats for three to five people. The 'small' passenger vehicle of the future is therefore projected to be smaller than it is today and consequently less energy intensive.¹¹⁸

Due to continuing differences in income level between the world's regions, the reference target vehicles are applied to new vehicle sales in the year 2050 for today's most industrialised regions: OECD Europe, North America and OECD Pacific. For all other regions, they are envisaged to enter the market in 2060, ten years later, and 20 years later in Africa.

gasoline and diesel cars

For traditional internal combustion engines, we have only allowed here for improvements in starting and stopping and no other hybrid features. Other vehicle adaptations to be introduced up to 2050 are described in more detail below.

For the small car sector we project a 1.8 litre/100 km (NEDC) four-seater diesel vehicle, as described in simulations by Friedrich.¹²¹ We found corresponding results from our own simulations for a low-energy concept car with space for three adults and two children. For gasoline, we project 2.4 l/100 km. For the medium size sector, we project the potential for a 50% reduction in CO₂ for gasoline cars and 42% for diesel cars. Approximately half of these reductions will be derived from power train improvements (including starting and stopping) and half from an improvement in energy demand. Aerodynamics, rolling resistance and lightweight design will contribute as described below.

For the large size sector, a slightly higher 60% emissions reduction is predicted, resulting from higher mass reduction and greater downsizing potential. In addition, we have assumed political measures have been introduced, such as luxury taxes, in addition to high fuel costs, to reduce the sales of very large SUVs (Sport Utility Vehicles) for passenger transport. This means that the size of vehicles within the segment will also decrease over the years. Examples of future cross-over SUVs are projected, for example by Lovins and Cramer.¹²²

Although considerable improvements are in sight for conventional gasoline and diesel engines without hybridisation, they will be technically hard to reach. Significant CO_2 reductions in the short to medium term will therefore be much easier and cheaper to achieve with the hybridisation of power trains.

hybrid vehicles

Hybrid drive trains consist of at least two different energy converters and two energy storage units. The most common is the hybrid-electric drive train, although there are also proposals for kinetic and hydraulic hybrids. Advantages of the combination of the internal combustion engine with a second source of power arise from avoiding inefficient working regimes, recuperation of braking energy, engine displacement downsizing and automated gear switch. For hybrid-electric vehicles there are several different architectures and levels of hybridisation proposed.

Hybrid vehicles have been available since the 1990s. In 2006, approximately 400,000 hybrid cars were sold, which is less than 1% of world car production. An increasing number of hybrid models are being announced, however. For this study we have used reference values of 4^{123} , 4.5^{124} and 8.3^{125} Ige/100 km respectively for small, medium and large gasoline vehicles.¹²⁶

For the reference target vehicles in 2050, we have projected the following values, depending on the vehicle segment.

small segment: As explained above, the small segment vehicle of the future will be a '1 litre car' - smaller and lighter than today. A dedicated vehicle in the 500 kg class, with three seats and with a highly efficient propulsion system, will be standard by 2050, especially for commuting or other journeys were no multi-purpose family type vehicle is necessary. The fuel consumption for this type of vehicle is projected to be 1.6 lge/100 km.

medium segment: We developed our vision of reaching 60g CO₂ per km for the medium segment following the technical building blocks described below, although this might not be the only way to reach the target.

- A 25% emissions reduction is envisaged by using turbo charging with variable turbine geometry, external cooled exhaust gas recirculation, gasoline direct injection (2nd generation) and variable valve control/cam phase shifting with respective scavenging strategies. These measures all result in a downsizing and down speeding of the engine.¹²⁷
- An additional potential for a 25% saving, related to the previous step, will come from hybridisation and the benefits in terms of start/stop improvements, regenerative braking and further downsizing. Waste heat recovery by thermoelectric generators will contribute to the onboard power supply, which saves an additional 3 to 5%^{128, 129}.

references

120 SIMILAR TO JAPAN'S K-CAR, FIAT 500 ETC.
121 FRIEDRICH, A. (2006): FEASIBILITY OF LOW CARBON CARS, IN UMWELTBUNDESAMT.
122 LOVINS, A.B. AND D.R. CRAMER (2004): HYPERCARS®, HYDROGEN, AND THE AUTOMOTIVE TRANSITION. INT. J. VEHICLE DESIGN. VOL. 35(NOS. 1/2).
123 OWN ESTIMATE

- 124 TOYOTA PRIUS II IN NEDC TEST CYCLE
- 125 LEXUS RX 400 H IN NEDC TEST CYCLE

 $126\ \mbox{kba}$ fuel consumption and emissions type approval figures with a national or ec whole vehicle type approval, kraftfahrt-bundesamt: flensburg.

127 FRAIDL, G.K., P.E. KAPUS, K. PREVEDEL, AND A. FÜRHAPTER (2007): DI TURBO: DIE NÄCHSTEN SCHRITTE. IN 28. INTERNATIONALES WIENER MOTORENSYMPOSIUM, WIEN: VDI.

128 THACHER, E.F., B.T. HELENBROOK, M.A. KARRI, AND C.J. RICHTER (2006): TESTING OF AN AUTOMOBILE EXHAUST THERMOELECTRIC GENERATOR IN A LIGHT TRUCK. PROC. IMECHE VOL. 221 PART D: J. AUTOMOBILE ENGINEERING. VOL. 221(JAUTO51).
129 FRIEDRICH, H.E., P. TREFFINGER, AND W.E. MÜLLER (2007): MANAGEMENT VON SEKUNDÄRENERGIE UND ENERGIEWANDLUNG VON VERLUSTWÄRMESTRÖMEN, IN DOKUMENTATION CO2 - DIE HERAUSFORDERUNG FÜR UNSERE ZUKUNFT, VIEWEG / GWV FACHVERLAGE GMBH: MÜNCHEN.

- A reduction in the vehicle's mass from 360 kg to 1,000 kg will reduce energy demand by about 18%.¹³⁰ To achieve lightweight construction, methods such as topology optimisation, multimaterial design and highly integrated components will be used. Mass reductions of 60 to 120 kg for midsized cars have already been achieved.¹³¹ The production and recycling processes of lightweight materials such as magnesium and carbon fibres will also be improved in 30-40 years time, thus avoiding a shift in emissions from the utilisation to the production phase.
- Aerodynamic resistance, aerodynamic drag and frontal areas offer further potential for improvements. By optimising the car's underside, engine air flows and contours we project an additional lowering of energy demand by 8%.
- Rolling resistance depends on the material used for the tyre, the construction of the tyre and its radius, tyre pressures and driving speed. The tyre industry has proposed new concepts for wheels which are intended to lower rolling resistance by 50% by 2030.^{132,133}
 Reducing the rolling coefficient by 1/1000 will lead to fuel savings of 0.08 l/100 km.¹³⁴ This results in an additional 12% CO₂ savings.
- Further potentials for energy savings will come from 'intelligent controllers' which improve energy management and drive train control strategies by recognising frequently driven journeys. Improved traffic management to help a driver find the energy optimised route might also make a contribution. Other options for hybridisation could come from free piston linear generators, which produce electricity with a constant high efficiency, at the same time avoiding part load conditions because of the variable cylinder capacity.¹³⁵

From the technologies and potentials described here, we project that within the next 40 years an improvement of 64% in energy consumption for hybrid vehicles is achievable, resulting in 2.6 l/100 km or 60g CO₂/km for a middle sized car in the NEDC test cycle. This corresponds to an annual improvement of 2.2%. It is likely that other combinations will lead to similar results, for example by following full hybridisation first, with a potential saving of 44%
 ¹³⁶[26] and adding complementary measures. We have also applied an 18% improvement in fuel consumption based on a realistic assessment of driving patterns.

The Volkswagen Golf V FSI 1.6 I, with a 1,360 kg mass and 163g CO₂/km in NEDC was used as a starting point. $^{\rm 137}$

large segment: For large vehicles, the same technologies as described for the medium segment can be applied. We believe, however, that the potential for improvements is higher and project fuel consumption to reach 3.5 lge/100 km in 2050. In addition, we assume that political measures to reduce the sales of very large SUVs for passenger transport have been introduced, so that the size of vehicles within the segment will also decrease.

battery electric vehicles

Battery electric vehicles are already very efficient. A fuel consumption of 1.7 litres gasoline equivalent /100 km is reported for the Ford e-Ka¹³⁸, 2.1 l/100 km for the Ford Ecostar and 3.4 l/100 km for the Chrysler van.¹³⁹ In the future we anticipate reference target values of 0.7 l/100 km for small size cars based on simulations for micro cars and 1.4 l/100 km for medium size vehicles based on simulations of city and compact class vehicles. We do not consider battery vehicles for the large vehicle segment.

There is a considerable gap between test cycle results and real driving experience because of auxiliary power needs, for example for heating, cooling and other electrical services. We have therefore applied a factor of 1.7 to the transfer from test cycle to real world driving based on simulation results.

Battery electric vehicles carry their energy along on board in a chemical form. The future battery technology for vehicles will most probably be based on lithium because of good energy densities and cost prospects (see box "Urban vehicle of the future"). Remaining issues associated with the application of batteries in vehicles are safety, long term durability and costs. However, under the most optimistic estimates for battery development, battery electric vehicles will mainly be small vehicles and those with dedicated usage profiles like urban fleets. Other problems to be solved are fast recharging and cycle stability. Technical solutions have already been proposed, and the cost reduction target for batteries in the long term is to reach 1/40th of today's figures. An enormous amount of research is being carried out, as well as production of the first vehicle-type batteries. This scenario assumes the introduction of battery electric vehicles from 2015.

references

 130 RELATED TO THE ALREADY LOWER ENERGY USE OF THE PREVIOUS STEP.
 131 SLC (2007): SUSTAINABLE PRODUCTION TECHNOLOGIES OF EMISSION REDUCED LIGHT-WEIGHT CAR CONCEPTS: SUPERLIGHT-CAR/SLC, COLLABORATIVE RESEARCH & DEVELOPMENT PROJECT CO-FUNDED BY THE EUROPEAN COMMISSION UNDER THE 6TH FRAMEWORK PROGRAMME.

132 MICHELIN (2005): DIE REIFEN-FELGEN-KOMBINATION "TWEEL" KOMMT VÖLLIG OHNE LUFTDRUCK AUS. PRESS RELEASE. IN NORTH AMERICAN INTERNATIONAL AUTOSHOW (NAIAS).

133 WIES, B. (2007): IST DER GUMMI AUSGEREIZT? PRÄSENTATION IM NATURHISTORISCHES MUSEUM, WIEN, 1. OKTOBER 2007.

134 POSZNANSKI-EISENSCHMIDT (2007): VDA TECHNICAL CONGRESS.
135 ACHTEN, P.A.J., J.P.J.V.D. OEVER, J. POTMA, AND G.E.M. VAEL (2000): HORSEPOWER WITH BRAINS: THE DESIGN OF THE CHIRON FREE PISTON ENGINE, IN SAE TECHNICAL PAPER SERIES, 2000-01-2545; MAX, E. (2005): FREE PISTON ENERGY CONVERTER, IN ELECTRIC VEHICLE SYMPOSIUM 21: MONACC; POHL, S.-E. AND M. GRÄF (2005): DYNAMIC SIMULATION OF A FREE PISTON LINEAR ALTERNATOR, IN MODELICA 2005, SCHMITZ, G.: HAMBURG.
136 SCHMIDT, G. (2006): ANTRIEBE FÜR DEN EUROPÄISCHEN MARKT UND DIE ROLLE VON HYBRIDKONZEPTEN, IN 10. HANDELSBLATT JAHRESTAGUNG AUTOMOBILTECHNOLOGIEN.

 $137\,$ kba fuel consumption and emissions type approval figures with a national or ec whole vehicle type approval, kraftfahrt-bundesamt: flensburg.

138 busch, R. and P. Schmitz (2001): The E-KA - An electric vehicle as technology demonstrator, in evs18: Berlin.

139 ota (1995): Advanced automotive technology: visions of a super-efficient family car, office of technology assessment.

plug-in-hybrid electric vehicles

Plug-in-hybrids are a combination of conventional hybrids and battery electric vehicles. They promise to provide both advantages: using low carbon and cheap energy from the grid, a wide travel range and grid independent driving when necessary. Fuel and energy consumption depend very much on the system layout and control strategy, combined with the distance, frequency and speed driven. We project 2.3, 2.4 and 4.5 Ige/100 km for small, medium and large segment cars following the announced specification for the Volvo Recharge concept car and other input.¹⁴⁰

By the year 2050 we project that plug-in hybrids will use 10% more energy in electric mode compared to our projection for battery electric vehicles, due to their increased weight. Once the battery is below the recharge limit, the conventional engine/generator will provide the energy in part or full. In this operating mode we again project 10% higher fuel consumption than their conventional hybrid counterparts. In terms of CO₂ balance the distribution of kilometres driven in electric and conventional modes is crucial. We anticipate that 80% of all kilometres will be driven in electric wehicles starts in 2015. In the advanced Energy [R]evolution scenario the introduction of plug-in hybrids also starts in 2015, but the market share grows much faster.

fuel cell hydrogen

Fuel cell vehicles have reached a high level of readiness for mass production. The polymer electrolyte membrane fuel cell provides high power density, resulting in low weight, cost and volume.¹⁴¹ Average drive cycle efficiencies have reached 3.5 lge/100 km.¹⁴² Major problems still to be solved are durability, operating temperature range and cost reductions. Hydrogen on-board storage to provide a large driving range is a further issue not finally solved. Nevertheless, the technology seems ready to begin the transition into the mass market.

The main problem in fact is not so much the vehicles themselves as the hydrogen they need. Before the vehicles can operate, a hydrogen infrastructure needs to be established. The investment involved is risky, not least because of the competing electric systems. Because of energy losses in the hydrogen production chain, electricity appears to be cheaper, easier to handle and more environmentally friendly – at least until there is renewable electricity in abundance.

The hydrogen fuel cell vehicle might find its niche, however, where the driving range of battery electric vehicles is too low and/or locally emission free driving is demanded or the freedom from gridconnecting is valued more highly. We have projected a 35% improvement compared to today's fuel cell vehicles as the target reference value because of the potential for both fuel cell system improvement and lightweight, rolling resistance and aerodynamic vehicles, as already described.

summary of energy savings in the transport sector in the energy [r]evolution scenario

The table below gives a summary of the energy efficiency improvement for passenger transport in the two low energy demand scenarios.

table 11.6: technical efficiency potential for world passenger transport

MJ/P-KM	REFERENC 2005	E SCENARIO 2050	[R]EVOLUTION SCENARIO 2050
Cars (L/100 v-km)	10.4	8.5	3.9
Cars (MJ/p-km)	2.2	2.0	0.9
Air	2.6	1.9	1.2
Buses	0.5	0.6	0.3
Mini-buses	0.5	0.6	0.3
Two wheels	0.5	0.6	0.3
Three wheels	0.7	0.7	0.5
Passenger rail	0.3	0.3	0.2

The table below gives a summary of the energy efficiency improvement for freight transport in the two low energy demand scenarios.

table 11.7: technical efficiency potential for world freight transport

MJ/P-KM	REFEREN 2005	CE SCENARIO 2050	[R]EVOLUTION SCENARIO 2050	GY SAVINGS
Medium trucks	5.4	3.9	2.3	585
Heavy trucks	1.7	1.3	0.7	
Freight rail	0.2	0.2	0.1	
National marine	0.7	0.5	0.5	

references

140 BANDIVADEKAR, A.P. (2008): EVALUATING THE IMPACT OF ADVANCED VEHICLE AND FUEL TECHNOLOGIES IN U.S. LIGHT-DUTY VEHICLE FLEET, IN ENGINEERING SYSTEMS DIVISION, MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

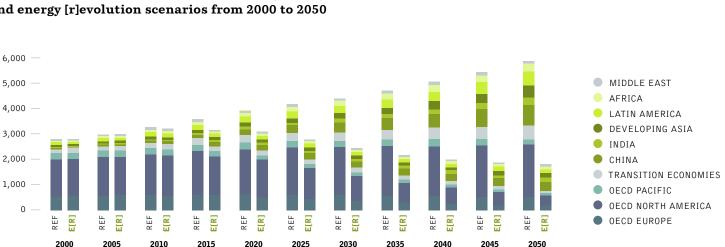
141 NEBURCHILOV, V., J. MARTIN, H. WANG, AND J. ZHANG (2007): A REVIEW OF POLYMER ELECTROLYTE MEMBRANES FOR DIRECT METHANOL FUEL CELLS. JOURNAL OF POWER SOURCES. 169(2): P. 221-238; ZHANG, J., Z. XIE, J. ZHANG, Y. TANG, C. SONG, T. NAVESSIN, Z. SHI, D. SONG, H. WANG, D.P. WILKINSON, Z.-S. LIU, AND S. HOLDCROFT (2006): HIGH TEMPERATURE PEM FUEL CELLS. JOURNAL OF POWER SOURCES. 160(2): P. 872-891.

142 HONDA (2007): FCX CLARITY, WWW.HONDA.COM.

summary of scenario results for cars¹⁴³

A combination of ambitious efforts to introduce higher efficiency vehicle technologies, a major switch to grid-connected electric vehicles and incentives for travellers to save CO2 all lead to the conclusion that it is possible to reduce emissions from well-to-wheel in 2050 by roughly 25%¹⁴⁴ compared to 1990 and 40% compared to 2007. Even so, 74% of the final energy used in cars will still come from fossil fuel sources, 70% from gasoline and diesel. Renewable electricity covers 19% of total car energy demand, bio fuels cover 5% and hydrogen 2%. Energy consumption in total is reduced by 23% in 2050 compared to 2005, in spite of tremendous increases in some world regions. The peak in global CO2 emissions occurs between 2010 and 2015. From 2010 onwards, new legislation in the US and Europe contributes towards breaking the upwards trend in emissions. From 2020 onwards we can see the effect of introducing grid-connected electric cars. The development of CO₂ emissions, taking into account upstream emissions, is shown in Figure 11.6.

case study: urban vehicle of the future


One example of a lightweight, efficient electric vehicle of the future is the EN-V launched by General Motors in China, together with local partner Shanghai Automotive Industry Corp, at the beginning of 2010.

EN-V, short for Electric Networked-Vehicle, is a two seater passenger vehicle designed for use in crowded and congested urban road networks. Its lightweight construction involves a mix of carbon fibre, thermoplastic and acrylic, resulting in a final kerb weight of around 500 kilograms, about a third of the weight of a typical modern vehicle.

Drive power comes from electric motors mounted in each of the vehicles' two driving-mode wheels. Its dynamic stabilisation technology gives the EN-V the ability to carry two passengers and a small amount of cargo in a space footprint about a third the size of a traditional vehicle. With a length of just 1.5 metres it can turn round with ease. In addition, everything in the EN-V is 'drive-bywire', supporting its ability to operate autonomously or under manual control. The motors not only provide power for acceleration but also bring the vehicle to a stop.

The motors are powered by arrays of lithium-ion batteries; once fully charged they can run for a distance of 40 kilometres. The EN-V also helps to improve the efficiency of the power infrastructure since it can communicate with the electricity grid to determine the best time to recharge, based on overall usage. This same communications system will enable passengers to enjoy autonomous operation of the vehicles during peak traffic times, as well as keep in touch with each other through a wireless connection.

source WWW.GM.COM

figure 11.6: well-to-wheel CO2 emissions of light duty vehicles in the reference and energy [r]evolution scenarios from 2000 to 2050

references

143 THESE RESULTS ARE FROM THE DEVELOPMENT OF THE LOV SCENARIO WITH SEVERAL SPECIFIC ASSUMPTIONS ON E.G. UPSTREAM EMISSIONS ETC. WHICH ARE NOT COORDINATED WITH THE SCENARIO DEVELOPMENT OVER ALL SECTORS. ONLY THE MESAP MODEL WILL GIVE THE FINAL RESULTS. 144 THERE IS NO RELIABLE NUMBER FOR THE GLOBAL 1990 LDV EMISSIONS

AVAILABLE, THEREFORE THIS HAS TO BE UNDERSTOOD AS A ROUGH ESTIMATE.

ŵ.

¥

CO2 emissions per year in

climate and energy policy

GLOBAL

"...so I urge the government to act and to act quickly."

LYN ALLISON

LEADER OF THE AUSTRALIAN DEMOCRATS, SENATOR 2004-2008

If the Energy [R]evolution is to happen, then governments around the world need to play a major part. Their contribution will include regulating the energy market, both on the supply and demand side, educating everyone from consumers to industrialists, and stimulating the market for renewable energy and energy efficiency by a range of economic mechanisms. They can also build on the successful policies already adopted by other countries.

To start with they need to agree on further binding emission reduction commitments in the second phase of the Kyoto Protocol. Only by setting stringent greenhouse gas emission reduction targets will the cost of carbon become sufficiently high to properly reflect its impact on society. This will in turn stimulate investments in renewable energy. Through massive funding for mitigation and technology cooperation, industrialised countries will also stimulate the development of renewable energy and energy efficiency in developing countries.

Alongside these measures specific support for the introduction of feed-in tariffs in the developing world - the extra costs of which could be funded by industrialised countries - could create similar incentives to those in countries like Germany and Spain, where the growth of renewable energy has boomed. Energy efficiency measures should be more strongly supported through the Kyoto process and its financial mechanisms.

Carbon markets can also play a distinctive role in making the Energy [R]evolution happen, although the functioning of the carbon market needs a thorough revision in order to ensure that the price of carbon is sufficiently high to reflect its real cost. Only then can we create a level playing field for renewable energy and be able to calculate the economic benefits of energy efficiency.

Industrialised countries should ensure that all financial flows to energy projects in developing countries are targeted towards renewable energy and energy efficiency. All financial assistance, whether through grants, loans or trade guarantees, directed towards supporting fossil fuel and nuclear power production, should be phased out in the next two to five years. International financial institutions, export credit agencies and development agencies should provide the required finance and infrastructure to create systems and networks to deliver the seed capital, institutional support and capacity to facilitate the implementation of the Energy [R]evolution in developing countries.

While any energy policy needs to be adapted to the local situation, we are proposing the following policies to encourage the Energy [R]evolution that all countries should adopt.

1. climate policy

Policies to limit the effects of climate change and move towards a renewable energy future must be based on penalising energy sources that contribute to global pollution.

Action: Phase out subsidies for fossil fuel and nuclear power production and inefficient energy use

The United Nations Environment Programme (UNEP) estimates (August 2008) the annual bill for worldwide energy subsidies at about \$300 billion, or 0.7% of global GDP.¹⁴⁵ Approximately 80% of this is spent on funding fossil fuels and more than 10% to support nuclear energy. The lion's share is used to artificially lower the real price of fossil fuels. Subsidies (including loan guarantees) make energy efficiency less attractive, keep renewable energy out of the market place and prop up non-competitive and inefficient technologies.

Eliminating direct and indirect subsidies to fossil fuels and nuclear power would help move us towards a level playing field across the energy sector. Scrapping these payments would, according to UNEP, reduce greenhouse gas emissions by as much as 6% a year, while contributing 0.1% to global GDP. Many of these seemingly well intentioned subsidies rarely make economic sense anyway, and hardly ever address poverty, thereby challenging the widely held view that such subsidies assist the poor.

Instead, governments should use subsidies to stimulate investment in energy-saving measures and the deployment of renewable energy by reducing their investment costs. Such support could include grants, favourable loans and fiscal incentives, such as reduced taxes on energy efficient equipment, accelerated depreciation, tax credits and tax deductions.

The G-20 countries, meeting in Philadelphia in September 2009, called for world leaders to eliminate fossil fuel subsidies, but hardly any progress has been made since then towards implementing the resolution.

Action: Introduce the "polluter pays" principle

A substantial indirect form of subsidy comes from the fact that the energy market does not incorporate the external, societal costs of the use of fossil fuels and nuclear power. Pricing structures in the energy markets should reflect the full costs to society of producing energy.

This requires that governments apply a 'polluter pays' system that charges the emitters accordingly, or applies suitable compensation to non-emitters. Adoption of polluter pays taxation to electricity sources, or equivalent compensation to renewable energy sources, and exclusion of renewables from environment-related energy taxation, is essential to achieve fairer competition in the world's electricity markets.

image A WOMAN IN FRONT OF HER FLOODED HOUSE IN SATJELLIA ISLAND. DUE TO THE REMOTENESS OF THE SUNDARBANS ISLANDS, SOLAR PANELS ARE USED BY MANY VILLAGERS. AS A HIGH TIDE INVADES THE ISLAND, PEOPLE REMAIN ISOLATED SURROUNDED BY THE FLOODS

The real cost of conventional energy production includes expenses absorbed by society, such as health impacts and local and regional environmental degradation - from mercury pollution to acid rain – as well as the global negative impacts of climate change. Hidden costs include the waiving of nuclear accident insurance that is too expensive to be covered by the nuclear power plant operators. The Price Anderson Act, for instance, limits the liability of US nuclear power plants in the case of an accident to an amount of up to \$98 million per plant, and only \$15 million per year per plant, with the rest being drawn from an industry fund of up to \$10 billion. After that the taxpayer becomes responsible.¹⁴⁶

Although environmental damage should, in theory, be rectified by forcing polluters to pay, the environmental impacts of electricity generation can be difficult to quantify. How do you put a price on lost homes on Pacific Islands as a result of melting icecaps or on deteriorating health and human lives?

An ambitious project, funded by the European Commission -ExternE – has tried to quantify the full environmental costs of electricity generation. It estimates that the cost of producing electricity from coal or oil would double and that from gas would increase by 30% if external costs, in the form of damage to the environment and health, were taken into account. If those environmental costs were levied on electricity generation according to its impact, many renewable energy sources would not need any support. If, at the same time, direct and indirect subsidies to fossil fuels and nuclear power were removed, the need to support renewable electricity generation would seriously diminish or cease to exist.

One way to achieve this is by a carbon tax that ensures a fixed price is paid for each unit of carbon that is released into the atmosphere. Such taxes have, or are being, implemented in countries such as Sweden and the state of British Columbia. Another approach is through cap and trade, as operating in the European Union and planned in New Zealand and several US states. This concept gives pollution reduction a value in the marketplace.

In theory, cap and trade prompts technological and process innovations that reduce pollution down to the required levels. A stringent cap and trade can harness market forces to achieve costeffective greenhouse gas emission reductions. But this will only happen if governments implement true 'polluter pays' cap and trade schemes that charge emitters accordingly.

Government programmes that allocate a maximum amount of emissions to industrial plants have proved to be effective in promoting energy efficiency in certain industrial sectors. To be successful, however, these allowances need to be strictly limited and their allocation auctioned.

2. energy policy and market regulation

Essential reforms are necessary in the electricity sector if new renewable energy technologies are to be implemented more widely.

Action: Reform the electricity market to allow better integration of renewable energy technologies

Complex licensing procedures and bureaucratic hurdles constitute one of the most difficult obstacles faced by renewable energy in many countries. A clear timetable for approving renewable energy projects should be set for all administrations at all levels, and they should receive priority treatment. Governments should propose more detailed procedural guidelines to strengthen the existing legislation and at the same time streamline the licensing procedures.

Other barriers include the lack of long term and integrated resource planning at national, regional and local level; the lack of predictability and stability in the markets; the grid ownership by vertically integrated companies and the absence of (access to) grids for large scale renewable energy sources, such as offshore wind power or concentrating solar power plants. The International Energy Agency has identified Denmark, Spain and Germany as example of best practice in a reformed electricity market that supports the integration of renewable energy.

In order to remove these market barriers, governments should:

- streamline planning procedures and permit systems and integrate least cost network planning;
- ensure access to the grid at fair and transparent prices;
- ensure priority access and transmission security for electricity generated from renewable energy resources, including fina;
- unbundle all utilities into separate generation, distribution and selling companies;
- ensure that the costs of grid infrastructure development and reinforcement are borne by the grid management authority rather than individual renewable energy projects;
- ensure the disclosure of fuel mix and environmental impact to end users;
- establish progressive electricity and final energy tariffs so that the price of a kWh costs more for those who consume more;
- set up demand-side management programmes designed to limit energy demand, reduce peak loads and maximise the capacity factor of the generation system. Demand-side management should also be adapted to facilitate the maximum possible share of renewable energies in the power mix;
- introduce pricing structures in the energy markets to reflect the full costs to society of producing energy.

3. targets and incentives for renewables

At a time when governments around the world are in the process of liberalising their electricity markets, the increasing competitiveness of renewable energy should lead to higher demand. Without political support, however, renewable energy remains at a disadvantage, marginalised by distortions in the world's electricity markets created by decades of massive financial, political and structural support to conventional technologies. Developing renewables will therefore require strong political and economic efforts, especially through laws which guarantee stable tariffs over a period of up to 20 years.

At present new renewable energy generators have to compete with old nuclear and fossil fuelled power stations which produce electricity at marginal costs because consumers and taxpayers have already paid the interest and depreciation on the original investments. Political action is needed to overcome these distortions and create a level playing field.

Support mechanisms for different sectors and technologies can vary according to regional characteristics, priorities or starting points, but some general principles should apply. These are:

- **Long term stability:** Policy makers need to make sure that investors can rely on the long-term stability of any support scheme. It is absolutely crucial to avoid stop-and-go markets by changing the system or the level of support frequently.
- Encouraging local and regional benefits and public acceptance: A support scheme should encourage local/regional development, employment and income generation. It should also encourage public acceptance of renewables, including increased stakeholder involvement.

Incentives can be provided for renewable energy through both targets and price support mechanisms.

Action: Establish legally binding targets for renewable energy and combined heat and power generation

An increasing number of countries have established targets for renewable energy, either as a general target or broken down by sector for power, transport and heating. These are either expressed in terms of installed capacity or as a percentage of energy
 consumption. China and the European Union have a target for 20% renewable energy by 2020, for example, and New Zealand has a 90% by 2025 target.

Although these targets are not always legally binding, they have served as an important catalyst for increasing the share of renewable energy throughout the world. The electricity sector clearly needs a long term horizon, as investments are often only paid back after 20 to 40 years. Renewable energy targets therefore need to have short, medium and long term stages and must be legally binding in order to be effective. In order for the proportion of renewable energy to increase significantly, targets must also be set in accordance with the potential for each technology (wind, solar, biomass etc) and taking into account existing and planned infrastructure. Every government should carry out a detailed analysis of the potential and feasibility of renewable energies in its own country, and define, based on that analysis, the deadline for reaching, either individually or in cooperation with other countries, a 100% renewable energy supply.

Action: Provide a stable return for investors through price support mechanisms

Price support mechanisms for renewable energy are a practical means of correcting market failures in the electricity sector. Their aim is to support market penetration of those renewable energy technologies, such as wind and solar thermal, that currently suffer from unfair competition due to direct and indirect support to fossil fuel use and nuclear energy, and to provide incentives for technology improvements and cost reductions so that technologies such as PV, wave and tidal can compete with conventional sources in the future.

Overall, there are two types of incentive to promote the deployment of renewable energy. These are Fixed Price Systems where the government dictates the electricity price (or premium) paid to the producer and lets the market determine the quantity, and Renewable Quota Systems (in the USA referred to as Renewable Portfolio Standards) where the government dictates the quantity of renewable electricity and leaves it to the market to determine the price. Both systems create a protected market against a background of subsidised, depreciated conventional generators whose external environmental costs are not accounted for. Their aim is to provide incentives for technology improvements and cost reductions, leading to cheaper renewables that can compete with conventional sources in the future.

The main difference between quota based and price based systems is that the former aims to introduce competition between electricity producers. However, competition between technology manufacturers, which is the most crucial factor in bringing down electricity production costs, is present regardless of whether government dictates prices or quantities. Prices paid to wind power producers are currently higher in many European quota based systems (UK, Belgium, Italy) than in fixed price or premium systems (Germany, Spain, Denmark).

The European Commission has concluded that fixed price systems are to be preferred above quota systems. If implemented well, fixed price systems are a reliable, bankable support scheme for renewable energy projects, providing long term stability and leading to lower costs. In order for such systems to achieve the best possible results, however, priority access to the grid must be ensured.

fixed price systems

Fixed price systems include investment subsidies, fixed feed-in tariffs, fixed premium systems and tax credits.

- **Investment subsidies** are capital payments usually made on the basis of the rated power (in kW) of the generator. It is generally acknowledged, however, that systems which base the amount of support on generator size rather than electricity output can lead to less efficient technology development. There is therefore a global trend away from these payments, although they can be effective when combined with other incentives.
- Fixed feed-in tariffs (FITs) widely adopted in Europe, have proved extremely successful in expanding wind energy in

image A YOUNG INDIGENOUS NENET BOY PRACTICES WITH HIS ROPE. THE BOYS ARE GIVEN A ROPE FROM PRETTY MUCH THE MOMENT THEY ARE BORN. BY THE AGE OF SIX THEY ARE OUT HELPING LASSOING THE REINDEER. THE INDIGENOUS NENETS PEOPLE MOVE EVERY 3 OR 4 DAYS SO THAT THEIR REINDEER DO NOT OVER GRAZE THE GROUND AND THEY DO NOT OVER FISH THE LAKES. THE YAMAL PENINSULA IS UNDER HEAVY THREAT FROM GLOBAL WARMING AS TEMPERATURES INCREASE AND RUSSIAS ANCIENT PERMAFROST MELTS.

Germany, Spain and Denmark. Operators are paid a fixed price for every kWh of electricity they feed into the grid. In Germany the price paid varies according to the relative maturity of the particular technology and reduces each year to reflect falling costs. The additional cost of the system is borne by taxpayers or electricity consumers.

The main benefit of a FIT is that it is administratively simple and encourages better planning. Although the FIT is not associated with a formal Power Purchase Agreement, distribution companies are usually obliged to purchase all the production from renewable installations. Germany has reduced the political risk of the system being changed by guaranteeing payments for 20 years. The main problem associated with a fixed price system is that it does not lend itself easily to adjustment – whether up or down - to reflect changes in the production costs of renewable technologies.

- **Fixed premium systems** sometimes called an "environmental bonus" mechanism, operate by adding a fixed premium to the basic wholesale electricity price. From an investor perspective, the total price received per kWh is less predictable than under a feed-in tariff because it depends on a constantly changing electricity price. From a market perspective, however, it is argued that a fixed premium is easier to integrate into the overall electricity market because those involved will be reacting to market price signals. Spain is the most prominent country to have adopted a fixed premium system.
- **Tax credits** as operated in the US and Canada, offer a credit against tax payments for every kWh produced. In the United States the market has been driven by a federal Production Tax Credit (PTC) of approximately 1.8 cents per kWh. It is adjusted annually for inflation.

renewable quota systems

Two types of renewable quota systems have been employed - tendering systems and green certificate systems.

- **Tendering systems** involve competitive bidding for contracts to construct and operate a particular project, or a fixed quantity of renewable capacity in a country or state. Although other factors are usually taken into account, the lowest priced bid invariably wins. This system has been used to promote wind power in Ireland, France, the UK, Denmark and China. The downside is that investors can bid an uneconomically low price in order to win the contract, and then not build the project. Under the UK's NFFO (Non-Fossil Fuel Obligation) tender system, for example, many contracts remained unused. It was eventually abandoned. If properly designed, however, with long contracts, a clear link to planning consent and a possible minimum price, tendering for large scale projects could be effective, as it has been for offshore oil and gas extraction in Europe's North Sea.
- **Tradable green certificate (TGC) systems** operate by offering "green certificates" for every kWh generated by a renewable producer. The value of these certificates, which can be traded on a market, is then added to the value of the basic electricity. A green certificate system usually operates in combination with a rising quota of renewable electricity generation. Power companies are bound by law to purchase an increasing proportion of renewables input. Countries which have adopted this system include the UK and Italy in Europe and many individual states in the US, where it is known as a Renewable Portfolio Standard. Compared with a

fixed tender price, the TGC model is more risky for the investor, because the price fluctuates on a daily basis, unless effective markets for long-term certificate (and electricity) contracts are developed. Such markets do not currently exist. The system is also more complex than other payment mechanisms.

4. renewables for heating and cooling

The crucial requirement for both heating and cooling is often forgotten in the energy mix. In many regions of the world, such as Europe, nearly half of the total energy demand is for heating/cooling. This demand can be met economically without relying on fossil fuels.

Policies should make sure that specific targets and appropriate measures to support renewable heating and cooling are part of any national renewables strategy. These should include financial incentives, awareness raising campaigns, training of installers, architects and heating engineers, and demonstration projects. For new buildings, and those undergoing major renovation, an obligation to cover a minimum share of heat consumption by renewables should be introduced, as already implemented in some countries. At the same time, increased R&D efforts should be undertaken, particularly in the fields of heat storage and renewable cooling.

Governments should also promote the development of combined heat and power generation in those industrial sectors that are most attractive for CHP - where there is a demand for heat either directly or through a local (existing or potential) district heating system. Governments should set targets and efficiency standards for CHP and provide financial incentives for investment in industrial installations.

5. energy efficiency and innovation

Action: Set stringent efficiency and emissions standards for appliances, buildings, power plants and vehicles

Policies and measures to promote energy efficiency exist in many countries. Energy and information labels, mandatory minimum energy performance standards and voluntary efficiency agreements are the most popular measures. Effective government policies usually contain two elements - those that push the market through standards and those that pull through incentives - and have proved to be an effective, low cost way to coordinate a transition to more energy efficiency.

The Japanese front-runner programme, for example, is a regulatory scheme with mandatory targets which gives incentives to manufacturers and importers of energy-consuming equipment to continuously improve the efficiency of their products. It operates by allowing today's best models on the market to set the level for future standards.

In the residential sector in industrialised countries, standby power consumption ranges from 20 to 60 watts per household, equivalent to 4 to 10% of total residential energy consumption. Yet the technology is available to reduce standby power to 1 watt. A global standard, as proposed by the IEA, could mandate this reduction. Japan, South Korea and the state of California have not waited for this international approach and have already adopted standby standards.

Governments should mandate the phase-out of incandescent and inefficient light bulbs and replace them with the most efficient lighting. Countries like Cuba, Venezuela and Australia have already banned incandescent light bulbs.

Governments should also set emissions standards for cars and power plants, such as those proposed in Europe for passenger cars of 120g CO_2 /km and 350g/kWh for power plants. Similar emissions standards, as already implemented in China, Japan and the states of Washington and California, will support innovation and ensure that inefficient vehicles and power plants are outlawed.

Action: Support innovation in energy efficiency, low carbon transport systems and renewable energy production

Innovation will play an important role in making the Energy [R]evolution happen, and is needed to realise the ambition of everimproving efficiency and emissions standards. Programmes supporting renewable energy and energy efficiency development and diffusion are a traditional focus of energy and environmental policies because energy innovations face barriers all along the energy supply chain (from R&D to demonstration projects to widespread deployment). Direct government support through a variety of fiscal instruments, such as tax incentives, is vital to hasten deployment of radically new technologies due to a lack of industry investment. This suggests that there is a role for the public sector in increasing investment directly and in correcting market and regulatory obstacles that inhibit investment in new technology

Governments need to invest in research and development for more efficient appliances and building techniques, in new forms of insulation, in new types of renewable energy production (such as tidal and wave power) as well as in a low carbon transport future, through the development of better batteries for plug-in electric cars or fuels for aviation from renewable sources. Governments need to engage in innovation themselves, both through publicly funded research and by supporting private research and development.

There are numerous ways to support innovation. The most important policies are those that reduce the cost of research and development, such as tax incentives, staff subsidies or project grants. Financial support for research and development on 'dead end' energy solutions such as nuclear fusion should be diverted to supporting renewable energy, energy efficiency and decentralised energy solutions.

Specific proposals for efficiency and innovation measures include:

appliances and lighting

Two types of renewable quota systems have been employed - tendering systems and green certificate systems.

• **Efficiency standards** Governments should set ambitious, stringent and mandatory efficiency standards for all energy consuming appliances that constantly respond to technical innovation and enforce the phase-out of the most inefficient appliances. These standards should allow the banning of inefficient products from the market, with penalties for non-compliance.

- **Consumer awareness** Governments should inform consumers and/or set up systems that compel retailers and manufacturers to do so, about the energy efficiency of the products they use and buy, including awareness-raising and educational programmes. Consumers often make their choices based on non-financial factors but lack the necessary information.
- **Energy labelling** Labels provide the means to inform consumers of the product's relative or absolute performance and energy operating costs. Governments should support the development of endorsement and comparison labels for electrical appliances.

buildings

- **Residential and commercial building codes** Governments should set mandatory building codes that require the use of a set share of renewable energy for heating and cooling and compliance with a limited annual energy consumption level. These codes should be regularly upgraded in order to make use of fresh products on the market and non-compliance should be penalised.
- **Financial incentives** Given that investment costs are often a barrier to implementing energy efficiency measures, in particular for retrofitting renewable energy options, governments should offer financial incentives including tax reductions schemes, investment subsidies and preferential loans.
- Energy intermediaries and audit programmes Governments should develop strategies and programmes to promote the education of architects, engineers and other professionals in the building sector as well as end-users about energy efficiency opportunities in new and existing buildings. As part of this strategy governments should invest in 'energy intermediaries' and energy audit programmes in order to assist professionals and consumers in identifying opportunities for improving the efficiency of their buildings.

transport

- Emissions standards Governments should regulate the efficiency of private cars and other transport vehicles in order to push manufacturers to reduce emissions through downsizing, design and technology improvement. Improvements in efficiency will reduce CO₂ emissions irrespective of the fuel used. After this further reductions could be achieved by using low-emission fuels. Emissions standards should provide for an average reduction of 5g CO₂/km/year in industrialised countries. These standards need to be mandatory. To dissuade car makers from overpowering high end cars a maximum CO₂ emissions limit for individual car models should be introduced.
- **Electric vehicles** Governments should develop incentives to promote the further development of electric cars and other efficient and sustainable low carbon transport technologies. Linking electric cars to a renewable energy grid is the best possible option to reduce emissions from the transport sector.
- **Transport demand management** Governments should invest in developing, improving and promoting low emission transport options, such as public and non-motorised transport, freight transport management programmes, teleworking and more efficient land use planning in order to limit journeys.

glossary & appendix

GLOBAL

"because we use such inefficient lighting, 80 coal fired power plants are running day and night to produce the energy that is wasted."

GREENPEACE INTERNATIONAL CLIMATE CAMPAIGN image COAL FIRED POWER PLAN © E.FUXA/DREAMSTIME

glossary of commonly used terms and abbreviations

CHP Combined	Heat and	Power
--------------	----------	-------

- **CO**² Carbon dioxide, the main greenhouse gas
- **GDP** Gross Domestic Product (means of assessing a country's wealth)
- **PPP** Purchasing Power Parity (adjustment to GDP assessment to reflect comparable standard of living)
- **IEA** International Energy Agency
- **J** Joule, a measure of energy:
- **kJ** = 1,000 Joules,
- **MJ** = 1 million Joules,
- **GJ** = 1 billion Joules,
- **PJ** = 10^{15} Joules,
- **EJ** = 10^{18} Joules

W Watt, measure of electrical capacity:

- **kW** = 1,000 watts,
- **MW** = 1 million watts,
- **GW** = 1 billion watts
- **kWh** Kilowatt-hour, measure of electrical output: TWh = 10^{12} watt-hours
- t/Gt Tonnes, measure of weight:

Gt = 1 billion tonnes

conversion factors - fossil fuels

FUEL

Coal	23.03	MJ/t	1 cubic	0.0283 m ³
Lignite	8.45	MJ/t	1 barrel	159 liter
Oil	6.12	GJ/barrel	1 US gallon	3.785 liter
Gas	38000.00	kJ/m ³	l UK gallon	4.546 liter

conversion factors - different energy units

FROM	TO: TJ Multiply by	Gcal	Mtoe	Mbtu	GWh
TJ	1	238.8	2.388 x 10 ⁻⁵	947.8	0.2778
Gcal	4.1868 x 10 ⁻³	1	10(-7)	3.968	1.163 x 10 ⁻³
Mtoe	4.1868 x 10 ⁴	10 ⁷	1	3968 x 10 ⁷	11630
Mbtu	1.0551 x 10 ⁻³	0.252	2.52 x 10 ⁻⁸	1	2.931 x 10 ⁻⁴
GWh	3.6	860	8.6 x 10 ⁻⁵	3412	1

image MINOTI SINGH AND HER SON AWAIT FOR CLEAN WATER SUPPLY BY THE RIVERBANK IN DAYAPUR VILLAGE IN SATJELLIA ISLAND: "WE DO NOT HAVE CLEAN WATER AT THE MOMENT AND ONLY ONE TIME WE WERE LUCKY TO BE GIVEN SOME RELIEF. WE ARE NOW WAITING FOR THE GOVERNMENT TO SUPPLY US WITH WATER TANKS".

definition of sectors

The definition of different sectors below is the same as the sectoral breakdown in the IEA World Energy Outlook series.

All definitions below are from the IEA Key World Energy Statistics

Industry sector: Consumption in the industry sector includes the following subsectors (energy used for transport by industry is not included -> see under "Transport")

- Iron and steel industry
- Chemical industry
- Non-metallic mineral products e.g. glass, ceramic, cement etc.
- Transport equipment
- Machinery
- Mining
- Food and tobacco
- Paper, pulp and print
- Wood and wood products (other than pulp and paper)
- Construction
- Textile and Leather

Transport sector: The Transport sector includes all fuels from transport such as road , railway, aviation, domestic navigation. Fuel used for ocean, costal and inland fishing is included in "Other Sectors".

Other sectors: 'Other sectors' covers agriculture, forestry, fishing, residential, commercial and public services.

Non-energy use: Covers use of other petroleum products such as paraffin waxes, lubricants, bitumen etc.

global: reference scenario

table 13.1: global: electricity generation

3	2007	2015	2020	2030	2040	2050
TWh/a						
Power plants Coal Lignite Gas Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	17,734 5,781 1,657 3,087 945 65 2,719 162 3,078 173 5 60 0 1	22,009 8,114 1,505 3,723 713 50 3,107 265 3,692 677 55 95 12 2	24,670 9,395 1,415 4,272 641 3,264 337 4,027 1,009 108 117 38 3	31,277 12,895 1,317 5,466 544 40 3,667 552 4,679 1,536 281 168 121 11	37,223 15,753 1,295 6,624 460 34 4,040 780 5,321 2,034 462 217 186 18	42,672 18,216 1,309 7,660 29 4,413 994 5,963 2,516 640 265 254 254
Combined heat & power production Coal, Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	2,039 490 166 1,181 105 97 1 0	2,353 639 165 1,302 100 143 4 0	2,578 724 161 1,408 93 186 6 0	3,029 860 157 1,631 86 287 9 0	3,449 999 156 1,828 75 378 13 0	3,870 1,150 155 1,997 66 483 19 0
Main activity producers Autoproducers	1,487 552	1,583 770	1,659 919	1,827 1,202	1,963 1,487	2,115 1,755
Total and the second second						
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	19,773 13,477 6,271 1,823 4,268 1,050 2,719 3,578 3,078 3,078 173 5 259 62 0 1	24,362 16,309 8,753 1,669 5,025 812 3,107 4,946 3,692 677 55 409 99 12 2	27,248 18,153 10,119 1,576 5,680 734 3,264 4,027 1,009 108 523 123 123 38 3 3	34,307 22,997 13,756 1,474 7,097 630 3,667 7,643 4,679 1,536 839 176 839 176 121 11	40,672 27,225 16,752 1,451 8,452 536 34 4,040 9,408 5,321 2,034 4,62 1,158 230 186 18	46,542 30,970 19,366 1,464 9,657 4,54 29 4,413 11,159 5,963 2,516 640 1,477 284 254 254
Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal	13,477 6,271 1,823 4,268 1,050 2,719 0 3,578 3,078 173 3,078 173 5 259 62 0 1 1,667 1,655 0	16,309 8,753 1,669 5,025 812 50 3,107 0 4,946 3,692 677 55 409 99 12	18,153 10,119 1,576 5,680 734 44 3,264 5,831 4,027 1,009 108 523 123 38	22,997 13,756 1,474 7,097 630 3,667 0 7,643 4,679 1,536 281 839 176 121	27,225 16,752 1,451 8,452 536 4,040 9,408 5,321 2,034 462 1,158 230 186	30,970 19,366 1,464 9,657 454 29 4,413 5,963 2,516 640 1,477 284 254
Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy Distribution losses Own consumption electricity Electricity for hydrogen production	13,477 6,271 1,823 4,268 1,050 2,719 0 3,578 3,078 173 3,078 173 5 259 62 0 1 1,667 1,655 0	16,309 8,753 1,669 5,025 812 50 3,107 4,946 3,692 677 55 409 99 12 2 1,978 2,000 0	18,153 10,119 1,576 5,680 734 3,264 3,264 4,027 1,009 108 523 123 38 33 2,183 2,225 0	22;997 13,756 1,474 7,097 630 3,667 7, 643 4,679 1,536 281 839 176 121 11 2,677 2,691	27,225 16,752 1,451 8,452 5,36 4,040 9,408 5,321 2,034 1,158 230 186 18 3,134 3,161	30;970 19;366 1,464 9,657 454 29 4,413 1,159 5,963 2,516 640 1,477 284 25 3,577 3,643 4

table 13.2: global: heat supply

RES share (including RES electricity)	24%	24%	24%	23%	23%	24%
Total heat supply ¹⁾	139,669	150,596	157,623	173,749		205,190
Fossil fuels	106,018	114,557	119,914	132,992		156,803
Biomass	33,080	35,112	36,231	38,200		43,645
Solar collectors	384	544	848	1,629		3,105
Geothermal	187	383	631	928		1,635
Fuel cell ((hydrogen)	0	0	0	0		0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	122,577 90,140 32,053 383 168	132,004 97,556 33,904 544 348	137,961 102,319 34,796 846 585	152,268 114,304 36,337 1,627 864	125,770 38,794 2,367	180,124 135,800 41,224 3,100 1,486
Heat from CHP	8,073	9,545	10,336	11,840	13,245	14,889
Fossil fuels	7,558	8,903	9,526	10,711	11,848	13,173
Biomass	502	614	771	1,074	1,312	1,580
Geothermal	13	28	39	56	85	136
Fuel cell (hydrogen)	0	0	0	0	0	0
District heating plants	8,852	8,699	8,742	8,776	8,864	8,691
Fossil fuels	8,321	8,098	8,070	7,977	8,022	7,831
Biomass	525	594	664	789	828	841
Solar collectors	0	1	1	2	3	5
Geothermal	6	7	7	8	10	13
PJ/A	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

un table 13.3: global: co2 emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	9,957	11,905	13,043	16,020	17,145	17,763
Coal	5,854	7,993	9,128	11,806	12,719	13,151
Lignite	1,874	1,636	1,464	1,327	1,255	1,244
Gas	1,448	1,676	1,910	2,436	2,794	3,051
Oil	667	542	490	405	341	287
Diesel	114	57	51	46	37	30
Combined heat & power production	1,728	1,810	1,829	1,870	1,964	2,072
Coal	611	718	741	730	780	840
Lignite	228	192	172	175	182	194
Gas	717	765	808	879	938	988
Oil	172	135	109	86	64	49
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	11,685 6,466 2,101 2,165 954	13,715 8,711 1,829 2,442 734	14,873 9,869 1,636 2,718 650	17,890 12,536 1,502 3,315 537	19,109 13,499 1,437 3,731 442	19,835 13,991 1,438 4,039 367
CO ₂ emissions by sector	27,408	30,922	33,074	38,528	41,662	44,259
% of 1990 emissions	131%	148%	158%	184%	199%	211%
Industry	4,726	5,424	5,635	6,178	6,692	7,078
Other sectors	3,356	3,532	3,674	4,011	4,321	4,632
Transport	5,541	6,029	6,513	7,918	9,140	10,338
Electricity & steam generation	11,180	13,110	14,243	17,235	18,398	19,062
District heating	2,603	2,827	3,008	3,186	3,112	3,150
Population (Mill.)	6,670	7,302	7,675	8,309	8,801	9,150
CO2 emissions per capita (t/capita)	4.1	4.2	4.3	4.6	4.7	4.8

table 13.4: global: installed capacity

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	4,033 1,010 281 907 341 60 373 28 922 95 6 10 0 0	5,103 1,445 263 1,135 298 49 412 44 1,099 293 44 15 5 1	5,633 1,664 246 1,224 44 428 54 1,196 417 80 19 12 1	7,033 2,274 214 1,526 195 411 476 90 1,382 595 184 25 27 3	8,491 2,782 213 1,964 182 36 531 126 1,539 739 301 33 39 6	10,146 3,220 217 2,666 590 1,681 883 420 40 50 88
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	523 114 41 288 62 18 0 0	629 159 42 330 70 26 1 0	662 173 38 355 62 34 1 0	760 191 30 440 47 50 1 0	841 223 30 479 41 66 2 0	921 257 30 509 39 84 3 0
CHP by producer Main activity producers Autoproducers	379 143	417 212	420 242	461 300	499 342	533 389
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind P V Biomass Geothermal Solar thermal Ocean energy	4,556 3,103 1,123 1,195 403 60 373 1,080 922 95 6 46 11 0 0 0	5,732 3,792 1,604 305 1,465 368 49 412 1,528 1,099 293 44 71 16 5 1	6,295 4,052 1,837 284 1,579 309 44 428 1,196 417 80 88 20 12 1	7,793 4,959 2,445 2,44 1,967 242 41 476 2,359 1,382 1,382 595 184 140 27 27 3	9,332 5,949 3,005 2,43 2,442 224 36 531 2,852 1,539 301 192 35 39 6	11,067 7,148 3,477 216 3,175 216 34 590 3,329 1,681 420 244 43 50 883
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	101 2.2%	338 5.9%	498 7.9%	782 10.0%	1,046 11.2%	1,312 11.9%
RES share	23.7%	26.7%	28.8%	30.3%	30.6%	30.1%

table 13.6: global: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total	490,230	546,293	582,968	673,652	732,801	783,458
Fossil	396,654	437,637	465,563	538,368	581,427	616,715
Hard coal	116,959	146,386	159,514	190,696	204,413	212,289
Lignite	18,932	16,473	14,737	13,535	12,944	12,956
Natural gas	104,845	112,931	121,148	141,706	155,015	166,487
Crude oil	155,920	161,847	170,164	192,431	209,056	224,983
Nuclear	29,664	33,902	35,614	40,009	44,076	48,142
Renewables	63,911	74,754	81,791	95,275	107,298	118,601
Hydro	11,082	13,291	14,497	16,844	19,156	21,467
Wind	624	2,437	3,632	5,530	7,322	9,058
Solar	402	786	1,372	3,075	4,702	6,322
Biomass	49,816	55,891	59,557	66,385	71,938	76,777
Geothermal	1,984	2,342	2,721	3,403	4,116	4,888
Ocean Energy	2	7	12	38	64	90
RES share	13%	14%	14%	14%	15%	15%

table 13.5: global: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use)	337,329	375,885	401,692	464,927	522,095	575,530
Total (energy use)	305,093	340,909	365,099	425,571	480,395	531,485
Transport	82,068	91,231	99,269	120,621	139,420	158,010
Oil products	76,536	83,081	89,732	108,991	125,706	142,083
Natural gas	3,130	3,647	3,811	4,354	4,916	5,478
Biofuels	1,430	3,203	4,299	5,498	6,660	7,915
Electricity	973	1,300	1,427	1,774	2,133	2,524
<i>RES electricity</i>	171	257	304	402	504	622
Hydrogen	0	0	0	3	6	10
RES share Transport	2.0%	3.8%	4.6%	4.9%	5.1%	5.4%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	99,249 24,995 4,627 9,424 555 19,547 13,517 23,871 23,877 12 0 13.2%	32,887 6,590 9,992 717 25,170 13,756 24,685 9,154 69 0	26,070 97 9,859	143,735 46,291 10,025 11,292 1,253 29,481 14,891 29,215 186 12,142 237 0 16.6%	161,280 53,777 12,062 12,155 1,415 32,429 15,658 32,221 274 14,459 307 0 17.7%	59,951 13,928 12,986 1,579
Other Sectors Electricity RES electricity District heat RES district heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	123,776 33,253 5,842 6,546 438 4,535 19,059 25,970 378 33,884 151 32.9%	133,930 39,218 8,014 7,140 489 5,025 19,854 26,959 34,996 229 33.0%	142,069 43,890 9,550 7,525 5,031 20,444 28,686 749 35,388 355 32.8%	161,215 56,169 12,902 8,098 625 4,800 21,912 33,210 1,440 35,096 491 31.4%	179,695 67,952 16,316 8,651 668 4,499 23,312 37,515 2,093 34,972 700 30.5%	197,692 79,220 19,809 9,213 704 4,309 24,683 41,781 2,738 34,851 897 29.8%
Total RES	55,371	64,263	69,965	80,299	90,430	100,419
RES share	18.1%	18.9%	19.2%	18.9%	18.8%	18.9%
Non energy use	32,236	34,977	36,593	39,356	41,701	44,045
Oil	24,832	26,267	27,278	29,009	30,518	32,027
Gas	6,084	6,901	7,383	8,190	8,800	9,410
Coal	1,320	1,808	1,931	2,157	2,383	2,608

global:energy [r]evolution scenario

table 13.7: global: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	17,734 5,781 1,657 3,087 945 65 2,719 3,078 173 5 60 0 1	21,183 7,162 1,372 4,197 708 37 2,446 3,719 941 121 123 66 13	22,642 7,127 889 4,603 565 25 1,816 4,029 2,168 437 235 321 53	25,829 6,576 272 4,902 338 17 802 456 4,370 4,539 1,481 502 1,447 128	28,296 4,690 31 3,865 93 10 291 556 4,726 6,674 2,827 800 3,408 324	31,404 2,899 2,038 15 6 0 717 5,056 8,474 4,597 1,009 5,917 678
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	2,039 490 166 1,181 105 97 1 0	2,597 575 111 1,465 91 340 16 0	3,210 573 75 1,710 48 739 65 0	4,304 693 24 1,981 12 1,402 192 0	5,521 861 1,949 2,277 433 0	6,589 948 0 1,909 0 3,013 719 0
Main activity producers Autoproducers	1,487 552	1,651 946	1,872 1,337	2,330 1974	2,818 2,702	3,171 3,418
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	19,773 13,477 6,271 1,823 4,268 1,050 65 2,719 3,578 3,078 3,078 173 5 259 62 0 1	23,781 15,717 7,736 1,483 5,662 37 2,446 5,618 3,719 941 121 619 140 66 13	25,851 15,615 7,700 963 6,314 613 25 1,816 8,420 4,029 2,168 4,37 1,112 300 321 53	30,133 14,814 7,269 296 6,883 350 17 802 0 14,517 4,370 4,539 1,481 1,858 695 1,447 128	33,817 11,501 5,552 31 5,814 94 10 291 22,025 4,726 6,674 2,827 2,833 1,233 3,408 324	37,993 7,813 3,846 0 3,946 15 6 0 30,179 5,056 8,474 4,597 3,730 1,728 5,917 6,78
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	1,667 1,655 16,450	1,979 1,977 19,819	2,138 2,166 126 21,420	2,488 2,514 245 24,885	2,693 2,733 390 28,000	2,829 2,861 508 31,795
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	179 0.9%	1,075 4.5%	2,658 10.3%	6,148 20.4%	9,825 29.1%	13,749 36.2%
RES share 'Efficiency' savings (compared to Ref.)	18.1% 0	23.6% 695	32.6% 1,957	48.2% 6,006	65.1% 9,741	79.4% 13,267

table 13.8: global: heat supply

tubic ipioi grobai. ne						
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants	8,852	8,984	9,182	9,596	10,097	10,340
Fossil fuels	8,321	6,972	5,759	3,741	1,583	295
Biomass	525	1,461	2,023	2,731	3,043	2,854
Solar collectors	0	268	759	1,763	3,269	4,515
Geothermal	6	283	640	1,360	2,202	2,676
Heat from CHP	8,073	10,819	14,101	18,714	23,379	27,475
Fossil fuels	7,558	8,845	9,468	10,549	10,646	10,236
Biomass	502	1,841	4,088	6,527	8,990	11,028
Geothermal	13	134	545	1,638	3,743	6,211
Fuel cell (hydrogen)	0	0	0	0	0	0
Direct heating ¹⁾	122,577	126,793	128,070	127,344	123,478	118,017
Fossil fuels	90,140	89,014	83,567	70,887	52,833	33,977
Biomass	32,053	34,197	35,571	36,106	35,118	32,226
Solar collectors	383	2190	5,739	14,084	23,974	34,163
Geothermal	168	1392	3,194	6,266	11,552	17,651
Total heat supply ¹⁾	139,669	146,596	151,353	155,654	156,953	155,833
Fossil fuels	106,018	104,831	98,794	85,178	65,062	44,507
Biomass	33,080	37,498	41,682	45,365	47,151	46,109
Solar collectors	384	2,459	6,498	15,847	27,243	38,679
Geothermal	187	1,809	4,379	9,264	17,497	26,538
Fuel cell (hydrogen)	0	0	0	0	0	0
RES share	24%	28%	35%	45%	59 %	71%
(including RES electricity) 'Efficiency' savings (compared to Re	ef.) 0	4,085	6,283	18,095	33,254	49,357

table 13.9: global: co2 emissions

table 19.7. grobal. co2 e	missi	UIIS				
MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	9,957 5,854 1,874 1,448 667 114	11,034 7,086 1,490 1,879 535 43	10,396 6,970 913 2,052 430 31	8,145 5,435 269 2,169 250 21	5,151 3,438 28 1,604 68 13	2,613 1,831 765 11 7
Combined heat & power production Coal Lignite Gas Oil	1,728 611 228 717 172	1,735 648 140 839 108	1,681 606 87 939 50	1,689 606 30 1,040 13	1,629 644 985 0	1,532 635 0 898 0
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	11,685 6,466 2,101 2,165 954	12,769 7,734 1,630 2,718 687	12,077 7,576 1,000 2,991 511	9,834 6,040 299 3,209 285	6,780 4,081 28 2,589 82	4,146 2,466 0 1,663 17
CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	27,408 131% 4,726 3,356 5,541 11,180 2,603	28,667 137% 4,969 3,159 5,768 12,186 2,586	26,712 128% 4,718 2,860 5,594 11,471 2,069	21,962 105% 4,078 2,306 5,007 9,171 1,400	15,884 76% 3,077 1,695 4,233 6,089 790	10,202 49% 2,017 1,147 3,272 3,423 343
Population (Mill.) CO2 emissions per capita (t/capita)	6,670 4.1	7,302 3.9	7,675 3.5	8,309 2.6	8,801 1.8	9,150 1.1

table 13.10: global: installed capacity

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	4,033 1,010 281 907 341 60 373 28 922 95 6 10 0 0	5,204 1,286 238 1,282 316 39 327 48 1,110 407 98 19 25 9	6,010 1,276 1,27 1,416 249 27 239 62 1,206 878 335 36 105 29	7,657 1,206 45 1,525 1,525 1,307 1,733 1,036 75 1,307 1,733 1,036 71 324 73	9,038 924 6 1,284 11 38 87 1,387 2,409 1,915 114 647 168	10,136 611 0 604 10 5 0 107 1,438 2,968 2,968 2,968 144 1,002 303
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	523 114 41 288 62 18 0 0	691 147 30 383 61 67 3 0	822 154 18 459 29 150 13 0	1,101 204 5 586 7 261 37 0	1,350 265 0 589 0 413 83 0	1,527 290 557 0 545 134 0
CHP by producer Main activity producers Autoproducers	379 143	441 250	500 323	657 443	791 559	829 698
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind P V Biomass Geothermal Solar thermal Ocean energy	4,556 3,103 1,123 1,195 403 373 1,080 922 95 6 46 11 11 0 0	5,895 3,782 1,433 268 1,665 377 327 0 1,786 1,110 407 98 1,15 23 25 9	6,832 3,780 1,430 1,71 1,875 277 239 2,813 1,206 878 335 212 49 105 29	8,757 3,735 1,410 2,111 146 18 105 4,917 1,307 1,733 1,036 336 108 324 73	10,388 3,126 1,189 1,873 48 11 38 7,224 1,387 2,409 1,915 500 196 647 168	11,662 2,078 902 0 1,161 10 5 0 9,585 1,438 2,943 2,948 652 279 1,002 303
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	101 2.2%	513.6 8.7%	1,242.2 18.2%	2,842.4 32.5%	4,492.7 43.2%	6,214.6 53.3%
RES share	23.7%	30.3%	41.2%	56.2%	69.5%	82.2%

table 13.11: global: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Fossil Hard coal Lignite Natural gas	190,230 396,654 116,959 18,932 104,845 155,920	521,823 411,102 126,176 14,686 116,974 153,267	524,747 393,705 119,448 9,011 121,646 143,599	511,483 342,939 94,152 2,694 122,337 123,756	482,327 264,921 64,031 254 99,450 101,186	459,519 190,779 37,563 0 71,383 81,833
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	29,664 63,911 11,082 624 402 49,816 1,984 1,984 13%	26,683 84,038 13,388 3,388 3,131 59,821 4,263 48 16% 24,644	19,818 111,223 14,503 7,803 9,228 70,335 9,163 190 21% 58,515	8,750 159,794 15,732 16,340 26,388 81,533 19,341 459 31% 162,699	3,174 214,232 17,014 24,026 49,689 87,392 34,945 1,166 44% 251,195	0 268,740 18,201 30,506 76,529 90,922 50,141 2,441 58% 324,757

table 13.12: global: final energy demand

8	2007	2015	2020	2030	2040	2050	ix
PJ/a							
Total (incl. non-energy use) Total (energy use) Transport Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	337,329 305,093 82,068 76,536 3,130 1,430 973 171 0 2.0%	79,533 3,397 2,584 1,745 389 18		68,750 3,325 7,297 8,750 4,373 622	58,070 2,895 8,976 14,137 9,621	44,633 2,731 11,720 23,051 19,197 1,372	APPENDIX - GLOBAL
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	24,995 4,627 9,424 555 19,547 13,517 23,871 5 7,877 12	31,722 7,396 10,628 2,249 21,880 12,179 25,044 738 9,102 457 0	115,355 33,780 10,578 12,017 4,329 20,473 10,026 25,975 1,924 9,878 1,280 0 24.3%	36,476 16,750 14,734 7,749 16,199 6,912 25,822 4,734 11,043 2,553 0	17,833 12,038 9,758 3,682 23,382 8,627 11,866 5,056 0	39,201	744
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors Total RES	123,776 33,253 5,842 6,546 438 4,535 19,059 25,970 378 33,884 151	129,885 37,881 9,057 7,987 1,728 3,912 17,837 24,739 1,452 35,361 37,2% 71,232 21.7%	39,972 13,541 9,953 3,715 3,099	44,361 22,297 12,136 6,477 2,549 10,095 21,672 9,350 35,424 2,863 55.2%	9,534 2,014 5,963 17,017 15,347 32,571 5,120 67.8%	52,208 42,558 15,541 11,971 1046	
RES share Non energy use Oil Gas Coal	18.1% 32,236 24,832 6,084 1,320	34.977	27.4% 36,245 27,026 7,289 1,930	38,549 28,444 7,951	40.398	42.174	

3

global: advanced energy [r]evolution scenario

table 13.13: global: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	17,734 5,781 1,657 3,945 65 2,719 162 3,078 173 5 60 0 1	21,191 7,149 1,192 4,110 2,446 291 3,728 1,166 132 130 81 13	22,703 6,575 631 4,049 537 27 1,816 392 4,059 2,849 594 689 119	26,604 4,359 114 3,874 323 17 765 481 4,416 5,872 1,953 1,275 2,734 420	31,733 1,628 10 2,630 93 10 291 560 4,804 8,481 4,511 2,236 5,561 918	37,840 46 0 476 14 6 0 5,108 10,841 6,846 2,968 9,012 1,943
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer Main activity producers	7490 166 1,181 105 97 1 0	2,597 571 110 1,483 91 326 15 0 1,651	3,216 562 69 1,728 49 742 66 0 1,862	4,298 539 20 2,047 16 1,424 251 1 2,304	5,193 448 0 1,735 0 2,300 700 8 2,548	6,082 388 0 1,396 0 2,991 1,263 44 2,769
Autoproducers Total generation	^{1,487} 552 19,773	946 23,788	1,353 25,919	2,304 1,994 30,901	2,548 2,644 36,926	3,313 43.922
Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind P Biomass Geothermal Solar thermal Ocean energy	13,477 6,271 1,823 4,268 1,050 65 2,719 0 3,078 3,078 3,078 3,078 173 5 259 62 0 1	15,460 7,720 1,302 5,592 804 2,446 2,446 0 5,882 3,728 1,166 132 617 145 81 13	14,227 7,138 7,138 5,777 586 27 1,816 0 9,876 4,059 2,849 1,134 4,059 2,849 1,134 4,32 689 119	11,309 4,898 134 5,921 339 17 765 17 18,827 4,416 5,872 1,953 1,906 1,526 2,734 420	6,556 2,076 4,366 94 10 291 8 30,071 4,804 8,481 4,804 8,481 4,511 2,860 2,936 5,561 918	2,326 433 0 1,873 14 6 0 44 41,552 5,108 10,841 6,846 3,571 4,230 9,012 1,943
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	1,655 16,450	1,979 1,977 19,826	2,138 2,156 143 21,482	2,423 2,387 299 25,792	2,631 2,504 682 31,109	2,766 2,579 1,303 37,246
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	179 0.9%	1,311 5.5%	3,562 13.7%	8,245 26.7%	13,910 37.7%	19,630 44.7%
RES share 'Efficiency' savings (compared to Ref.)	18.1% 0	24.7% 695	38.1% 1,955	60.9% 5,973	81.4% 9,612	94.6% 13,014

table 13.14: global: heat supply

RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 0	4,085	6,283	18,095	33,254	49,357
RES share (including RES electricity)	24%	28%	35%	49 %	70%	91%
Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen)	139,669 106,018 33,080 384 187 0	146,597 105,094 37,317 2,381 1,806 0	151,353 98,365 41,753 6,758 4,477 0	155,654 79,886 45,881 19,020 10,865 2	156,156 46,951 48,135 35,415 25,626 29	152,226 13,925 46,911 51,178 40,072 140
Direct heating ³⁾ Fossil fuels Biomass Solar collectors Geothermal	122,577 90,140 32,053 383 168	126,839 89,235 34,090 2,114 1,400	127,931 83,058 35,630 5,992 3,251	126,136 65,987 36,181 16,919 7,050	118,756 36,696 34,919 30,810 16,332	108,686 7,611 31,922 44,349 24,804
Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	8,073 7,558 502 13 0	10,807 8,888 1,794 125 0	14,149 9,508 4,090 551 0	19,023 10,278 6,600 2,142 2	23,565 8,165 9,360 6,012 29	28,248 6,176 11,159 10,772 140
District heating plants Fossil fuels Biomass Solar collectors Geothermal	8,852 8,321 525 0 6	8,952 6,971 1,433 267 281	9,273 5,799 2,033 766 675	10,494 3,621 3,100 2,101 1,673	13,834 2,090 3,856 4,606 3,282	15,292 138 3,830 6,829 4,495
PJ/A	2007	2015	2020	2030	2040	2050

table 13.15: global: co2 emissions 2007 2015

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	9,957 5,854 1,874 1,448 667 114	10,790 7,069 1,293 1,843 539 46	9,327 6,426 645 1,812 412 32	5,688 3,595 109 1,723 240 21	2,351 1,173 9 1,087 68 13	215 29 0 170 10 7
Combined heat & power production Coal Lignite Gas Oil	1,728 611 228 717 172	1,741 645 139 846 110	1,677 596 82 946 52	1,591 457 28 1,090 17	1,185 319 0 866 0	881 256 625 0
CO ² emissions electricity & steam generation Coal Lignite Gas Oil & diesel	11,685 6466 2101 2165 954	12,531 7,715 1,432 2,689 696	11,003 7,022 727 2,758 496	7,280 4,052 137 2,812 278	3,537 1492 9 1953 82	1,096 285 0 795 17
CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating Population (Will.) CO ₂ emissions per capita (t/capita)	27,408 131% 4,726 3,356 5,541 11,180 2,603 6,670 4.1	28,344 135% 4,980 3,169 5,720 11,944 2,531 7,302 3.9	25,467 122% 4,666 2,868 5,567 10,388 1,978 7,675 3.3	18,370 88% 3,970 2,093 4,567 6,619 1,121 8,309 2.2	10,005 48% 2,350 1,155 3,039 2,925 537 8,801 1.1	3,267 16% 914 332 1,360 538 122 9150 0.4

2020

2030

2040 2050

RES share	23.7%	31.7%	47.9 %	67.3%	83.7%	94.2%
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	101 2.2%	610.9 10.2%	1,637.9 23.4%	3,750.9 40.4%	6,438.5 54.0%	8,820.8 62.8%
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	4,556 3,103 1,123 1,195 403 60 373 922 95 6 406 46 11 0 0	5,961 3,743 1,429 1,647 3855 327 1,891 1,111 494 108 115 23 30 9	7,006 3,409 1,330 1,650 271 28 239 3,359 1,212 1,140 214 69 225 58	9,286 2,934 963 24 1,788 141 18 100 6,252 1,316 2,241 1,330 343 238 605 180	11,930 1,903 444 2 1,398 499 11 388 9,987 1,406 3,054 2,959 501 405 501 425	14,045 807 120 673 9 5 0 9 13,229 1,451 3,754 4,318 621 693 1,643 748
CHP by producer Main activity producers Autoproducers	379 143	445 251	501 325	675 445	691 545	670 670
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	523 114 41 288 62 18 0 0	696 147 30 390 61 65 3 0	826 153 17 464 29 150 13 0	1,120 151 5 644 8 265 47 0	1,236 118 0 566 0 418 132 2	1,341 107 451 540 234 9
GW Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	2007 4,033 1,010 281 907 341 60 373 28 922 95 6 10 0 0	2015 5,265 1,282 211 1,257 324 42 327 50 1,111 494 108 21 30 9	2020 6,180 1,178 111 1,186 242 28 239 64 1,212 1,212 1,212 1,40 439 57 225 58	2030 8,166 812 19 1,143 133 18 100 78 1,316 2,241 1,330 191 605 180	2040 10,694 325 2 832 48 11 38 83 1,406 3,054 2,959 337 1,173 425	2050 12,704 13 0 222 9 5 0 81 1,451 3,754 4,318 459 1,643 748
0111	2007	2015	2020	2030	2040	2050

table 13.16: global: installed capacity

table 13.17: global: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total	490,230	518,643	516,472	500,762	479,473	465,995
Fossil	396,654	406,311	377,610	298,995	189,806	93,555
Hard coal	116,959	122,107	108,639	68,639	28,569	7,501
Lignite	18,932	12,898	6,549	1,232	83	0
Natural gas	104,845	118,449	119,675	114,122	79,547	34,285
Crude oil	155,920	152,857	142,747	115,002	81,608	51,770
Nuclear	29,664	26,683	19,818	8,346	3,174	0
Renewables	63,911	85,649	119,044	193,421	286,493	372,439
Hydro	11,082	13,421	14,611	15,898	17,294	18,389
Wind	624	4,198	10,256	21,139	30,532	39,029
Solar	402	3,146	11,376	35,893	71,675	108,367
Biomass	49,816	60,427	70,581	82,355	89,012	88,768
Geothermal	1,984	4,409	11,790	36,624	74,676	110,892
Ocean Energy	1,984	48	428	1,512	3,305	6,995
RES share	13%	17%	23%	39%	60%	80%
'Efficiency' savings (compared to Ref.) 0	27,802	66,790	173,419	254,049	318,386

table 13.18: global: final energy demand

tanic ipiloi giobali li		•••				
PJ/a	2007	2015	2020	2030		2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	337,329 305,093 82,068 76,536 3,130 1,430 973 171 0 2.0%	78,901 3,327 3,258 1,772 402 18	76,682 3,253 4,832 3,574 1,321 349	62,767 2,878 8,062 11,888 7,692 760	41,671 2,130 9,000 23,420 19,531 1,791	18,448 1,424 9,723 36,354 34,613 3,517
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	24,995 4,627 9,424 555 19,547 13,517 23,871	31,722 7,624 10,602 2,203 21,901 12,277 25,059 736 8,989 457 0	33,787 12,038 12,343 4,533 20,036 9,847 25,852 2,173 10,045 1,310 0	36,531 20,944 15,256 8,804 16,274 6,141 24,719 5,546 11,197 2,851 0	15,123 6,329 2,802 18,404 12,048 12,252 7,743 976	39,770 37,202 23,718 21,468 515 6,025 17,457 12,564 11,564 11,330 3,670
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	33,253 5,842 6,546 438 4,535 19,059 25,970 378 33,884 151	37,880 9,635 7,968 1,697 3,979	39,972 16,114 9,769 3,606 3,142 14,972 24,344 3,819	44,424 27,991 12,740 7,158 2,658 8,687 19,529	140,389 48,406 39,913 16,136 12,504 978 4,329 11,441 18,762 33,587 6,750 79.4%	52,551 50,000 18,145 16,629 23 1,090 2,865 26,992
Total RES RES share	55,371 18.1%	72,452 22.0%	97,563 28.9%	151,147 44.0%	220,158 65.3%	284,295 87.1%
Non energy use Oil Gas Coal	32,236 24,832 6,084 1,320	26,267	36,245 27,026 7,289 1,930	38,549 28,444 7,951 2,154	40,398 29,627 8,400 2,371	42,174 30,761 8,817 2,595

13

global: total new investment by technology

table 13.19: global: total investment

MILLION \$	2005-2010	2011-2020	2021-2030	2007-2030	2007-2030 AVERAGE PER YEAR
Reference scenario					
Conventional (fossil & nuclea Renewables (incl CHP) Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	ar) 1,630,048 974,091 101,854 549,927 177,442 68,355 62,612 12,157 1,743	2,299,220 2,218,338 173,571 1,095,820 422,529 325,665 106,764 90,209 3,781	2,264,783 1,895,874 209,662 956,401 322,490 204,970 97,500 97,568 7,284	6,194,051 5,088,303 485,088 2,602,148 922,460 598,990 266,875 199,934 12,808	269,307 221,231 21,091 113,137 40,107 26,043 11,603 8,693 557
Energy [R]evolution					
Conventional (fossil & nuclea Renewables (incl CHP) Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	ar) 1,618,667 974,091 101,854 549,927 177,442 68,355 62,612 12,157 1,743	1,741,083 4,544,951 659,270 1,186,011 902,767 727,360 410,044 555,252 104,246	1,115,721 4,834,880 475,643 736,767 1,006,011 977,746 517,337 1,011,876 109,500	4,475,471 10,353,922 1,236,767 2,472,705 2,086,220 1,773,461 989,993 1,579,285 215,489	194,586 450,171 53,772 107,509 90,705 77,107 43,043 68,665 9,369
Advanced Energy [R]evolutio	on				
Conventional (fossil & nuclea Renewables (incl CHP) Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	ar) 1,618,693 974,091 101,854 549'927 177,442 68,355 62,612 12,157 1,743	1,493,043 5,898,028 662,986 1,057,927 1,219,748 954,146 613,990 1,190,914 198,317	821,582 7,181,789 491,273 747,056 1,259,782 1,237,544 1,385,343 1,762,248 298,543	3,933,318 14,053,909 1,256,113 2,354,909 2,656,973 2,260,046 2,061,945 2,965,319 498,604	171,014 611,040 54,614 102,387 115,521 98,263 89,650 128,927 21,678

notes

oecd north america: reference scenario

table 13.20: oecd north america: electricity generation									
TWh/a	2007	2015	2020	2030	2040	2050			
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	4,879 1,168 1,038 859 111 11 941 43 645 38 1 24 0 0	5,144 1,355 836 910 981 76 677 193 9 37 5 0	5,415 1,542 720 959 41 8 1,010 91 686 281 20 45 13 0	6,033 1,916 549 1,070 24 7 1,093 138 704 392 44 59 35 1	6,659 2,259 399 1,192 6 1,176 192 722 503 66 73 61 2	7,283 2,558 280 1,313 5 6 1,259 245 740 614 88 87 85 3			
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen <i>CHP by producer</i> Main activity producers Autoproducers	342 56 1 227 19 39 0 0 194 148	370 60 2 232 19 56 1 0 209 161	396 65 2 241 18 68 2 0 217 179	479 84 0 283 18 91 4 0 267 212	554 108 0 314 16 110 5 0 299 256	634 137 0 346 12 130 9 0 329 305			
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	5,221 3,489 1,224 1,039 1,086 129 11 941 645 38 791 645 38 1 83 24 0 0	5,514 3,479 1,414 838 1,143 74 10 981 0 1,054 677 193 9 132 38 5 0	5,810 3,595 1,606 721 1,200 8 1,010 1,205 686 281 20 159 47 13 0	6,512 3,951 2,000 1,353 42 7 1,093 1,468 704 392 44 229 63 35 1	7,214 4,304 2,368 399 1,506 25 6 1,176 1,733 722 503 66 302 78 66 302 78 61 2	7,917 4,657 2,809 1,659 1,259 2,280 1,259 2,001 2,001 614 88 375 96 85 3			
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	363 332 4,530	388 356 4,778	412 378 5,032	444 405 5,685	476 431 6,338	508 457 6,993			
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	39 0.7%	202 3.7%	301 5.2%	437 6.7%	571 7.9%	705 8.9%			
RES share	15.2%	19.1%	20.7%	22.5%	24.0%	25.3%			
table 13.21: oecd north	ame	rica: h	eat su	pply					
PJ/A	2007	2015	2020	2030	2040	2050			

RES share (including RES electricity)	12.0%	14.9%	16.3%	19.0%	21.2%	23.6%
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal Fuel cell ((hydrogen)	22,198 19,540 2,554 61 44 0	21,487 18,278 3,011 70 128 0	21,781 18,237 3,189 140 215 0	22,836 18,503 3,675 386 271 0	23,899 18,826 4,138 551 383 0	25,018 19,125 4,643 720 530 0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	21,331 18,855 2372 61 44	20,575 17,575 2,806 70 124	20,816 17,521 2,947 140 208	21,723 17,713 3,365 386 260	22,620 17,923 3,781 551 365	23,538 18,092 4,237 720 490
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	866 686 180 0	881 673 203 4 0	918 672 240 7 0	1,045 725 308 12 0	1,152 780 354 18 0	1,292 851 402 40 0
PJ/A District heating plants Fossil fuels Biomass Solar collectors Geothermal	2 0 2 0 0	2015 31 29 2 0 0	44 44 3 0 0	66 66 2 0	127 123 0 0	2050 188 183 4 0 0
	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.22: oecd north america: co_2 emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	2,746	2,639	2,637	2,801	2,865	2,940
Coal	1,092	1,266	1,432	1,750	1,975	2,145
Lignite	1,182	936	759	575	383	249
Gas	379	391	412	453	496	538
Oil	85	40	29	17	6	4
Diesel	8.3	7.3	6.5	5.8	4.9	5.0
Combined heat & power production	164	159	154	161	173	189
Coal	51	49	47	51	56	67
Lignite	2	2	1	0	0	0
Gas	100	96	94	98	106	114
Oil	11	12	11	11	10	8
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	2,911 1,142 1,184 479 104	2,798 1,316 937 487 59	2,791 1,479 760 506 47	2,961 1,802 575 551 33	3,038 2,032 383 602 21	3,129 2,211 249 652 17
CO2 emissions by sector	6,686	6,469	6,469	6,637	6,715	6,822
% of 1990 emissions	120%	116%	116%	119%	121%	122%
Industry	611	574	557	529	505	484
Other sectors	752	680	689	712	736	761
Transport	2,134	2,067	2,073	2,101	2,128	2,155
Electricity & steam generation	2,870	2,754	2,743	2,906	2,970	3,046
District heating	319	394	406	390	375	377
Population (Mill.)	449	483	503	537	561	577
CO2 emissions per capita (t/capita)	14.9	13.4	12.9	12.4	12.0	11.8

13

glossary & appendix | APPENDIX - OECD

NORTH AMERICA

-42

table 13.23: oecd north america: installed capacity							
GW	2007	2015	2020	2030	2040	2050	
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	1,121 183 162 362 66 21 115 7 183 19 1 4 0 0	1,176 213 131 370 37 18 120 11 186 75 8 5 2 0	1,234 245 114 382 20 16 123 188 106 17 7 4 0	1,353 294 84 409 11 133 133 20 192 141 37 8 11 1	1,499 346 61 444 6 11 143 27 197 181 56 10 17 2	1,648 392 422 479 5 11 153 34 201 221 74 12 21 3	
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	106 10 79 10 7 0 0	119 11 0 88 10 10 0 0	121 12 0 89 7 12 0 0	141 15 0 104 6 16 1 0	145 19 0 99 6 20 1 0	160 25 0 104 6 23 1 0	
CHP by producer Main activity producers Autoproducers	69 37	75 44	72 49	84 58	90 55	98 62	
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	1,227 892 193 162 441 75 21 115 221 183 19 1 144 4 0 0	1,295 879 224 131 458 48 18 120 297 186 75 8 20.4 6 2 0	1,355 886 257 115 471 277 16 123.1 346 188 106 16 25 7 4 0	1,494 935 308 83 512 17 13 133.1 133.1 192 142 141 37 36 9 11 1	1,645 992 365 543 12 11 143 509 197 181 56 47 11 17 2	1,808 1,064 416 583 11 153 0 591 201 220 74 58 13 21 3	
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	20 1.6%	83 6.4%	123 9.0%	179 12.0%	239 14.5%	298 16.5%	
RES share	18.0%	22.9 %	25.6%	28.5%	31.0%	32.7%	

table 13.24: oecd north america: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total	115,758	114,511	116,903	122,485	125,327	129,374
Fossil	97,824	93,807	94,083	96,257	95,930	96,751
Hard coal	14,252	16,046	17,647	20,864	23,209	25,015
Lignite	10,671	8,444	6,849	5,184	3,450	2,240
Natural gas	27,435	27,073	27,407	28,565	28,322	29,144
Crude oil	45,466	42,245	42,179	41,643	40,949	40,352
Nuclear	10,260	10,702	11,018	11,924	12,829	13,735
Renewables	7,674	10,002	11,801	14,304	16,567	18,889
Hydro	2,323	2,437	2,470	2,534	2,599	2,664
Wind	136	695	1,012	1,411	1,811	2,210
Solar	64	121	255	671	1,004	1,343
Biomass	4,647	6,187	7,346	8,759	9,943	11,115
Geothermal	502	562	720	925	1,202	1,545
Ocean Energy	0	0	0	4	7	11
RES share	6.6%	8.7%	10.1%	11.7%	13.2%	14.5%

table 13.25: oecd north america: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofruels Electricity <i>RES electricity</i> Hydrogen RES share Transport	80,323 72,347 31,163 29,612 856 646 48 7 2.1%	78,829 71,712 30,857 28,679 912 1,213 53 10 0 4.0%	80,602 73,484 31,485 28,762 913 1,757 53 11 0 5.6%	84,380 77,346 32,113 29,141 949 1,966 57 13 0 6.2%	88,178 81,228 32,741 29,516 989 2,175 61 15 0 6.7%	92,001 85,134 33,369 29,890 1,029 2,386 64 16 0 7.2%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	16,149 4,488 680 1,225 1,763 6,142 0 1,818 5 0 15.9%	16,054 4,615 882 731 82 1,141 1,469 5,793 9 2,274 22 0 20.4%	16,022 4,653 965 783 116 962 1,421 5,750 31 2,363 60 0 22.1%	16,190 4,791 1,080 912 180 716 1,337 5,635 73 2,627 99 0 25.1%	16,373 4,920 1,182 1,056 212 512 1,231 5,518 109 2,905 122 0 27.7%	16,581 5,057 1,278 1,229 317 1,117 5,346 136 3,212 167 0 30.4%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	25,035 11,773 1,784 93 8,75 3,399 8,729 61 866 39 11.0%	24,800 12,532 2,396 80 9 57 2,687 8,432 61 873 79 13.8%	25,978 13,409 2,781 75 11 63 2,659 8,609 108 942 112 15.2%	29,043 15,619 3,521 77 15 32 2,569 9,175 313 1,139 11,139 119 17.6%	32,114 17,837 4,286 82 16 37 2,471 9,720 441 1,329 198 19.5%	35,184 20,055 5,068 88 18 37 2,374 10,264 584 1,516 267 21.2%
Total RES RES share	5,973 8.3%	7,910 11.0%	9,257 12.6%	11,145 14.4%	12,990 16.0%	14.896 17.5%
Non energy use Oil Gas Coal	7,976 7,091 868 17	7,118 6,311 790 16	7,118 6,303 797 17	7,034 6,223 793 18	6,950 6,143 789 18	6,866 6,063 785 19

oecd north america: energy [r]evolution scenario

table 13.26: oecd north	2007	2015	2020	2030	2040	2050
Power plants	4,879	4,950	5,071	5,787	5,947	5,549
Coal Lignite	1,168 1,038	877 804	568 499	445 96	91 0	C
Oil	859 111	1,314 48	1,598 22	1,629 11	1,053	92 C
Diesel Nuclear	11 941	680	4 410	2 53	1	
Biomass Hydro	43 645	61 747	71 797	68 831	56 866	64 899
Wind PV Saathaumaal	38 1	276 31	629 142	1,220	1,526 761	1,646 957
Geothermal Solar thermal power plants Ocean energy	24 0 0	62 36 8	138 173 19	341 569 52	538 937 108	632 1,104 156
Combined heat & power production	56	519 72	696	853	970	1,056
Lignite Gas	1 227 19	1 317 22	0 422 16	0 441 0	0 321 0	264
Dil Biomass Soothormal	19 39 0	105	185 14	348 34	577	0 708 84
Geothermal Hydrogen CHP by producer	Ő	0	14	0	58 0	(
Main activity producers Autoproducers	194 148	235 284	277 419	320 533	353 617	386 670
Total generation Fossil	5,221 3,489	5,469 3,462	5,767 3,188	6,639 2,654	6,917 1,483	6,605 356
Coal Lignite	1,224 1,039	949 805	628 499	475	´105 0	C
Gas Oil	1,086 129	1,631 70	2,020 38	2,070 11	1,374 3	356
Diesel Nuclear	11 941	7 680	4 410	2 53	1 7	0
Hydrogen Renewables	0 791	0 1,327 747	0 2,168	0 3,933 831	0 5,427	6,249
Hydro Wind	645 38	276	797 629	1,220	866 1,526	1.646
PV Biomass	1 83	31 166	142 256	469 416	761 633	957 772
Geothermal Solar thermal Ocean energy	24 0 0	64 36 8	152 173 19	376 569 52	596 937 108	716 1,104 156
Distribution losses	363 332	391	403	420	423	406
Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	4,530	347 4,732	383 78 4,909	421 140 5,666	449 188 5,863	445 182 5,578
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	39 0.7%	315 5.8%	790 13.7%	1,741 26.2%	2,395 34.6%	2,759 41.8%
RES share Efficiency' savings (compared to Ref.)	15.2% 0	24.3% 75	37.6% 335	59.2% 980	78.5% 1,777	94.6% 2,847
table 13.27: oecd north						
PJ/A District hosting plants	2007	2015 402	2020 1,001	2030	2040	2050
District heating plants Fossil fuels Biomass	2 0	0	1,001 0 486	2,055	2,854	2,838 0 943
Solar collectors Geothermal	2 0 0	219 95 88	281 234	903 670 482	1,094 1,076 684	1,211 683
Heat from CHP	866	1,220	1,727	2,386	3,061	3,479
Fossil fuels Biomass	686 180	836 376	995 643	997	749	626
Geothermal Fuel cell (hydrogen)	0 0	8	88 0	1,165 223 0	1,925 387 0	2,337 517 (
			10 700	16,900	14,968	13,330
	21,331	19,782	18,700	10,700		
Fossil fuels Biomass	18,855 2372	16,378	14,350	10.433	6 803	4,635 2,597
Fossil fuels Biomass Solar collectors	18,855	19,782 16,378 2,731 502 170	14,350 2,931 912 507	10,433 2,887 2,544 1,035		4,635 2,597 4,019
Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁾	18,855 2372 61 44	16,378 2,731 502 170 21,403	14,350 2,931 912 507 21,427	10,433 2,887 2,544 1,035 21 341	6,803 2,876 3,525 1,764 20 883	4,635 2,597 4,019 2,079 19,646
Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁾ Fossil fuels Biomass	18,855 2372 61 44 22,198 19,540 2,554	16,378 2,731 502 170 21,403 17 214	14,350 2,931 912 507 21,427 15,345 4,061	10,433 2,887 2,544 1,035 21 341	6,803 2,876 3,525 1,764 20 883	4,635 2,597 4,019 2,079 19,646 5,260
Fossil fuels Solar collectors Geothermal Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	18,855 2372 61 44 22,198 19,540 2,554 61 44	16,378 2,731 502 170 21,403 17,214 3,326 597 266	14,350 2,931 912 507 21,427 15,345 4,061 1,192 829	10,433 2,887 2,544 1,035 21,341 11,431 4,955 3,214 1,741	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835	4,635 2,597 4,019 2,079 19,646 5,260 5,877 5,230 3,279
Fossil fuels Solar collectors Geothermal Total heat supply ¹⁹ Fossil fuels Biomass Golar collectors Geothermal Fuel cell (hydrogen) RES share	18,855 2372 61 44 19,540 2,554 61 44 0 12,0%	16,378 2,731 502 170 21,403 17,214 3,326 597	14,350 2,931 912 507 21,427 15,345 4,061 1,192	10,433 2,887 2,544 1,035 21 341	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601	4,635 2,597 4,019 2,079 19,646 5,260 5,877 5,230 3,279
Tossil fuels Solar collectors Seothermal Total heat supply ¹⁰ Tossil fuels Biomass Solar collectors Seothermal -uel cell (hydrogen) ESS share	18,855 2372 61 44 19,540 2,554 61 44 0 12,0%	16,378 2,731 502 170 21,403 17,214 3,326 597 266 0	14,350 2,931 912 507 21,427 15,345 4,061 1,192 829 0	10,433 2,887 2,544 1,035 21,341 11,431 4,955 3,214 1,741 0	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835 0	4,635 2,597 4,010 2,077 19,646 5,260 5,287 5,230 3,279 () 73%
Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹³ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) Efficiency' savings (compared to Ref.) L) heat from electricity (direct and from electric f	18,855 2372 61 44 19,540 2,554 61 44 0 12.0% 0 eeat pumps)	16,378 2,731 502 170 21,403 17,214 3,326 0 20% 84 not included;	14,350 2,931 912 507 21,427 15,345 4,061 1,192 829 0 28% 353 covered in the	10,433 2,887 2,544 1,035 21,341 11,431 11,431 4,955 3,214 1,741 0 46% 1,495	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835 0 64% 3,016 `electric appli	4,635 2,597 4,0179 2,079 19,646 5,877 5,230 3,279 73% 5,372
Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹³ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) Efficiency' savings (compared to Ref.) L) heat from electricity (direct and from electric f	18,855 2372 61 44 22,198 19,540 2,5540 2,5540 12,0% 0 etat pumps)	16,378 2,731 502 170 21,403 17,214 3,326 597 266 0 20% 84 not included; rica: C	14,350 2,931 912 507 21,427 15,345 4,061 1,192 829 0 28% 353 covered in the co 2 emi	10,433 2,887 2,544 1,035 21,341 11,431 4,955 3,214 1,741 1,741 0 46% 1,495 model under ission	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835 0 64% 3,016 `electric appli	4,635 2,597 4,012 2,079 19,646 5,260 5,877 5,230 3,279 (0) 73% 5,372 73%
Fossil fuels Solar collectors Geothermal Total heat supply ¹⁹ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) Efficiency' savings (compared to Ref.) L) heat from electricity (direct and from electric h table 13.28: oecd north MILL t/a	18,855 2372 61 44 22,198 19,540 2,554 61 44 0 12.0% 0 neat pumps) a ame 2007	16,378 2,731 502 170 21,403 17,214 3,326 597 266 0 20% 84 not included; rica: c 2015	14,350 2,931 912 507 21,427 15,345 4,061 1,192 28% 353 covered in the C2 emi 2020	10,433 2,887 2,544 1,035 21,341 11,431 4,955 3,214 1,741 0 46% 1,495 1,495 3,214 1,745 1,495	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835 0 64% 3,016 S 2040	4,635 2,597 4,010 2,075 19,646 5,877 5,230 3,275 73% 5,372 ances'
Fossil fuels Biomass Solar collectors Geothermal Total heat supply" Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric I table 13.28: oecd north MILL t/a Condensation power plants Coal	18,855 2372 61 44 19,540 19,540 2,554 61 44 0 12.0% 0 eat pumps) ame 2007 2,746 1,092	16,378 2,731 2702 170 21,403 17,214 3,326 597 206 20% 84 not included; rica: c 2015 2,324 820	14,350 2,931 507 21,427 15,345 4,061 1,192 0 28% 353 covered in the 02 emi 2020 1,759 557	10,433 2,887 2,544 1,035 21,341 11,431 4,955 3,214 11,441 4,955 3,214 1,741 0 46% 1,495 3,214 1,741 0 46% 1,495 3,214 1,743 1,743 1,743 1,743 1,743 1,743 1,743 1,743 1,743 1,743 1,743 1,743 1,743 1,744 1,743 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,744 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,746 1,745 1,746 1,746 1,746 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,726 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727 1,727	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835 0 64% 3,016 5 2040 519 79	4,635 2,597 4,019 2,079 19,646 5,260 5,877 5,230 3,279 5,372 73% 5,372 ances'
Fossil fuels Biomass Geothermal Total heat supply" Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric I table 13.28: oecd north MILL t/a Condensation power plants Coal Lignite Gas	18,855 2372 61 44 22,198 19,540 2,554 44 0 12.0% 0 eat pumps) ame 2007 2,746 1,092 1,182 379	16,378 2,731 170 21,403 17,214 3,326 0 20% 84 not included; rica: c 2015 2,324 820 901.0 564	14,350 2,931 507 21,427 15,345 4,061 1,192 1,192 28% 353 covered in the C2 2020 1,759 527 527.6 686	10,433 2,887 2,544 1,035 21,341 11,431 4,955 21,341 11,431 4,952 46% 1,495 model under ission 2030 1,206 406 100.5 690	6,803 2,876 3,552 1,764 20,883 7,552 5,894 4,601 2,835 0 64% 3,016 S 2040 519 79 0.0 437	4,635 2,597 4,019 2,079 19,646 5,260 5,260 5,2877 5,230 3,279 0 73% 5,372 3,279 0 73% 5,372 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,279 0 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,372 3,37233,372 3,372333333333333
Fossil fuels Biomass Solar collectors Geothermal Total heat supply ³³ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) "Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric f table 13.28: oecd north MILL t/a Condensation power plants Coal Lignite Gas Dil	18,855 2372 61 44 19,540 2,554 61 44 0 12.0% 0 12.0% 0 etat pumps) ame 2007 2,746 1,092 1,182	16,378 2,731 502 17,214 3,326 0 20% 84 not included; rica: c 2015 2,324 820 901.0	14,350 2,931 507 21,427 15 ,345 4,061 1,192 829 0 28% 353 covered in the 02 em 2020 1,759 527.6	10,433 2,887 2,544 1,035 21,341 11,431 11,431 11,431 1,741 0 46% 1,495 3,214 1,741 1,745 model under ission 2030 1,206 406 100.5	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835 0 64% 3,016 S 2040 519 79 0.0	4,635 2,597 4,019 2,079 19,646 5,260 5,877 5,230 73% 5,372 73% 5,372 73% 5,372 2050 3 ,275 3 ,275 3 ,275 5 ,372 5 ,375 5 ,375 5 ,375 5 ,375 5 ,375 5 ,375 5 ,375 5 ,375 5
Direct heating" Fossil fuels Biomass Solar collectors Geothermal Total heat supply" Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric I table 13.28: oecd north MILL t/a Condensation power plants Coal Lignite Gas Oisel Combined heat & power production Coal	18,855 2372 61 44 22,198 19,540 2,554 44 0 12.0% 0 eat pumps) ame 2007 2,746 1,092 1,182 379	16,378 2,731 170 21,403 17,214 3,326 0 20% 84 not included; rica: c 2015 2,324 820 901.0 564	14,350 2,931 507 21,427 15,345 4,061 1,192 829 0 28% 353 covered in the 02 emi 2020 1,759 527.6 686 15.6	10,433 2,887 2,544 1,035 21,341 11,431 11,431 11,431 4,955 3,214 1,741 0 0 46% 1,495 1,495 1,495 1,495 1,495 1,495 1,495 1,741 0 46% 1,495 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,741 1,745 1,741 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,745 1,746 1,745 1,746 1,745 1,746 1,745 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,747 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,746 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,747 1,757 1,757 1,757 1,757 1,757 1,757 	6,803 2,876 3,525 1,764 20,883 7,552 5,894 4,601 2,835 0 64% 3,016 8 2040 519 7,9 0.0 519 7,9 0.0 519 7,9 0.0 519 7,9 0.0 519 7,9 0.0 519 7,9 0.0 519 7,9 0.0 519 7,9 0.0 519 7,9 0.0 519 7,9 1,9 1,9 1,9 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	4,635 2,597 4,019 2,079 19,646 5,260 5,877 5,230 3,279 73% 5,372 ances' 2050 38 0 0.0.0

Coal Lignite Gas Oil	51 2 100 11	56 1 127 12	43 0 162 9	19 0 180 0	136 0	0 0 110 0
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	2,911 1,142 1,184 479 104	2,520 876 902 691 51	1,973 570 528 847 28	1,405 425 100 870 9	662 87 0 573 3	148 0 0 148 0
CO ₂ emissions by sector	6,686	6,094	5,223	3,655	2,024	942
% of 1990 emissions	120%	109%	94%	66%	36%	17%
Industry	611	570	501	382	249	170
Other sectors	752	624	566	410	283	219
Transport	2134	2,056	1,876	1,337	813	431
Electricity & steam generation	2,870	2,444	1,872	1,284	562	62
District heating	319	398	408	243	116	61
Population (Mill.)	449	483	503	537	561	577
CO2 emissions per capita (t/capita)	14.9	12.6	10.4	6.8	3.6	1.6

table 13.29: oecd north america: installed capacity GW 2007 2015 2020 2030 2040 2050 Power plants 1,121 1,328 1,605 2,154 2,406 2,225 Coal 183 138 91 69 17 0

NEJ SHAFE	10.0 /0	21.2/0	-10.0 /0	00.7 /0	//.0//0	70.4%
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES RES share	20 1.6% 18.0%	143 9.6% 27.2%	380 21.1% 40.6%	903 38.1% 60.7%	1,321 50.7% 77.8%	1,582 65.1% 96.4%
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	1,227 892 193 162 441 75 21 115 221 183 19 1 13.7 4 0 0	1,485 998 151 126 663 43 15 83 0 404 211 109 27 27 9 13 8	1,801 1021 102 79 812 9 49.7 731 227 240 120 44 23 57 19	2,370 926 74 15 825 5 6 1,438 237 448 402 74 52 173 52	2,606 578 20 0 553 2 0.8 2,027 248 561 653 113 82 263 108	2,430 89 0 89 0 0 0 0 0 0 0 0 0 0 0 0 0
CHP by producer Main activity producers Autoproducers	69 37	81 76	87 109	87 130	74 125	72 132
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	106 10 79 10 7 0 0	157 13 0 114 10 19 0 0	196 11 0 144 5 34 2 0	217 5 0 142 0 64 6 0	199 2 0 82 0 105 10 0	205 0 63 0 127 14 0
Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	161 362 66 21 115 7 183 19 1 4 0 0	126 549 33 15 83 9 211 109 27 9 12 8	80 668 13 9 50 227 241 120 20 57 19	$ \begin{array}{r} 15\\ 683\\ 7\\ 5\\ 6\\ 10\\ 237\\ 448\\ 402\\ 46\\ 173\\ 52\\ \end{array} $	0 471 3 2 1 8 248 561 653 72 263 108	0 26 0 9 255 605 821 85 270 156

table 13.30: oecd north america: primary energy demand

		-	•	, ,	0.	
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	115,758 97,824 14,252 10,671 27,435 45,466	109,961 91,005 10,953 8,125 30,432 41,495	105,546 81,757 7,276 4,753 32,130 37,598	96,462 62,949 4,997 905 29,523 27,523	82,847 38,915 1,178 0 19,094 18,644	70,197 21,814 180 0 8,937 12,698
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.	10,260 7,674 2,323 136 64 4,647 502 0 6.6%	7,418 11,537 2,689 994 838 5,997 992 27 10.5% 4,609	4,473 19,317 2,869 2,264 2,326 9,179 2,610 68 18,3% 11,464	578 32,935 2,992 4,392 6,951 12,403 6,010 187 34,2% 26,233	76 43,855 3,118 5,494 10,714 14,605 9,536 389 52,9% 42,790	0 48,383 3,235 5,926 12,649 14,739 11,272 562 68.9% 59,585

table 13.31: oecd north america: final energy demand

table 15.51: becu nort	n ame	rica. I	mar e	nergy	dema	na
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	80,323 72,347 31,163 29,612 856 646 48 7 0 2.1%	77,924 70,806 30,336 28,513 872 781 159 38 12 2.7%	77,264 70,147 29,993 25,999 2,127 817 307 192 8.4%	72,915 65,881 26,558 18,495 3,336 3,517 2,083 3,52 21.2%	66,087 59,137 21,335 11,226 850 4,017 4,748 3,725 494 38.1%	58,260 51,393 16,564 5,912 836 4,106 5,218 4,937 493 57.4%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	16,149 4,488 680 1,225 1,763 6,142 0 1,818 5 0 15.9%	15,895 4,546 1,103 925 445 1,020 1,388 5,713 279 1,993 30 0 24.2%	15,120 4,293 1,614 1,302 890 704 1,029 5,229 445 1,898 221 0 33.5%	14,379 3,947 2,338 2,047 1,758 503 4,638 943 1,807 399 0 50.4%	13,561 3,621 2,841 2,558 2,558 2,558 0 144 3,402 1,207 1,772 707 0 67.0%	12,225 3,215 3,042 2,812 2,812 00 2,317 1,274 1,584 834 0 78.1%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	25,035 11,773 1,784 93 8,75 3,399 8,729 8,729 61 866 39 11.0%	24,575 12,330 2,992 588 283 0 2,330 7,903 223 1,098 104 19.1%	25,033 12,560 4,723 1,247 852 0 1,799 7,311 467 1,443 207 30.7%	24,944 12,933 7,660 2,110 1,812 1,038 5,328 1,601 1,471 463 52.1%	24,240 12,739 9,994 2,835 2,678 0 631 3,466 2,318 1,493 758 71.1%	22,605 11,647 11,020 3,041 2,947 0 491 2,411 2,745 1,347 923 84.0%
Total RES RES share	5,973 8.3%	9,372 13.2%	15,265 21.8%	25,880 39.3%	34,455 58.3%	38,037 74.0%
Non energy use Oil Gas Coal	7,976 7,091 868 17	7,118 6,311 790 16	7,118 6,303 797 17	7,034 6,223 793 18	6,950 6,143 789 18	6,866 6,063 785 19

÷

oecd north america: advanced energy [r]evolution scenario

table 13.32: oecd north america: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite	4,879 1,168 1,038	4,949 760 697	5,071 523 341	5,992 132 20	7,063 33 0	6,865 0
Gas Oil	859 111	1,282 54	1,064 20	876 7	402 4	8 0
Diesel Nuclear Biomass	11 941 43	11 680 68	6 410 100	2 53 109	1 7 89	0 0 1
Hydro Wind	645 38	756 488	827 1.053	877 1,756 561	939 2,040	946 2,168
PV Geothermal	1 24	42 63	179 195	539	1,077 825	1,158 789
Solar thermal power plants Ocean energy	0 0	41 8	322 32	976 85	1,411 235	1,511 284
Combined heat & power production	56	519	697	854 21	972	1,060
Lignite Gas Oil	1 227 19	0 348 22	0 438 16	0 441 4	293 0	140 0
Biomass Geothermal	39 0	92 2	187 15	348 39	554 114	682 217
Hydrogen CHP by producer Main activity producers	0 194	0 235	0 277	0 319	6 351	21 384
Main activity producers Autoproducers	148	284	420	535	621	676
Total generation Fossil	5,221 3,489 1,224	5,468 3,229 815	5,768 2,448 564	6,845 1,501 152	8,035 738 38	7,925 149 0
Coal Lignite Gas	1,039 1,086	697 1,630	341 1,502	20 1,317	0 695	0 148
Gas Oil Diesel	129 11	76 11	36	10	4 1 7	0 0
Nuclear Hydrogen Renewables	941 0 791	680 0 1,560	410 2,909	53 0 5,291	6	0 7 756
Hydro Wind	645 38	756 488	827 1,053	877 1,756	7,284 939 2,040	7,756 946 2,168
PV Biomass	1 83	42 160	179 287	561 458	1,077 643	1,158 683
Geothermal Solar thermal Ocean energy	24 0 0	65 41 8	209 322 32	578 976 85	939 1,,411 235	1,006 1,511 284
Distribution losses	363	391	403	420	423	406
Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	332 0 4,530	347 4,731	383 78 4,909	421 139 5,873	449 257 6,911	445 336 6,744
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	39 0.7%	538 9.8%	1,264 21.9%	2,402 35.1%	3,352 41.7%	3,610 45.5%
RES share 'Efficiency' savings (compared to Ref.)	15.2%	28.5% 76	50.4% 335	77.3% 976	90.7% 1,753	97.9% 2,827
table 13.33: oecd north					_,	
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels	6 0	367	919 0	2,573	3,753	3,791
Biomass Solar collectors	60	190 92	421 275	1,048 857	1,245 1,497	1,049 1,708
Geothermal Heat from CHP	0 861	85 1,211	225 1,756	668 2,428	1,011 3,288	1,035 3,991
Fossil fuels Biomass	681 180	874 329	1,005	992 1,190	673 1,842	2.252
Geothermal Fuel cell (hydrogen)	0 0	8 0	94 0	245 1	753 19	1,387 64
Direct heating ¹⁾ Fossil fuels	21,331 18,855 2,372	19,818 16,599	18,748 14,289	16,336 9,418	13,664 3,915	11,606 355
Biomass Solar collectors	61	2,615 426	14,289 2,891 1,023	9,418 2,949 2,882	3,915 2,617 4,831	2,265 6,266
Geothermal Total heat supply ¹⁾	44 22.198	178 21.396	544 21,423	1,087 21,338	2,301 20,883	2,719 19,646
Fossil fuels Biomass	22,198 19,536 2,558	21,396 17,472 3,134 518	15,294 3,968 1,298	10,410 5,186 3,739	4,589 5,704	644 5,566 7,974
Solar collectors Geothermal	61 44	178	544	3,739 1,087 1	6,328 2,301 198	7,974 2,719 321
Fuel cell (hydrogen) RES share	0 12.0%	0 18.3%	0 28.6%	51.2%	77.9%	96.7%
(including RES electricity) 'Efficiency' savings (compared to Ref.)	0	91	358	1,498	3,016	5,372
1) heat from electricity (direct and from electric h						ances'
table 13.34: oecd north	2007	rica: c	2020	2030	S 2040	2050
MILL t/a Condensation power plants	2.746	2,098	1,320	516	198	4
Coal Lignite	1,092 1,182	711 781	485 360	119 21	28 0	0 0
Gas Oil Diesel	379 85 8	550 38 8	456 14 5	371 5 2	167 3 1	4 0 0
Combined heat & power production	164	195	207	194	124	51
Coal Lignite Gas	51 2 100	42 0 140	28 0 169	13 0 179	3 0 121	0 0 51
Gas Oil	100	140	10	3	0	0
CO ² emissions electricity steam generation	2,910	2,284	1,527	711	322	55
Coal Lignite Gas	1,142 1,184 479	753 781 690	513 360 627	132 21 549	31 0 288	0 0 55
Oil & diesel	104	60	28	9	4	0
CO2 emissions by sector % of 1990 emissions	6,685 120% 611	5,825 105% 578	4,734 185% 479	2,723 49% 342	1,143 21% 150	215 4%
Industry Other sectors Transport	752 2,134	635	587 1,878	395	191 507	39 52 88
Electricity & steam generation District heating	2,869 318	2,010 2,207 395	1,425	1,240 586 160	241 54	14 22
Population (Mill.) CO2 emissions per capita (t/capita)	449 14.9	483 12.1	503 9.4	537 5.1	561 2.0	577 0.4
220						

table 13.35: oecd nor	th ame 2007	rica: i 2015	nstall 2020	ed cap 2030	2040	205
GW Power plants	2007 1,121 183	1,392 120	1,621 83	2030 2,239 21	2040 2,867	205 2,79
Coal Lignite Gas	162 362	120 109 534	6 <i>3</i> 54 433	21 3 355	0 172	
)il Diesel	66 21	40 18	15 11	6 5	4	
Nuclear Biomass Hydro	115 7 183	83 10 213	50 14 234	6 16 247	1 13 265	26
Wind PV	105	191 37	401 151	642 478	747 920	79
Geothermal Solar thermal power plants	4 0	9 15	29 106	72 295	110 392	10 36
Ocean energy Combined heat & power producti	0 ion 106	8 160	32 196	85 214	235 202	28
Coal _ignite	10 0	10	8 0	4 0	1	
Gas)il	79 10	126	150	142	79 0	-
Biomass Geothermal Tydrogen	7 0 0	17 0 0	34 3 0	63 7 0	101 20 1	12
CHP by producer Main activity producers	69	83	89	87	77	, é
Autoproducers	37 1,227	76 1,552	107 1,817	126 2,453	125 3,069	1: 2,9
ossil Coal	892 193	970 130	764 91	541 25 3	264	
Lignite Gas	162 441	109 661	54 583	497	251	:
Oil Diesel Juclear	75 21 114.9	51 18 82.8	21 11 49.7	7 5 6.4	4 2 0.8	0
lydrogen Renewables	221	499	1,00 4	1,905	2,80 ¹	2,9
Hydro Wind	183 19	213 191	234 401	247 642	265 747	2
PV Biomass Geothermal	13.7 4	37 26 10	151 48 31	478 79 79	920 114 130	9 1 1
Solar thermal Ocean energy	4 0 0	10 15 8	106 32	295 85	392 235	3
luctuating RES (PV, Wind, Ocean) hare of fluctuating RES) 20	236 15.2%	585 32.2%	1,205 49.1%	1,902 62.0%	2,0 68.9
ES share	18.0%	32.1%	55.2%	77.7%	91.3%	98.8
able 13.36: oecd nort		_		-		
PJ/A Total	2007 115,751	2015 108,616	2020 102,071 75,190	2030 90,967 50,060	2040 81,332 25,231	205 70,22
ossil Jard coal	115,751 97,810 14,252 10,671	108,616 88,222 9,649	75,190 6,519 3,245	1,745	513	70,2 10,3
lgnite latural gas rude oil	10,671 27,426 45,461	7,038 30,248 41,288	3,245 27,475 37,951	188 22,128 26,000	0 10,748 13,971	2,6 7,4
	40,401	41,200	J1,7J1	20,000	12,771	7,4
luclear	10,261	7,418	4,473	578	76	
lenewables lydro	7,680 2,323	7,418 12,976 2,722	22,408 2,977	578 40,329 3,157	56 024	3,4
t enewables lydro Vind olar	7,680 2,323 136 64	2,722 1,757 817	22,408 2,977 3,791	3,157	56 024	3,4
tenewables lydro Vind Jolar Jiomass Jeothermal cean Energy	7,680 2,323 136 64 4,644 502	2,722 1,757 817 6,641	22,408 2,977 3,791 3,102 9,114 3,309	3,157	56,024 3,380 7,344 15,285 14,364 14,806	3,4 7,8 17,6 13,0 16,9
enewables ydro Vind olar eothermal eeane Energy ES share	7,680 2,323 136 64 4,644 502 6.6%	2,722 1,757 817 6,641	22,408 2,977 3,791 3,102 9,114	3,157	56 024	3,4 7,8 17,6 13,0 16,9 1,0
tenewables lydro vind olar eothermal cean Energy IES share Efficiency savings (compared to Re	7,680 2,323 136 4,644 502 0 ef.) 0 th ame	2,722 1,757 817 6,641 1,013 27 11.9% 5,937	22;408 2,977 3,102 9,114 3,309 115 22.0% 14,941	3,157 6,322 9,272 12,740 8,533 306 44.3% 31,728	56,024 3,380 7,344 15,285 14,364 14,806 68,9% 44,305 dema	3;4 7,8 17,6 13,0 16,9 1,0 85.3 59,5 nd
ienewables lydro Vind olar eolthermal cean Energy ES share Share Share able 13.37: oecd nor	7,680 2,323 136 64 4,644 502 0 ef.) 0 th ame 2007	2,722 1,757 817 6,641 1,013 27 11.9% 5,937 rica: f 2015	22;408 2,977 3,791 3,102 9,114 3,309 115 22.0% 14,941 ïnal e: 2020	3,157 6,322 9,272 12,740 8,533 306 44.3% 31,728 nergy 2030	56,024 3,380 7,344 15,285 14,364 14,806 68.9% 44,305 dema 2040	3,4 7,8 17,6 13,0 16,9 1,0 85.3 59,5 nd 20.
tenewables lydro Vind Jolar ieothermal cean Energy LES share Efficiency' savings (compared to Ro able 13.37: oecd nor VJa otal (incl. non-energy use) otal (energy use)	7,680 2,323 136 64 4,644 502 0 ef.) 0 th ame 2007	2,722 1,757 817 6,641 1,013 27 11.9% 5,937 rica: f 2015	22;408 2,977 3,791 3,102 9,114 3,309 115 22.0% 14,941 ïnal e: 2020	3,157 6,322 9,272 12,740 8,533 306 44.3% 31,728 nergy 2030	56,024 3,380 7,344 15,285 14,364 14,806 68.9% 44,305 dema 2040	3,4 7,8 17,6 13,0 16,9 1,0 85.3 59,5 nd 20.
tenewables lydro Vind olar ecothermal cean Energy ES share Efficiency' savings (compared to R able 13.37: oecd nor CJ/a otal (incl. non-energy use) otal (energy use) ransport jil products latural gas	7,680 2,323 136 64 4,644 502 ef.) 0 6.6% ef.) 0 th ame 2007 80,323 72,347 31,163 29,612 85,650	2,722 1,757 817 6,641 1,013 27 11.9% 5,937 rica: f 2015 77,927 70,809 30,336 27,898	22,408 2,977 3,791 3,102 9,114 3,309 115 22.0% 14,941 ïnal e: 2020 77,304 70,187 29,993 26,068	3,157 6,322 9,272 12,740 8,533 306 44.3% 31,728 nergy 2030 72,508 65,474 26,158 17,192	56,024 3,380 7,344 15,285 14,364 14,806 68,9% 44,305 dema 2040 65,271 58,321 20,335 7,004	3,4 7,8 17,60 13,00 16,9 1,00 853 59,5 nd 200 56,8 49,9 14,7 1,1
enewables yodro vind olar eothermal cean Energy ES share Efficiency' savings (compared to R able 13.37: oecd nor U/a otal (incl. non-energy use) otal (energy use) ransport il products iatural gas iofuels lectricity	7,680 2,323 136 64 4,644 502 66 60 6.6% 6 6.6% 6 0 th ame 2007 80,323 73 1,163 29,612 29,612 646 646 485	2,722 1,757 817 6,641 1,013 5,937 rica: f 2015 77,927 70,809 30,336 27,898 814 1,454 158	22,408 2,977 3,791 3,102 9,114 3,102 9,114 3,009 14,941 70,187 22,0% 77,304 70,187 29,993 26,068 2,159 816	3,157 6,322 9,272 12,740 8,533 8,533 44,3% 44,3% 31,728 9,2030 72,508 65,474 26,158 17,192 648 3,729 648 3,729 648	56,024 3,380 7,344 15,285 14,364 14,806 68,9% 44,305 dema 2040 65,271 58,321 20,335 7,004	3,4 7,8 17,6 13,00 85.3 59,5 nd 20 56,8 49,9 14,7 3,6 8,6
enewables ydro Jind olar eothermal cean Energy ES share Striciency' savings (compared to R able 13.37: oecd nor J/a otal (incl. non-energy use) otal (energy use) ransport il products atural gas iofuels lectricity RES electricity Varcoen	7,680 2,323 136 64 4,644 502 66,6% ef.) 0 th ame 2007 80,323 72,347 73,163 29,612 80,323 72,347 73,163 29,612 80,324 73,1763 29,612 80,323 72,347 73,1763 29,612 80,323 72,347 72,347 72,347 80,323 72,347 80,323 72,347 80,323 72,347 80,323 72,347 80,323 72,347 80,323 72,347 80,347 80,347 72,347 70,747 70	2,725 ,641 1,013 1,013 2,015 77,927 70,809 30,336 27,897 70,809 30,336 27,897 70,809 30,336 27,897 70,809 30,336 27,897 70,809 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,897 30,336 27,997 30,336 30,307 30,336 30,307 3	22,408 2,977 3,791 3,109 9,114 3,309 115 22,0% 14,941 3,200 77,304 70,187 22,099 2,6,068 758 2,159 2,159 2,159 8,16 412	3,157 6,322 9,272 12,740 8,533 8,533 44,3% 31,728 9,272 44,3% 13,728 9,272 44,3% 13,728 9,272 44,3% 14,3% 17,8% 2030 72,508 65,474 26,158 17,78% 65,474 26,158 17,78% 648 3,729 648 3,729 648 3,729 648 3,729 648 3,729 648 3,729 648 3,729 648 3,729 648 3,729 648 648 648 658 658 658 658 658 658 658 65	56,024 3,380 7,344 14,364 14,364 14,364 14,364 68,9% 4.846 68,9% 4.846 68,9% 4.9% 4.9% 4.9% 4.9% 4.1% 58,3271 58,335 7,004 55,327 7,004 55,335 7,004 55,327 7,004 55,327 7,004 7,205 6,004 7,205 7,004 7,205 7,004 7,205 7,004 7,205 7,004 7,205 7,004 7,205 7,004 7,205 7,004 7,205 7,004 7,205 7,004 7,205 7,0	3,4 7,8 17,8 13,09 85.3 59,5 nd 20 56,8 499 14,7 1,1 3,64 8,64 8,64
ienewables yidro yidro olar iomass eothermal cean Energy ES share Efficiency' savings (compared to R able 13.37: oecd nor J/a otal (incl. non-energy use) otal (energy use) ransport il products lettricity RES electricity vdrogen ES share Transport ndustry	7,680 2,323 136 64 4,644 502 ef.) 0 th ame 2007 80,323 72,347 80,323 72,347 1163 29,612 856 646 48 7 0 2.1%	2,727 817 ,817 ,013 1,013 5,937 rica: ff 2015 77,927 70,809 30,336 27,898 81,454 1,454 1,454 1,454 1,5888	22,408 2,977 3,791 3,109 9,114 3,305 22,0% 14,941 14,941 inal e: 2020 77,304 70,187 29,993 26,068 7,304 70,187 29,993 26,068 412 29,993 26,068 412 192 8,92 8,92 8,92 192 192 192 192 192 192 192 192 192 1	3,157 6,327 9,272 12,740 12,740 3,306 44,3% 31,728 nergy 2030 72,508 65,474 26,158 26,158 26,474 3,729 4,241 3,278 3,499 27,849 27,849 14,364 14,364	56,024 3,380 7/344 15/282 14/364 14/364 14/364 14/305 44,305 demaa 2040 65,271 58,321 20,004 7/948 7/205 7,205 7,205 7,207 58,9% 13,678 13,678	3,4 7,86 13,09 16,00 85.3 59,5 nd 20 56,8 49,99 14,7 3,664 88,4 88,4 88,4 88,0 12,4
tenewables lydro Vind olar iomass teothermal cean Energy ES share Stricency' savings (compared to R able 13.37: oecd nor bile 13.37: 	7,680 2,323 136 64 4,644 502 6.6% ef.) 0 th ame 2007 80,323 72,347 31,163 29,612 80,323 72,347 31,163 29,612 80,323 72,347 11,163 29,612 80,323 72,347 11,163 29,612 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,323 72,347 11,163 80,444 11,163 80,323 80,323 72,347 11,163 80,444 11,163 80,444 11,163 80,444 11,163 11,16	2,725 ,727 817 1,013 2,015 7,927 7,927 7,927 7,927 7,927 30,336 27,898 8,145 4,546 15,888 4,546 15,888	22,408 2,977 3,791 3,109 9,114 3,319 22,0% 14,941 inal e 2020 77,304 70,187 29,993 26,068 412 29,993 26,068 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,98 412 19,997 10,997	3,157 6,327 9,272 12,740 8,533 306 44,3% 31,728 nergy 2030 72,508 65,474 26,158 17,192 26,158 17,192 3,3278 3,3278 3,3278 3,3278 14,364 3,956 14,364 3,956 14,364 3,956 14,364 3,956 12,740 14,3% 12,740 12,740 12,740 12,740 14,3% 14,3% 12,740	56,024 3,380 7,344 15,284 14,364 14,364 14,364 14,364 2040 65,271 58,327 7,004 55,333 4,154 7,904 7,904 7,205 58,9% 13,678 3,678	3,44 77,86 17,86 13,00 16,00 15,03 59,5 79,5 79,5 79,5 79,5 79,5 70,1 70,1 70,2 70,2 70,2 70,2 70,2 70,2 70,2 70,2
ienewables yigdro yindo olar iomass eothermal cean Energy ES share Striciency' savings (compared to R able 13.37: oecd nor 'J/a otal (incl. non-energy use) otal (energy use) ransport il products latural gas iofuels lectricity RES electricity Variational Same Transport ndustry lectricity RES district heat	7,680 2,323 136 64 4,644 502 6.6% ef.) 0 th ame 2007 80,323 72,347 31,163 29,612 80,323 72,347 31,163 29,612 80,323 72,347 11,163 29,612 80,323 72,347 11,163 29,612 80,323 72,347 11,163 11,16	2,722 1,727 817 1,013 2015 77,927 70,809 30,336 27,898 1,454 1,5888 4,546 1,296	22,408 2,977 3,701 3,102 2,114 3,105 22,0% 11,94 2,10% 11,94 2020 77,304 70,187 29,993 26,068 2,159 8,9% 15,136 4,297 2,168 15,136 16,136 17,136 17,137 17,1	3,152 6,322 9,272 12,740 12,740 3,306 44,3% 31,728 nergy 2030 72,508 65,474 20,158 17,192 4,241 3,729 2,725 648 3,729 2,725 17,192 2,740 2,74	56,024 3,380 7,344 14,364 14,364 14,364 14,364 2,040 65,3271 56,3271 56,327 7,004 55,335 7,004 55,335 7,004 55,335 7,004 55,335 7,004 55,335 7,205 58,9% 13,678 3,638 3,548	3,44 7,86 17,86 13,09 16,09 59,5 nd 20,8 59,5 59,5 10 20 56,89 14,7 1,1 3,66 8,89 88,0 12,4 3,2(2) 3,7(1) 3,7(1)
tenewables yodro Vind olar itomass teothermal cean Energy ES share Striciency' savings (compared to R able 13.37: oecd nor V/a otal (incl. non-energy use) otal (energy use) ransport iil products lidetricity RES electricity Variatural gas liofuels lectricity RES share Transport ndustry lectricity RES district heat oal iil products	7,680 2,323 136 64 4,644 502 66 0 ef.) 0 th ame 2007 80,323 72,347 73,745 29,612 80,323 72,347 73,745 29,612 80,323 72,163 29,612 80,323 72,164 9 2,1% 16,149 4,488 70 2,1%	2,727 841 1,013 2,757 817 6,037 11.9% 5,937 rica: f 2015 77,927 70,809 30,336 27,898 30,336 27,898 4,454 1,296 1,538 4,546 1,296 9,01 1,039 1,532	22,408 2,977 3,791 3,102 2,007 11,4 3,309 22,0% 11,94 7,304 7,304 7,304 7,304 7,304 7,304 7,304 7,304 7,304 7,304 7,304 7,187 7,304 7,187 2,159 8,9% 15,136 4,129 15,136 4,129 15,136 4,129 15,136 4,129 15,136 4,129 15,136 16,136 16,156 16,156 16,156 16,156 16,156 16,156 16,156 16,156 16,16	3,157 6,327 9,272 12,740 12,740 12,740 14,396 31,728 nergy 2030 72,508 65,474 26,158 17,192 26,158 17,192 426,158 17,192 426,158 17,192 426,158 17,192 426,158 17,192 426,158 17,192 426,158 17,192 426,158 17,298 14,364 3,954 3,055 2,420 1,420	56,024 3,380 7,344 14,364 14,364 14,364 14,364 2,040 65,321 56,321 56,327 7,004 55,327 7,004 55,327 56,333 7,004 55,327 56,33 4,154 7,205 58,9% 13,678 3,348 3,268 3,2	3,44,47 7,88 17,66,61 16,99 10,10 85,3 59,5 200 200 56,83 49,99 14,7 1,1,1 1,3,1 3,66,48 86,48 86,40 86,00 12,4 ,4 3,2(2,3),7 3,7,7,7 3,7,7,7 3,7,7,7 3,7,7,7 3,7,7,7 3,7,7,7,7
ienewables yidro yidro olar iomass eothermal cean Energy ES share Efficiency' savings (compared to R able 13.37: oecd nor J/a otal (incl. non-energy use) otal (energy use) ransport di products latural gas iofuels lectricity RES electricity vdrogen ES share Transport ndustry lectricity RES electricity istrict heat RES district heat oal il products as oiar iomass and waste	7,680 2,323 136 4,644 502 0 6.6% 6.6% 6.6% 2007 80,323 72,347 31,163 29,612 856 646 646 648 70 0 2.1% 1,763 29,612 1,763 1,763 648 648 648 648 648 648 648 648 648 648	2,727 817 1,727 817 1,013 2015 7,937 7,937 7,937 7,937 7,938 814 1,548 1,548 1,546 1,548 1,546 1,532 5,083 1,552 5,683 2,77 1,888 1,552 5,683 2,777 1,888 1,552 5,683 2,777 1,888 1,552 1,5	22,408 2,977 3,102 9,114 3,102 2,9114 3,102 2,9114 3,102 2,975 14,941 70,187 20,208 77,304 70,187 70,187 22,993 22,008 8,758 2,159 4,229 2,105 3,5012 2,148 4,297 2,148 1,142 1,22 1,053 5,012 2,186 4,297 2,168 1,22 1,22 1,22 1,22 1,22 1,22 1,22 1,2	3,15, 6,322 9,272 12,740 12,740 12,740 3,306 44,3% 31,728 nergy 2030 72,508 65,474 2030 72,508 648 3,729 4,221 3,729 4,221 3,729 44,3% 17,192 648 3,729 4,221 3,749 17,192 648 3,729 44,3% 17,192 648 3,729 44,3% 31,788 17,192 648 3,729 44,3% 31,788 17,192 44,3% 31,788 17,192 44,395 3,7954 3,0556 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 2,420 3,954 3,0554 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 14,364 3,0556 15,576 15,576 15,576 15,576 15,576 15,576 15,576 16,576 16,576 16,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,576 17,577 17,576 17,577 17,576 17,576 17,576 17,577 17,577 17,577 17,576 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,577 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17,578 17	56,024 3,380 7,344 14,364 14,364 14,364 14,305 demaa 2040 65,271 58,321 20,335 7,004 55,33 4,154 7,205 58,9% 13,678 3,258 3,101 108 1,844 1,667 1,677 1,6	3,44,47 7,88 17,66,61 16,99 10,10 85,3 59,5 200 200 56,83 49,99 14,7 1,1,1 1,3,1 3,66,48 86,48 86,40 86,00 12,4 ,4 3,2(2,3),7 3,7,7,7 3,7,7,7 3,7,7,7 3,7,7,7 3,7,7,7 3,7,7,7,7
ienewables yidro vind olar iomass eothermal cean Energy ES share Efficiency' savings (compared to R able 13.37: oecd nor U/a otal (incl. non-energy use) otal (energy use) ransport ii products lectricity RES electricity vidrogen ES share Transport ndustry lectricity RES electricity istrict heat RES electricity istrict heat RES electricity istrict heat RES district heat oal ii products as olar olar olar and waste eothermal yidrogen	7,680 2,323 136 4,644 502 0 ef.) 0 th ame 2007 80,323 7 2,347 31,163 29,612 856 646 646 648 70 2.1% 1,763 29,612 856 646 646 646 646 646 646 646 646 646 6	2,727 817 ,817 ,013 2015 7,937 7,927 7,927 7,928 814 1,588 814 1,588 814 1,588 814 1,588 815 1,532 5,0% 1,532 5,588 1,552 5,0% 1,532 5,532 1,552	22,408 2,977 3,102 4,115 22,911 4,941 7,102 2020 77,304 70,187 29,993 26,068 758 2,159 816 4,297 21,68 15,136 16,136 16,156 16,156 16,156 16,156 16,156 16,156 16,156 16,156 16,1	3,15,12 9,272 12,740 12,740 12,740 12,740 12,740 12,740 12,740 12,740 12,740 12,740 12,740 14,306 14,364 3,054 3	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,321 20,335 7,004 4,154 4,154 7,204 65,271 58,321 20,335 7,004 4,154 7,204 58,321 20,335 7,004 4,154 8,454 58,301 1,267 58,301 1,267 3,348 3,258 3,101 1,08 1,367 8,348 3,258 3,101 1,08 1,345 1,364 1,467 1,967	3,44,7 7,88,6 17,66 113,00,0 110,0 85,3 559,5 10,0 20,8 44,7 7, 3,7 10,8 8,6,4 8,8,4 8,8,4 8,8,4 8,8,4 8,8,4 8,8,4 12,4,4 8,8,4 12,4,4 8,6,8 12,4,4 1,8,5 1,2,3 3,2,1 1,2,3 1,2,4 1,2,3 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,4,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4,4 1,4,4 1,4,4 1,4,4 1,4,4 1,4,4,4 1,4,4,4,4
ienewables yidro yidro olar iomass eothermal cean Energy ES share Efficiency' savings (compared to R able 13.37: oecd nor J/a otal (incl. non-energy use) otal (energy use) ransport il products atural gas iofuels lectricity RES electricity ydrogen ES share Transport ndustry lectricity RES electricity istricit heat cal il products as olar iomass and waste eothermal ydrogen ES share Industry	7,680 2,323 136 64 4,644 502 66 ef.) 0 th ame 2007 80,323 29,612 32,856 646 48 7 7 31,163 29,856 646 48 7 21,16 16,149 4,488 600 1,255 1,763 6,142 0 1,818 50 0 15.9%	2,725 817 1,013 2,757 817 1,013 5,937 rica: f 2015 77,927 70,809 30,336 27,898 1,454 1,454 1,454 1,296 1,296 1,296 1,296 1,296 2,888 4,546 1,296 1,296 2,1,800 0 2,800 2,900 2,9	22,408 2,977 3,791 3,791 3,791 3,105 22,0%1 14,941 2020 77,304 70,187 29,993 26,068 2,159 8,9% 15,136 4,297 2,168 4,137 2,168 4,297 2,168 4,297 2,168 4,297 2,165 3,5,012 2,165 3,012 1,053 5,012 1,055 1,05	3,15,1 6,322 9,272 12,740 12,740 12,740 3,306 44,3% 31,728 nergy 2030 72,508 65,474 2030 72,508 648 3,729 4,221 3,729 4,221 3,729 4,221 3,729 4,221 3,729 4,221 3,729 4,221 2,730 17,192 6,488 3,729 4,221 3,729 4,221 2,730 17,192 6,488 3,729 4,221 2,740 17,192 6,488 3,729 4,221 2,740 17,192 6,488 3,729 4,221 2,740 17,192 6,488 3,729 4,221 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 17,192 6,488 3,729 14,364 3,954 3,9	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,327 7,004 65,271 58,327 7,004 65,271 58,327 7,004 58,327 7,004 58,327 7,004 58,328 4,154 7,948 7,205 58,9% 13,678 3,348 3,258 1,844 1,667 1,691 1,695 1,6	3,44,7 7,86 17,66 13,00 16,90 85,3 55,55 7 7 7 85,35 7 7 85,35 7 7 8 8 8 8 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8
tenewables ydro Vind vind vind vind vind tiomass teothermal cean Energy ES share ES share cean Energy tess share total (incl. non-energy use) otal (incl. non-energy use) otal (energy use) ransport vida (energy use) ransport vida (energy use) ransport vidatural gas vidatural gas vid	7,680 2,323 136 64 4,644 502 66 0 1 1 1 1 1,764 7,680 6,60 0 0 1 1 1,764 1 1,773 1,784	2,725 1,725 817 1,013 5,937 rica: ff 2015 77,927 70,927 70,927 30,336 27,898 4,546 1,296 1,296 1,296 1,296 1,296 1,296 2,277 1,880 4,546 4,546 1,296 1,296 1,296 1,296 1,296 2,277 1,880 4,546 2,277 1,880 4,546 2,277 1,880 4,546 2,277 1,880 4,546 2,277 1,880 4,546 1,295 1,2,316 1,296 1,2,356 1,2,556	22,408 2,977 3,791 3,791 3,791 3,791 2,9114 3,309 11,941 7,105 2,020 77,304 70,187 29,993 20,064 21,991 192 29,993 20,064 21,991 192 29,993 20,064 4,297 2,168 4,297 2,169 2,1	3,15,2 9,272 9,272 9,272 9,272 9,272 9,272 9,272 9,272 9,272 9,272 9,272 1,330 1,728 1,728 1,728 1,729 1,2508 1,7192 20,108 1,7192 20,108 1,729 4,241 3,278 3,278 3,278 3,278 3,278 1,7192 2,729 4,241 3,278 3,	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,321 20,335 7,004 65,271 58,321 58,321 7,553 4,154 7,205 58,9% 13,678 3,693 3,348 3,258 3,101 1,116	3,44,7 7,88 17,66 13,00 14,00 85,3 55,55 nd 208 208 208 208 208 208 208 208
tenewables lydro Vind violar liceobarmal lydro ES share ES share Strictency' savings (compared to Ro able 13.37: oecd nor bile 13.3	7,680 2,323 136 64 4,644 502 67 67 67 70 70 70 70 70 70 70 70 70 7	2,725 ,727 ,817 ,013 ,015	22,408 2,977 3,791 3,791 3,791 3,791 3,791 22,997 14,941 70,187 2020 77,304 70,187 29,993 26,068 2,159 24,068 2,159 24,068 4,297 2,168 4,297 2,007 2,0	3,15/2 9,272 9,272 9,274 9,272 9,272 9,272 9,272 9,274 9,272 9,275 12,273 11,728 17,192 17,192 17,192 17,192 17,192 17,192 17,192 17,192 17,192 17,192 17,192 12,218 17,192 12,218 17,192 12,218 17,192 12,218 17,192 12,218 12,21	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,321 20,335 7,004 65,271 58,321 7,205 58,39% 13,678 3,693 3,348 3,258 3,101 108 1,267 1,667 1,667 1,116 1,116 1,116 1,116 1,275 1,554 1,554 3,440 3,238 3,400 3,238 12,554 1,554 1,554 1,554 1,555 1,554 1,555	3,44,7 7,88 17,66 13,00 14,00 85,3 55,55 nd 208 208 208 208 208 208 208 208
tenewables lydro Vind violar teoblermal teothermal tean Energy ES share ES share Strictency'savings (compared to Ro able 13.37: oecd nor 2J/a otal (incl. non-energy use) otal (energy use) ransport il products latural gas liofuels lectricity RES electricity RES share Transport nustry lectricity RES district heat cal il products latural test share Transport Her Source test share Transport the Sectors lectricity RES share Industry Her Sectors lectricity RES district heat RES district heat is for the sectors lectricity RES district heat is for the sectors lectricity RES district heat is for the sectors lectricity RES district heat is for the sectors lectricity If products is for the sectors li products	7,680 2,323 136 64 4,644 502 67 67 67 70 70 70 70 70 70 70 70 70 7	2,725 1,725 817 1,013 2,937 rica: ff 2015 77,927 70,927 70,927 30,336 27,898 4,546 1,296 1,296 1,296 1,296 1,296 1,296 1,296 1,296 2,277 1,880 0 24,585 12,329 3,516 24,555 2,3516	22,408 2,977 3,791 3,102 2,9114 3,105 22,0% 114,941 2020 77,304 70,187 29,993 26,068 2,159 8,9% 15,136 4,297 2,168 1,975 8,9% 15,136 1,866 2,012 5,642 2,003 8,8% 25,057 12,550 6,336 1,065 3,836 12,555 12,555 12,5557 12,550 6,336 1,2557 12,550 12,5557 12,550 12,5557 12,550 12,5557 12,55057 1	3,15,2 9,272 9,272 9,272 9,272 9,272 9,272 9,272 9,272 1,330 1,728 1,728 1,728 1,728 1,7192 20,108 1,7192 20,108 1,7192 20,108 1,729 2,749 0,00 60.6% 2,262 2,2029 2,729 2,729 2,729 2,749 1,794 2,262 2,262 2,262 2,262 2,2729 2,729 2,729 2,729 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,749 2,262 2,202 2,729 2,729 2,729 2,749 2	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,321 20,335 7,004 65,271 58,321 7,004 65,271 58,321 8,3258 3,101 188,9% 24,308 12,754 12,755 12,755 12,755 12,755 12,755 12,755 12,755 12,75	3,44,7 7,86 17,66 10,0 16,90,9 10,0 85,3 59,55 59,55 749,9 14,77 3,66,8 8,44 9,9 14,77 3,67 1,2,2 1,2,4 1,2,4 3,2,1 3,77 3,77 1,2,2 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1
tenewables iydro Vind	7,680 2,323 136 64 4,644 502 66 0 th ame 2007 80,323 73 1,163 29,612 29,612 29,612 6446 48 70 2.1% 16,149 4,888 708 1,265 1,763 6,142 0 1,818 5,075 11,773 1,783 1,783 1,783 1,783 1,783 8,3399 8,729 61 866	2,727 817 1,757 817 1,013 5,937 rica: f 2015 77,927 70,809 30,336 27,898 4,454 1,454 1,454 1,296 2,683 4,546 1,296 1,5888 4,546 1,296 2,683 2,77 1,880 901 1,039 1,256 2,077 1,880 2,516 2,257 2,277 1,880 2,258 2,257 2,257 2,257 2,257 2,258 2,257 2,258 2,257 2,258 2,257 2,258 2,257 2,258 2,257 2,258 2,578 2,5	22,408 2,977 3,791 3,791 3,791 3,791 2,9114 3,309 11,941 70,187 2020 77,304 70,187 29,993 26,068 2,159 21,053 2,168 4,297 2,097 4,29	3,15,2 9,272 9,272 9,272 9,272 9,272 9,272 1,324 3,306 1,306 1,728 1,728 1,728 1,728 1,728 1,729 2,508 65,474 2,6158 1,7192 2,6158 1,7192 2,729 2,728 1,7192 2,728 1,729 2,728 1,729 2,728 1,729 2,729 2,728 1,729 2,749 2,	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,321 20,335 7,004 65,271 58,321 7,004 65,271 58,321 8,3258 3,101 188,9% 24,308 12,754 12,755 12,755 12,755 12,755 12,755 12,755 12,755 12,75	3,44,7 7,86 17,66 10,0 16,90,9 10,0 85,3 59,55 59,55 749,9 14,77 3,66,8 8,44 9,9 14,77 3,67 1,2,2 1,2,4 1,2,4 3,2,1 3,77 3,77 1,2,2 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1
tenewables lydro Vind vind violar teothermal teothermal teothermal teothermal teothermal teothermal teothermal teothermal vistices tatural gas vistices latural gas vistices vi	7,680 2,323 136 4,644 502 0 ef.) 0 th ame 2007 80,323 7237 731,163 29,612 856 646 48 70 2.1% 16,149 4,488 680 0 1,763 1,763 6,142 5,035 1,763 6,142 6,149 4,488 680 0 15,9% 25,035 11,773 11,773 11,773 3,399 8,729 8,729 61	2,725 817 1,013 2,757 817 1,013 2,937 rica: ff 2015 77,927 70,809 30,336 27,898 1,454 1,454 1,454 1,296 1,296 1,296 1,296 1,296 1,296 2,039 1,296 1,295 2,037 1,880 0,039 1,295 2,037 1,880 0,039 1,295 2,516	22,408 2,977 3,791 3,102 2,9114 3,105 22,0% 114,941 2020 77,304 70,187 29,993 26,068 2,159 8,9% 15,136 4,297 2,168 1,975 8,9% 15,136 1,866 2,012 5,642 2,003 8,8% 25,057 12,550 6,336 1,065 3,836 12,555 12,555 12,5557 12,550 6,336 1,2557 12,550 12,5557 12,550 12,5557 12,550 12,5557 12,55057 1	3,15/2 9,272 9,272 9,272 9,272 9,272 9,272 14,30% 31,728 nergy 2030 72,508 65,474 26,158 17,192 26,193 17,192 26,158 17,192 27,8% 27,8% 27,8% 27,8% 27,8% 27,8% 20,005 22,925 20,005 2	56,024 3,380 7,344 14,364 14,364 14,364 2,040 65,271 56,327 7,004 55,335 7,004 55,335 7,004 56,335 7,004 56,335 7,004 58,39% 13,678 3,698 3,698 3,698 3,698 13,678 3,698 3,6	3,44,7 7,86 17,66 10,0 16,90,9 10,0 85,3 59,55 59,55 749,9 14,77 3,66,8 8,44 9,9 14,77 3,67 1,2,2 1,2,4 1,2,4 3,2,1 3,77 3,77 1,2,2 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,2,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1
tenewables ydro Vind	7,680 2,323 136 64 4,644 502 67 10 11 10 10 11 10 10 10 10 10	2,727 817 1,757 817 1,013 5,937 rica: f 2015 77,927 70,809 30,336 27,898 4,454 1,454 1,454 1,296 2,683 4,546 1,296 1,5888 4,546 1,296 2,683 2,77 1,880 901 1,039 1,256 2,077 1,880 2,516 2,257 2,277 1,880 2,258 2,257 2,257 2,257 2,257 2,258 2,257 2,258 2,257 2,258 2,257 2,258 2,257 2,258 2,257 2,258 2,578 2,5	22,408 2,977 3,791 3,791 3,791 3,791 2,9114 3,309 11,941 70,187 2020 77,304 70,187 29,993 26,068 2,159 21,053 2,168 4,297 3,297 4,29	3,15,2 9,272 9,272 9,272 9,272 9,272 9,272 1,302 1,302 1,728 1,728 1,728 1,728 1,728 1,728 1,729 2,508 65,474 2,6158 1,7192 2,6158 1,7192 2,729 2,728 1,7192 2,729 2,728 1,729 2,729 2,728 1,7192 2,729 2	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,321 20,335 7,004 65,271 58,321 7,503 4,154 7,205 58,9% 13,678 3,258 3,101 1,914 1,948 7,205 58,9% 13,678 3,258 3,101 1,914 1,914 1,914 1,911 81,9% 24,308 12,754 11,565 3,400 3,2254 3,400 3,2254 3,400 3,2254 3,400 3,2254 3,400 3,2254 3,400 3,2254 3,400 3,2254 3,200 1,565 1,5	3,4 ⁴ ,7 ⁸ ,8 ⁶ ,1 ⁷ ,6 ⁶ ,1 ⁷ ,6 ⁶ ,1 ⁷ ,7 ⁸ ,8 ⁶ ,1 ⁸ ,1 ⁷ ,8 ⁶ ,1 ⁸
Vdrogen RES share Transport Identified Selectricity Strict heat <i>RES district heat</i> <i>Particle Selectricity</i> Solar Solar Siomass and waste Secthermal Vdrogen RES share Industry Dither Sectors Electricity <i>RES electricity</i> Sistrict heat	7,680 2,323 136 4,644 502 6,6% 6,6% 6,0% 10 11 1,163 29,612 29,612 29,612 29,612 29,612 485 646 48 70 2,1% 16,149 4,488 680 0 1,763 6,142 1,763 6,142 1,763 6,142 1,763 6,149 4,818 50 15,9% 25,035 11,773 3,399 8,729 8,729 8,729 8,729 1,0% 1	2,727 817 1,757 817 6,937 11.9% 5,937 rica: f 70.898 814 1,546 1,256 14.546 1,256 15.888 4.546 1,546 1,542 5.683 27.898 814 1,552 5.683 1.532 5.683 1.532 5.685 1.232 1.25 1.232 1.25 1.232 1.25 1.232 1.25 1.232 1.25 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.232 1.2321.232 1.232 1.2321.2321.2321.2321.2321.	22,408 2,977 3,791 3,791 3,791 3,791 2,9114 3,309 11,92 2020 77,304 70,187 29,993 2,050 2,159 2,	3,152 9,272 12,730 12,733 3,306 44,3% 31,728 nergy 2030 72,508 65,474 2030 72,508 65,474 2,508 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 4,241 3,278 17,192 2,145 1,258 1,25	56,024 3,380 7,344 14,364 14,364 14,364 2040 65,271 58,321 20,335 7,004 65,271 58,321 20,335 7,205 58,9% 13,678 3,693 3,348 3,258 3,101 108 1,667 1,667 1,667 1,667 1,667 1,667 1,678 3,248 3,258 3,101 1,555 3,400 3,236 24,308 1,555 3,400 3,236 2,555 3,400 3,236 2,555 3,400 3,236 2,555 3,400 3,236 2,555 3,400 3,236 2,555 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,256 3,400 3,236 3,400 3,236 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,697 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,400 3,256 3,698 3,400 3,256 3,698 3,400 3,256 3,565	59 ,9: 3,44 7,88 13,00 16,09 50 ,59 50 ,59 50 ,59 14 ,77 1 ,1 1 ,3 3 ,66 6 ,80 1 ,2 4 ,99 1 ,47 1 ,1 1 ,3 3 ,66 6 ,80 6 ,00 6 ,88 6 ,00 1 ,24 1 ,24 1 ,25 1 ,

13

glossary & appendix | Appendix - OECD NORTH AMERICA

-42

oecd north america: total new investment by technology

table 13.38: oecd north america: total investment

MILLION \$	2007	2011-2020	2021-2030	2007-2030
Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	400,086 186,979 22,265 60,917 52,131 22,041 27,222 2,364 38	591,355 379,395 43,401 152,543 86,489 27,144 47,844 21,948 26	602,987 394,932 43,064 161,405 84,452 35,887 35,519 32,044 2,561	1,594,428 961,306 108,731 374,865 223,072 85,072 110,586 56,356 2,625
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	400,086 186,979 22,265 60,917 52,131 22,041 27,222 2,364 38	454,223 1,503,790 88,348 268,362 256,292 261,727 244,098 313,228 71,735	319,847 1,922,496 84,486 179,670 290,129 411,808 321,954 551,189 83,260	1,174,156 3,613,265 195,100 598,553 695,576 593,275 866,780 155,032
Advanced Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	400,086 186,979 22,265 60,917 52,131 22,041 27,222 2,364 38	301,907 2,228,489 98,808 287,280 462,662 335,907 346,778 581,956 115,098	226,504 2,636,796 87,633 190,281 329,297 476,484 521,340 898,065 133,696	928,496 5,052,265 208,707 538,478 844,090 834,432 895,341 1,482,384 248,833

notes

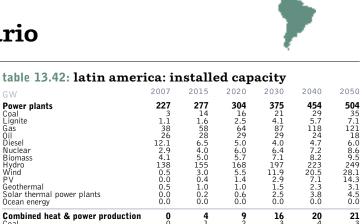
٦Į

latin america: reference scenario

GW

Power plants

table 13.39: latin america: electricity generation


TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	998 16 6 133 101 24 20 26 669 1 0 3 0 0	1,226 73 10 214 96 13 26 33 749 7 1 4 4 1 0	1,357 87 17 242 89 10 42 38 809 14 2 5 2 0	1,682 122 28 352 67 8 48 49 944 34 4 11 15 0	2,022 173 39 472 44 7 54 59 1,069 54 10 17 24 0	2,380 228 50 604 21 6 60 71 1,194 74 20 23 29 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	0 0 0 0 0 0 0 0 0	18 4 0 14 0 0 0 0 0	39 8 0 29 0 2 0 0 0	73 13 0 55 0 5 0 0 0	95 15 0 71 0 9 0 0	100 14 0 75 0 11 0 0
Main activity producers Autoproducers	0 0	0 18	0 39	0 73	0 95	100
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	998 280 16 6 133 101 24 20 699 669 1 0 26 3 0 0	1,244 424 78 10 227 96 13 26 7 94 749 7 1 33 4 1 0	1,396 482 95 17 271 89 10 42 0 872 809 14 2 40 5 2 0	1,755 645 135 28 407 67 8 48 0 1,062 944 34 4 54 11 15 0	2,117 821 188 39 543 44 7 54 0 1,242 1,069 54 10 68 17 24 0	2,480 998 242 50 679 21 6 6 0 1,422 1,194 74 20 82 23 29 0
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	164 32 806	195 49 1,004	201 67 1,134	220 94 1,448	234 126 0 1,765	244 163 2,083
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	1 0.1%	8 0.6%	16 1.1%	38 2.2%	64 3.0%	94 3.8%
RES share	70.0%	63.8%	62.5%	60.5%	58.7%	57.3%
table 13.40: latin amer	ica: h	eat su	pply			
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels Biomass Solar collectors Geothermal	0 0 0 0	7 0 7 0 0	14 0 14 0 0	22 0 22 0 0	24 0 24 0 0	24 0 24 0 0
Heat from CHP Fossil fuels	0	89 87	176 167	274 255	308 280	308 274

Total heat supply ¹) Fossil fuels Biomass Solar collectors Geothermal	6,105 3,754 2,345 0	6,691 4,183 2,505 2 1 0	7,160 4,519 2,610 18 12 0	7,976 5,153 2,791 29 3	8,754 5,725 2,989 32 9 0	9,481 6,278 3,161 38 4
Fossil fuels Biomass Solar collectors Geothermal	3,754 2,345 6 0	4,096 2,497 2 1	4,352 2,588 18 12	4,898 2,750 29 3	5,445 2,937 32 9	6,005 3,102 38 4
Direct heating ¹⁾	6,105	6,596	6,970	7,680	8,422	9,149
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	0 0 0 0	89 87 2 0 0	176 167 0 0	274 255 19 0	308 280 28 0 0	308 274 34 0 0

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.41: latin america: co₂ emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	186	238	247	298	353	418
Coal	13	58	66	91	124	159
Lignite	9	11	17	27	36	44
Gas	70	96	97	129	157	196
Oil	63	61	57	44	29	14
Diesel	30.9	12.3	9.2	7.0	5.8	4.7
Combined heat & power production Coal Lignite Gas Oil	0 0 0 0	11 4 0 7 0	21 6 0 14 0	33 10 0 24 0	39 10 0 29 0	38 9 0 29 0
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	186 13 9 70 94	249 62 11 103 73	268 72 17 112 66	331 100 27 153 51	392 135 36 186 35	457 168 44 226 19
CO: emissions by sector	1,010	1,155	1,244	1,496	1,749	2,006
% of 1990 emissions	167%	191%	206%	248%	290%	332%
Industry	205	228	249	285	313	336
Other sectors	121	141	149	169	188	208
Transport	355	394	433	551	674	796
Electricity & steam generation	186	238	247	298	353	418
District heating	143	154	165	194	221	248
Population (Mill.)	462	503	526	563	588	600
CO2 emissions per capita (t/capita)	2.2	2.3	2.4	2.7	3.0	3.3

Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	227 3 1.1 38 26 12.1 2.9 4.1 138 0.5 0.0 0.5 0.0 0.0	277 14 1.6 58 28 6.5 4.0 5.0 155 3.0 0.4 1.0 0.2 0.0	304 16 2.5 64 29 5.0 5.7 168 5.5 1.4 1.0 0.6 0.0	375 21 4.1 87 29 4.0 6.4 7.1 197 11.9 2.9 1.5 2.5 0.0	454 29 5.7 118 24 4.7 7.2 8.2 223 20.5 7.1 2.3 3.8 0.0	504 35 7.1 121 18 6.0 8.6 9.5 249 28.1 14.3 3.1 4.5 0.0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0 0	4 1 0 3 0 0 0 0	9 2 0 6 0 0 0 0	16 3 0 12 0 1 0 0	20 4 0 14 0 2 0 0	21 3 0 15 0 2 0 0
CHP by producer Main activity producers Autoproducers	0 0	0 4	0 9	0 16	0 20	0 21
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind P V Biomass Geothermal Solar thermal Ocean energy	227 81 38 26 12 2.9 143 138 0 4.2 1 0 0 0	281 113 15 2 61 28 7 4.0 165 155 3 0 5.1 1 0 0 0	313 124 18 3 700 29 5 6.00 183 168 5 1 6.2 1 0	391 160 25 4 99 29 4 6.4 197 122 3 8.2 3 0	474 200 33 6 132 24 5 7.2 0 267 223 21 7 10.0 2 4 0	524 205 39 7 136 8.6 8.6 311 249 28 14 11.7 3 4 0
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.5 0.2%	3.3 1.2%	6.9 2.2%	14.8 3.8%	27.7 5.8%	42.4 8.1%
RES share	63.2%	58.5 %	58.4%	57.3%	56.3%	59.3 %

table 13.43: latin america: primary energy demand

table 13.44: latin america: final energy demand

			10165			
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	17,731 16,276 5,387 4,757 238 382 11 8 7.2%	20,043 18,494 6,238 5,233 320 670 15 9 10.9%	21,683 20,092 6,866 5,778 320 753 15 9 11.1%	25,805 24,172 8,876 7,327 441 1,089 20 12 0 12.4%	29,862 28,187 10,886 8,949 560 1,347 29 17 0 12.5%	33,886 32,170 12,895 10,555 680 1,616 45 26 0 12.7%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	6,244 1,356 949 0 1,358 1,387 0 1,814 0 1,814 0 44.2%	6,968 1,675 1,069 89 455 1,357 1,406 0 1,985 0 45.1%	7,516 1,884 1,177 176 455 1,444 1,489 0 2,068 0 45.5%	8,664 2,428 1,469 274 493 1,565 1,685 0 2,219 0 0 45.7%	9,747 2,973 1,744 308 531 1,686 1,879 0 2,370 0 45.4%	10,797 3,517 2,017 308 569 1,809 2,074 0 2,521 0 0 44.9%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	4,644 1,534 1,073 0 0 1,221 534 6 1,349 0 52.3%	5,288 1,926 1,230 0 5 1,425 603 2 1,326 0 48.4%	5,709 2,183 1,364 0 14 1,484 668 18 1,335 7 47.7%	6,632 2,765 1,673 0 15 1,613 844 29 1,366 46.3%	7,555 3,353 1,967 0 5 1,742 1,025 32 1,394 5 45.0%	8,478 3,937 2,258 0 0 4 1,869 1,210 38 1,417 2 43.8%
Total RES RES share	5,581 34.3%	6,381 34.5%	6,907 34.4%	8,132 33.6%	9,183 32.6%	10,202 31.7%
Non energy use Qil Gas Coal	1,455 948 501 7	1,549 1,009 533 7	1,591 1,036 548 7	1,633 1,063 562 7	1,675 1,091 577 8	1,717 1,118 591 8

latin america: energy [r]evolution scenario

table	13.45:	latin	america:	electricity	generation
LUDIC	エン・マン・	latin	america.	electricity	generation

tasie 191191 latin amer	icu. c	100011	5109 50	merue	1011	
TWh/a	2007	2015	2020	2030	2040	2050
Power plants	998	1,205	1,236	1,347	1,598	2,239
Coal Lignite	16 6	65 2	61	33	21	6 0
Gas	133 101	198 80	128	70 13	32 1	24 1
Oil Diesel	24	5	53	2	0	0
Nuclear	20 26	18 47	18 83	5 110	0 145	0 239
Biomass Hydro	669	749	770	785	793	822 737
Wind PV	1	30 3	85 14	205 71	422 90	737 165
Geothermal	3	7	11	15	20	25
Solar thermal power plants Ocean energy	0	1	10 2	35 4	65 10	195 25
				-		
Combined heat & power production Coal	0	21 1	85 2	192 2	266 2	335 0
Lignite	0	0	0	0	0	0
Gas Oil	0	12 0	32 0	55 0	48 0	46
Biomass Geothermal	0	8 0	47 4	122 12	183 33	228
Hydrogen CHP by producer	ŏ	ő	0	12	õ	61 0
CHP by producer Main activity producers	0	3	10	35	48	60
Autoproducers	ŏ	18	75	35 157	218	275
Total generation	998	1,226	1,321	1,539 175	1,864	2,574
Fossil Coal	280 16	363 66	278 62	175 35	103 22	77 6
Lignite	6	2	1	0	0	Ō
Gas Oil	133 101	210 80	160 53	125 13	80 1	70 1
Diesel	24	5	2	2	0	0
Nuclear Hydrogen	20 0	18 0	18 0	5 0	0	0
Renewables	699	845 749	1,026	1,359 785	1,76ĭ 793	2,497 822
Hydro Wind	669 1	30	770	205	422	822 737
PV Biomass	0 26	3 55	14 130	71 232	90 328	165 467
Geothermal	3	7	15	27	53	86
Solar thermal Ocean energy	0	1	10 2	35	65 10	195 25
Distribution losses Own consumption electricity	164 32	195 49	195 50	200 75	210 105	230 120
Electricity for hydrogen production Final energy consumption (electricity)	806	987	1,082	1,273	1,542	2,185
			,		,	
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	$0.1\%^{1}$	34 2.7%	101 7.6%	280 18.2%	522 28.0%	927 36.0%
RES share 'Efficiency' savings (compared to Ref.)	70.0% 0	69.0% 20	77.7% 62	88.3% 225	94.5% 329	97.0% 388
Efficiency savings (compared to Ref.)	U	20	62	225	329	388
table 13.46: latin amer	ica: h	eat su	ıpply			
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants	0	123	209	227	283	358
Fossil fuels Biomass	0	20 86	23 146	16 154	6 178	0 197
Solar collectors Geothermal	0	5	19	34	57	89
Geothermal	0	12	21	23	42	72
Heat from CHP	0	109	439 155	860 214	1,165	1,500
Fossil fuels Biomass	0	64 45	245	545	182 706	161 813
Geothermal Fuel cell (hydrogen)	Õ	0	- 39 0	101	277	526
	-				-	
Direct heating ¹⁾ Fossil fuels	6,105 3,754	6,539 3,654	6,442 3,062	6,351 2,486	6,338 1,954	6,037 1,350
Biomass	3,754 2,345	2,711	2,682	2,733	2,881 940	2,803
Solar collectors Geothermal	6	67 108	452 247	726 404	940 562	1,112 772

'Efficiency' savings (compared to Ref.)) 0	0	70	538	969	1,586
RES share (including RES electricity)	38.5%	45%	54%	63%	72%	81%
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen)	6,105 3,754 2,345 6 0 0	6,771 3,737 2,842 71 121 0	7,090 3,240 3,073 471 306 0	7,437 2,717 3,432 760 528 0	7,786 2,142 3,766 997 881 0	7,894 1,511 3,813 1,201 1,370 0
Geothermal	ŏ	108	247	404	562	772

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.47: latin america: co2 emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	186 13 9 70 63 30.9	198 52 2.3 89 50.8 4.7	134 46 0.5 52 34.0 1.8	60 24 0.0 25 8.6 1.7	26 15 0.0 11 0.7 0.0	13 4 0.0 8 0.7 0.0
Combined heat & power production Coal Lignite Gas Oil	0 0 0 0	7 1 0 6 0	18 1 0 16 0	26 2 0 24 0	23 1 22 0	20 0 20 0
CO ₂ emissions electricity & steam generation Coal Lignite Gas Oil & diesel	186 13 9 70 94	205 52 95 55	152 47 1 68 36	86 26 0 50 10	49 16 0 32 1	32 4 0 28 1
CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	1,010 167% 205 121 355 186 143	1,030 170% 204 111 374 199 141	901 149% 178 91 368 136 128	736 122% 143 74 343 66 111	642 106% 101 56 349 35 101	312 52% 70 42 130 20 50
District ricating	140	141	120	T T T	101	50

table 13.48: latin amer	ica: i	nstall	ed cap	acity		
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	227 3 1.1 38 26 12.1 2.9 4.1 138 0.5 0.0 0.5 0.0 0.0	275 13 0.3 54 2.3 2.5 2.7 7.2 155 12.7 1.8 1.7 0.4 0.3	287 11 0.1 34 17 1.0 2.5 12.6 160 33.3 10.0 2.1 3.2 0.7	342 6 0.0 17 6 1.0 0.7 15.9 164 71.9 50.7 2.0 5.8 1.3	439 3 0.0 8 1 0.0 0.0 165 160.5 64.3 2.8 10.3 3.3	650 1 0.0 0.0 31.9 172 280.2 117.9 3.4 30.0 8.3
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0 0 0	5 0 3 0 2 0 0	20 0 8 0 11 1 0	44 1 0 13 0 28 2 0	59 0 12 0 40 7 0	73 0 11 0 50 12
CHP by producer Main activity producers Autoproducers	0 0	1 4	3 16	11 33	15 43	19 54
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind P V Biomass Geothermal Solar thermal Ocean energy	227 81 3 38 26 12 2.9 143 138 0 4.2 1 0 0 0 0	280 96 13 0 57 23 3 2.7 0 181 155 13 2 9 2 0 0	307 71 11 2.5 233 160 33 10 23 3 1	386 43 6 0 30 6 1 0.7 342 164 72 51 44 4 4 6 1	497 24 4 0 20 0.0 0.0 473 165 160 64 64 60 9 10 3	723 17 1 1 0 16 16 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.5 0.2%	14.8 5.3%	44.0 14.3%	124.0 32.1%	228.1 45.9%	406.4 56.2%
RES share	63.2%	64.7%	76.1%	88.6%	95.2%	97.6%

table 13.49: latin america: primary energy demand

			,	0.		
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	22,513 15,705 811 4,465 10,349	24,429 16,146 1,297 21 5,429 9,399	24,623 14,262 1,182 5 4,734 8,342	25,012 750 4,162 7,060	26,226 543 3,633 6,376	28,339 6,310 392 0 3,040 2,878
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	214 6,594 2,409 3 6 4,073 103 0 28.6%	191 8,093 2,696 108 84 4,946 255 4 32.5% 1,099	191 10,171 2,772 306 558 5,959 569 7 41.3% 2,925	55 12,986 2,826 738 1,142 7,332 934 14 52.0% 7,293	0 15,674 2,855 1,519 1,555 8,003 1,706 36 59,8% 10,599	0 22,029 2,653 2,497 11,104 2,725 90 77.7% 12,972

table 13.50: latin america: final energy demand

table 19.90. fatili alli	erica. I	mar ei	nergy	uema	nu	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofruels Electricity <i>RES electricity</i> Hydrogen RES share Transport	17,731 16,276 5,387 4,757 238 382 11 8 0 7.2%	19,381 17,832 5,656 4,976 297 362 21 15 0 6.7%	19,875 18,284 5,718 4,885 303 480 49 38 1 9.1%	20,678 19,078 5,842 4,527 324 770 200 177 20 16.5%	21,687 20,096 5,965 4,719 201 606 409 386 30 17.1%	22,550 21,005 6,089 1,550 364 2,249 1,811 1,757 114 67.6%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	6,244 1,356 949 0 0 330 1,358 1,387 0 1,814 0 44.2%	7,033 1,763 1,216 109 393 1,013 1,642 29 1,995 62 0 48.5%	7,314 1,984 1,540 377 311 329 703 1,622 228 1,969 103 0 56.8%	7,626 2,283 2,016 590 485 128 491 1,584 369 2,024 157 0 66.2%	7,840 2,553 2,411 814 677 29 130 1,595 400 2,123 196 0 74.1%	7,878 2,729 2,648 1,118 999 6 77 1,174 450 2,056 268 0 81.5%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	4,644 1,534 1,073 0 0 1,221 534 6 1,349 52.3%	5,142 1,768 1,219 56 0 1,045 581 37 1,609 32 57.4%	5,252 1,861 1,445 212 175 0 760 507 224 1,570 118 67.3%	5,611 2,099 1,854 416 342 0 557 425 357 1,554 202 76.8%	6,291 2,589 2,445 538 448 0 293 455 540 1,591 284 84.4%	7,039 3,327 3,227 635 568 0 199 336 662 1,530 350 90.0%
Total RES RES share	5,581 34.3%	6.741 37.8%	8,203 44.9%	10,324 54.1%	12,136 60.4%	16,875 80.3%
Non energy use Oil Gas Coal	1,455 948 501 7	1,549 1,009 533 7	1,591 1,036 548 7	1,600 1,042 551 7	1,591 1,036 548 7	1,545 1,006 532 7

📡 glossary & appendix | Appendix - LATIN AMERICA

•

latin america: advanced energy [r]evolution

gy [r]evolut	ion s	scei	nar	io	2
table 13.54: latin an	nerica: ii	nstalle	ed cap	acity	
GW	2007	2015	2020	2030	2040
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Coathermal	227 3 1.1 38 26 12.1 2.9 4.1 138 0.5 0.0 0.5	278 8 0.3 58 2.5 2.7 7.2 155 14.8 1.8	303 5 0.1 39 9 1.0 2.5 12.6 160 44.7 20.0	377 3 0.0 24 1 1.0 0.7 15.6 164 87.7 62.9 3.4	519 1 0.0 14 1 0.0 21.3 165 162.0 114.3 14 165 162.0 114.3 165 162.0 114.3 165 165 165 165 165 165 165 165
Geothermal	0.5	1.7	2.1	3.4	3.4

2050

table 13.51: latin america: electricity generation								
TWh/a	2007 998	2015 1,205	2020 1,252	2030 1,461	2040 1,828	2050 2,592		
Power plants Coal Lignite	16 6	40 2	29 1	1,401 15 0	1,020 4 0	2,392 1 0		
Gas Oil Diesel	133 101 24	213 80 5	148 28 2	95 3 2	57 1 0	27 1 0		
Nuclear Biomass	20 26	18 47	18 83	5 108	0 154	228		
Hydro Wind PV	669 1 0	749 35 3	770 114 28	785 250 88	793 426	822 799 270		
Geothermal Solar thermal power plants Ocean energy	3 0 0	7 6 1	11 20 2	25 80 4	160 25 184 25	53 338 52		
Combined heat & power production	0 0	21	85	192	266	335		
Lignite Gas Oil	0 0 0	0 12 0	0 32 0	0 53 0	0 33 0	0 23 0		
Biomass Geothermal	0 0	8 0	47 4	124 13	186 46	232 80		
Hydrogen <i>CHP by producer</i> Main activity producers	0	0	0 10	0 35	0 48	0 60		
Autoproducers	Ō	18	75	157	218	275		
Total generation Fossil Coal	998 280 16	1,226 353 41	1,337 241 30	1,653 171 18	2,094 95 4	2,927 52 1		
Lignite Gas	6 133	2 225	1 180	0 148	0 90	0 50		
Oil Diesel Nuclear	101 24 20	80 5 18	28 2 18	3 2 5	1 0 0	1 0 0		
Hydrogen Renewables	699	855	1,079	1,477	1.999	2,874		
Hydro Wind PV	669 1 0	749 35 3	770 114 28	785 250 88	793 426 160	822 799 270		
Biomass Geothermal	26 3	55 7	130 15	232 38	340 71	460 133		
Solar thermal Ocean energy	0 0	6 1	20 2	80 4	184 25	338 52		
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	164 32 0 806	195 49 987	195 50 15 1.083	200 75 38 1,356	210 105 32 1,751	230 120 79 2,502		
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	1 0.1%	39 3.1%	144 10.8%	, 342 20.7%	611 29.2%	1,121 38.3%		
RES share 'Efficiency' savings (compared to Ref.)	70.0% 0	69.8% 20	80.7% 62	89.4% 222	95.4% 317	98.2% 369		
table 13.52: latin amer				222	517	207		
PJ/A	2007	2015	2020	2030	2040	2050		
District heating plants Fossil fuels	0 0	123	209	292	536	719		
Biomass Solar collectors	0 0	86 5	146 19	199 44	338 107	396 180		
Geothermal Heat from CHP	0	12 109	21 439	29 885	80 1,233	144 1,594		
Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	0 0 0 0	64 45 0	155 245 39 0	216 560 109 0	120 714 400 0	71 822 702 0		
Direct heating ¹⁾ Fossil fuels	6,105	6,539	6,442	6,261	5,970	5,471 162		
Biomass Solar collectors	3,754 2,345 6	3,654 2,711 67	3,062 2,680 453	2,265 2,707 812	1,1115 2,747 1,211	2,760 1,430		
Geothermal Total heat supply ¹⁾	0 6,105	108 6,771	247 7,090	476 7,437	897 7,786	1,119 7,894		
Fossil fuels Biomass	3,754 2,345	3,737 2,842	3,240 3,071	2,502 3,466	1,246 3,798	232 3,977		
Solar collectors Geothermal Fuel cell (hydrogen)	6 0 0	71 121 0	471 306 0	856 614 0	1,319 1,377 46	1,610 1,965 110		
RES share	38.5%	44.8%	54.3%	66.4%	84.0%	97.0%		
(including RES electricity) 'Efficiency' savings (compared to Ref.)	0	0	70	538	969	1,586		
1) heat from electricity (direct and from electric h table 13.53: latin amer					electric appli	ances'		
MILL t/a	2007	2015	2020	2030	2040	2050		
Condensation power plants Coal	186 13	185 32	102	50 11	23	10		
Lignite Gas	9 70	2.3 95	0.5 60	0.0 35	0.0 19	0.0		
Oil Diesel	63 30.9	50.8 4.7	18.0 1.8	2.0 1.7	0.7 0.0	0.7		
Combined heat & power production Coal	0	7	18 1	26 2	15 0	9		
Lignite Gas Oil	0 0 0	0 6 0	16 0	24 0	0 15 0	0 9 0		
CO2 emissions electricity & steam generation	186	192	119	76	37	19		
Coal Lignite	13 9	32 2	23 1	13 0	3 0	1 0		
Gas Oil & diesel	70 94	102 55	76 20	59 4	34 1	18 1		
CO2 emissions by sector % of 1990 emissions	1,010 167%	1,016	843 140%	636 105%	440 73%	119 20%		
Industry Other sectors Transport	205 121 355	204 111 374	179 90 350	135 64 292	62 35 254	9 17 64		
Electricity & steam generation District heating	186 143	186 141	104 121	56 89	28 61	11 19		
Population (Mill.) CO2 emissions per capita (t/capita)	462 2.2	503 2.0	526 1.6	563 1.1	588 0.7	600 0.2		

GW	2007	2015	2020	2030	2040	2050
Power plants	227	278	303	377	519	782
Coal Lignite	3 1.1	8 0.3	5 0.1	3 0.0	0.0	0 0.0
Gas Oil	38 26	58 23	39	24 1	14 1	5
Diesel	12.1	2.5	1.0	1.0	0.0	0.0
Nuclear Biomass	2.9 4.1	2.7 7.2	2.5 12.6	0.7 15.6	0.0 21.3	0.0 30.4
Hydro	138	155	160	164	165	172
Wind PV	0.5 0.0	14.8 1.8	44.7 20.0	87.7 62.9	162.0 114.3	304.0 192.9
Geothermal Solar thermal power plants	0.5 0.0	1.7	2.1	3.4	3.4 29.2	7.2 52.0
Ocean energy	0.0	2.4 0.3	6.5 0.7	13.3 1.3	8.3	17.3
Combined heat & power production	Ő	5 0	20	44	58	72
Coal Lignite	0	0	0 0	1	0 0	0 0
Gās Oil	0	3 0 2	8 0	12 0	8 0	5 0
Biomass	0		11	29	41	51
Geothermal Hydrogen	0 0	0	1 0	3 0	9 0	16 0
CHP by producer						
Main activity producers Autoproducers	0 0	1 4	3 16	11 33	15 43	18 54
Total generation	227	283	323	421	578	854
Fossil Coal	81 3	95 8	62 6 0	42 3	23 1	11 0
Lignite Gas	1	0 61	0 47	0 36	0 22	0 10
Oil	38 26 12	23	9	1	1	1
Diesel Nuclear	2.9	2.7	2.5	0.7	0.0	0.0
Hydrogen Renewables	143	185	258	379	554	842
Hydro Wind	138	155	160	164	165	172 304
PV	0	15 2	45 20 23	88 63	162 114	193
Biomass Geothermal	4.2 1	9	23	44 6	62 13	81 23
Solar thermal Ocean energy	Ō	2 2 0	-3 6 1	13 1	29 8	23 52 17
	0.5	16.9	65.4	151.9	284.6	514.1
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.2%	6.0%	20.2%	36.0%	49.3%	60.2%
RES share	63.2%	65.4%	79.9 %	90.0%	96.0%	98.7%
table 13.55: latin amer	ica: p	rimar	y ener	gy der	nand	
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil	22,513 15,705	24,377 16,057	24,494 13,639	24,996 10,837	25,910 7,850	27,311 3,338
Hard coal	811	1,065	884	437	297	247
Lignite Natural gas	81 4,465	21 5.600	5 4.961	0 4,291	0 2,716	0 1.303
Crude oil	10,349	5,600 9,372	4,961 7,790	6,109	4,837	1,303 1,788
Nuclear Renewables	214 6,594	191 8,129	191 10,664	55 14,104	0 18,060	23 973
Hydro Wind	2,409	2,696	2,772	2,826	2,855	23,973 2,959 2,878
Solar	3	126 102	410 644	´900 1,461	2,855 1,534 2,557 8,517	2,878 3,799 10,181
Biomass Geothermal	4,073 103	4,946 255	6,261 569	1,461 7,754 1,149		10,181 3,969
Ocean Energy	0	4	7	14	60 79	187
RES share 'Efficiency' savings (compared to Ref.)	28.6% 0	32.7% 1,148	43.6% 3,055	56.5% 7,309	69.7% 10,915	87.8% 14,001
table 13.56: latin amer	ica f	inala	nordy	domo	nd	
	2007	2015 2015	2020	2030	2040	2050
PJ/a		-010		_ 0 > 0	_0.0	_000

table 13.30: latin am	erica. I	mai e	nergy	uema	nu	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	17,731 16,276 5,387 4,757 238 382 11 8 0 7.2%	19,381 17,832 5,656 4,976 297 362 21 15 0 6.7%	19,875 18,284 5,718 4,635 303 690 54 43 37 13.3%	20,575 18,975 5,725 3,841 288 1,011 489 437 96 26.8%	21,179 19,588 5,428 3,430 145 721 1,048 1,000 85 33.2%	21,403 19,858 5,358 717 228 1,482 2,719 2,670 212 81.4%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	6,244 1,356 949 0 1,358 1,358 1,387 0 1,814 0 0 44.2%	7,033 1,763 1,230 136 109 393 1,005 1,650 1,995 62 0 48.7%	7,314 1,984 1,600 377 311 329 687 1,638 228 1,969 103 0 57.6%	7,632 2,294 2,051 650 548 17 448 1,626 374 2,050 174 0 68.1%	7,881 2,595 2,477 1,031 70 1,002 530 2,163 428 51 83.8%	7,668 2,801 2,751 1,418 1,416 1,416 669 1,988 505 122 97.2%
Other Sectors Electricity <i>RES electricity</i> District heat <i>Coal</i> Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	4,644 1,534 1,073 0 0 1,221 534 6 1,349 0 52.3%	5,142 1,768 1,234 69 56 0 1,028 598 37 1,609 32 57.7%	5,252 1,861 1,502 175 0 724 541 224 1,571 118 68.4%	5,618 2,100 1,877 450 379 0 472 356 439 1,559 244 80.0%	6,279 2,590 2,473 638 592 0 150 262 682 1,614 342 90.8%	6,832 3,325 3,265 782 781 0 26 105 761 1,444 389 97.2%
Total RES RES share	5,581 34.3%	6,770 38.0%	8,564 46.8%	11,228 59.2%	14,107 72.0%	18,450 92.9%
Non energy use Oil Gas Coal	1,455 948 501 7	1,549 1,009 533 7	1,591 1,036 548 7	1,600 1,042 551 7	1,591 1,043 548 0	1,545 1,013 532 0

7

latin america: total new investment by technology

table 13.57: latin america: total investment

MILLION \$	2005-2010	2011-2020	2021-2030	2005-2030	

Reference scenario				
Conventional (fossil & nuclear)	38,125	60,851	49,285	148,260
Renewables	90,858	154,799	186,209	431,867
Biomass	6,149	9,058	10,306	25,513
Hydro	78,289	129,481	152,344	360,113
Wind	1,940	4,019	7,371	13,330
PV	489	2,875	2,106	5,470
Geothermal	3,461	6,344	5,526	15,330
Solar thermal power plants	531	3,023	8,556	12,111
Ocean energy	0	0	0	0
Energy [R]evolution				
Conventional (fossil & nuclear)	38,125	25,089	6,112	69,327
Renewables	90,858	277,772	268,818	637,449
Biomass	6,149	64,516	68,093	138,758
Hydro	78,289	105,863	76,495	260,646
Wind	1,940	38,641	41,261	81,842
PV	489	22,041	55,685	78,214
Geothermal	3,461	27,499	13,624	44,583
Solar thermal power plants	531	16,692	12,028	29,251
Ocean energy	0	2,521	1,633	4,154
Advanced Energy [R]evolution				
Conventional (fossil & nuclear)	38,125	22,385	6,121	66,631
Renewables	90,858	330,249	310,051	731,158
Biomass	6,149	64,516	69,457	140,122
Hydro	78,289	105,863	76,495	260,646
Wind	1,940	52,008	45,828	99,776
PV	489	43,132	58,607	102,229
Geothermal	3,461	27,499	26,286	57,245
Solar thermal power plants	531	34,709	31,745	66,985
Ocean energy	0	2,521	1,633	4,154

notes

٦Į

oecd europe: reference scenario

table 13.58: oecd europe: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	2,935 456 290 528 925 55 498 105 498 105	3,037 380 516 22 7 869 68 547 301 322 12 2 1	3,183 382 260 624 13 6 743 76 588 419 48 14 8 2	3,589 406 250 738 11 5 707 91 633 614 93 17 15 9	4,011 454 240 854 10 4 671 115 678 790 140 21 20 15	4,427 518 231 966 7 3 635 137 723 950 185 24 27 21
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	642 151 81 310 45 53 1 0	681 152 82 333 39 74 1 0	731 163 83 358 32 93 1 0	802 176 83 389 28 125 1 0	858 182 86 418 23 148 2 0	924 190 89 451 20 173 2 0
Main activity producers Autoproducers	451 191	480 201	520 211	570 232	605 253	658 266
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	3,576 1,926 371 838 102 8925 0 725 498 105 4 108 10 108	3,717 1,810 532 362 849 61 7 869 0 1,038 547 301 32 142 13 2 1	3,914 1,921 545 343 982 45 6 743 0 1,249 48 48 169 15 8 2	4,391 2,086 582 333 1,127 5 707 1,598 633 614 93 216 19 15 9	4,869 2,270 635 326 1,272 33 4 671 0 1,928 678 790 140 263 22 20 15	5,351 2,474 707 320 1,417 27 635 6 35 6 35 6 35 6 35 7 23 950 185 310 26 27 21
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	229 289 3,063	210 290 3,233	215 297 3,419	228 314 3,868	240 332 4,318	253 349 4,771
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	110 3.1%	334 9.0%	469 12.0%	716 16.3%	945 19.4%	1156 21.6%
RES share	20.3%	27.9 %	31.9%	36.4%	39.6%	41.9%

table 13.59: oecd europe: heat supply

RES share (including RES electricity)	12.8%	14.7%	16.0%	18.3%	20.6%	22.4%
Total heat supply ¹⁾	22,510	22,378	22,963	24,321	25,720	27,057
Fossil fuels	19,631	19,091	19,299	19,871	20,431	20,995
Biomass	2,702	3,053	3,359	3,987	4,624	5,232
Solar collectors	56	87	120	201	325	409
Geothermal	121	146	185	261	341	420
Fuel cell ((hydrogen)	0	0	0	0	0	0
Direct heating ¹⁾	19,057	18,730	19,233	20,331	21,487	22,549
Fossil fuels	16,793	16,105	16,268	16,611	16,967	17,271
Biomass	2,105	2,410	2,678	3,276	3,874	4,469
Solar collectors	56	87	120	201	325	409
Geothermal	102	128	167	243	321	401
Heat from CHP	2,205	2,327	2,467	2,842	3,143	3,537
Fossil fuels	1,901	1,995	2,084	2,400	2,647	2,996
Biomass	291	319	371	429	482	525
Geothermal	13	12	12	13	14	15
Fuel cell (hydrogen)	0	0	0	0	0	0
Fossil fuels Fossil fuels Biomass Solar collectors Geothermal	1,249 936 306 0 6	1,321 990 324 0 6	1,263 947 310 6	1,148 861 282 0 5	1,089 817 267 0 5	971 728 238 0 4
PJ/A	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.60: oecd europe: co² emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	975	818	804	840	892	933 385 205 336 5 2.4
Coal	409	310	294	302	338	
Lignite	306	273	239	222	213	
Gas	212	213	257	304	331	
Oil	41	16	10	8	7	
Diesel	7.5	6.6	5.5	4.4	3.3	
Combined heat & power production	498	451	440	432	442	452
Coal	156	147	152	133	148	154
Lignite	99	75	63	69	74	81
Gas	147	159	175	196	199	203
Oil	95	70	49	34	20	13
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	1,472 565 405 359 144	1,269 457 347 372 93	1,245 446 302 432 65	1,272 435 291 499 47	1,335 486 287 530 31	1,386 539 286 539 20
CO2 emissions by sector	4,017	3,747	3,768	3,788	3,774	3,798
% of 1990 emissions	100%	93%	94%	94%	94%	94%
Industry	655	589	564	540	513	485
Other sectors	732	704	710	727	739	754
Transport	1002	961	981	1000	1018	1035
Electricity & steam generation	1,310	1,134	1,125	1,162	1,239	1,304
District heating	318	359	388	359	265	220
Population (Mill.)	540	558	566	575	578	575
CO2 emissions per capita (t/capita)	7.4	6.7	6.7	6.6	6.5	6.6

			T			
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	708 93 56.7 126 35 8.1 130.6 10.5 185 57.1 4.7 1.5 0.0 0.2	832 87 60.9 148 20 122.3 12.8 206 137.8 28.2 2.1 0.7 0.3	870 80 54.4 151 11 6.0 103.8 14.2 218 184.7 41.1 2.5 2.7 0.8	991 74 45.8 180 6 5.4 98.9 16.5 232 252.4 69.8 3.1 4.6 2.0	1,111 83 42.1 198 6 4.7 94.2 20.9 249 292.0 108.4 3.8 5.7 3.4	1,239 95 38.5 215 5 3.8 89.4 24.9 265 338.6 148.0 4.4 6.8 4.4
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	157 30 16 74 28 10 0 0	185 35 19 85 33 14 0 0	183 34 17 86 28 17 0 0	183 32 15 94 18 23 0 0	193 33 16 101 15 28 0 0	206 35 16 108 13 33 0 0
CHP by producer Main activity producers Autoproducers	102 56	119 66	121 62	123 60	130 62	142 63
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	865 465 123 72 200 63 8 130.6 269 185 57 57 5 20.6 2 0 0	1,017 492 121 79 232 52 7 122.3 402 206 138 28 26.8 2 1 0	1,053 468 114 72 237 39 6 103.8 0 482 218 185 41 31.5 3 1	1,174 471 107 61 274 5 98.9 0 604 232 252 70 39.6 3 5 2	1,304 499 116 58 299 21 5 94.2 711 249 292 108 48.5 4 6 3	1,444 529 130 55 3233 18 4 89.4 89.4 2655 339 148 57.7 7 5 5
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	62.0 7.2%	166.4 16.4%	226.6 21.5%	324.2 27.6%	403.9 31.0%	491.5 34.0%

table 13.61: oecd europe: installed capacity

table 13.63: oecd europe: final energy demand

31.1%

table 13.62: oecd europe: primary energy demand

77,549 60,081 10,723 3,648 19,170 26,541

10,096 7,371

1,791 379 70 4,681 448

9.5%

2007

39.6%

2015

75,333 56,226 9,254 3,130 19,104 24,737

9,480 9,627

1,969 1,084 210 5,891 471

12.7%

45.7%

2020

75,953 56,738 8,993 2,722 20,422 24,600

8,105 11,110

2,117 1,508 322 6,649 505 9

14.6%

51.4%

2030

79,088 58,079 8,656 2,620 22,550 24,253

7,713 13,296

2,279 2,210 590 7,623 562 31 **16.7%** 54.5%

2040

81,219 58,389 8,964 2,589 23,766 23,070

7,320 15,510

2,441 2,844 901 8,644 627

18.9%

57.2%

2050

82,634 58,337 9,319 2,580 24,469 21,970

6,927

2,603 3,420 1,173 9,399 700 76

20.8%

RES share

Total Fossil Hard coal Lignite Natural gas Crude oil

Nuclear Renewables

Hydro Wind Solar Biomass Geothermal Ocean Energy **RES share**

PJ/A

table 15.65: oecd euro	ре: пп	ai ene	ergy a	emano	a	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	54,868 49,912 14,575 13,894 79 329 274 56 0 2.6%	54,676 50,154 14,528 13,313 94 795 326 91 6.1%	56,242 51,846 15,072 13,597 105 1,005 366 117 0 7.4%	59,352 55,123 15,449 13,856 122 1,047 424 154 0 7.8%	62,446 58,385 15,826 14,103 1,095 489 194 0 8.1%	65,567 61,674 16,203 14,326 1,152 569 239 0 8.6%
Industry Electricity RES electricity District heat RES district heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	14,411 4,504 913 1,662 330 1,358 1,874 4,182 5 825 1 0 14.4%	14,105 4,605 1,286 1,624 314 1,123 1,656 4,137 7 951 2 0 18.2%	14,281 4,773 1,524 1,610 310 1,047 1,566 4,193 10 1,079 20 20.5%	14,758 5,066 1,844 1,647 291 968 1,427 4,259 21 1,365 5 0 23.9%	15,215 5,359 2,122 1,665 276 889 1,290 4,324 1,647 8 0 26.9%	15,702 5,652 2,368 1,714 260 810 1,153 4,390 44 1,928 11 0 29.4%
Other Sectors Electricity District heat <i>RES electricity</i> District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	20,926 6,247 1,266 1,634 3,25 564 3,516 7,302 51 1,515 97 15.5%	1,873 1,804 349 480 3,227 7,377 7,377 80 1,727 119 19.3%	442 3,104 7,720 110 1,897 155 21.4%	24,916 8,434 3,070 2,103 372 368 2,854 8,482 180 2,276 219 24.6%	27,344 9,696 3,839 2,313 384 241 2,605 9,250 293 2,658 289 27.3%	29,768 10,955 4,590 2,522 383 161 2,353 10,012 365 3,038 362 29.4%
Total RES RES share	5,712 11.4%	7,595 15.1%	8,863 17.1%	10,844 19.7%	12,837 22.0%	14,739 23.9%
Non energy use Oil Gas Coal	4,955 4,361 541 54	4,522 3,979 494 49	4,396 3,869 480 48	4,229 3,721 462 46	4,061 3,574 443 44	3,894 3,427 425 42

۰,

oecd europe: energy [r]evolution scenario

table 13.64: oecd europe: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	2,935 456 290 528 57 8 925 55 498 105 498 105 498	2,929 577 273 497 26 755 68 340 320 50 10 5 1	2,816 319 187 523 20 5 420 79 518 564 140 11 26 3	2,652 129 76 529 8 3 155 82 519 825 239 20 55 13	2,571 21 14 235 0 1 22 80 520 1,114 389 45 96 34	2,569 7 0 30 0 0 0 72 520 1,255 435 65 130 55
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen <i>CHP by producer</i> Main activity producers	642 151 81 310 45 53 1 0 451 191	694 129 34 365 32 131 3 0 485 209	760 53 26 421 14 239 8 0 520 240	820 2 5 452 7 330 24 0 540 280	888 0 368 0 457 63 0 553 335	893 0 258 0 548 87 0 525 368
Autoproducérs Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	3,576 1,926 608 371 838 925 0 725 498 105 498 105 408 108 100 1	3,623 1,940 706 307 58 62 58 7 755 0 928 340 320 50 199 13 51 1	3,576 1,567 371 213 944 34 5420 0 1,588 564 140 318 19 26 3	3,472 1,211 131 981 155 2,107 2,107 825 239 412 44 44 55 13	3,459 639 21 14 603 0 1 22 0 2,798 520 1,114 389 537 108 96 34	3,462 295 7 0 288 0 0 0 3,167 520 1,255 435 620 152 130 55
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	229 289 3,063	210 280 3,151	210 275 40 3,090	210 270 3,103	210 260 101 3,348	210 250 102 3,730
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	110 3.1%	371 10.2%	707 19.8%	1,077 31.0%	1,537 44.4%	1,745 50.4%
RES share 'Efficiency' savings (compared to Ref.)	20.3% 0	25.6% 108	44.4% 367	60.7% 874	80.9% 1,360	91.5% 1,850
table 13.65: oecd europ	e: he	at sup	ply			
	2007	2015	2020	2020	2040	2050

table 13.65: oecd europ	pe: he	at sup	ply										
PJ/A	2007	2015	2020	2030	2040	2050							
District heating plants	1,249	1,545	1,730	1,836	2,215	2,509							
Fossil fuels	936	1,066	1,081	716	266	50							
Biomass	306	371	432	496	554	577							
Solar collectors	0	62	121	422	1,019	1,380							
Geothermal	6	46	95	202	376	502							
Heat from CHP	2,205	2,486	2,779	2,998	3,232	3,382							
Fossil fuels	1,901	1,857	1,708	1,610	1,299	940							
Biomass	291	599	1,001	1,170	1,363	1,657							
Geothermal	13	31	71	219	569	785							
Fuel cell (hydrogen)	0	0	0	0	0	0							
Direct heating ¹⁾	19,057	17,430	16,899	15,784	14,763	13,955							
Fossil fuels	16,793	14,397	12,976	10,487	7,808	6,548							
Biomass	2,105	2,440	2,716	2,626	2,065	1,659							
Solar collectors	56	247	582	1,669	3,063	3,443							
Geothermal	102	347	624	1,001	1,827	2,305							
Total heat supply ¹⁾	22,510	21,461	21,407	20,618	20,210	19,846							
Fossil fuels	19,631	17,319	15,765	12,813	9,373	7,538							
Biomass	2,702	3,409	4,150	4,291	3,982	3,893							
Solar collectors	56	309	703	2,091	4,082	4,823							
Geothermal	121	424	790	1,422	2,773	3,591							
Fuel cell (hydrogen)	0	0	0	0	0	0							
RES share (including RES electricity) 'Efficiency' savings (compared to Ref.)	12.8%) 0	19% 917	26% 1,555	38% 3,703	54% 5,510	62% 7,211							
1) heat from electricity (direct and from electric l	heat pumps)	not included;	covered in the	model under	1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'								

table 13.66: oecd europe: co2 emissions

table 19.00. becu europ	C. CO2	emis	510115			
MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	975 409 306 212 41 7.5	967 471 266.1 205 18.9 6.6	652 245 171.8 215 14.8 4.6	390 96 67.5 218 5.9 2.6	120 15 12.4 91 0.0 0.8	16 5 0.0 10 0.0 0.0
Combined heat & power production Coal Lignite Gas Oil	498 156 99 147 95	386 125 31 175 55	294 49 20 206 20	233 1 220 8	173 0 173 0	112 0 112 0
CO ₂ emissions electricity & steam generation Coal Lignite Gas Oil & diesel	1,472 565 405 359 144	1,353 596 297 379 81	946 294 192 421 39	623 97 72 438 16	293 15 12 264 1	128 5 0 122 0
CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	4,017 100% 655 732 1002 1,310 318	3.642 91% 535 622 943 1,231 312	2,947 73% 450 565 863 845 224	2,209 55% 374 434 717 528 156	1,360 34% 264 325 477 211 82	850 21% 204 273 277 64 32
Population (Mill.) CO2 emissions per capita (t/capita)	540 7.4	558 6.5	566 5.2	575 3.8	578 2.4	575 1.5

table 13.67: oecd europ	e: ins	stalled	l capa	city		
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	708 93 56.7 126 35 8.1 130.6 10.5 185 57.1 4.7 1.5 0.0 0.2	787 132 59 124 23 7 106 13 128 147 44 2 0	896 67 39 122 17 5 59 15 192 249 120 2 9 1	941 26 14 124 4 3 22 15 190 340 179 4 17 3	1,050 5 2 78 0 1 3 12 191 413 301 8 27 8	1,072 2 0 15 0 0 0 101 448 348 12 33 13
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	157 30 16 74 28 10 0	182 29 8 93 27 25 1 0	176 11 5 101 12 45 2 0	181 0 109 4 61 5 0	185 0 88 0 85 13 0	180 0 60 103 17 0
CHP by producer Main activity producers Autoproducers	102 56	117 65	116 59	117 64	114 71	104 76
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	865 465 123 72 200 63 8 130.6 269 185 57 57 57 20.6 2 0 0	969 502 161 67 217 50 7 106 361 128 147 44 38 2 2 0	1,072 379 45 223 29 5 5 9 0 634 192 249 120 59 4 9 1	1,122 287 26 15 234 9 3 220 814 190 340 179 76 8 17 3	1,235 174 5 2 166 0 1 3 0 1,058 191 413 301 97 21 27 8	1,252 78 0 755 0 0 0 0 1,175 191 448 348 113 299 333 13
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	62.0 7.2%	191 19.7%	370 34.5%	522 46.5%	722 58.4%	809 64.6%
RES share	31.1%	37.3%	59.1%	72.5%	85.6%	93.8%

table 13.68: oecd europe: primary energy demand

			0.	,		
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	77,549 60,081 10,723 3,648 19,170 26,541	73,275 54,805 9,719 2,676 18,342 24,067	66,798 5,967 1,726 18,488 21,507	59,172 38,510 3,089 645 17,712 17,063	50,812 25,563 1,454 112 12,587 11,410	45,390 17,557 914 0 8,961 7,682
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Re	10,096 7,371 1,791 379 70 4,681 448 9.5% f.) 0	8,236 10,234 1,224 1,152 507 6,626 721 4 14.0% 2,140	4,582 14,528 1,865 2,030 1,301 8,157 1,163 12 21,9% 9,151	1,691 18,971 1,868 2,970 3,150 8,711 2,224 47 32.6% 19,438	240 25,010 1,872 4,010 5,828 8,643 4,534 122 50,5% 28,963	0 27,833 1,872 4,518 6,857 8,532 5,856 198 63.4% 34,614

table 13.69: oecd europe: final energy demand

table 19.07. Decu euro	pe	ai ene	ergy u	emany	1	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	54,868 49,912 14,575 13,894 79 329 274 56 0 2.6%	53,036 48,515 14,396 13,053 109 808 419 107 7 6.4%	51,469 47,073 13,581 11,894 171 911 505 224 99 8.7%	48,230 44,001 12,025 9,879 170 996 818 496 162 13.2%	44,879 40,818 9,991 6,543 169 1,121 1,894 1,532 264 28.7%	42,749 38,855 8,848 3,772 163 1,158 3,183 276 51.9%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	14,411 4,504 913 1,662 330 1,358 1,874 4,182 5 825 1 0 14.4%	13,487 4,467 1,145 1,548 464 1,001 1,419 3,919 106 927 100 0 20.3%	13,192 4,355 1,934 1,581 642 684 1,041 3,845 262 1,166 259 0 32.3%	12,769 4,228 2,565 1,774 986 558 571 3,425 580 1,169 463 0 45.1%	12,362 4,143 3,352 2,125 1,627 250 131 2,876 994 995 846 0 63.2%	12,095 4,068 3,722 2,369 2,121 22 40 2,594 1,172 757 1,073 0 73.1%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	20,926 6,247 1,266 1,634 3,516 7,302 51 1,515 97 15.5%	20,632 6,456 1,654 2,233 6,69 128 3,307 6,371 141 1,785 211 21.6%	1,853 296 31.2%	19,207 6,124 3,715 2,759 1,533 1,574 5,430 1,089 1,749 424 44.3%	18,465 6,017 4,867 2,986 2,286 41 745 4,559 2,069 1,299 61.0%	17,911 5,879 5,378 3,176 2,843 2,7 358 4,177 2,271 1,086 937 69.9%
Total RES RES share	5,712 11.4%	8,119 16.7%	11,769 25.0%	15,864 36.1%	21,952 53.8%	25,953 66.8%
Non energy use Oil Gas Coal	4,955 4,361 541 54	4,522 3,979 494 49	4,396 3,869 480 48	4,229 3,721 462 46	4,061 3,574 443 44	3,894 3,427 425 42

oecd europe: advanced energy [r]evolution

table 13.70:oecd europe: electricity generation

table 13.70:oecd europ	2007	2015	2020	2030	2040	2050
FWh/a Power plants	2.935	2,930	2,827	2,860	3,018	3,518
coal jgnite	456 290	401 272	305 172	29 51	2	0
Gas Dil Diesel	528 57 8	497 26 7	504 20 5	478 8 3	172 0 1	18 0 0
Nuclear Biomass	925 55	755 68	420 71	118 72	22 71	0 69
Hydro Wind	498 105	517 320	518 564	519 938	520 1,186	520 1,352
>V Geothermal Solar thermal power plants	4 8 0	50 10 6	161 30 46	294 144 143	477 183 265	-/637 290 451
Dean energy	ĩ	1	10	63	110	181
Combined heat & power production	151	694 129	760	820	775	715
Lignite Sas Dil	81 310 45	34 365 32	21 421 14	428 7	242 0	0 76 0
Biomass Geothermal	53 1	131 3	239	340 39	426 106	452 167
Tydrogen CHP by producer Main activity producers	0	0	0	0	1	20
Main activity producers Autoproducers	451 191	485 209	520 240	540 280	525 250	485 230
Total generation Fossil	3,576 1,926	3,624 1,763	3,587 1,520 363	3,680 1,009	3,793 426	4,233 94
Coal Lignite	608 371	530 306	193	32 54	9	0
Gas Oil	838 102	862 58	925 34 5	906 15	414 0	94 0
Diesel Nuclear Lydrogen	925 0	755	420 0	118	22 1	0 0 20
Renewables Hydro	725 498	1,106 517	1,647 518	2,552 519	3,34 4 520	4,119
Wind PV	105 4	320 50	564 161	938 294	1,186 477	1,352 637
Biomass Geothermal	108 10	199 13	310 38	412 183	497 289	521 457 451
Solar thermal Ocean energy	0 1	6 1	46 10	143 63	265 110	451
Distribution losses Dwn consumption electricity	229 289	210 280	210 265	210 240	210 200	210 185
Electricity for hydrogen production Final energy consumption (electricity)	3,063	3,151	3,112	3,342	3,697	4,375
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	110 3.1%	371 10.2%	735 20.5%	1,295 35.2%	1,773 46.7%	2,170 51.3%
RES share Efficiency' savings (compared to Ref.)	20.3% 0	30.5% 108	45.9% 366	69.4% 864	88.2% 1,343	97.3% 1,793
				004	1,777	1,77
table 13.71: oecd europ	2007	מו Sup 2015	2020	2030	2040	2050
District heating plants	1,249	1,543	1,844	2.005	2,751	3,436
Fossil fuels Biomass	936 306	1,065 370	1,153 461 129	782 541 461	330 660 1,293	0 756 1,993
Solar collectors Seothermal	0 6	62 46	101	220	468	687
Heat from CHP	2,205 1,901	2,486 1,857	2,783 1,711	3,103 1,579	3,201 853	3,199 273
Biomass Geothermal Fuel cell (hydrogen)	291 13 0	599 31 0	1,001 71 0	1,170 353 1	1,392 953 4	1,364 1,501 62
Direct heating ¹⁾	19,057	17.431	16,780	15,510	14,158	12,612
Fossil fuels Biomass	16,793 2,105	14,392 2,446 247	12,860 2,709 582	9,614 2,592 2,158	5 763	1,217 2,285 4,770
Solar collectors Geothermal	56 102	247 347	582 629	2,158 1,146	2,427 3,295 2,700	4,770 4,340
Fotal heat supply¹⁾ Fossil fuels	22,510 19,631	21,461 17,314	21,407	20,618	20,210	19,846
Biomass	2,702					1 490
	56	2.412	15,724 4,171 711	4,303	4,479 4,588	1,490
Solar collectors Geothermal Fuel cell (hydrogen)	56 121 0	3,415 309 423 0	4,171 711 802 0	11,975 4,303 2,619 1,719 1	6,919 4,479 4,588 4,121 103	1,490 4,405 6,763 6,529
Fuel cell (hydrogen) RES share	56 121 0 12.8%	309 423	4,171 711 802	4,303 2,619 1,719 1 41.9%	4,121	1,490 4,405 6,763 6,529 660
Fuel cell (hydrogen)	56 121 0 12.8%	3,415 309 423 0	4,171 711 802 0	1	4,121 103	1,490
Tuel (hydrogen) RES share including RES electricity) Efficiency' savings (compared to Ref.)) heat from electricity (direct and from electric h	56 121 0 12.8% 0 meat pumps)	5,415 309 423 0 19.3% 917 not included; (4,171 711 802 0 26.5% 1,555	41.9% 3,703	4,121 103 65.7% 5,510	1,490 4,405 6,763 6,529 660 92.4% 7,211
Tuel cell (hydrogen) RES share including RES electricity) Efficiency' savings (compared to Ref.) heat from electricity (direct and from electric h table 13.72: oecd europ	56 121 0 12.8% 0 neat pumps)	3,415 309 423 0 19.3% 917 not included; (2 emis;	^{4,171} 711 802 0 26.5% 1,555 covered in the sions	41.9% 3,703	4,121 103 65.7% 5,510 `electric appli	1,490 4,405 6,763 6,29 660 92.4% 7,211 ances'
Tuel (hydrogen) RES share including RES electricity) Efficiency' savings (compared to Ref.)) heat from electricity (direct and from electric h	56 121 0 12.8% 0 neat pumps) 0 0 0 2007 975	3,415 309 423 0 19.3% 917 not included; 0 2 emis 2015 823	4,171 802 0 26.5% 1,555 covered in the sions 2020 620	41.9% 3,703 model under 2030 272	4,121 103 65.7% 5,510	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6
Tuel cell (hydrogen) RES share including RES electricity) Efficiency' savings (compared to Ref.) beat from electricity (direct and from electric h table 13.72: oecd europ MILL t/a Condensation power plants Dal Lignite	56 121 0 12.8% 0 0 eeat pumps) 0 0 2007 975 409 306	3,413 309 423 0 19.3% 917 not included; 0 2 emis 2015 823 327 265	4,171 802 0 26.5% 1,555 covered in the sions 2020 620 235 158	41.9% 3,703 model under 2030 272 22 45	4,121 103 65.7% 5,510 'electric appli 2040 76 7 2	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6 0 0 0
Tuel cell (hydrogen) RES share including RES electricity) Efficiency'savings (compared to Ref.) b) heat from electricity (direct and from electric h table 13.72: oecd europ MILL t/a Condensation power plants Dal ignite ign	56 121 0 12.8% 0 neat pumps) 0 0 2007 975 409 306 212 41	3,415 309 423 0 19.3% 917 not included; 0 2015 823 327 265 205 19	4,171 802 0 26.5% 1,555 covered in the sions 2020 620 235 158 207 15	41.9% 3,703 model under 2030 272 22 45 196 6	4,121 103 65.7% 5,510 'electric appli 2040 76 7 2 67 0	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6 0 0 6 0 0 6
Tuel cell (hydrogen) RES share including RES electricity) Efficiency'savings (compared to Ref.)) heat from electricity (direct and from electric h table 13.72: oecd europ MILL t/a Condensation power plants Oal ignite as Digsel	266 121 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 0 12.8% 12.8% 0 12.8% 0 12.8% 12.8% 0 12.8% 12.	3,415 309 423 0 19.3% 917 not included; 0 2 emis: 2015 823 327 265 205	4,171 302 0 26.5% 1,555 covered in the sions 2020 620 235 155 295	41.9% 3,703 model under 2030 272 22 45 196	4,121 103 65.7% 5,510 'electric appli 2040 76 7 2 67	1,490 4,405 6,763 6,763 6,529 6,660 92.4% 7,211 ances' 2050 6 0 0 6 0 0 0 0
Tuel cell (hydrogen)	56 121 0 12.8% 0 12.8% 0 0 0 0 0 0 0 0 0 0 0 0 0	3,415 309 423 0 19.3% 917 not included; 2015 823 327 205 205 205 19 7 7 386 125 31	4,171 802 0 26.5% 1,555 covered in the sions 2020 620 2355 15 5 295 53 16	1 41.9% 3,703 model under 2030 272 45 196 3 227 2 2	4,121 4,123 65.7% 5,510 2040 76 7 2040 76 7 1 114 0	1,490 4,405 6,763 6,763 6,529 6600 92.4% 7,211 ances' 2050 6 0 0 0 6 0 0 33 0 0
Tuel cell (hydrogen) RES share including RES electricity) Efficiency'savings (compared to Ref.) b) heat from electricity (direct and from electric h table 13.72: oecd europ MILL t/a Condensation power plants Coal Lignite Sas Disel Combined heat & power production Sal	56 121 0 12.8% 0 weat pumps) 0 0 2007 975 409 306 212 411 7.5 498 156	3,415 309 423 0 19.3% 917 not included; 2 emiss 2015 823 327 265 205 19 7 386 125	4,711 802 0 26.5% 1,555 5 5 2020 620 2355 158 207 155 5 205 5 205 5 5	41.9% 3,703 model under 2030 272 22 45 196 6 3 227 22 22 22 22 22 22 22 22 22 22 22 22	4,121 103 65.7% 5,510 2040 76 7 2040 76 7 2 67 0 1 114 0	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6 0 0 0 0 6 0 0 0 33 3 3 3
Tuel cell (hydrogen)	56 121 12.8% 0 12.8% 0 0 0 0 0 0 0 0 0 0 0 0 0	3,415 309 423 0 19.3% 917 not included; 2015 823 327 265 205 823 327 7 386 125 31 155 55 1,208	4,771 711 802 026.5% 1,555 covered in the sions 2020 235 158 207 15 5 295 53 16 206 200	41.9% 3,703 model under 2030 272 245 196 6 3 227 22 215 8	4,103 65.7% 5,510 'velectric appli 2040 76 7 267 0 1 114 0 0114	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6 0 0 0 0 0 0 0 33 0 0 0 33 0 0
Tuel cell (hydrogen)	56 121 0 12.8% 0 meat pumps) 0 2 007 975 409 306 212 41 7 5 498 156 99 47	3,415 309 423 0 19.3% 917 not included; 2015 823 327 205 205 205 205 205 205 205 205 205 205	4,771 802 0 26.5% 1,555 5 5 5 2020 620 235 158 2020 620 235 158 5 5 5 5 5 295 5 5 16 206	41.9% 3,703 model under 2030 272 25 196 6 3 227 22 215	4,103 65.7% 5,510 2040 76 7 2 2 7 0 1 1 114 4 0 0 114	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6 0 0 0 0 0 33 0 0 0 0 33 0 0 0 0 0 0
Tuel cell (hydrogen)	56 12.8% 0 12.8% 0 0 0 0 0 0 0 0 0 0 0 0 0	3,415 309 423 0 19.3% 917 not included; 2015 823 327 265 205 10 386 125 31 175 1,208 452	4,711 802 0 26.5% 1,555 covered in the sions 2020 620 620 620 620 620 620 620 620 62	41.9% 3,703 model under 2030 272 245 196 6 3 227 225 196 6 3 227 225 196 8 499 24	4,121 65.7% 5,510 *electric appli 2040 76 7 67 7 67 7 114 0 114 0 114 0 114 0 190 7	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6 0 0 0 0 33 0 0 33 0 0 39 0 0 39 9 39
Tuel cell (hydrogen)	56 121 0 12.8% 0 neat pumps) 0 0 0 2 2 0 7 5 409 2007 9 7 5 409 2007 9 7 5 409 2007 9 7 5 409 2007 9 7 5 409 2007 9 7 5 409 2007 9 7 5 409 2007 9 7 5 409 2007 9 7 5 409 2007 9 7 5 409 202 2007 9 7 5 409 202 2007 9 7 5 409 202 207 9 5 409 202 207 409 202 207 409 202 207 409 202 207 409 202 207 409 202 207 409 202 207 409 207 407 409 207 409 207 409 207 407 407 407 407 407 407 407 4	3,413 309 423 0 917 not included; 2015 823 327 265 205 205 205 19 7 386 125 327 265 205 205 205 205 205 205 205 205 205 20	4,711 802 0 26.5% 1,555 5 5 2020 620 620 620 620 235 5 5 207 15 5 295 5 5 295 5 6 205 207 207 25 5 295 205 207 205 205 205 207 205 205 207 205 205 207 205 205 207 205 205 207 205 205 207 205 205 207 205 207 207 207 207 207 207 207 207 207 207	1 41.9% 3,703 model under 2030 272 45 196 6 3 227 2 215 8 8 499 24 48 411 11 1,931	4,121 4,123 65.7% 5,510 'electric appli 2040 76 7 2 77 0 1 114 0 0 114 0 190 7 2 80 1 948	1,490 4,405 6,763 6,529 660 92.4% 7,211 ances' 2050 6 0 0 0 0 0 0 333 0 0 339 0 0 399 0 0 0 0
Tuel cell (hydrogen)	56 121 0 12.8% 0 12.8% 0 12.8% 0 0 0 0 2007 975 409 2007 147 95 405 359 147 147 95 405 359 144 405 555 155 144 145 145 145 145 14	3,413 309 423 019.3% 917 not included; 2015 823 327 265 205 205 205 19 7 386 125 327 265 19 7 386 125 327 265 19 387 155 55 1,208 452 297 81 3,77 81 155 1,208 457 857 855 1,208 877 81 155 1,208 877 817 155 1,208 877 817 817 817 817 817 817 81	4,171 802 0 26.5% 1,555 covered in the sions 2020 235 158 2020 235 158 207 25 53 16 206 206 200 915 2874 413 39 2,908 72,908 72,908	1 41.9% 3,703 model under 2030 272 45 196 6 3 227 2 215 8 8 499 24 4 411 11 1,931 48% 344	4,121 4,103 65.7% 5,510 2040 76 7 2 67 2 67 2 67 0 1 114 0 0 114 0 114 0 114 0 114 0 114 0 114 0 114 0 114 0 114 0 114 0 114 0 114 0 114 114	1,490 4,405 6,763 6,763 6,763 6,763 6,763 6,769 6,763 7,211 ances' 2050 6 0 0 0 0 0 0 0 333 0 0 0 0 0 333 0
Tuel cell (hydrogen)	56 12.8% 0 12.8% 0 neat pumps) 0 2007 975 409 212 409 212 409 212 498 156 99 144 4,017 100% 732	3,415 309 423 0 19.3% 917 not included; 2015 823 327 205 205 205 125 327 265 125 31 1755 1,208 8452 2963 31 155 1,208 87% 535 625 943	4,171 802 00 26.5% 1,555 covered in the sions 2020 620 235 158 207 25 53 16 206 206 200 915 287 295 53 16 206 200 915 287 295 53 16 206 200 235 53 16 206 200 235 53 16 206 200 235 53 16 206 200 235 53 16 207 207 207 53 16 207 207 207 207 207 207 207 207 207 207	1 41.9% 3,703 model under 2030 272 245 196 6 3 227 22 215 8 227 225 215 8 227 225 215 8 499 24 48 48 4111 17 1,931	4,121 4,103 65.7% 5,510 2040 76 7 2 67 0 1 114 0 0 114 0 0 114 0 0 114 0 0 114 0 0 114 0 0 114 0 0 114 0 0 114 0 195 244 321	1,490 4,495 6,763 6,763 6,769 6,629 92.4% 7,211 ances' 2050 6 0 0 0 0 33 0 0 0 33 39 0 0 0 0 33 39 0 0 0 0
Tuel cell (hydrogen)	565 121 0 12.8% 0 12.8% 0 12.8% 0 2007 975 2007 975 2007 975 2007 975 409 2007 122 409 2007 975 409 2007 122 407 975 409 2007 122 407 975 409 2007 122 407 975 409 2007 127 407 975 409 207 407 975 409 207 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 975 407 124 407 100% 605 725 725 725 725 725 725 725 72	3,413 309 423 0 19.3% 917 not included; 2015 823 327 265 2015 823 327 265 19 7 7 7 386 125 31 31 31 31 35 55 1,208 452 255 1,208 452 255 1,208 452 255 1,208 452 255 1,208 452 255 1,208 452 255 255 1,208 452 255 255	4,771 802 0 26.5% 1,555 500000000000000000000000000000000	1 41.9% 3,703 model under 2030 272 245 196 6 3 227 2255 215 8 8 499 24 411 17 7 1,931 48% 344 344	4,121 4,103 65.7% 5,510 2040 76 7 2 2 7 0 1 1 144 0 0 114 10 0 114 10 0 114 0 190 7 2 180 1 1 199 948 24% 195 24%	1,490 4,405 6,763 6,763 6,763 6,763 6,763 6,763 7,211 ances' 2050 6 0 0 0 0 0 33 3 0 0 0 0 33 3 0 0 0 0

table 13.73: oecd europ	oe: ins	stalled	l capa	city		
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	708 93 56.7 126 35 8.1 130.6 10.5 185 57.1 4.7 1.5 0.0 0.2	814 92 59 124 23 7 106 13 195 147 44 2 2 0	921 64 36 124 17 5 59 13 192 249 138 6 15 3	1,054 6 9 119 4 3 17 13 190 386 221 26 44 15	1,200 2 0 51 0 1 3 11 191 439 369 33 74 26	1,398 0 9 0 0 0 0 10 191 483 510 53 100 42
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	157 30 16 74 28 10 0 0	182 29 8 93 27 25 1 0	176 12 4 101 12 45 2 0	180 0 104 4 63 8 0	158 0 58 0 79 21 0	139 0 18 0 84 33 4
CHP by producer Main activity producers Autoproducers	102 56	117 65	116 59	116 63	105 53	93 47
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind P V Biomass Geothermal Solar thermal Ocean energy	865 465 123 72 200 63 8 130.6 269 185 57 5 20.6 0 0 0	996 461 121 67 217 50 7 106 428 195 147 44 38 2 0	1,097 376 76 226 29 59 00 663 192 249 138 58 58 7 15 3	1,234 251 6 10 223 9 3 17 0 966 190 386 221 766 344 444 15	1,358 112 2 0 108 0 1 3 0 1,243 191 439 369 90 55 74 26	1,537 27 0 0 27 0 4 1,506 191 483 510 94 866 100 42
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	62.0 7.2%	191 19.2%	390 35.6%	622 50.4%	834 61.4%	1,035
RES share	31.1%	43.0%	60.4%	78.3%	91.5%	98.0%
table 13.74: oecd europ	o nri	marv	enero	v dem	and	
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil	77,549 60,081	72,095 53,032	66,504 46,958	59,077 34,660	50,784 19,291	46,754 7,262

Nuclear	10,096	8,236	4,582	1,287	240	0
Renewables	7,371	10,827	14,964	23,130	31,252	39,492
Hydro	1,791	1,861	1,865	1,868	1,872	1,872
Volar	379	1,152	2,030	3,377	4,270	4,867
Solar	70	510	1,456	4,192	7,259	10,680
Biomass	4,681	6,579	7,993	8,564	8,841	8,625
Geothermal	448	721	1,584	4,901	8,615	12,797
Ocean Energy	2	4	36	227	396	652
RES share	9.5%	15.0%	22.6%	39.6%	62.4%	85.1%
'Efficiency' savings (compared to Ref.)	0	3,214	9,446	19,533	28,992	33,250
Hard coal Lignite Natural gas	60,081 10,723 3,648 19,170 26,541	53,032 7,865 2,668 18,433 24,066	46,958 5,540 1,566 18,533 21,319	34,660 1,644 428 17,173 15,414	19,291 765 16 9,595 8,915	7,262 231 2,613 4,418

table 13.75: oecd europe: final energy demand

table 15.75: Seca euro	pe: 111	ai ene	ergy a	emano	1	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen Hydrogen	54,868 49,912 14,575 13,894 79 329 274 56 0 2.6%	53,037 48,515 14,396 13,054 104 809 422 129 7 6.5%	51,470 47,074 13,581 11,829 166 908 579 266 99 9.0%	47,932 43,703 11,725 8,712 1,062 1,639 1,137 157 19.7%	43,790 39,729 8,891 4,387 122 1,064 2,934 2,587 384 44.9%	41,264 37,371 7,348 887 10 1,121 4,540 4,418 790 85.8%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	14,411 4,504 913 1,662 330 1,358 1,874 4,182 5 825 1 0 14.4%	13,487 4,467 1,364 1,548 464 1,001 1,419 3,919 106 927 100 0 22.0%	13,192 4,357 2,001 1,696 686 638 955 3,853 263 1,169 263 0 33.2%	12,779 4,237 2,939 2,021 1,142 400 436 3,445 582 1,172 485 0 49.5%	12,311 4,184 3,689 2,303 1,930 281 108 2,019 1,045 1,145 1,145 1,145 1,122 104 73.3%	12,044 4,124 4,013 2,602 2,552 21 16 688 1,462 1,046 1,462 1,462 1,462 92.5%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	20,926 6,247 1,266 1,634 325 564 3,516 7,302 51 1,515 97 15.5%	20,632 6,456 1,971 2,232 669 203 3,306 6,300 141 1,784 211 23.1%	20,300 6,265 2,877 2,645 1,070 263 2,865 5,797 319 1,851 295 31.6%	19,199 6,151 4,266 2,764 1,562 140 1,360 4,945 1,576 1,752 510 50.4%	18,527 6,035 5,321 3,310 2,773 0 558 3,507 2,250 1,579 1,287 71.3%	17,978 6,027 5,865 3,715 3,644 932 3,308 1,548 2,380 93.1%
Total RES RES share	5,712 11.4%	8,676 17.9%	12.012 25.5%	18,295 41.9%	26,221 66.0%	34,193 91.5%
Non energy use Oil Gas Coal	4,955 4,361 541 54	4,522 3,979 494 49	4,396 3,869 480 48	4,229 3,721 462 46	4,061 3,574 443 44	3,894 3,427 425 42

oecd europe: total new investment by technology

table 13.76: oecd europe: total investment

MILLION \$	2005-2010	2011-2020	2021-2030	2005-2030

Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	174,106 251,168 45,944 82,210 65,576 41,494 13,640 1,204 1,101	184,345 844,297 62,043 230,606 241,641 253,283 8,280 45,455 2,988	84,312 429,434 51,847 85,610 137,656 93,874 17,546 38,098 4,804	442,764 1,524,899 159,834 398,425 444,873 388,651 39,466 84,758 8,893
Energy [R]evolution	174 104	160 710	72 092	406,906
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	174,106 251,168 45,944 82,210 65,576 41,494 13,640 1,204 1,101	160,718 969,733 173,628 230,606 241,641 253,283 22,131 45,455 2,988	72,082 489,757 84,960 85,610 137,656 93,874 44,756 38,098 4,804	1,710,658 304,532 398,425 444,873 388,651 80,527 84,758 8,893
Advanced Energy [R]evolution	174,106 251,168	112,971 934,186	57,306 873,664	344,383 2,059,018
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	45,944 82,210 65,576 41,494 13,640 1,204 1,101	169,940 84,163 241,641 291,249 56,380 80,695 10,117	90,744 85,610 185,812 125,614 225,708 132,279 27,898	2,007,0629 251,982 493,030 458,356 295,728 214,178 39,116

notes

africa: reference scenario

table 13.77: africa: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	615 267 0 170 59 9 11 1 96 1 0 0	789 284 0 289 41 7 11 15 131 4 4 3 0 0	877 279 0 324 42 6 18 24 161 8 9 4 1 0	1,168 383 0 372 27 5 27 42 242 242 242 242 33 8 5 0	1,458 483 0 420 14 4 36 60 323 40 56 12 10 0	1,751 581 0 470 5 78 404 56 74 16 20 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	0 0 0 0 0 0 0 0 0	3 0 1 0 0 0 0	10 5 0 4 1 0 0 0	32 20 0 10 1 1 0 0	55 36 0 16 1 2 0 0	75 51 0 20 0 3 0 0
Main activity producers Autoproducers	0 0	0 3	0 10	0 32	0 55	0 75
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	615 505 267 0 170 59 9 11 0 99 96 1 0 1 1 0 0	792 624 286 0 290 41 7 11 131 4 157 131 4 15 3 0 0 0	887 662 285 0 328 43 6 18 8 9 207 161 8 9 24 4 1 0	1,200 818 403 0 382 28 5 27 0 355 242 242 244 333 43 8 5 0	1,513 974 519 436 15 4 36 503 323 40 56 62 12 10 0	1,826 1,130 632 0 490 5 3 450 651 404 566 74 81 16 20 0
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	68 46 504	83 57 656	90 61 740	111 75 1,020	131 90 1,300	152 104 1,580
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	1 0.2%	8 1.0%	17 1.9%	57 4.8%	96 6.3%	130 7.1%
RES share	16.0%	19.8%	23.3%	29.6 %	33.2%	35.6%

table 13.78: africa: heat supply

13

glossary & appendix | Appendix - Africa

RES share (including RES electricity)	74.7%	73.7%	73.8%	71.8%	70.1%	68.9 %
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal Fuel cell ((hydrogen)	10,123 2,559 7,563 1 0 0	10,873 2,863 8,003 7 0 0	11,396 2,989 8,396 11 0 0	12,290 3,467 8,795 28 0 0	13,875 4,147 9,682 47 0 0	15,445 4,798 10,580 66 0 0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	10,123 2,559 7,563 1 0	10,858 2,848 8,002 7 0	11,351 2,945 8,394 11 0	12,170 3,351 8,791 28 0	13,677 3,957 9,674 47 0	15,199 4,564 10,569 66 0
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	0 0 0 0	15 0 0 0	45 44 1 0 0	120 116 4 0 0	198 190 8 0 0	245 234 11 0 0
District heating plants Fossil fuels Biomass Solar collectors Geothermal	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0
PJ/A	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.79: africa: co² emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	392 245 0 90 39 17	451 261 0 149 34 7	465 256 0 168 36 6	546 329 0 192 21 4	601 385 0 202 11 3	640 432 201 4 2
Combined heat & power production Coal Lignite Gas Oil	0 0 0 0	2 1 0 1 0	7 4 0 2 0	19 14 0 4 1	34 27 0 7 0	44 35 0 8 0
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	392 245 0 90 56	453 262 0 150 41	472 261 0 169 42	566 343 0 197 26	635 412 0 209 14	684 468 210 6
CO2 emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	881 161% 116 114 200 392 59	1,002 183% 134 123 219 451 75	1,060 194% 143 126 241 465 84	1,264 231% 173 142 325 546 78	1,447 265% 220 161 408 601 58	1,622 297% 261 179 490 640 52
Population (Mill.) CO2 emissions per capita (t/capita)	965 0.9	1,153 0.9	1,276 0.8	1,524 0.8	1,770 0.8	1,998 0.8

table 13.80: africa: installed capacity

GW Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass	2007 128 41 0 38 17 7 2	2015 178 53 0 62 18	2020 200 52 0 70	2030 266 65 0	2040 326 82	2050 382 98
Coal Lignite Gas Oil Diesel Nuclear	41 0 38 17 7	53	52	65	82	
Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	2 23 1 0 0 0 0	62 18 2 32 2 2 1 0	18 4 40 3 4 1 0 0	87 14 4 7 61 8 15 1 1 0	0 96 8 4 5 10 81 12 25 2 1 0	0 104 3 6 13 101 16 32 3 3 3 0
Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0	3 1 0 1 0 0 0 0	7 4 0 2 1 0 0 0	11 7 4 0 0 0 0	15 9 0 5 0 1 0 0
CHP by producer Main activity producers Autoproducers	0 0	0 1	0 3	0 7	0 11	0 15
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	128 103 41 0 38 17 7 2 0 24 1 0 24 1 0 0 0 0 0 0 0 0	179 138 53 0 62 18 5 2 0 39 32 2 3 1 0 0	202 147 53 0 71 19 4 3 0 52 40 3 4 4 4 1 0 0	273 176 68 0 89 14 4 4 4 9 3 61 8 15 7 1 1 0	337 200 88 0 99 4 5 0 132 81 12 25 10 2 1 0	397 223 108 0 109 3 3 6 0 168 100 168 32 113 3 3 3 0
Fluctuating RES (PV, Wind, Ocean)	1	4	7	23	37	48
Share of fluctuating RES	0.4% 18.5%	2.1% 21.9%	3.5% 25.8%	8.3% 34.1%	11.0% 39.2%	12.1% 42.3%

table 13.81: africa: primary energy demand

– PJ/A Total Fossil Hard coal Lignite	2007 26,355 13,456 4,330	2015 29,581 15,355 4,567 0	2020 31,203 16,112 4,559	2030 35,411 18,879 5,483	2040 39,439 21,386 6,299	2050 43,173 23,517 6,977
Natural gas Crude oil	3,472 5,654	4,894 5,894	5,300 6,254	5,895 7,501	6,240 8,847	6,338 10,202
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share	123 12,776 344 4 12,390 37 0 48.4%	120 14,106 472 14 22 13,522 77 47.8%	196 14,895 580 29 47 14,152 86 0 47.9%	295 16,237 871 86 165 14,982 132 0 46.0%	393 17,661 1,163 144 284 15,909 161 0 45.1%	491 19,164 1,454 202 405 16,924 180 0 45.0%

table 13.82: africa: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	19,355 18,782 2,851 2,773 61 0 17 3 0.1%	21,741 21,113 3,140 3,032 69 21 18 4 0 0.8%	23,116 22,488 3,475 3,326 81 42 27 6 0 1.4%	26,679 26,009 4,647 4,483 85 30 9 1.3%	30,839 30,127 5,820 5,635 89 63 33 11 0 1.3%	34,965 34,212 6,992 6,778 93 84 36 13 0 1.4%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	3,539 822 132 0 0 347 603 693 0 1,074 0 0 34.1%	4,039 1,005 199 15 0 369 678 827 0 1,145 0 33.3%	4,279 1,089 254 45 0 381 707 852 0 1,206 0 0 34.1%	5,125 1,424 421 120 0 418 796 985 0 1,383 0 0 35.2%	6,310 1,758 585 198 0 493 959 1,211 0 1,691 0 0 36.1%	7,464 2,093 746 245 0 566 1,121 1,439 0 1,999 0 0 36.8%
Other Sectors	12,392	13,934	14,734	16,236	17,998	19,756
Electricity	977	1,340	1,549	2,219	2,889	3,559
District heat	157	266	362	657	960	1,269
<i>RES district heat</i>	0	0	0	0	0	0
Coal	230	257	252	249	249	248
Oil products	1,058	1,139	1,158	1,309	1,486	1,665
Gas	235	253	296	381	473	567
Solar	1	7	11	28	47	66
Biomass and waste	9,890	10,937	11,468	12,050	12,854	13,651
Geothermal	0	0	0	0	0	0
RES share Other Sectors	81.1%	80.5%	80.4%	78.4%	77.0%	75.9%
Total RES	11,256	12,579	13,349	14,598	16,210	17,829
RES share	59.9%	59.6%	59.4%	56.1%	53.8%	52.1%
Non energy use	573	628	628	670	712	754
Oil	274	301	301	321	341	361
Gas	245	269	269	287	305	323
Coal	53	58	58	62	66	70

africa: energy [r]evolution scenario

table 13.83: africa: electricity generation

table 19.09. alfrea. eres	2007	2015	2020	2030	2040	2050
TWh/a Power plants	2007 615	2015 784	2020 864	1,092	1,592	2050 2,135
Coal Lignite	267 0	282	280	275	269	126
Gas Oil	170 59	283 41	285 30	285 16	283 10	248 2
Diesel Nuclear	9 11	7	5 8 19	4 0 19	4	3
Biomass Hydro Wind	1 96 1	17 128 9	150	19 175 71	20 190 118	20 195 153
PV Geothermal	0 1	6	31 29 4	125	242	415 11
Solar thermal power plants Ocean energy	0	1 0	22 2	110	437 10	948 15
Combined heat & power production	0	10	34	95	142	169
Coal Lignite Gas	0 0 0	602	17 0 9	46 0 25	66 0 39	74 0 47
Oil Biomass	0	2 0 1	05	23 0 14	0	0 27
Geothermal Hydrogen	0 0	Ō	0 5 3 0	10	16	21
CHP by producer Main activity producers	Ő	2 8	4	10 85	17	19 150
Autoproducers Total generation	0 615	°	30 898	1,187	125 1,735	2,304
Fossil Coal	505 267	620 287	625 296	651 321	671 335	499 199
Lignite Gas	0 170	0 285	0 294	310 310	0 322	295
Oil Diesel	59 9 11	41 7 8	30 5 8	16 4 0	11 4 0	2 3 0
Nuclear Hydrogen Renewables	99	165	265	536	1,064	1,805
Hydro Wind	96 1	128	150 31	175 71	190 118	195 153
PV Biomass	0	18 18	29 24	125 33	242 42	415 47
Geothermal Solar thermal Ocean energy	1 0 0	3 1 0	7 22 2	16 110 6	25 437 10	32 948 15
Distribution losses	68	83	90	111	133	141
Own consumption electricity Electricity for hydrogen production	46	57 0	61 720	75	90 3	104 12
Final energy consumption (electricity) Fluctuating RES (PV, Wind, Ocean)	504	658 15	730	940 202	1,196 370	1,490 583
Share of fluctuating RES	0.2%	1 9%	6.9%	17.0%	21.3%	25.3%
RES share 'Efficiency' savings (compared to Ref.)	16.0% 0	20.8% 0	29.5% 12	45.2% 87	61.3% 129	78.3% 146
table 13.84: africa: hea	it sup	ply				
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels	0 0	0 0	4 3	27 16	89 43	168 76
Biomass Solar collectors	0	0	1 0	5 3	18 13	34 25
Geothermal Heat from CHP	0	0 53	0 170	3 406	15 613	34 691
Fossil fuels Biomass	00	44 6	120 23 27	263 51	390 77	413 89
Geothermal Fuel cell (hydrogen)	0 0	4 0	27 0	92 0	146 0	189 0
Direct heating ¹⁾ Fossil fuels	10,123 2,559 7,563	10,819	11,192	11,776 3,003	12,832 2,935 7,800	13,687
Biomass Solar collectors	7,563	2,811 7,802 172	2,941 7,769 425	7,677 972	7,800 1,917	2,840 7,777 2,833
Geothermal	Ō	34	57	123	180	238
Total heat supply ¹⁾ Fossil fuels	10,123 2,559 7,563	2,855 7,808	11,365 3,063 7,793	12,209 3,282 7,734	13,534 3,367 7,895 1,931	14,547 3,328 7,899
Biomass Solar collectors Geothermal	7,563 1 0	7,808 172 38	7,793 425 84	7,734 975 218	7,895 1,931 341	2,858 461
Fuel cell (hydrogen)	0	0	0	0	0	0
RES share (including RES electricity) 'Efficiency' savings (compared to Ref.)	74.7%	74%	73% 31	73%	75%	77% 898
1) heat from electricity (direct and from electric h		not included:		81	341	
table 13.85: africa: co2						
MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal	392 245	445 258	433 256	399 236	361 215	204 94
Lignite Gas	- 10 90	0.0 146	0.0 147	0.0 148	0.0 136	0.0 106
Oil Diesel	39 17	34.3 6.6	24.9 4.6	12.0 3.5	7.9 2.9	1.4 2.4
Combined heat & power production	0	7 5	19 14	44 33	69 50	74 53
Lignite Gas	000	0 1	0 4	0 11	0 18	0 21
Oil	Ō	0	0	0	Ō	0
CO2 emissions electricity & steam generation Coal	392 245	452 264	452 270	443 269	430 265	277 146
Lignite Gas	0 90	0 147	0 152	0 158	0 154	0 127
Oil & diesel	56	41	30	16	11	4
CO2 emissions by sector % of 1990 emissions	881 161%	1,001 183% 129	1,013 185% 138	1,031 189% 151	1,031 189% 148	880 161% 135
Industry Other sectors Transport	116 114 200	129 126 235	138 135 261	151 145 294	148 155 323	135 160 348
Electricity & steam generation District heating	392 59	447 64	436 43	403 37	373 32	216 21

1,770 **0.6**

1,998 **0.4**

1,524 **0.7**

Population (Mill.) CO2 emissions per capita (t/capita)

965 **0.9** 1,153 **0.9** 1,276 **0.8**

table 13.86: africa: installed capacity

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	128 41 0 38 17 7 2 0 23 1 0 0 0 0 0	179 52 0 60 18 5 1 3 31 4 3 0 0 0	206 52 0 13 4 1 3 37 12 14 1 7 1	281 55 0 66 8 3 0 3 44 24 57 1 17 2	393 60 64 6 3 0 3 48 37 108 2 60 3	509 42 0 55 1 3 0 3 49 44 180 2 126 4
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0 0	3 1 0 1 0 0 0 0	8 4 0 2 0 1 1 0	19 8 0 6 0 3 2 0	30 13 0 9 0 4 3 0	37 16 0 11 0 5 4 0
CHP by producer Main activity producers Autoproducers	0 0	0 2	1 7	2 17	4 26	4 32
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	128 103 41 0 38 17 7 20 24 23 1 0 0 0 0 0 0	182 137 53 0 61 18 5 1 0 43 31 4 3 4 1 0 0 0	213 136 55 0 64 13 4 10 76 37 12 14 4 17 1	300 147 63 0 72 8 3 0 0 153 44 24 24 57 6 3 17 2	423 156 73 0 74 6 3 0 0 267 48 37 108 7 5 60 3	546 128 58 0 66 1 3 0 0 418 49 44 180 8 6 126 4
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.4%	7 3.9%	26 12.2%	82 27.5%	147 34.8%	228 41.8%
RES share	18.5%	23.6%	35.6%	50.9%	63.2%	76.5%

table 13.87: africa: primary energy demand

-	~~~~	0015		0000	0040	0050
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	26,355 13,456 4,330 0 3,472 5,654	30,040 15,143 4,214 0 4,941 5,989	30,932 15,494 4,143 0 5,302 6,049	32,526 15,612 3,884 0 5,554 6,174	35,146 15,454 3,628 0 5,529 6,297	36,487 13,538 2,247 0 5,028 6,263
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	123 12,776 344 4 12,390 37 0 48.4%	87 14,810 461 32 197 14,004 115 49.4% 0	87 15,350 540 112 609 13,836 247 7 49.6% 344	0 16,915 630 256 1,821 13,629 557 22 51.8% 3,106	0 19,692 684 425 4,375 13,350 822 36 54.9% 5,430	0 22,949 702 551 7,765 12,852 1,026 54 61.0% 8,547

table 13.88: africa: final energy demand

tubic 19.00. allica. Ill		isy ut	manc	•		
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	19,355 18,782 2,851 2,773 61 0 17 3 0 0.1%	21,835 21,207 3,359 3,242 70 23 25 5 0 0.8%	22,986 22,358 3,759 3,604 83 38 34 10 0 1.3%	25,245 24,575 4,265 4,057 80 70 56 25 22 2.2%	27,855 27,143 4,770 4,468 77 92 125 77 9 3.6%	30,155 29,401 5,276 4,807 72 129 235 184 33 6.4%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	3,539 822 132 0 0 347 603 693 0 1,074 0 1,074 0 34.1%	4,026 1,005 209 53 570 799 12 1,182 12 1,182 0 35.3%	4,283 1,089 321 172 20 369 533 851 62 1,183 25 0 37.6%	4,852 1,374 620 103 327 459 846 154 1,186 77 0 44.1%	5,411 1,608 986 695 216 219 296 872 330 1,267 124 0 54.0%	5,809 1,793 1,405 850 336 160 108 916 404 1,405 173 0 64.1%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	12,392 977 157 0 230 1,058 235 1 9,890 81.1%	13,822 1,340 279 0 257 1,109 351 160 10,584 79.9%	14,316 1,505 444 0 278 1,015 591 363 10,533 10,533 79.4%	15,458 1,956 883 0 0 291 925 872 818 10,551 46 79.6%	16,961 2,573 1,578 0 0 315 885 1,065 1,588 10,479 56 80.8%	18,317 3,334 2,612 0 0 339 819 1,208 2,429 10,122 65 83.1%
Total RES RES share	11,256 59.9%	12,493 58.9%	13,030 58.3%	14,534 59.1%	16,798 61.9%	19,290 65.6%
Non energy use Oil Gas Coal	573 274 245 53	628 301 269 58	628 301 269 58	670 321 287 62	712 341 305 66	754 361 323 70

glossary & appendix | APPENDIX - AFRICA

2040

)

٩.

africa: advanced energy [r]evolution scenario

table 13.89: africa: electricity generation 2007 2015 2020 2030

TWh/a	2007	2015 ty gen	2020	2030	2040	2050
Power plants	615 267	784 282	866 247	1,103	1,654 81	2,321
Coal Lignite Gas	0 170	0 283	0 285	0 284	0 188	0 51
Oil Diesel Nuclear	59 9 11	41 7 8	30 5 8	16 4 0	10 4 0	2 3 0
Biomass Hydro	1 96	17 128	19 150	19 175	20 190	20 195
Wind PV Geothermal	1 0 1	9 6 3	34 29 10	84 125 40	172 242 89	298 425 179
Solar thermal power plants Ocean energy	0	1 0	42 7	127 24	606 51	1,047 102
Combined heat & power production Coal	0 0	10 6	34 17	95 44	142 49	169 38
Lignite Gas Oil	0 0 0	0 2 0	0 9 0	0 26 0	0 44 0	0 57 0
Biomass Geothermal	0	1 0	5	14 10	22 28	27 46
Hydrogen CHP by producer Main activity producers	0	0 2	0	0 10	0 17	0 19
Autoproducers	0	8	30	85	125	150
Total generation Fossil Coal	615 505 267	794 620 287	900 593 264	1,198 580 250	1,797 377 131	2,490 151 38
Lignite Gas	0 170	0 285	0 294	0 310	0 232	0 108
Oil Diesel Nuclear	59 9 11	41 7 8	30 5 8	16 4 0	11 4 0	2 3 0
Hydrogen Renewables	99	165	299	618	1,420	2,339
Hydro Wind PV	96 1 0	128 9 6	150 34 29	175 84 125	190 172 242	195 298 425
Biomass Geothermal	1 1	18 3	24 13	33 50	42 117	47 225
Solar thermal Ocean energy	0 0	1 0	42 7	127 24	606 51	1,047 102
Distribution losses Own consumption electricity Electricity for hydrogen production	68 46 0	83 57 0	90 61 0	111 75	133 90 15	141 104 43
Final energy consumption (electricity)	504	658	731	952	1,247	1,644
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	1 0.2%	15 1.9%	70 7.8%	233 19.4%	465 25.9%	825 33.1%
RES share 'Efficiency' savings (compared to Ref.)	16.0% 0	20.8% 0	33.2% 12	51.6% 87	79.0% 129	93.9% 146
table 13.90: africa: hea		ply				
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels Biomass	0 0 0	0 0 0	6 0 3	27 0 11	72 0 22	109 0 24
Solar collectors Geothermal	Ö	0 0	2 1	11 5	36 14	63 22
Heat from CHP Fossil fuels	0 0	53 44	170 120	418 275	675 349	835 331
Biomass Geothermal	0 0 0	6 4 0	23 27	51 92 0	78 249	89 416
Fuel cell (hydrogen) Direct heating ¹⁾	10,123	10 819	0 11,189		0 12,779	0 13,536
Fossil fuels Biomass	2,559 7,563 1	2,811 7,802 172	2,840 7,762 529	11,763 2,412 7,619 1,518 215	1,838 7,535 3,028	13,536 1,055 7,216
Solar collectors Geothermal	0	34	57		5/9	4,572 694
Total heat supply ¹⁾ Fossil fuels Biomass	10,123 2,559 7,563	10,872 2,855 7,808	2,960 7,789	12,209 2,687 7,681	13,534 2,187 7,634	14,547 1,386 7,328
Solar collectors Geothermal	1	172 38	532 85	1,529 312	3,064 642	4,635 1,131
Fuel cell (hydrogen) RES share	0 74.7%	0 73.7%	0 74.0%	0 78.0%	7 83.8%	66 90.4%
(including RES electricity) 'Efficiency' savings (compared to Ref.)		1	31	81	341	898
1) heat from electricity (direct and from electric h			covered in the	model under	`electric appli	ances'
table 13.91: africa: co ₂	emis: 2007	2015	2020	2030	2040	2050
MILL t/a Condensation power plants	392	445	404	339	166	25
Coal Lignite Gas	245 0 90	258 0 146	227 0 147	177 0 147	65 0 90	0 0 22
Oil Diesel	39 17	34 7	25 5	12 3	83	1
Combined heat & power production Coal	0	7 5	19 14	45 33	59 38	53 28
Lignite Gas	0	0 1	0 4	0 12	0 21	0 25
Oil ÇO2 emissions electricity	0	0	0	0	0	0
& steam generation Coal	392 245 0	452 264 0	422 241	384 210	225 103	79
Lignite Gas Oil & diesel	90 56	147 41	0 152 30	0 159 16	111 11	0 47 4
CO2 emissions by sector	881	998	970	889	669 123%	423 77%
% of 1990 emissions Industry Other sectors	161% 116 114	183% 129 126	178% 136 124	163% 135 108	116 85	85 46
Transport Electricity & steam generation	200 392	235 447	260 406	269 345 32	274 177	247 38
	59	61	42	52	18	7
District heating Population (Mill.) CO2 emissions per capita (t/capita)	965 0.9	1,153 0.9	1,276 0.8	1,524 0.6	1,770 0.4	1,998 0.2

table 13.92: africa: installed capacity

table 13.92: africa: ins		-	-			
GW	2007	2015	2020	2030	2040	2050
Power plants Coal	128 41	179 52	210 46	290 41	409 18	553
Lignite Gas	0	-0 60	0 62	0 71	0 55	0 27
Oil Diesel	17 7	18 5	13 4	, i 3	6	1
Nuclear	2 0	1	1 3	03	0 3	3 0 3
Biomass Hydro Wird	23 1	31	37	44	48	49
Wind PV	0	4	13 14	28 57	54 108	85 185
Geothermal Solar thermal power plants	0 0	0 0	2 14	7 20	16 83	33 140
Ocean energy	0	0	2	8	15	28
Combined heat & power production Coal	1 0	3 1	8 4	19 8	30 10	36 8
Lignite Gas	0	0 1	0 2 0	0 6	0 10	0 13
Oil Biomass	0	0 0	0 1	6 0 3	0 4	13 0 5 9
Geothermal Hydrogen	0	0	1	3 2 0	6 0	9
CHP by producer						
Main activity producers Autoproducers	0 0	0 2	17	2 17	4 26	4 32
Total generation	128	182	218	310	439	589
Fossil ⁻ Coal	103 41	137 53	130 49	138 49	103 28	52 8 0
Lignite Gas	0 38	0 61	0 64	0 77	0 66	0 40
Oil Diesel	17 7	18 5	13 4	8 3	6 3	1 3 0
Nuclear Hydrogen	2 0	1	1	0 0	0	0
Renewables Hydro	24 23	43 31	86 37	172 44	336 48	537 49
Wind PV	1	4 3	13 14	28 57	54 108	85 185
Biomass Geothermal	0	4 1	4 2	6	7 22	8 42
Solar thermal Ocean energy	0 0	0 0	14 2	20 8	83 15	140 28
Fluctuating RES (PV, Wind, Ocean)	1	7	29	92	176	298
Share of fluctuating RES '	0.4% 18.5%	3.9% 23.6%	13.3% 39.6%	29.8% 55.4%	40.1% 76.6%	50.7% 91.2%
					70.070	/112/0
table 13.93: africa: prin					0.040	0050
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil	26,355 13,456	29,979 15,081	30,787 14,979	32,129 13,817	34,019 10,695	35,805 7,097
Hard coal Lignite	4,330 0 3,472	4,129 0 4,984	3,597	2,857	1,372 0 3,983	427
Nătural gas Crude oil	5,654	5,968	5,381 6,000	5,338 5,623	5,340	2,456 4,214
Nuclear Renewables	123 12,776	87 14,811	87 15,721	0 18,312	0 23,324	0 28, <u>708</u>
Hydro Wind	344 4	461 32	540 122	630 302	684 619	1.073
Solar Biomass	12,390	197 14,005	787 13,869	2,436 13,643	6,117 13,265	9,934 12,519 4,113
Geothermal	37	115	377	1 213	2 4 5 6	4,113
Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	48.4%	49.5% 0	51.0% 489	56.8% 3,503	67.9% 6,557	79.3% 9,230
					-	
table 13.94: africa: fina						
PJ/a		2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use)	19,355 18,782 2,851	21,836 21,207 3,359	23,000 22,372 3,759	24,909 24,239 3,965	27,343 26,631 4,270	29,255 28,501 4,376
Transport Oil products	2,113	3,241	3,591	3,716	3,785	3,412
Natural gas Biofuels	61	71 23	88 40	79 71	57 94	33 126
Electricity RES electricity	17 3	25 5	40 13	97 50	295 233	689 647
Hydrogen RES share Transport	0.1 %	0.8 %	1.4%	3.1%	38 8.4%	116 20.2%
Industry	3,539	4,026	4,284	4,859	5,463	5,919
Electricity RES electricity	822 132	1,005 209	1,089 362	1,374 708	1,608 1,271	1,793 1,685 935
District heat RES district heat	0	53	174 49	441 184	740 388	567
Coal Oil products	347 603	372 587	352 527	239 328	66 180	0 43
Gas Solar	693 0	803 12	859 75	874 339	873 730	728 1,046
Biomass and waste Geothermal	1,074 0	1,182 12	1,184 25	1,171 94	1,116 140	997 299
Hydrogen RES share Industry	34.1%	35.3%	39.6 %	51.4%	66.9 %	77 78.8%
Other Sectors	12,392	13,822	14,329	15,415	16,897	18,207
Electricity RES electricity	977 157	1,340 279	1,505	1,956 1,009	2,573 2,033	3,334 3,132
District heat RES district heat	0	0	0	0	0	0
Coal Oil products	230 1,058	257 1,094	172 987	88 865	28 753	269
Gas Solar	235	365 160	621 455	628 1,179	459 2,297	460 3,525
Biomass and waste Geothermal	9,890	10,586	10,558	10,579 121	10,549 238	10,218 395 94.9%
RES share Other Sectors	81.1 %	79.9 %	80.6%	83.6%	89.5%	74.9%

12,496 58.9%

13,293 59.4%

11,256 59.9%

Total RES RES share

Non energy use Oil Gas Coal

19,129 71.8%

22,819 80.1%

15,506 64.0%

13

glossary & appendix | Appendix - Africa

africa: total new investment by technology

table 13.95: africa: total investment

Reference scenario				
MILLION \$	2005-2010	2011-2020	2021-2030	2005-2030

Kererence sechario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	39,780 27,658 3,105 18,751 997 2,540 2,264 0 0	61,064 74,227 7,289 49,718 1,891 8,427 5,207 1,696 0	55,812 113,963 10,130 74,442 5,248 15,434 6,534 2,174 0	156,656 215,848 20,524 142,911 8,137 26,402 14,005 3,869 0
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy Advanced Energy [R]evolution	39,780 27,658 3,105 18,751 997 2,540 2,264 0 0	53,940 144,640 9,508 41,811 13,006 29,282 11,281 37,520 2,233	39,351 178,456 8,121 31,617 13,136 59,492 15,309 47,821 2,960	133,071 350,754 20,734 92,179 91,314 28,854 85,341 5,193
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	39,780 27,658 3,105 18,751 997 2,540 2,264 0 0	48,062 196,052 9,508 41,811 14,286 29,282 22,096 71,435 7,633	33,060 215,718 8,121 31,617 16,455 59,492 56,875 30,503 12,656	120,901 439,428 20,734 92,179 31,738 91,314 81,235 101,938 20,289

notes

middle east: reference scenario

table 13.96: middle east: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	715 38 0 404 244 5 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0	962 41 0 613 256 5 8 3 32 3 1 0 1 0	1,134 51 760 255 5 8 4 38 7 1 0 4 0	1,648 111 1,169 253 5 10 8 45 17 10 0 21 0	2,066 147 0 1,515 252 4 12 10 52 27 20 0 27 0	2,374 221 0 1,713 251 3 14 13 59 37 30 0 33 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	0 0 0 0 0 0 0 0	3 1 1 0 0 0 0	7 0 3 3 1 0 0	15 1 0 8 5 2 0 0	25 0 13 8 3 0	30 2 0 15 9 4 0 0
Main activity producers Autoproducers	0 0	0 3	0 7	0 15	0 25	0 30
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydrog Wind PV Biomass Geothermal Solar thermal Ocean energy	715 692 38 0 404 244 5 0 0 23 23 0 0 0 0 0 0 0 0 0 0 0 0	965 918 41 0 614 257 5 8 0 39 322 3 1 3 0 1 0	1,141 1,078 52 0 763 258 5 8 0 55 388 7 1 5 0 4 0	1,663 1,551 112 0 1,176 258 5 10 0 102 45 17 10 9 0 21 0	2,091 1,940 149 0 1,527 259 4 12 0 139 52 27 20 13 0 0 27 0	2,404 2,214 223 0 1,728 260 3 14 0 176 59 37 30 17 0 33 0
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	85 56 573	94 80 791	102 96 945	135 144 1,389	146 180 1,774	160 212 2,042
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.0%	4 0.4%	8 0.7%	27 1.6%	47 2.2%	67 2.8%
RES share	3.2%	4.0%	4.8%	6.1%	6.6%	7.3%

table 13.97: middle east: heat supply

RES share (including RES electricity)	1.4%	1.4%	1.8%	2.0%	1.9%	1.9%
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal Fuel cell ((hydrogen)	5,256 5,185 35 36 0	6,234 6,149 50 31 4 0	7,001 6,875 53 41 32 0	8,880 8,703 60 62 56 0	10,527 10,324 66 76 61 0	12,146 11,914 70 92 69 0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	5,256 5,185 35 36 0	6,207 6,125 47 31 4	6,950 6,831 48 41 32	8,792 8,627 48 62 56	10,401 10,217 47 76 61	12,010 11,803 46 92 69
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	0 0 0 0 0	19 18 1 0 0	42 38 4 0 0	78 68 9 0	116 99 17 0 0	125 103 22 0 0
PJ/A District heating plants Fossil fuels Biomass Solar collectors Geothermal	0 0 0 0	8 6 2 0 0	9 6 2 0 0	10 7 2 0 0	10 8 2 0 0	11 8 3 0 0
514	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.98: middle east: co₂ emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	488 36 0 240 200 13	542 35 0 288 206 13	615 43 0 356 203 13	842 86 0 548 195 13	993 110 678 194 10	1,133 164 0 767 194 8
Combined heat & power production Coal Lignite Gas Oil	0 0 0 0	3 1 0 1	5 0 2 2	8 1 0 4 4	13 2 0 6 5	13 1 0 7 5
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	488 36 0 240 213	544 36 0 288 220	620 43 0 358 218	851 87 0 552 212	1,006 111 685 209	1,147 166 0 774 207
CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	1,374 234% 223 189 312 488 162	1,730 294% 279 210 461 542 238	1,970 335% 321 226 539 615 269	2,494 424% 417 274 683 842 278	2,872 488% 514 303 736 993 326	3,208 546% 606 332 774 1,133 363
Population (Mill.) CO2 emissions per capita (t/capita)	202 6.8	235 7.4	255 7.7	293 8.5	326 8.8	353 9.1

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	190 5 0 107 63 5 0 10 0 0 0 0 0 0 0 0	272 6 0 173 70 5 1 1 14 14 0 0 0 0	290 8 0 185 68 5 1 1 17 3 1 0 1 0	388 17 0 265 62 5 1 20 7 6 0 3 0	653 26 0 496 76 4 2 1 23 10 11 0 4 0	1,220 44 1,008 22 26 14 17 0 5 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0 0	2 0 0 1 0 0 0	3 0 1 2 0 0 0	6 0 2 3 0 0	9 0 3 5 1 0 0	10 0 3 6 1 0
CHP by producer Main activity producers Autoproducers	0 0	0 2	0 3	0	0 9	0 10
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	190 180 5 0 107 63 5 0 0 107 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	274 256 7 0 173 71 1 0 0 17 14 1 0 0 0 0 0	294 270 8 0 186 70 5 1 0 23 17 3 1 1 0 0 1 0	394 355 17 0 267 66 5 1 0 37 20 7 6 1 0 3 0	662 610 26 0 499 81 4 20 50 23 10 11 2 0 4 0	1,231 1,165 0 1,011 106 20 64 26 14 17 3 0 5 0
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.0%	2 0.6%	3 1.2%	12 3.2%	21 3.2%	31 2.5%
RES share	5.3%	6.0%	7.7%	9.4%	7.6%	5.2%

table 13.99: middle east: installed capacity

table 13.100: middle east: primary energy demand

	· · · · · · · · · · · · · · · · · · ·					
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	21,372 21,202 435 9,056 11,709	27,358 26,971 483 2 11,371 15,115	31,498 31,009 597 2 13,431 16,980	41,370 40,563 1,124 19,125 20,313	46,773 45,725 1,443 23,042 21,238	51,281 49,998 2,091 2 26,034 21,871
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share	170 82 1 36 52 0 0.8%	95 291 115 11 40 123 2 0 1.1%	94 395 137 25 62 151 20 0 1.3%	114 693 162 61 173 258 38 0 1.7%	134 914 187 97 246 341 44 0 2.0%	153 1,131 212 133 319 415 52 0 2.2%

table 13.101: middle east: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	15,272 12,867 4,344 4,307 37 0 1 0 0.0%	20,331 16,939 6,406 6,364 41 0 1 0 0.0%	23,412 19,518 7,494 7,452 41 1 0 0.0%	30,236 25,505 9,546 9,417 82 44 2 0 0.5%	34,840 29,690 10,341 10,125 124 89 4 0 0.9%	38,787 33,218 10,928 10,618 165 136 8 1 0 1.3%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	3,847 398 13 0 24 1,567 1,849 0 9 0 0 0.6%	4,835 544 22 19 5 54 1,863 2,345 0 9 0 0 0.6%	5,612 670 32 42 10 81 2,053 2,758 0 9 0 0 0.8%	7,494 1,047 64 78 19 138 2,476 3,749 0 7 0 0 1.1%	9,375 1,424 95 116 28 195 2,900 4,736 0 4 736 0 0 1.3%	11,227 1,800 125 31 255 3,324 5,723 0 0 0 1.4%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	4,676 1,665 53 0 0 1,295 1,645 36 36 0 2.7%	5,699 2,304 93 8 2 12 1,354 1,922 36 59 2 3.3%	6,412 2,733 132 9 2 15 1,405 2,126 44 59 20 4.0%	8,466 3,953 243 10 2 18 1,613 2,712 62 60 38 4.8%	9,974 4,958 330 10 2 17 1,727 3,085 76 57 44 5.1%	11,063 5,544 406 11 1,833 3,455 92 55 52 5.5%
Total RES RES share	147 1.1%	229 1.3%	310 1.6%	540 2.1%	726 2.4%	907 2.7%
Non energy use Oil Gas Coal	2,405 1,277 1,128 0	3,391 1,800 1,591 0	3,894 2,067 1,827 0	4,731 2,511 2,220 0	5,150 2,733 2,416 0	5,568 2,956 2,613 0

middle east: energy [r]evolution scenario

table 13 102 middle east electricity generation

table 13.102: middle ea	st: el	ectric	ity ge	nerati	on	
TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal	715 38	849 39	923	1,219 25	1,569 14	2,354
Lignite Gas	0 404	0 518	0 521	0 484	0 315	0 51
Oil Diesel	244 5	226	212 4	131 3	17	1
Nuclear Biomass	0 0	5 2	5 2	5 2	5 2	0 6
Hydro Wind	23 0	32 10	40 62	45 150	48 210	50 290
PV Geothermal	0	1	6 8	55 17	230 _23	510 40
Solar thermal power plants Ocean energy	0 0	10	30 1	300 2	700 3	1,400 5
Combined heat & power production	0 0	10 1	21 0	33 0	55	70
Coal Lignite Gas	0	0	0 4	0	0	00
Oil Biomass	000	2 2 5	2 10	1 16	0 27	2 0 36
Geothermal Hydrogen	Ŏ	í 0	4	10	22	32 0
CHP by producer Main activity producers	0	0	0	0	0	0
Autoproducers	Ō	10	2Ĭ	33	55	70
Total generation Fossil	715 692	859 792	944 777	1,252 651	1,624 354	2,424 56
Coal Lignite	38 0	40	34 0	26 0	14 0	1
Gas Oil	404 244	520 228	525 214	490 132	320 18	53 1
Diesel Nuclear	5	5	4	35	3 5	1
Hydrogen Renewables	23	62 62	163	597	1,265	2,368
Hydro Wind PV	23 0	32 10	40 62	45 150 55	48 210 230	50 290
Biomass Geothermal	0 0 0	1 7 2	12 12 12	18 27	29 45	510 42 71
Solar thermal Ocean energy	Ö	10	30 1	300	700	1,400
Distribution losses	85	91	89	91	93	104
Own consumption electricity Electricity for hydrogen production	56 0	78 0	84 4	97 9	115 12	138 14
Final energy consumption (electricity)	573	689	760	928	1,236	1,870
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.0%	$^{11}_{1.3\%}$	69 7.3%	207 16.5%	443 27.3%	805 33.2%
RES share 'Efficiency' savings (compared to Ref.)	3.2% 0	7.3% 119	17.2% 214	47.6% 533	77.9% 726	97.7% 754
table 13.103: middle ea	st: he	eat sur	nnlv			
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants	Q	43	109	193	414	637
Fossil fuels Biomass	0	0	0	0	0	0
Solar collectors Geothermal	0 0	39 4	98 11	173 19	373 41	574 64
Heat from CHP Fossil fuels	0	70 26	145 37	223 33	375 25	479 8
Biomass Geothermal	0	35	70 38	101 89	152 198	187 284
Fuel cell (hydrogen)	Ő	ó	0	0	1,0	0
Direct heating ¹⁾ Fossil fuels	5,256 5,185	6,130 5,778	6,763 5,928	7,977 5,931	8,423 4,461	9,025 1,621
Biomass Solar collectors	, 35 36	62 187	90 548	156 1,437	4,461 225 3,013	266 5,738
Geothermal	0	103	196	453	724	1,399
Total heat supply ¹⁾ Fossil fuels	5,256 5,185	6,240 5,804	7,013 5,965	8,393 5,964	9,212 4,486 377	10,141 1,629
Biomass Solar collectors	35 36	97 223	160 643	257 1,610	3,385 964	453 6,312
Geothermal Fuel cell (hydrogen)	0 0	116 0	244 0	561	964 0	1,747 0
RES share (including RES electricity)	1%	7%	15%	29 %	51%	84%
(including RES electricity) 'Efficiency' savings (compared to Ref.)	0	0	0	487	1,315	2,005
1) heat from electricity (direct and from electric h					'electric appli	ances'
table 13.104: middle ea					2040	0.05.0
MILL t/a Condensation newer plants	2007 488	2015 470	2020 451	2030 356	2040	2050 27
Condensation power plants Coal	488 36 0	4/0 34 0	451 28 0	20	171 11	1
Lignite Gas Oil	240	243	244	227	141	0 23
	200	182	168	101	1.4	1
Diesel	200 13	182 12	168 10	101 8	13 6	1 3

6.6

6.8

0030

4.3

5.6

0030

2.7

1.1

Combined heat & power production

CO2 emissions electricity & steam generation

CO2 emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating

Population (Mill.) CO2 emissions per capita (t/capita)

Coal Lignite Gas Oil

Coal Lignite Gas Oil & diesel

Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	5 0 107 63 5 0 0 10 0 0 0 0 0 0	$ \begin{array}{c} 6\\ 0\\ 130\\ 62\\ 5\\ 1\\ 14\\ 4\\ 1\\ 0\\ 4\\ 0\\ 4\\ 0\\ 0\\ 0\\ \end{array} $	5 0 128 56 4 1 0 18 25 3 1 10 0	5 0 121 32 3 0 20 61 31 3 48 0	3 05 5 3 10 21 80 128 4 100 128	0 26 0 1 22 110 283 6 215 1
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0 0	3 0 1 1 1 0 0	6 0 1 2 2 1 0	7 0 1 0 3 2 0	11 0 1 0 5 4 0	14 0 0 0 7 6 0
CHP by producer Main activity producers Autoproducers	0 0	0 3	0 6	0 7	0 11	0 14
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	190 180 5 0 107 63 5 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0	230 204 6 0 130 63 5 10 25 14 1 1 0 4 0	258 197 50 129 58 4 10 61 18 25 3 2 2 10 0	332 163 5 0 122 33 1 0 168 200 61 31 35 48 0	461 117 3 0 106 5 3 1 0 343 21 800 128 5 8 100 100 1	680 28 0 26 0 26 0 0 1 1 0 0 653 22 110 283 223 215 1
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.0%	5 2.2%	29 11.1%	92 27.8%	208 45.2%	395 58.1%

table 13.105: middle east: installed capacity

GW Power plants

RES share

5.3% table 13.106: middle east: primary energy demand

23.5%

10.8%

50.5%

74.4%

95.9%

table 13,107; middle east: final energy demand

tubic 19.107. Influence	cast. II	mai ch	ciej (icinai	la	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofruels Electricity <i>RES electricity</i> Hydrogen RES Share Transport	15,272 12,867 4,344 4,307 37 0 1 0 0.0%	19,174 15,783 5,315 5,197 46 11 61 4 0 0.3%	20,484 16,785 5,404 5,175 63 53 104 18 10 1.3%	22,585 18,327 5,436 4,889 96 167 262 125 22 5.6%	23,806 19,429 5,332 4,251 125 247 679 529 30 15.0%	25,031 20,577 5,290 2,782 154 212 2,103 2,055 39 43.6%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	3,847 398 13 0 0 24 1,567 1,849 0 9 0 0.6%	5,201 585 43 108 1,686 2,660 57 24 64 64 0 5.7%	5,691 669 115 227 0 1,087 3,333 205 51 119 0 12.6%	6,360 808 385 361 361 0 757 3,411 687 112 225 0 27.8%	6,830 953 742 595 595 0 602 2,796 1,366 1,366 1,366 176 342 0 47.2%	7,081 1,096 1,071 843 843 0 376 1,234 2,653 184 696 0 76.9%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Biomass and waste Geothermal RES share Other Sectors	4,676 1,665 53 0 1,295 1,645 36 36 36 2 .7%	5,267 1,834 133 0 0 27 1,333 1,842 137 57 36 6.9%	5,689 1,962 338 15 15 0 1,207 1,997 365 66 78 15.1%	6,531 2,271 1,082 36 36 0 878 2,315 750 81 200 32.9%	7,267 2,816 2,193 157 157 1,572 1,572 1,572 1,647 96 317 60.7%	8,205 3,533 3,451 220 220 236 428 3,085 133 570 90.9%
Total RES RES share	147 1.1%	674 4.3%	1,652 9.8%	4,220 23.0%	8,431 43.4%	15,209 73.9%
Non energy use Oil Gas Coal	2,405 1,277 1,128 0	3,391 1,800 1,591 0	3,699 1,963 1,736 0	4,258 2,260 1,998 0	4,377 2,323 2,054 0	4,455 2,364 2,090 0

glossary & appendix | Appendix - Middle East

e.

middle east: advanced energy [r]evolution scenario

table 13.108: middle east: electricity generation

2020 2030

TWh/a	2007	2015	2020	2030	2040	2050
Power plants	715	849 107	939 32	1,294 13	1,862	2,696
Coal Lignite Gas	38 0 404	107 0 450	0 444	0 397	0 0 305	0 0 31
Oil Diesel	244	226	212	131 3	17 3	1
Nuclear Biomass	Ő	52	52	52	52	0 1
Hydro Wind	23 0	32 10	40 97	45 180	48 235	50 365
PV Geothermal	0	1	22 8	84 24	378 99	597 105
Solar thermal power plants Ocean energy	0 0	10 0	62 11	³⁹⁶ 14	737 33	1,485 61
Combined heat & power production	Ő	10	21	33	65	90
Coal Lignite	0	1	0	0	007	0 0 2
Gas Oil Biomass	0 0 0	2 2 5	4 2 10	6 1 16	7 0 31	2 0 44
Geothermal Hydrogen	0	1 0	4	10	26 1	41 41
CHP by producer Main activity producers	0	0	0	0	0	0
Autoproducers	0	10	21	33	65	90
Total generation	715 692	859 792	960 699	1,327 551	1,927	2,786
Coal Lignite	38	108	32 0 448	13		0
Gas Oil Diesel	404 244 5	452 228 5	448 214 4	403 132	312 18	32 1
Nuclear Hydrogen	0	5	5 0	3 5 0	3 5 1	1 0 4
Renewables	23 23	62 32	256 40	77Ĭ 45	1,590 48	2,748 50
Hydro Wind PV	0	10 1	97 22	180 84	235 378	365 597
Biomass Geothermal	Õ 0	7	12 12	18 34	34 125	45 145
Solar thermal Ocean energy	0 0	10	62 11	396 14	737 33	1,485 61
Distribution losses	85	21	89	91	.93	104
Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	56 0 573	78 0 689	84 775	97 12 1,000	109 32 1,524	124 75 2,185
Fluctuating RES (PV, Wind, Ocean)	0	11	130	278	646	1,023
Share of fluctuating RES	0.0%	1.3%	13.5%	20.9%	33.5%	36.7%
RES share 'Efficiency' savings (compared to Ref.)	3.2% 0	7.3% 119	26.7% 214	58.1% 532	82.5% 720	98.6% 745
table 13.109: middle ea	st: he	at su	pply			
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels	0 0	43	109	228	552	781 0
					Ő	Ó
Biomass Solar collectors	0	0 39	0 98	0 205	497	703
Solar collectors Geothermal	0	39 4	98 11	205 23	497 55	703 78
Solar collectors Geothermal Heat from CHP Fossil fuels	0 0 0	39 4 70 26	98 11 145 37	²⁰⁵ 23 223 33	497 55 442 29	703 78 613 7
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal	0 0 0 0 0 0	39 4 70 26 35 9	98 11 145 37 70 38	205 23 223 33 101 89	497 55 442 29 173 234	703 78 613 7 227 365
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	0 0 0 0 0 0	39 4 70 26 35 9 0	98 11 145 37 70 38 0	205 23 223 33 101 89 0	497 55 442 29 173 234 6	703 78 613 7 227 365 14
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels	0 0 0 0 0 0 0 5,256 5,185	39 4 70 26 35 9 0 6,490 6,122	98 11 145 37 70 38 0 7,067 6.186	205 23 223 33 101 89 0 8,070 5,727	497 55 442 29 173 234 6 8,355 3,813	703 78 613 7 227 365 14 8,520 261 261
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁾	0 0 0 0 0 0	39 4 70 26 35 9 0 6,490	98 11 145 37 70 38 0 7,067 6,186 91	205 23 223 33 101 89 0 8,070	497 55 442 29 173 234 6 8,355 3,813 229	703 78 613 7 227 365 14 8,520
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹¹	0 0 0 5,256 5,185 35 36 0 5,256	39 4 70 26 35 9 0 6,122 6,122 6,122 6,122 6,122 6,4 194 109 6,603	98 11 145 37 70 38 0 7,067 6,186 91 573 217 7,321	205 23 223 33 101 89 0 8,070 5,727 1,59 1,622 562 8,521	497 55 442 29 173 234 6 8,355 3,813 3,813 3,229 3,392 921 9,465	703 78 613 7227 365 14 8,520 261 6,498 1,500 10,112
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹¹ Fossil fuels Biomass	0 0 0 5,256 5,185 35 36 0 5,256 5,185 5,185 35	39 4 70 26 35 9 0 6,122 6,122 6,4 194 109 6,148 6,148 100	98 11 145 37 70 38 0 7,067 6,186 6,186 91 573 217 7,321 6,223 161	205 23 223 33 101 89 0 8,070 5,727 159 1,622 562 8,521 5,760 2,59	497 55 442 29 173 234 6 8,355 3,813 229 3,392 921 9,465 3,842 402	703 78 613 227 365 14 8,520 261 6,498 1,500 10,112 268 488
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹¹ Fossil fuels Biomass Solar collectors Geothermal	0 0 0 5,256 5,185 35 36 0 5,256 5,185 5,185 35 36 0	39 4 70 26 35 9 0 6,122 6,122 6,122 6,4 109 6,603 6,603 6,603 6,148 100 233 123	98 11 37 70 8 8 0 7,067 6,186 6,186 6,186 91 573 217 7,321 6,223 161 671 266	205 23 33 101 89 0 5,727 1,59 1,622 562 8,521 5,760 259 1,827 674	497 55 29 173 234 6 8,355 3,813 3,392 921 9,465 3,842 3,889 3,382 921	703 78 613 227 365 14 8,520 261 6,498 1,500 10,112 268 488
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fossil fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fossil fuels Biomass Solar collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass	0 0 0 5,256 5,185 35 36 0 5,256 5,185 35 36 0 0 0	39 4 70 26 35 9 0 6,122 6,490 6,122 6,122 4 194 109 6,603 6,148 100 233 123 0	98 11 37 70 37 6,186 91 573 217 7,067 6,186 91 573 217 7,223 161 6,223 161 671 266 0	205 23 33 101 8,070 5,727 1,622 562 8,571 5,762 8,571 5,762 8,574 0,259 1,827 674 0	497 555 442 29 173 23 8,355 3,813 229 3,392 921 9,452 3,842 3,842 3,842 3,842 1,210 1,211	703 78 613 7 227 314 8,520 261 261 261 261 1,500 10,112 268 488 7,201 1,942 1,942 212
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fossil fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fuels Biomass Solar collectors Geothermal Fossil fuels Biomass Solar collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass Biomass Solar Collectors Geothermal Fuels Biomass Solar Collectors Geothermal Fuels Biomass	0 0 0 5,256 5,185 35 36 0 5,256 5,185 5,185 35 36 0	39 4 70 26 35 9 0 6,122 6,122 6,122 6,4 109 6,603 6,603 6,603 6,148 100 233 123	98 11 37 70 8 8 0 7,067 6,186 6,186 6,186 91 573 217 7,321 6,223 161 671 266	205 23 33 101 89 0 5,727 1,59 1,622 562 8,521 5,760 259 1,827 674	497 55 29 173 234 6 8,355 3,813 3,392 921 9,465 3,842 3,889 3,382 921	703 78 613 7 227 365 14 8,520 261 261 6,498 1,500 10,112 268 488
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels Biomass Solar collectors Geothermal Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen)	0 0 0 5,256 5,185 36 0 5,256 5,185 36 0 0 1.4% 0	39 70 26 35 9 0 6,490 6,490 6,490 6,490 6,490 6,490 6,490 6,490 6,490 6,122 6,44 109 6,123 6,490 6,490 6,490 6,490 6,122 6,490 6,122 6,490 6,122 6,410 1 23 6,123 1 23 0 0 6,9% -369	98 145 37 70 6,186 6,186 6,186 6,186 6,186 0 7,067 6,186 0 7,321 6,232 161 6,186 0 15.0% -321	205 23 33 101 89 0 8,070 5,727 159 1,622 5,760 259 1,821 5,760 259 1,821 5,760 32,4% 359	497 55 442 29 173 234 6 8,355 3,813 229 3,825 3,813 229 3,845 3,842 3,842 3,842 3,842 1,210 1,211 59,2% 1,062	703 708 613 7 227 365 14 8,520 261 264 1,500 10,112 268 488 7,201 1,942 1,942 1,942 1,942 2,034
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.)	0 0 0 5,256 5,185 35 36 0 5,256 5,185 35 36 0 0 1.4% 0 1.4% 0 1.4%	39 4 70 26 35 5 9 0 6,122 6,122 64 109 6,148 100 233 0 6.9% -369 tot included; c	98 145 37 70 8 7,067 6,186 6,186 6,186 6,186 6,186 6,186 0 15,0% -321 15.0% -321 covered in the ssions	205 23 33 101 89 0 8,070 5,727 5,727 5,727 1,622 5,762 8,552 8,552 8,552 5,767 0 32,4% 359 model under	497 555 442 29 173 234 6 8,355 3,813 3,813 3,229 3,822 9,465 3,842 3,842 3,842 3,842 1,210 1,211 59,2% 1,062	703 708 613 7 227 365 14 8,520 261 6,498 1,500 10,112 268 488 7,201 1,942 212 97.3% 2,034 ances'
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) "Efficiency" savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a	0 0 0 5,256 5,185 35 36 0 5,256 5,185 35 36 0 0 1.4% 0 1.4% 0 1.4% 0 2007	39 4 70 26 35 5 9 0 6,122 6,122 6,122 6,122 6,143 109 6,143 6,148 100 233 123 0 6.9% -369 0 6.9% -369 2015	98 145 37 70 0 80 7,067 6,186 6,186 6,186 0 7,321 6,232 161 6,232 161 6,266 0 15.0% -321 signed for the signed state of the si	205 23 33 101 89 0 8,070 5,727 1,522 5,760 259 1,822 5,760 8,521 5,760 0 32.4% 32.4% 359 model under	497 55 642 29 3234 6 8,355 3,813 229 3,823 9,465 3,842 3,842 3,842 3,842 3,842 1,210 1,211 59,2% 1,062 ** ** ** ** ** ** ** ** ** ** ** ** **	703 778 613 7 227 365 14 261 6,498 1,500 10,112 268 488 7,201 1,942 212 97.3% 2,034 ances'
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) "Efficiency" savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal.	0 0 0 5,256 5,185 35 36 0 5,256 5,185 35 36 0 0 1.4% 0 1.4% 0 2007 488 36	39 4 70 26 35 5 5 5 5 5 5 6 4 194 109 6,603 6,148 6,148 6,148 6,148 6,148 6,148 6,148 6,148 100 6,9% -369 6,9% -369 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	98 145 37 70 0 8 7,067 6,186 91 573 217 7,321 6,223 161 6,223 17 17 17 18 19 19 19 19 19 19 19 19 19 19	205 23 33 101 5,727 1,522 1,622 5,760 259 1,827 6,74 0 32.4% 359 model under 2030 30 30	497 592 442 29 3234 6 8,355 3,813 229 3,842 3,842 3,842 3,842 3,842 1,210 1,211 59.2% 1,062 1,062 1,062	703 778 613 7 227 365 14 8,500 1,500 10,112 1,500 10,112 2,618 4,498 7,201 1,942 2,12 97.3% 2,034 ances'
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) "Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas	0 0 0 0 5,256 5,185 35 36 0 0 5,256 5,185 5,185 35 36 0 0 1.4% 0 1.4% 0 1.4% 0	39 4 70 26 35 5 9 0 6,122 6,122 6,128 6,148 100 6,448 100 6,448 100 6,448 233 123 0 6,9% -369 2015 2015	98 145 37 70 0 8 7,067 6,186 91 573 217 7,321 6,223 161 6,223 17 17 17 17 17 17 17 17 17 17	205 23 33 101 5,727 1,522 1,622 5,760 259 1,827 674 0 32.4% 359 model under 2030 32.4% 359	497 55 6 442 29 3234 6 8,355 3,813 229 3,842 3,842 3,842 3,842 3,842 1,210 1,211 59.2% 1,062 1,062 1,062 1,062	703 778 613 7 227 365 14 8,520 261 264 1,500 10,112 1,500 10,112 2,628 488 7,201 1,'942 2,034 2,034 ances' 2050 17 0 0,0
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite	0 0 0 5,256 5,185 35 36 0 5,256 5,185 36 0 0 1.4% 0 0 1.4% 0 2007 488 36 0	399 4 70 26 35 9 0 6,122 6,122 64 194 109 6,603 6,148 100 233 0 6,9% -369 0 2015 497 92 0.22 0 9 0 9 0 9 0 10 10 10 10 10 10 10 10 10	98 145 37 70 6,186 91 91 91 91 91 91 91 91 91 91	205 23 33 101 8,070 5,727 159 1,622 8,521 5,762 8,521 5,762 8,521 5,762 32,4% 359 model under 2030 305 10	497 555 442 29 173 234 6 8,355 3,813 3,229 3,392 921 9,465 3,843 1,210 121 59.2% 1,062 1,062 1,062	703 703 7027 365 14 8,520 261 6,498 1,500 10,112 261 6,498 1,500 10,112 261 6,498 7,201 1,942 212 97.3% 2,034 ances' 2050 17 0 0.0
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Diesel Combined heat & power production	0 0 0 0 5,256 5,185 35 36 0 0 5,256 5,185 5,185 35 36 0 0 1.4% 0 200 200 240 0 240 0 0 13 8 8 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	399 4 70 26 35 9 0 6,422 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 0 0 6,90 0 0 0 0 0 0 0 0 0 0 0 0 0	98 11 145 37 70 0 0 8 7,067 6,186 6,186 91 973 217 7,221 6,223 161 6,223 10,221 1,224 1,224 1,225 1,255	205 23 33 101 89 5,727 159 2,562 8,521 5,760 259 1,827 6,74 0 32.4% 359 model under 2030 305 10 0.0.0 186 101.3 7.3 5 4	497 555 442 29 3234 6 8,355 3,813 229 3,842 3,842 3,842 3,842 3,842 1,210 1,21	703 708 703 7227 365 14 8,520 261 264 498 1,500 10,112 268 488 7,201 1,942 1,942 1,942 2,034 2,034 ances' 2050 17 0 0,0 0 14 2,0 3,2 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 2,0 3,4 3,4 3,4 3,4 3,4 2,4 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,500 2,0 1,200 2,0 1,200 2,0 1,200 2,0 1,200 2,0 1,000 2,0 1,000 2
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹¹ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Diesel Combined heat & power production Coal Lignite Gas	0 0 0 0 5,256 5,185 35 36 0 0 5,256 5,185 35 36 0 0 0 1.4% 0 1.4% 0 2007 488 36 0 2007 488 36 0 0 0 1.3	39 4 70 26 35 5 9 0 6,122 6,122 64 109 6,148 100 233 0 6,9% -369 123 0 6,9% -369 123 0 6,9% -369 2015 497 92 2015 497 97 92 2015 497 117 117 117 117 117 117 117 1	98 11 145 37 70 0 8 7,067 6,186 6,186 6,186 6,186 6,186 15,0% -321 15.0% -321 2020 15.0% -321 2020 414 27 0,2 208 16.84 10.4 4 0 0 2	205 23 33 101 89 0 6 8,070 5,727 5,727 5,727 1,622 5,767 0 32,4% 359 model under 2030 305 10,3 305 10,3 305 10,3 305 10,3 30,5 10,3 30,5 30,5 30,5 4 4 4 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	497 55 642 29 173 234 6 8,355 3,813 3,813 3,229 3,822 9,21 9,465 3,842 402 3,889 1,210 121 59,2% 1,062 1,065 1,062 1,062 1,062 1,062 1,062 1,065 1,062	703 703 703 7227 365 14 8,520 261 2648 1,500 10,112 268 488 7,201 1,942 212 97.3% 2,034 ances' 2050 17 0,00 1,48 2,66 1 0 0,0 0 1,48 2,66 1 2050 1 7 2050 1 7 2050 1 7 2050 1 7 2050 1 2050 1 7 2050 1 2050 1 2050 1 2050 1 2050 1 2050 1 2051 2050 2050 1 2051 2050 2050 2050 2050 2050 2050 2050
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share Geothermal Fuel cell (hydrogen) Combensation power plants Coal Lignite Gas Oil Diesel Combined heat & power production Coal Lignite Gas Oil	0 0 0 0 5,256 5,185 35 36 0 0 1.4% 0 200 1.4% 0 200 200 200 200 1.4% 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	399 4 70 26 35 5 9 0 6,490 6,122 6,44 194 109 6,603 6,148 6,148 6,148 6,148 6,148 6,148 6,123 203 203 6,9% -369 0 0 6,9% -369 0 0 0 0 0 0 0 0 0 0 0 0 0	98 11 145 37 70 0 0 8 7,067 6,186 91 973 217 7,221 6,223 161 6,223 10,221 10,223 10,233	205 23 33 101 89 5,727 159 2,562 8,521 5,760 259 1,827 6,74 0 32.4% 359 model under 2030 305 10 0.0.0 186 101.3 7.3 8 4 0 0	497 555 442 29 173 234 6 8,355 3,813 3,229 3,822 921 9,462 3,842 3,842 3,842 3,842 3,842 1,210 1,211 59,2% 1,062 1,210 1,21 59,2% 1,062 1,215 1,062 1,255 1,	703 703 703 7227 365 10,112 261 264 498 1,500 10,112 268 488 7,201 1,502 2,034
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) "Efficiency" savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Coal Lignite Gas Oil Costine heat & power production Coal Lignite Gas Oil Costine heat & power production Coal Costine heat & power production Costine heat &	0 0 0 0 5,256 5,185 35 36 0 0 1.4% 0 1.4% 0 2007 888 36 0 2007 488	39 4 70 26 35 9 0 6,122 6,122 6,122 6,123 194 109 6,603 6,148 100 6,63 6,148 100 6,122 6,122 6,122 6,122 6,122 6,122 194 194 194 109 6,122 6,123 6,148 109 6,123 6,148 100 6,233 2015 497 92 211 182.1 11.7 3 10 0 11 5 5 5 5 5 5 5 5 5 5 5 5 5	98 145 37 77,067 6,186 91 573 217 7,321 6,223 162 15.0% 15.0% 15.0% 164 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,24 10,44 10,	205 23 33 101 89 0 8,070 5,727 1,522 1,622 5,760 259 1,827 674 0 32.4% 359 model under 2030 32.4% 359 model under 2030 30,00 8,00 32,4% 30,00 8,00 30,00 8,00 30,00 8,00 30,00 8,00 30,00 8,00 30,00 8,00 30,00 8,00 30,00 8,00 9,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,727 5,729 1,622 5,729 1,622 3,760 2,599 1,829 3,700 3,24% 3,599 1,000 1,000 3,700 3,000 3,000 1,000 3,00000000	497 55 642 29 3234 6 8,355 3,813 229 3,842 3,842 3,842 3,842 3,842 1,210 1,211 59.2% 1,062 1,065 1,062	703 703 703 7227 14 8.5 01 261 261 261 264 268 488 7.201 1,500 10,112 2,638 488 7.201 1,942 2,12 97.3% 2,034 ances' 2050 17 0.0 14 40.8 2.6 2050 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) "Efficiency" savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Coal Lignite Gas Oil Cose emissions electricity & steam generation Coal Lignite Gas	0 0 0 0 5,256 5,185 35 36 0 0 1.4% 0 1.4% 0 2007 488 36 0 2007 488 36 0 0 1.4%	399 4 70 26 35 9 0 6,122 6,122 6,122 6,128 194 109 6,603 6,148 100 6,122 6,440 233 123 0 6,122 6,122 6,122 6,122 6,122 194 194 109 6,122 6,122 6,122 6,122 6,122 6,122 194 194 109 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,122 6,123 109 6,125 109 6,125 109 109 109 123 123 123 123 123 123 123 123	98 145 37 70 0 8 7,067 6,186 91 573 217 7,321 6,223 162 15.0% 15.0% 15.0% 15.0% 15.0% 15.0% 10.2 10.2 2020 11.0% 10.4 1	205 23 33 101 89 0 8,070 5,727 1,522 1,622 8,521 5,760 259 1,827 674 0 32.4% 359 model under 2030 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 8,070 0 32.4% 305 10 0.0 0 0 32.4% 305 10 0.0 0 0 32.4% 305 10 0.0 0 32.4% 305 10 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	497 55 642 29 3234 6 8,355 3,813 229 3,842 3,29 9,465 3,842 3,842 3,842 1,210 1,211 59.2% 1,062	703 703 703 7227 14 8.5 01 261 261 2649 6,498 1,500 10,112 2,649 6,498 7,201 1,942 2,12 97.3% 2,034 ances' 2050 17 0,0.0 14 0.8 2.66 10 10 10 10 112 2050 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric hy table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Corbined heat & power production Coal Lignite Gas Oil	0 0 0 0 5,256 5,185 36 35 36 0 5,256 5,185 3,256 5,185 3,256 0 0 1.4% 0 200 200 1.3 888 36 0 240 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	399 4 70 26 35 9 0 6,490 6,122 6,123 109 6,123 203 203 20 6,9% -369 97 92 0,2 211 182.1 1,195.1 1,19	98 11 145 37 70 0 0 8 7,067 6,186 6,283 161 6,223 162 162 162 162 163 163 163 163 163 163 163 163	205 23 33 101 8,070 5,727 159 1,622 8,521 5,762 8,521 5,762 8,521 5,762 32,4% 359 model under 2030 305 10 305 10 10 305 10 305 10 305 10 30 30 30 30 9 10	497 555 442 29 173 234 6 8,355 3,813 3,229 3,382 921 9,462 3,889 1,210 121 59,2% 1,062 1,062 1,062 1,062 1,062 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	703 703 703 7027 14 8,520 261 6,498 1,500 10,112 261 6,498 7,201 1,902 2,034 7,201 1,902 2,034 2,034 ances' 2050 17 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 0,00 14 1,00 14 1,00 1,00
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹¹ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹¹ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric hy table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Core emissions electricity & steam generation Coal Lignite Gas Oil & diesel	0 0 0 0 5,256 5,185 35 36 0 0 5,256 5,185 36 0 0 0 1.4% 0 2.007 488 36 0 240 2007 488 36 0 0 0 1.3 0 0 0 1.3 1 3 7 4 8 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	399 399 300 300 300 300 300 300	98 145 37 70 0 8 7,067 6,186 91 573 217 7,321 6,223 162 15.0% 15.0% 15.0% 10.2 10.2 2020 11.0 10.4	205 23 33 101 89 0 8,070 5,727 159 1,622 8,521 5,762 8,521 5,760 5,760 32.4% 359 model under 2030 305 100 305 100 0 0 0 305 100 305 100 103 0 309 0 0 309 100 189 0 0 309 100 189 0 0 309 100 189 0 0 309 100 189 0 0 309 100 189 0 0 309 100 189 0 189 0 189 0 189 0 189 0 189 0 189 0 189 0 189 0 189 0 189 0 189 189 0 189 0 189 189 189 189 189 189 189 189 189 189	497 55 642 29 3234 6 8,355 3,813 2,29 3,842 3,842 3,842 3,842 3,842 1,210 1,211 59.2% 1,062 1,06	703 703 703 7027 14 8,520 261 6,498 1,500 10,112 261 6,498 7,201 1,942 2122 97.3% 2,034 ances' 2050 17 0,00 14 8,2.6 10 0 14 3 3 21%
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹¹ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Coe emissions electricity & steam generation Coal Lignite Gas Oil diesel Combined heat & power production Coal Lignite Gas Oil diesel Coe emissions by sector % of 1990 emissions Industry Other sectors	0 0 0 0 5,256 5,185 35 36 0 0 5,256 5,185 35 36 0 0 0 1.4% 0 2.007 488 36 0 2.007 488 36 0 2.40 2.00 1.3 0 0 0 0 1.4% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	399 399 300 300 300 300 300 300	98 11 145 37 70 0 8 7,067 6,186 6,186 6,186 0 7,321 6,223 161 6,213 161 6,213 161 6,213 161 6,213 161 6,213 160 0 15.0% -321 0.2 208 168.4 10.4 4 0 0 2,2 8 168.4 10.4	205 23 33 101 89 0 8,070 5,727 5,727 5,727 5,727 5,727 5,727 6,74 0 32,4% 359 model under 2030 305 10,3 0 0 8,070 2,59 1,827 6,74 0 32,4% 359 model under 2030 305 10,3 0 0 309 0 0 189 10,3 0 0 189 11,24 191% 2,728	497 5 442 29 173 234 6 8,355 3,813 3,229 3,229 3,232 9,213 9,465 3,842 3,842 402 3,840 1,210 1,355 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	703 703 703 7227 365 14 8,520 261 264 268 488 7,201 1,500 10,112 268 488 7,201 1,942 2122 97.3% 2,034 ances' 2050 17 0,00 1,942 2,034 2,034 2,034 2,034 1,500 0,00 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,205 2,005 1,005 2,005 1,005 2,005 2,005 1,005 2,005 1,005 2,005 1,005 2,005 1,005 2,005 1,005 2,005 1,005 2,005 1,005 2,005 2,005 1,005 2,005 1,005 2,0
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹¹ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Coe emissions electricity & steam generation Coal Lignite Gas Oil & diesel Combined heat & power production Coal Lignite Gas Oil & diesel Coe emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation	0 0 0 0 5,256 5,185 35 36 0 0 5,256 5,185 35 36 0 0 1.4% 0 2007 488 36 0 2007 488 36 0 2007 488 36 0 0 0 1.4% 0 0 488 36 0 0 0 1.4% 2007 488 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	399 399 307 307 307 307 307 307 307 307	98 11 145 37 77 0 8 91 91 91 91 91 91 91 91 91 91	205 23 33 101 89 0 8,070 5,727 5,727 5,727 5,727 5,727 5,727 5,727 6,74 0 32,4% 359 model under 2030 305 305 10 0.0 186 101.3 7.8 4 0 309 10 0 189 10 19% 252 309 10 0 189 119%	497 55 442 29 173 234 6 8,355 3,813 3,229 3,823 3,813 3,229 3,823 402 3,842 3,840 1,210 1,355 6.55 3 0 0 0 0 0 0 0 0 0 0 0 0 0	703 703 703 7227 365 14 8,520 261 6,498 1,500 10,112 268 488 7,201 1,942 1,942 2,122 97.3% 2,034 ances' 2050 17 0,00 14 0,8 2,6 10 10 0 0 0 0 0 0 10 14 3 12 21% 21% 21% 21% 21% 21% 21% 21% 21% 21%
Solar collectors Geothermal Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Total heat supply ¹⁰ Fossil fuels Biomass Solar collectors Geothermal Fuel cell (hydrogen) RES share (including RES electricity) "Efficiency" savings (compared to Ref.) 1) heat from electricity (direct and from electric he table 13.110: middle ea MILL t/a Condensation power plants Coal Lignite Gas Oil Coe emissions electricity & steam generation Coal Lignite Gas Oil Co. emissions by sector % of 1990 emissions Industry Other sectors Iransport	0 0 0 0 5,256 5,185 5,185 5,185 5,185 35 36 0 0 1.4% 0 2007 488 36 0 240 240 203 1 488 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	399 4 70 26 35 5 9 0 6,122 6,122 6,122 6,148 109 6,603 6,148 100 6,9% -369 0 0 6.9% -369 0 0 0 0 2015 201	98 98 145 37 70 38 97 97 97 97 97 97 97 97 97 97	205 223 33 101 189 0 8,070 5,727 159 1,622 1,622 1,622 5,760 259 1,827 6,74 0 32.4% 359 model under 2030 305 10 0.0 186 101.3 7.8 309 100 0 10 309 110 100 100 100 100 100 100 100 100 1	497 555 442 29 3234 6 8,355 3,813 229 9,212 9,465 3,842 3,842 3,842 1,210 1,211 59.2% 1,062 1,06 1,062 1,07 1,07 1,07 1,07 1,07 1,07 1,07 1,07	703 703 703 7227 365 14 8,500 10,112 261 264 488 7,201 1,912 2,034 2,034 2,034 2,034 2,034 2,034 2,034 1,912 2,034 1,922 2,034 1,922 2,034 1,922 2,034 1,00 0,00 1,12 0,00 1,942 2,034 1,942 1,942 1,942 1,942 1,942 1,942 1,9444 1,944 1,9444 1,9444 1,9444 1,9444 1,9444 1,9444 1,9444 1,9444

table 13.111: middle east: installed capacity GW Power plants Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy $17 \\ 0.0 \\ 113 \\ 62 \\ 4.5 \\ 0.7 \\ 0.5 \\ 14 \\ 4.3 \\ 0.8 \\ 0.2 \\ 4.0 \\ 0$ 90 5 2.5 0.7 0.4 21 89.4 210.0 15.2 204.7 9.4 0.0 16 0 0.0 0.1 22 138.8 331.7 16.1 330.0 17.4 0.0 109 56 4.0 0.7 0.3 18 39.6 12.2 1.2 20.0 3.1 0.0 99 32 3.0 0.7 0.2 20 73.5 46.7 3.7 62.9 4.0 63 5 0 10 0 0 0 0 0 0 0 0 0 0 9 8 1 Combined heat & power production 0 0 1 1 0012210 0 2 0 6 5 0 Coal Lignite Gas Oil Biomass Geothermal Hydrogen 0 0 CHP by producer Main activity producers Autoproducers 0 3 6 7 13 18 Total generation 180 178 139 99 0 91 5 3 0.7 561 21 89 210 Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen **Renewables** Hydro Wind PV Biomass Geotherma 17 0 113 63 5 0.7 **25** 14 4 0 16 0 110 58 4 0.7 **97** ć 33 0.7 0.0 22 139 332 73 47 40 12 2 20 6 63 4 205 9 0 4 0 330 17 Geothermal Solar thermal Ocean energy 124.1 34.9% 487.9 54.7% Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES 0.0% 5.1 2.3% 55.0 19.9% 308.8 46.7% 5.3% 35.3% 84.9% 97.9% **RES** share 11.1% 60.7%

table 13.112: middle east: primary energy demand

	-					
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	21,372 21,202 435 2 9,056 11,709	25,435 24,593 1,063 2 10,248 13,279	26,417 23,989 407 2 11,110 12,471	28,020 21,632 280 0 11,252 10,101	28,274 15,251 19 0 8,722 6,510	27,475 6,300 13 0 2,805 3,482
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	0 170 82 1 36 52 0 0.8% 0	59 783 115 274 194 164 3.1% 1,942	59 2,369 144 349 974 340 523 40 8.9% 5,132	57 6,330 162 648 3,555 643 1,272 50 21.5% 13,932	56 12,967 173 846 7,903 908 3,018 119 44,9% 19,225	0 21,175 180 1,314 14,696 3,800 220 76.3% 24,994

table 13.113: middle east: final energy demand

table 19.119. Illiaule	cast. II	nai en	ergyt	leman	u	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	15,272 12,867 4,344 4,307 37 0 1 0 0 0.0%	19,174 15,783 5,315 5,197 46 11 61 4 0 0.3%	20,484 16,785 5,125 57 55 158 42 10 1.8%	22,319 18,061 5,164 4,346 73 198 517 300 30 10.0%	23,271 18,894 4,798 2,922 67 237 1,488 1,227 84 32.0%	23,525 19,071 4,232 952 61 177 2,840 2,801 202 75.1%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	3,847 398 13 0 24 1,567 1,849 0 9 0 0 0.6%	5,201 585 43 108 108 1,677 2,669 57 24 64 0 5.7%	5,692 669 179 227 90 1,049 3,281 205 51 119 0 13.7%	6,362 812 472 389 153 606 3,362 692 113 235 0 29.9%	6,857 973 803 754 754 6 271 2,614 1,526 179 398 136 55.0%	6,891 1,132 1,116 1,047 1,047 1,047 1,047 1,047 1,047 1,047 2,33 268 3,164 180 794 233 94.8%
Other Sectors Electricity <i>RES electricity</i> District heat <i>Coal</i> Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors Total RES	4,676 1,665 53 0 0 1,295 1,645 36 36 36 2.7% 147	5,267 1,834 133 0 0 27 1,316 1,858 137 57 36 6.9% 674	5,689 1,962 523 15 4 1,155 2,043 368 63 79 18.4% 1,929	6,535 2,272 1,320 40 0 778 2,146 930 83 285 40.7% 5.075	7,239 2,817 2,323 193 0 508 1,324 1,867 98 432 67.9% 10.218	7,947 3,532 3,483 281 0 24 109 3,334 130 537 97.7% 17,474
RES share	1.1%	674 4.3%	11.5%	28.1%	54.1%	91.6%
Non energy use Oil Gas Coal	2,405 1,277 1,128 0	3,391 1,800 1,591 0	3,699 1,963 1,736 0	4,258 2,260 1,998 0	4,377 2,323 2,054 0	4,455 2,364 2,090 0

middle east: total new investment by technology

table 13.114: middle east: total investment

MILLION \$	2005-2010	2011-2020	2021-2030	2005-2030	

Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	64,223 11,447 1,017 8,502 769 0 1,159 0	89,756 31,020 1,733 20,270 1,777 1,384 0 5,856 0	100,150 35,697 1,759 13,770 3,919 6,821 0 9,427 0	254,129 78,164 4,510 42,543 6,465 8,205 0 16,442 0
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	60,484 11,447 1,017 8,502 769 0 1,159 0	42,528 141,294 8,508 22,880 28,956 7,156 20,899 51,969 926	19,404 287,337 4,564 11,063 37,692 37,441 21,151 175,077 350	122,416 440,079 14,089 42,446 67,417 44,597 42,050 228,204 1,276
Advanced Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	60,484 11,447 1,017 8,502 769 0 1,159 0	30,335 241,651 8,494 22,880 45,304 26,379 20,899 107,511 10,184	16,428 327,962 4,574 11,063 35,581 46,991 29,895 197,759 2,100	107,247 581,061 14,085 42,446 81,655 73,369 50,795 306,428 12,284

notes

٦Į

transition economies: reference scenario

table 19.119. transition		onnes	. erect	<i>increy</i>	gener	ation
TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	815 69 82 64 15 0 293 0 291 0 0 0 0 0 0 0 0	977 76 110 109 11 0 328 7 325 7 0 4 0 0	1,111 86 130 113 8 0 388 13 350 16 0 6 1 0	1,460 220 170 173 2 0 413 24 397 44 0 11 5 0	1,812 318 246 233 1 0 438 35 444 72 0 15 9 0	2,163 427 311 292 0 1 463 46 491 100 0 19 13
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen C/HP by producer	870 162 75 598 32 2 0 0	890 157 72 626 30 5 0 0	901 155 69 643 28 6 0 0	916 152 67 668 21 8 0 0	932 150 64 693 15 10 1 0	947 146 59 719 12 2 0
Main activity producers Autoproducers	813 57	825 65	830 71	835 81	840 92	845 102
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	1,685 1,098 231 158 662 47 0 293 0 295 291 0 2 95 291 0 0 2 0 0 0	1,867 1,191 234 182 735 41 0 328 325 7 0 348 325 7 0 12 4 0 0	2,012 1,232 241 199 756 36 0 388 0 392 350 16 0 19 6 1 0	2,376 1,474 373 237 841 23 0 413 0 489 397 44 0 322 11 5 0	2,743 1,720 468 310 926 16 0 438 586 444 444 72 0 455 16 9 0	3,110 1,964 573 3700 1,011 463 491 100 0 683 491 100 0 588 21 130 0
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	190 291 1,189	197 303 1,338	202 310 1,459	220 338 1,773	239 366 2,089	257 394 2,404
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.0%	7 0.4%	16 0.8%	44 1.9%	72 2.6%	100 3.2%
-	17.5%	18.6%	19.5%	20.6%	21.3%	21.9%

RES share (including RES electricity)	3.3%	3.6%	3.7%	4.0%	4.3%	4.5%
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal Fuel cell ((hydrogen)	18,682 18,057 619 2 3 0	18,935 18,252 674 4 5 0	19,457 18,746 698 6 7 0	21,094 20,261 815 9 9 0	22,713 21,746 908 13 45 0	24,317 23,231 1,005 18 63 0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	10,051 9,603 442 2 3	10,429 9,932 488 4 4	10,883 10,358 514 6 6	12,185 11,537 630 9 9	13,472 12,693 729 13 38	14,759 13,871 827 17 43
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	3,765 3,738 27 0 0	4,015 3,967 48 0 0	4,169 4,119 50 0	4,542 4,491 52 0 0	4,982 4,925 49 8 0	5,511 5,437 54 20 0
District heating plants Fossil fuels Biomass Solar collectors Geothermal	4,865 4,716 149 0 0	4,491 4,353 137 0 0	4,404 4,269 135 0 0	4,367 4,233 134 0 0	4,259 4,129 130 0	4,047 3,923 124 0 0
PJ/A	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.117: transition economies: co₂ emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	214	274	306	507	659	792
Coal	69	75	84	211	267	318
Lignite	95	126	148	191	279	355
Gas	38	64	67	103	112	118
Oil	10	7	6	1	1	0
Diesel	2.1	1.4	1.4	1.1	1.0	0.9
Combined heat & power production	846	800	778 203 100 444 31	755	749	754
Coal	236	214		189	177	167
Lignite	113	105		98	100	105
Gas	447	445		445	456	474
Oil	50	36		23	15	8
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	1,060 305 209 485 62	1,074 290 231 509 45	1,084 287 248 511 38	1,263 400 290 547 25	1,408 444 380 568 16	1,546 485 460 592 9
CO2 emissions by sector	2,650	2,721	2,814	3,145	3,344	3,564
% of 1990 emissions	66%	67%	70%	78%	83%	88%
Industry	416	433	439	472	508	542
Other sectors	382	383	397	437	473	512
Transport	274	304	347	406	465	523
Electricity & steam generation	952	977	992	1,173	1,319	1,458
District heating	625	624	638	657	580	530
Population (Mill.)	340	339	337	331	321	311
CO2 emissions per capita (t/capita)	7.8	8.0	8.3	9.5	10.4	11.5

13

glossary & appendix | Appendix - TRANSITION ECONOMIES

Ŧ

table 13.118: transition	n ecoı	nomie	s: inst	alled	capac	ity
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	198 20 24 13 10 0 41 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	233 21 30 22 7 0 45 2 101 3 0 1 0 0	253 22 33 23 5 0 53 3 108 5 0 1 0 0	317 44 38 1 0 55 5 121 15 0 2 1 0	392 61 47 55 0 0 88 7 133 25 0 3 2 0 0	463 78 57 73 0 1 62 9 144 34 0 3 2 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	214 46 22 126 21 0 0 0	213 43 20 128 21 1 0 0	207 39 18 131 18 1 0 0	205 31 13 147 12 1 0 0	206 30 13 153 8 2 0 0	208 29 12 159 6 2 0 0
CHP by producer Main activity producers Autoproducers	200 14	196 17	189 18	185 20	183 23	183 25
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	412 280 65 45 139 0 41 90 0 0 0 0 0 0 0 0 0 0 0 0	446 293 64 50 150 28 0 45 108 101 3 0 3 1 0 0 0 0	461 289 61 51 154 23 0 53 0 118 108 5 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0	522 322 75 48 185 13 0 55 145 121 15 0 6 6 2 1 0	598 369 91 208 9 0 58 133 25 0 8 3 2 0 8 3 2 0 0	671 413 107 69 232 6 1 62 196 144 34 0 11 4 2 0
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.0%	3 0.7%	5 1.1%	15 2.9%	25 4.1%	34 5.1%
RES share	22.0%	24.1%	25.7%	27.8%	28.5%	29.2%

table 13.119: transition economies: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	48,111 43,054 7,121 1,882 24,225 9,826	48,797 42,911 7,173 2,077 23,799 9,863	50,861 44,037 7,169 2,231 24,226 10,411	56,543 48,840 8,469 2,610 26,879 10,882	60,619 52,071 8,994 3,419 28,215 11,443	64,449 55,098 9,517 4,148 29,478 11,955
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share	3,197 1,861 1,049 1 2 788 21 0 3.8%	3,578 2,308 1,170 25 5 991 117 0 4.7%	4,233 2,591 1,260 58 1,110 155 0 5.0%	4,505 3,197 1,429 158 26 1,356 228 0 5.6%	4,778 3,769 1,598 259 44 1,561 307 0 6.2%	5,051 4,300 1,768 360 63 1,747 363 0 6.7%

table 13.120: transition economies: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofruels Electricity <i>RES electricity</i> Hydrogen RES share Transport	31,889 28,955 5,853 3,780 1,682 5 386 67 0 1.2%	33,313 30,365 6,489 4,187 1,839 422 79 1.9%	35,133 32,035 7,201 4,786 1,907 71 437 85 0 2.2%	39,180 35,873 8,248 5,603 2,077 87 478 98 2,3%	43,220 39,704 9,295 6,417 2,248 105 519 111 5 2.3%	47,252 43,526 10,341 7,223 2,418 128 565 124 7 2.5%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	10,714 2,053 3,59 3,955 76 906 933 2,801 0 66 0 4.7%	11,072 2,345 437 3,701 7,1 1,166 927 2,854 0 80 0 0 5.3%	11,446 2,554 497 3,664 69 1,193 957 2,982 0 95 0 0 5.8%	12,647 3,056 629 3,759 1,245 1,086 3,372 0 128 0 0 6.5%	13,838 3,559 760 3,841 1,295 1,216 3,765 0 162 0 7.2%	15,023 4,061 891 3,914 70 1,346 1,347 4,159 0 196 0 0 7.7%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	12,388 1,842 3,984 77 334 1,229 4,521 2 474 3 7.1%	12,804 2,052 382 4,084 78 338 1,095 4,720 4,720 4 507 4 7.6%	13,387 2,261 440 4,181 78 339 1,055 5,031 6 509 6 7.8%	14,978 2,848 586 4,393 79 378 979 5,776 587 8 8.5%	16,570 3,441 735 4,612 82 378 906 6,524 13 666 29 9.2%	18,162 4,028 884 4,828 86 414 834 7,262 17 744 35 9,7%
Total RES RES share	1,451 5.0%	1,686 5.6%	1,857 5.8%	2,279 6.4%	2,732 6.9%	3,177 7.3%
Non energy use Oil Gas Coal	2,934 1,366 1,477 90	2,948 1,373 1,484 91	3,098 1,443 1,560 95	3,308 1,540 1,665 102	3,517 1,638 1,771 108	3,726 1,735 1,876 115

transition economies: energy [r]evolution scenario

table 13.121: transition	1 ecor	omies	: elect	tricity	gener	ation
TWh/a	2007	2015	2020	2030	2040	2050
Power plants	815	940	983	1,049	1,098	1,213
Coal Lignite	69 82	55 75	45 42	36	8 0	4
Gas Oil	64 15	122 12	171 13	168 9	120	11
Diesel Nuclear	0 293	0 328	0 290	0 150	0 30	1
Biomass Hydro Wind	0 291	10 325 9	11 350	11 360	11 370	9 375
Wind PV Geothermal	0 0 0	9 1 2	38 3 3	218 40 4	437 75 5	665 95 6
Solar thermal power plants Ocean energy	000	02	1 15	8 20	14 25	17 30
Combined heat & power production Coal	870	891 141	901 107	913 42	924	930
Lignite Gas	75 598	66 610	42 592	17 556	0 475	0 387
Oil Biomass	32 2	28 41	10 137	253	0 345	0 422
Geothermal	0	5	14	44 0	87	121
Hydrogen CHP by producer Main activity producers	813	825	830	830	830	830
Autoproducers	57	66	71	83	94	100
Total generation Fossil	1,685 1,098	1,831 1,108	1,884 1,022	1,962 854 78	2,022 623	2,143
Coal Lignite	231 158	195 141	151	42	25 0	4
Gas Oil	662 47	732 40	763 24	724 10	595 3	398 0
Diesel Nuclear	293 0	328 0	290 0	150	0 30	1
Hydrogen Renewables Hydro	295 291	395 325	573 350	958 360	1,369 370	1,741 375
Wind PV	0	9	38	218 40	437 75	665 95
Biomass Geothermal	2 0	51	149 17	264 48	356 92	432 127
Solar thermal Ocean energy	Ŭ 0	0	1 15	8 20	14 25	17 30
Distribution losses	190	197	200	205	210	210
Own consumption electricity Electricity for hydrogen production	291 0 1,189	297 1,319	298 0 1,360	295 1,437	280 1,506	265 19 1,646
Final energy consumption (electricity) Fluctuating RES (PV, Wind, Ocean)	0	. 12	56	278	537	790
Share of fluctuating RES	0.0% 17.5%	0.6% 21.6%	3.0% 30.4%	14.2% 48.8%	26.6%	36.9% 81 2%
RES share 'Efficiency' savings (compared to Ref.))0	21.6% 26	30.4% 125	48.8% 394	67.7% 713	81.2% 1,012
table 13.122: transitio	n eco	nomie	s: hea	t supp	oly	
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels	4,865 4,716	3,976 3,220	3,274 2,292	2,705 1,433	1,816 472	1,276
Biomass Solar collectors	149	596 40	655 98	676 189	545 236	319 293
Geothermal	0	119	229	406 5 700	563	574
Heat from CHP Fossil fuels Biomass	3,765 3,738 27	4,307 3,746 515	5,105 3,448 1,532	5,700 3,042	5,975	6,007 2,249 2,667
Geothermal Fuel cell (hydrogen)	27 0 0	515 46 0	1,532 125 0	2,262 396 0	2,550 781 0	1,091
Direct heating ¹⁾	10,051	9.853	9,834	9,659	8.725	
Fossil fuels Biomass	9,603 442	8,653 691	7,172 1,315	5,432 1,930	3,560 2,123	7,934 1,553 2,207
Solar collectors Geothermal	2	193 316	-'632 715	-'971 1,325	1,289 1,752	1,716 2,458
Total heat supply¹⁾ Fossil fuels	18,682	18.135	18 213	18,064	16.515	15,216
Biomass	18,057 619	15,619 1,802	12,912 3,502 730	9,908 4,868	6,676 5,218 1,525	3,892 5,192 2,009
Solar collectors Geothermal	230	232 482 0	1,069 0	1,160 2,127 0	3,096	2,009 4,123 0
Fuel cell (hydrogen) RES share	3.3%	14%	29%	45%	60%	74%
(including RES electricity) 'Efficiency' savings (compared to Ref.)		799	1,244	3,031	6,198	9,101
1) heat from electricity (direct and from electric		not included;	covered in the	model under	`electric appli	ances'
table 13.123: transitio	n eco		s: co ₂	emiss	ions	
MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal	214 69	222 54	203 43	169 34	67 7	9 3
Lignite Gas	95 38	86.0 72	43 47.9 102	28.1 99	0.0 57	0.0 5
Oil Diesel	10 2.1	8.0 1.4	9.0 1.4	6.0 1.1	1.7 1.0	0.0 0.9

1,060

> 7.8

Combined heat & power production

CO2 emissions electricity & steam generation

CO2 emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating

Population (Mill.) CO2 emissions per capita (t/capita)

Coal Lignite Gas Oil

Coal Lignite

Gas Oil & diesel

> **7.0**

5.7

> 2.9

1.7

> **4.4**

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	198 20 24 13 10 0 41 0 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	223 15 21 25 8 0 45 2 101 4 1 0 0 1	235 11 11 35 8 0 40 2 108 12 3 1 0 4	311 7 5 0 20 20 2110 74 42 1 2 6	394 2 0 34 2 0 4 2 111 149 79 1 3 7	461 1 0 8 1 0 227 100 1 3 9
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	214 46 22 126 21 0 0 0	213 39 18 125 19 12 1 0	206 27 11 121 7 38 3 0	196 11 4 122 1 50 9 0	204 5 0 117 0 64 17 0	202 0 100 78 24 0
CHP by producer Main activity producers Autoproducers	200 14	198 16	190 16	178 18	184 20	181 21
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydrog Wind PV Biomass Geothermal Solar thermal Ocean energy	412 280 65 45 139 31 0 41 0 91 90 0 0 0 0 0 0 0 0 0 0 0 0	436 270 54 39 149 27 0 45 0 122 101 101 14 1 14 10 1	441 230 38 155 155 0 40 0 171 108 122 3 40 3 0 40	507 192 18 9 159 5 0 200 295 110 74 42 52 100 2 6	597 160 7 0 151 2 0 4 0 433 111 149 79 66 18 3 7	663 109 10 107 0 107 0 554 1100 227 1000 800 255 3 9
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.0%	5 1.2%	19 4.4%	122 24.1%	235 39.4%	335 50.5%
RES share	22.0%	27.9 %	38.8%	58.2%	72.5%	83.6%

table 13.124: transition economies: installed capacity

table 13.125: transition economies: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	48,111 43,054 7,121 1,882 24,225 9,826	46,648 38,370 5,552 1,640 22,235 8,942	45,481 33,310 3,973 971 21,091 7,275	42,832 27,029 2,285 474 18,716 5,554	37,624 19,275 1,279 0 13,644 4,351	33,756 12,906 740 0 8,809 3,357
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	3,197 1,861 1,049 1 2 788 21 3.8% 0	3,578 4,701 1,170 235 2,665 591 7 10,1% 2,058	3,164 9,008 1,260 137 744 5,448 1,364 1,364 1,364 19,7% 5,164	1,636 14,166 1,296 785 1,333 7,780 2,901 72 33.0% 13,440	327 18,021 1,332 1,573 1,846 8,654 4,526 90 47.8% 22,652	0 20,850 1,350 2,394 2,412 8,752 5,834 108 61.8% 30,246

table 13.126: transition economies: final energy demand

table 19.120: transitio	II econ	onnes	s. Illia	eners	gy den	lanu
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	31,889 28,955 5,853 3,780 1,682 5 386 67 0 1.2%	32,013 29,066 6,278 4,067 1,738 26 447 96 0 1.9%	31,891 28,793 6,025 3,779 1,656 58 531 161 0 3.6%	31,284 27,977 5,464 3,130 1,424 219 687 335 5 10.2%	29,171 25,654 4,813 2,357 1,090 355 990 670 21 21.6%	27,267 23,541 4,137 1,435 806 364 1,482 1,203 50 38.9%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	10,714 2,053 359 3,955 76 906 933 2,801 0 66 0 0 4.7%	10,581 2,240 483 3,705 603 911 631 2,712 50 255 76 0 13.9%	10,349 2,301 699 3,599 1,190 649 281 2,487 138 733 161 0 28.2%	9,909 2,329 1,137 3,525 1,743 328 30 2,151 262 1,042 242 0 44.7%	9,083 2,260 1,531 3,288 2,106 184 233 1,439 353 1,136 400 0 60.8%	8,164 2,221 1,803 2,978 2,142 65 17 751 465 1,086 581 0 74.4%
Other Sectors Electricity District heat RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	12,388 1,842 3,984 77 334 1,229 4,521 2 474 3 7,1%	12,207 2,062 444 3,850 627 355 935 4,123 575 165 16.0%	12,418 2,063 627 4,088 1,352 60 494 3,971 493 814 435 30.0%	12,604 2,157 1,053 4,258 2,106 0 260 3,233 709 1,151 837 46.5%	11,758 2,173 1,471 3,993 2,557 0 122 2,210 937 1,277 1,047 62.0%	11,240 2,224 1,806 3,892 2,799 0 108 892 1,251 1,421 1,452 77.7%
Total RES RES share	1,451 5.0%	3,543 12.2%	6,862 23.8%	10,839 38.7%	13,853 54.0%	16,414 69.7%
Non energy use Qil Gas Coal	2,934 1,366 1,477 90	2,948 1,373 1,484 91	3,098 1,443 1,560 95	3,308 1,540 1,665 102	3,517 1,638 1,771 108	3,726 1,735 1,876 115

APPENDIX - TRANSITION ECONOMIES

table 13.127: transition economies: electricity generation

table 13.127: transition						
TWh/a Power plants	2007 815	2015 940	2020 993	2030 1,092	2040 1,263	2050 1,558
Coal Lignite	69 82	54 75	38 38	, 13 10	5	0
Gas Oil Diesel	64 15 0	122 12 0	163 13 0	158 9 0	44 2 0	8 0 1
Nuclear Biomass	293 0	328 10	290 11	150 10	30 10	0 10
Hydro Wind PV	291 0 0	325 9 1	350 67 3	360 293 45	375 614 115	380 948 135
Geothermal Solar thermal power plants	0 0	3 0	3 1	3 8	4 22	5 27
Ocean energy Combined heat & power production	0 870	2 891	15 891	32 888	42 884	44 880
Coal Lignite	162 75	142 66	106 41	25 16	0 0	0
Gas Oil Biomass	598 32 2	610 28 41	585 10 136	541 1 254	351 0 386	160 0 477
Geothermal Hydrogen	0 0	4 0	14 0	51 0	148 0	243 0
СНР бу producer Main activity producers Autoproducers	813 57	825 66	820 71	805 83	790 94	780 100
Total generation	1,685	1,831	1,885 995	1,980 774	2,147 402	2,438 169
Fossil Coal Lignite	1,098 231 158	1,108 195 141	995 144 79	38 26	5 0	109
Gas Oil	662 47	732 40	748 24	699 10	395 2	168 0
Diesel Nuclear Hydrogen	293 0	328 0	290 0	150 0	0 30 0	1 0 0
Rénewables Hydro	295 291	395 325	600 350	1,056 360	1,716 375	2,269 380
Wind PV Biomass	0 0 2	9 1 51	67 3 147	293 45 264	614 115 396	948 135 487
Geothermal Solar thermal	0 0	7 0	17 1	54 8	152 22	248 27
Ocean energy Distribution losses	0 190	2 197	15 200	32 205	42 210	44 210
Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	291 0 1,189	297 1,319	298 1 ,360	205 295 1,450	280 43 1,597	265 92 1,867
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.0%	12 0.6%	85 4.5%	370 18.7%	771 35.9%	1,127 46.2%
RES share	17.5% 0	21.6% 26	31.8%	53.3% 394	79.9%	93.1%
'Efficiency' savings (compared to Ref.) table 13.128: transition			125 c: boo		708	1,008
	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels	4,865 4,716	3,976 3,221	3,327 2,262	3,212 1,670	2,662 692	1,909 95
Biomass Solar collectors	149 0	596 40 119	699 100 266	803 225 514	692 346 932	420 439 954
Geothermal Heat from CHP	-	4.306	5,052	5,611 2,883		6 2 4 7
Fossil fuels Biomass Geothermal	3,765 3,738 27 0	3,753 515 38	3,414 1,515 123	2,883 2,272 457	6,139 1,953 2,856 1,330	1,036 3,027 2,184
Fuel cell (hydrogen)	0	0	0	0	0	0
Direct heating ¹⁾ Fossil fuels Biomass	10,051 9,603 442	9,854 8,653 691	9,834 7,172 1,315	9,240 4,560 1,919	7,643 2,083 1,739	6,709 466 1,582
Solar collectors Geothermal	23	193 316	632 715	1,396 1,366	1,768 2,054	1,582 1,872 2,789
Total heat supply¹⁾ Fossil fuels	18,682 18,057	18,135 15,627	18,213 12,848	18,064 9,113	16,515 4,728	15,216 1,598
Biomass Solar collectors	619 2 3	1,803 233 473	3,528 731	4,994 1,620	5,287 2,114	5,028 2,311 5,927
Geothermal Fuel cell (hydrogen)	0	0	1,105 0	2,337	4,315 71	351
RES share (including RES electricity) 'Efficiency' savings (compared to Ref.)	3.3% 0	13.8% 799	29.5% 1,244	49.6% 3,031	71.3% 6,198	89.3% 9,101
1) heat from electricity (direct and from electric h					,	
table 13.129: transition						2050
MILL t/a Condensation power plants	2007 214	2015 221	2020 187	2030 125	2040 27	2050 4
Coal Lignite	69 95 38	53 86.0 72	37 43.3 97	13 11.3	4 0.0	0.0
Gas Oil Diesel	10 2.1	8.0 1.4	9.1 1.4	93 6.0 1.1	21 1.0 1.0	3 0.0 0.9
Combined heat & power production Coal	846 236	751 192	615 138	420 31	241 0	118
Lignite Gas	113 447	96 434	59 407	24 364	0 241	0 0 118
Oil ÇO2 emissions electricity	50	30	11	1	0	0
& steam generation Coal Lignite	1,060 305 209	972 245 182	802 175 103	545 44 35	269 4 0	122 0
Gas Oil & diesel	209 485 62	182 506 39	503 22	458 8	262 2	121 1
CO2 emissions by sector % of 1990 emissions	2,650	2,382 59%	1,906 47%	1,303 32%	664 16%	258 6%
Industry Other sectors	416 382	367 340	292 269	205 161	146 61	69 24
Transport Electricity & steam generation District heating	274 952 625	295 886 495	278 727 339	224 477 236	145 206 106	65 72 28
Population (Mill.) CO2 emissions per capita (t/capita)	340 7.8	339 7.0	337 5.6	331 3.9	321 2.1	311 0.8

table 13.130: transitio		nomie	s: inst		capac	ity
GW Power plants	2007 198	2015 223	2020 240	2030 335	2040 481	2050 604
Coal Lignite	20 24	15 21	10 10	3 2	1	0
Gas Oil	13 10	25 8	33	35 5	13 1	5
Diesel Nuclear Biomass	0 41 0	0 45 2	0 40 2	0 20 2	0 4 2	1 0 2
Hydro Wind	90 0	101	108 21	110 100	112 209	112 323 142
PV Geothermal Solar thermal power plants Ocean energy	0 0 0	1 1 0 1	3 1 0 4	47 1 2 9	121 1 4 12	142 1 5 13
Combined heat & power production	1 214	214	203	190	187	185
Coal Lignite Gas	46 22 126	39 18 125	27 10 119	6 4 119	0 0 86	0 0 48
Oil Biomass	21 0	19 12	7 38	1 50	0 72	0 89
Geothermal Hydrogen	0 0	1 0	3 0	10 0	30 0	49 0
CHP by producer Main activity producers Autoproducers	200 14	198 16	188 16	172 18	168 20	164 21
Total generation	412	436	444	525	668	789
Fossil Coal Lignite	280 65 45	269 54 39	224 36 20	174 9 6	101 1 0	54 0 0
Gas Oil	139 31	149 27	152 15	154 5	99 1	53 0
Diesel Nuclear	0 41	45	-0 40	0 20	0 4	1
Hydrogen Renewables Hydro	91	122	180	330	563	735
Hydro Wind PV	90 0 0	101 4 1	108 21 3	110 100 47	112 209 121	112 323 142
Biomass Geothermal	0 0	14 1	40 3	52 11	74	90 50
Solar thermal Ocean energy	0 0	0 1	0 4	2 9	4 12	5 13
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.0%	5 1.2%	28 6.4%	156 29.8%	342 51.2%	478 60.6%
RES share	22.0%	27.9%	40.6%	63.0%	84.2%	93.2%
table 13.131: transition	2007	mies:] 2015	2020	2030 ry ener	2040 2040	nand 2050
Total Fossil	48,111 43,054	46,538 38,268	45,170 32,843	42,283 25,160	37,495 15,007	34,710
Hard coal Lignite	7,121	5,335	3,586 924	1,382	571	8,276 327 0
Natural gas Crude oil	7,121 1,882 24,225 9,826	5,335 1,640 22,351 8,942	21,011 7,323	515 17,990 5,472	10,555 3,881	5,248 2,701
Nuclear Renewables	3,197 1,861	3,578 4,692	3,164 9,163	1,636	327	0 26 434
Hydro Wind	1,049 1	1,170	241	15,487 1,296 1,055	22,161 1,350 2,210	26,434 1,368 3,413
Solar Biomass	2 788	235 2,664	746 5,462	1,811	8,981	3,413 2,894 8,936
Geothermal Ocean Energy RES share	21 0 3.8%	584 7 101%	1,400 54 20.2%	3,237 115 36.5% 13,989	6,862 151 59.1% 22,780	9,664 158 76.1% 29,292
'Efficiency' savings (compared to Ref.) 0	10.1% 2,168	5,476	13,989	22,780	29,292
table 13.132: transition	econ	omies 2015	: final	energ 2030	y dem 2040	and 2050
PJ/a Total (incl. non-energy use) Total (energy use)						
Iransport	31,889 28,955 5,853	32,013 29,066 6,278	31,891 28,793 6,025	31,185 27,877 5,364	28,870 25,353 4,513 1,990	26,864 23,138 3,737
Oil products Natural gas Biofuels	3,780 1,682 5	4,067 1,738 26	3,827 1,607 59	3,078 1,324 214	1,990 888 327	886 492 342
Electricity RES electricity	386 67	447 96	533 170	733	1,194 954	1,767 1,645 249
Hydrogen RES share Transport	1.2%	1.9%	3.8 %	11.4%	113 30.4%	59.4%
Industry Electricity	10,714 2,053	10,580 2,240	10,349 2,301	9,908 2,329	9,081 2,277	8,163 2,235
RES electricity District heat	2,053 359 3,955	483 3,704	2,301 733 3,599 1,220	2,329 1,243 3,529 1,804	1,819 3,301 2,450	2,080 3,046
RES district heat Coal	76 906	603 911	649		2,450 74 15	2,771 0 7
Oil products Gas Solar	933 2,801 0	631 2,713 50	281 2,487 138	2,089 328	1,442 443	7 397 520
Biomass and waste Geothermal	66 0	255 76	138 733 161	1,118 242	1,008 445	887 702
Hydrogen RES share Industry	4.7%	13.9 %	28.8%	47.8 %	68.5%	370 89.5%
Other Sectors Electricity	12,388 1,842	12,207 2,062	12,418 2,063	12,605 2,158	11,759 2,175	11,238 2,227
RES electricity District heat	1,842 322 3,984	2,062 444 3,850	2,063 657 4,088	2,158 1,151 4,640	2,175 1,738 4,921	2,227 2,073 4,647
RES district heat Coal	77 334	627 355	1,386 60	2,373	3,652	4,227
Oil products Gas Solar	1,229 4,521 2	935 4,123 143	486 3,979 493	225 2,484 1,068	65 914 1,324	31 313 1,352
Biomass and waste Geothermal	474	575 165 16.0%	814 435 30.5%	1,155 876 52.5%	1,075 1,284 77.2%	1,024 1,645 91.8%
RES share Other Sectors Total RES	7.1% 1,451 5.0%	16.0% 3,543 12.2%	30.5% 6,999 24.3%	52.5% 11,971 42.9%	77.2% 16,670 65.8%	19,843
RES share			24.3% 3,098			85.8%
Non energy use Oil Gas	2,934 1,366 1,477	2,948 1,373 1,484	1,443 1,560	3,308 1,540 1,665	3,517 1,638 1,771	3,726 1,735 1,876
Coal	1, 90	91	95	102	108	115

13

glossary & appendix | Appendix - TRANSITION ECONOMIES

T

transition economies: total new investment by technology

table 13.33: transition economies: total investment

MILLION \$	2005-2010	2011-2020	2021-2030	2005-2030	

Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	129,596 37,631 4,271 28,195 1,763 1,763 1,763 0 3,394 0 0	165,562 106,279 7,954 84,941 3,855 9 8,492 1,028 0	139,958 117,534 8,434 86,824 10,821 12 7,624 3,820 0	435,116 261,445 20,658 199,959 16,439 30 19,510 4,848 0
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	129,596 37,631 4,271 28,195 1,763 10 3,394 0 0	85,078 310,580 157,232 84,941 12,652 7,136 32,416 1,696 14,508	41,415 277,057 43,245 52,709 65,834 53,137 51,919 6,715 3,499	256,089 625,268 204,747 165,844 80,249 60,282 87,728 8,411 18,007
Advanced Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	129,596 37,631 4,271 28,195 1,763 1,763 10 3,394 0 0	82,805 319,147 155,546 84,941 22,968 7,136 32,354 1,696 14,508	39,277 321,992 45,306 52,709 82,909 60,317 62,139 6,715 11,898	251,678 678,771 205,122 165,844 107,639 67,462 97,887 8,411 26,406

notes

٦Į

india: reference scenario

table 13.134: india: electricity generation

table 19.194. Illula. ele	cuitti	ty gen	ciatic	/11		
TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	814 540 19 68 33 0 17 2 124 12 0 0 0 0	1,255 762 31 150 36 0 52 6 172 45 1 0 0 0	1,601 1,005 42 189 36 0 73 10 188 56 2 0 0 0	2,652 1,784 66 299 33 0 106 29 251 72 11 1 0 0	3,705 2,547 107 409 30 0 139 48 314 88 19 2 1 0	4,757 3,295 164 519 27 0 172 67 377 104 27 0 2 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	0 0 0 0 0 0 0 0 0 0	21 21 0 0 0 0 0 0	45 45 0 0 0 0 0 0	84 84 0 0 0 0 0 0	123 123 0 0 0 0 0 0 0	162 162 0 0 0 0 0 0 0
Main activity producers Autoproducers	0 0	0 21	0 45	0 84	0 123	0 162
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	814 660 540 19 68 33 0 17 0 137 124 12 0 2 0 0 0 0	1,276 1,000 783 31 150 36 0 52 0 224 172 45 1 6 6 0 0 0	1,647 1,318 1,050 42 189 36 0 73 73 256 188 56 2 10 0 0 0 0 0 0 0 0 0 0 0 0 0	2,736 2,266 1,868 66 299 33 0 106 364 251 72 11 29 10 0 0	3,827 3,216 2,670 107 409 30 139 0 472 314 88 19 48 2 1 0	4,918 4,166 3,457 164 519 27 0 172 0 580 377 104 27 67 377 20 0
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	198 54 567	299 84 900	376 112 1,168	584 195 1,974	781 289 2,781	966 395 3,589
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	12 1.4%	46 3.6%	58 3.5%	83 3.0%	107 2.8%	131 2.7%
RES share	16.9 %	17.6%	15.5%	13.3%	12.3%	11.8%

table 13.135: india: heat supply

13

glossary & appendix | APPENDIX - INDIA

٠

RES share (including RES electricity)	60.3%	53.7%	49.0%	39.7%	33.7%	29.6%
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal Fuel cell ((hydrogen)	8,699 3,452 5,240 6 0 0	10,503 4,859 5,628 16 1 0	11,643 5,942 5,659 23 18 0	14,378 8,667 5,629 42 41 0	17,257 11,434 5,696 59 68 0	20,289 14,287 5,828 78 96 0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	8,699 3,452 5,240 6 0	10,380 4,736 5,628 16 1	11,417 5,717 5,659 23 18	14,047 8,337 5,628 42 41	16,838 11,018 5,694 59 68	19,767 13,770 5,824 78 96
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	0 0 0 0	117 117 0 0 0	215 215 0 0	315 315 0 0	398 398 0 0 0	497 497 0 0
PJ7A District heating plants Fossil fuels Biomass Solar collectors Geothermal	0 0 0 0	6 0 0	11 10 0 0	16 15 1 0 0	20 18 2 0 0	25 20 4 0
PJ/A	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.136: india: co2 emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	785	981	1,193	1,882	2,268	2,538
Coal	692	842	1,028	1,659	1,988	2,206
Lignite	28	38	48	63	99	145
Gas	34	69	86	133	159	169
Oil	30	31	31	26	22	18
Diesel	0.0	0.0	0.0	0.0	0.0	0.0
Combined heat & power production Coal Lignite Gas Oil	0 0 0 0	22 22 0 0 0	42 42 0 0	63 63 0 0	83 83 0 0	105 105 0 0
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	785 692 28 34 30	1,003 865 38 69 31	1,235 1,070 48 86 31	1,945 1,722 63 133 26	2,351 2,071 99 159 22	2,643 2,312 145 169 18
CO ₂ emissions by sector	1,307	1,728	2,133	3,395	4,308	5,110
% of 1990 emissions	222%	293%	362%	576%	731%	868%
Industry	224	351	451	694	927	1,156
Other sectors	135	162	179	221	263	305
Transport	119	173	237	491	745	997
Electricity & steam generation	785	981	1,193	1,882	2,268	2,538
District heating	44	62	73	106	105	114
Population (Mill.)	^{1,164}	^{1,294}	1,367	1,485	1,565	^{1,614}
CO2 emissions per capita (t/capita)	1.1	1.3	1.6	2.3	2.8	3.2

table 13.137: india: installed capacity

tubic 19.197. Illuia. Illo	calle	a capa	city			
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	152 78 3 17 6 0 4 0 36 8 0 0 0 0	257 133 4 32 8 0 8 1 51 20 1 0 0 0	323 175 6 41 8 0 11 2 56 23 1 0 0 0	550 336 10 65 8 0 14 5 78 29 6 0 0 0 0	753 471 16 89 7 0 18 7 98 36 10 0 0 0	950 599 255 113 7 0 23 10 117 42 14 0 0 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0 0	5 500000000000000000000000000000000000	10 10 0 0 0 0 0 0	18 18 0 0 0 0 0 0	25 0 0 0 0 0	32 32 0 0 0 0 0
CHP by producer Main activity producers Autoproducers	0 0	0 5	0 10	0 18	0 25	0 32
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	152 104 78 3 17 6 0 4 4 36 8 0 0 44 36 0 0 0 0 0 0	262 182 137 4 32 8 0 8 8 0 72 51 200 1 1 0 0 0 0	333 240 185 6 41 8 0 11 0 82 56 23 1 2 0 0 0 0	568 436 353 10 65 8 0 14 78 29 6 5 0 0 0 0 0	777 608 496 16 89 7 0 18 98 366 10 7 0 0 0 0	982 776 631 25 113 7 0 230 183 117 42 14 10 0 0 0 0
Fluctuating RES (PV, Wind, Ocean)	8	20	24	35	46	56
Share of fluctuating RES	5.0%	7.8%	7.2%	6.2%	5.9%	5.7%
RES share	28.9 %	27.6%	24.6%	20.8%	19.4%	18.7%

table 13.138: india: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	25,159 17,710 9,870 255 1,397 6,187	32,059 23,409 12,547 346 2,805 7,711	37,722 28,476 15,416 433 3,350 9,277	54,403 43,843 24,312 569 4,731 14,230	66,773 55,277 30,386 890 5,491 18,510	77,761 65,390 35,399 1,310 6,227 22,455
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share	183 7,267 446 42 6 6,773 0 28.8%	567 8,083 619 162 20 7,281 1 0 25.2%	796 8,450 677 202 31 7,525 15 0 22.4%	1,156 9,404 259 82 8,097 62 0 17.3%	1,516 9,979 1,130 317 131 8,292 109 0 14.9%	1,876 10,495 1,357 374 182 8,425 156 0 13.5%

table 13.139: india: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	16,449 14,818 1,708 1,608 52 6 42 7 0.7%	21,309 18,839 2,554 2,345 69 84 56 10 3.7%	24,912 22,107 3,559 3,224 92 167 75 12 0 5.0%	35,271 31,838 7,327 6,699 162 335 131 17 0 4.8%	45,614 41,553 11,095 10,166 231 507 191 24 0 4.8%	55,977 51,288 14,863 13,619 300 692 252 30 0 4.9%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	4,778 924 156 0 1,319 867 499 0 1,168 0 0 27.7%	6,733 1,549 272 117 2,131 1,054 696 3 1,181 0 0 21.7%	8,256 2,052 319 215 6 2,825 1,171 816 7 1,171 0 0 18.2%	12,336 3,475 462 315 17 4,898 1,344 1,029 14 1,260 0 0 14.2%	16,403 4,899 604 398 41 6,977 1,516 1,243 21 1,348 0 0 12.3%	20,490 6,322 746 497 97 9,062 1,688 1,457 29 1,436 0 11.3%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	8,332 1,074 181 0 431 1,236 5,550 6 68.9 %	9,552 1,633 287 0 505 1,464 84 13 5,853 64.4 %	10,292 2,079 323 0 520 1,633 126 16 5,903 15 60.8%	12,175 3,500 466 0 563 2,054 252 28 5,743 37 51.5%	14,054 4,923 607 0 603 2,475 378 38 5,579 59 44.7%	15,934 6,345 748 0 0 641 2,896 504 49 5,416 84 39.5%
Total RES RES share	7.074 47.7%	7,706 40.9%	7,940 35.9%	8,380 26.3%	8,829 21.2%	9,326 18.2%
Non energy use Oil Gas Coal	1,631 1,265 366 0	2,470 1,915 555 0	2,805 2,175 630 0	3,433 2,662 771 0	4,061 3,149 912 0	4,689 3,636 1,053 0

india: energy [r]evolution scenario

table 13.140: india: electricity generation

table 15.140: Illula. ele		ty gen				
TWh/a	2007	2015	2020	2030	2040	2050
Power plants	814	1,225 752	1,594	2,387	3,042	3,788
Coal Lignite	540 19	752 18	925 13	1,175	1,161	966
Gas	68 33	147	188 12	439	538	531
Oil Diesel	دد 0	26 0	12	3 0	0 0	0
Nuclear	17	52	53	43	24	0
Biomass Hydro	2 124	154	15 189	27 195	41 201	48 204
Wind PV	12	65	170	320	456	645
P V Geothermal	0 0	د 0	13 4	81 9	195 19	490 25
Solar thermal power plants	0	0	10 3	80 7	389 14	854 25
Ocean energy						
Combined heat & power production Coal	0	30 13	60 21	150 31	370 59	670 87
Lignite	Ó	0	0	0	Ó	0
Gas Oil	0	6 0	10	22 0	52 0	114 0
Biomass	0	11	24	75	185	335
Geothermal Hydrogen	0	0	5 0	23 0	74 0	134 0
Hydrogen <i>CHP by producer</i> Main activity producers Autoproducers	0	-				0
Autoproducers	0 0	0 30	0 60	0 150	0 370	0 670
Total generation	814	1,255	1,654	2,537	3,412	4,458
Fossil	660	.962	1,168 946	1,677	1,815	1,698
Coal Lignite	540 19	765 18	946 13	1,205	1,221	1,053
Gas	68	153	198	461	590	645
Oil Diesel	33 0	26 0	12 0	3 0	0 0	0 0
Nuclear	17	52	53	43	24	0
Hydrogen Renewables	137	241	433	817	1,574	2,760
Hydro	124	154	189	195 320	201	204
Wind PV	12 0	65 3	170 13 39	520 81	456 195	645 490
Biomass	0 2 0	18 0	39 9	102 32	226 93	383 159
Geothermal Solar thermal	0	0	10	80	389	854 25
Ocean energy	0	1	3	7	14	25
Distribution losses	198	299	376 112	550 170	650 240	720
Own consumption electricity Electricity for hydrogen production	54 0		112	170	240 10	295 28
Final energy consumption (electricity)	56 7	879	1,175	1,83Ĭ	2,531	3,439
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	12	69	186	408	665	1,160
	1.4%	5.5%	11.3%	16.1%	19.5%	26.0%
RES share 'Efficiency' savings (compared to Ref.)	16.9% 0	19.2% 28	26.2% 34	32.2% 313	46.1% 527	61.9% 615
table 13.141: india: hea	ıt sup	oply				
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants	0	12	44	123	361	711
Fossil fuels	Ő	0	0	0	0	0 142
Biomass Solar collectors	0	10 2	35	86 31	162 159	441
Ĝeothermal	0	0	0	6	40	128
Heat from CHP	0	166	305	681	1,626	2,855
Fossil fuels Biomass	0 0	108 58	148 114	197 281	360 600	618 1,031
Geothermal	0	0	43	203	666	1,206
Fuel cell (hydrogen)	0	0	0	0	0	0
Direct heating ¹⁾	8,699	9,825	10,573	11,631	11,946	11,612
Fossil fuels Biomass	3,452 5,240	4,307 5,385 117	4,696 5,193	5,009 4,654	4,630 4,193	3,786 3,443 3,236
Solar collectors	6	-'iį́7	5,193 593 91	1,646	2,467	3,236
Geothermal	0	16	,-	322	657	1,148
Total heat supply ¹⁾	8,699	10,003	10,922	12,434	13,933	15,179
Fossil fuels Biomass	3,452 5,240	4,415 5,453	4,844 5,342	5,206 5,021 1,677	4,990 4,955	4,404 4,616
Solar collectors	6	119	602	1,677	2,626	3,677

1) heat from electricity (direct and from electric h	eat pumps) n	ot included; co	overed in the	model under `	electric applia	ances'
'Efficiency' savings (compared to Ref.)	0	500	721	1,944	3,324	5,110
RES share (including RES electricity)	60.3%	56%	56%	58%	64%	71%
Geothermal Fuel cell (hydrogen)	0	16 0	135 0	530 0	1,362	2,482
Solar collectors	6	119	602	1,677	2,626	3,677

table 13.142: india: co2 emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	785 692 28 34 30 0.0	943 831 22.6 67 22.5 0.0	1,057 946 14.8 86 10.2 0.0	1,168 963 7.6 196 2.4 0.0	1,058 857 3.7 198 0.0 0.0	766 599 0.0 167 0.0 0.0
Combined heat & power production Coal Lignite Gas Oil	0 0 0 0	18 14 0 4 0	25 20 0 5 0	32 23 0 10 0	61 40 0 21 0	101 57 0 45 0
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	785 692 28 34 30	961 845 23 71 23	1,081 965 15 91 10	1,201 986 205 2	1,120 897 4 218 0	867 655 212 0
CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	1,307 222% 224 135 119 785 44	1,626 276% 309 149 167 943 58	1,807 307% 346 139 203 1,057 62	2,035 345% 377 111 315 1,168 62	1,944 330% 360 93 395 1,058 38	1,620 275% 329 65 438 766 22
Population (Mill.) CO2 emissions per capita (t/capita)	1,164 1.1	^{1,294} 1.3	1,367 1.3	1,485 1.4	1,565 1.2	^{1,614} 1.0

table 13.143: india: installed capacity

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	152 78 3 17 6 0 4 0 36 8 0 0 0 0 0	256 131 2 31 6 0 8 1 46 29 1 0 0 0	355 161 2 41 3 0 8 3 56 69 7 1 3 1	564 214 1 95 1 0 6 5 57 128 41 1 13 2	735 211 117 0 0 3 6 57 172 99 3 62 62	973 176 0 115 0 0 0 0 7 7 230 245 245 245 245 245 131 7
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	0 0 0 0 0 0 0 0 0	7 3 0 2 0 2 0 0	13 5 0 2 0 5 1 0	31 6 0 5 0 16 5 0	76 12 0 12 0 37 15 0	138 19 0 26 0 66 27 0
CHP by producer Main activity producers Autoproducers	0 0	0 7	0 13	0 31	0 76	0 138
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	152 104 78 3 17 6 0 4 4 36 8 0 0 0 0 0 0 0	263 175 134 2 33 6 0 8 0 80 80 46 29 1 4 0 0 0 0 0 0	368 214 166 2 43 3 0 80 146 56 69 7 7 8 2 2 3 1	595 322 219 101 101 0 6 0 268 57 128 41 21 6 13 2	811 353 223 1 129 0 0 30 455 57 172 57 172 99 44 18 62 4	1,111 336 195 0 141 0 0 0 775 57 230 245 73 31 131 7
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	8 5.0%	30 11.5%	77 21.0%	171 28.8%	275 33.9%	483 43.4%
RES share	28.9 %	30.3%	39.8%	45.0%	56.1%	69.7 %

table 13.144: india: primary energy demand

±		0.				
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	25,159 17,710 9,870 255 1,397 6,187	30,708 22,121 11,736 203 3,037 7,145	34,896 24,742 12,911 133 4,115 7,583	42,657 29,297 12,711 69 7,274 9,244	47,587 29,088 11,333 33 7,508 10,214	51,626 26,218 8,285 0 7,612 10,321
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	183 7,267 446 42 6,773 0 28.8%	567 8,019 554 234 129 7,076 22 4 26.1% 1,358	576 9,578 679 610 686 7,223 367 12 27.5% 2,872	467 12,893 702 1,152 2,256 7,458 1,299 25 30.3% 11,845	260 18,238 724 1,642 4,728 7,676 3,419 50 38.49 19,335	0 25,408 734 2,322 8,515 7,927 5,819 90 49.3% 26,331

table 13.145: india: final energy demand

	2007	2015	2020	2030	2040	2050
PJ/a Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	16,449 14,818 1,708 1,608 52 6 42 7 0 0.7%	20,437 17,967 2,454 2,275 51 44 84 16 0 2.5%	23,295 20,490 3,159 2,771 64 102 222 58 0 5.1%	29,259 25,826 5,417 4,295 106 274 742 239 9.5%	34,547 30,486 7,047 5,411 97 324 1,190 549 25 12.5%	39,869 35,180 8,677 5,989 122 561 1,929 1,194 76 20.8%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	4,778 924 156 0 1,319 867 499 0 1,168 0 1,168 0 2 7.7%	6,336 1,542 296 170 1,826 964 682 37 1,115 1 0 25.5%	7,529 2,003 524 326 326 1,890 999 1,076 214 964 56 0 27.7%	9,558 2,793 899 733 1,880 869 1,733 574 764 212 0 33.3%	11,905 3,791 1,749 1,829 1,829 1,451 669 1,976 929 804 456 0 48.4%	14,139 4,905 3,037 3,212 3,212 979 2,008 1,248 769 698 0 63.4%
Other Sectors Electricity RES electricity District heat RES district heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	8,332 1,074 181 0 431 1,236 35 5,550 68.9%	9,177 1,538 295 0 471 1,218 239 79 5,616 15 65.5%	9,803 2,006 525 6 438 982 430 379 5,527 34 66.0%	10,851 3,056 984 32 248 741 580 1,072 5,035 87 66.4%	11,534 4,132 1,906 64 196 562 586 1,538 4,299 156 69.0%	12,364 5,547 3,435 186 153 243 593 1,988 3,281 373 74.9%
Total RES RES share	7,074 47.7%	7,685 42.8%	8,716 42.5%	10,906 42.2%	14,615 47.9%	20,029 56.9%
Non energy use Oil Gas Coal	1,631 1,265 366 0	2,470 1,915 555 0	2,805 2,175 630 0	3,433 2,662 771 0	4,061 3,149 912 0	4,689 3,636 1,053 0

glossary & appendix | APPENDIX - INDIA

india: advanced energy [r]evolution scenario

GW

table 13.146: india: electricity generation 2007 2015 2020 2030

	2007	2015	2020	2030	2040	2050
TWh/a Power plants	814	1,225	1,595	2,441	3,186	4,392
Coal Lignite	540 19	747	629 13	467	118	0000
Gas Oil Diesel	68 33 0	147 26 0	250 12 0	349 3 0	326 0 0	202 0 0
Nuclear Biomass	17 2	52 7	53 15	43 27	24 41	0 48
Hydro Wind	124 12	154	189	195 525	201 763	204 969
PV Geothermal	0	65 3 5	229 58 49	218 214	469 349	963 406
Solar thermal power plants Ocean energy	0 0	0 1	75 23	315 76	781 110	1,402 197
Combined heat & power production	0	30	60	150	370	670
Coal Lignite	0	13 0	21 0	30 0 22	48 0	74 0
Gas Oil Biomass	0 0 0	6 0 11	10 0 24	23 0 75	56 0 185	101 0 335
Geothermal Hydrogen	0	0	5	23 0	81	161 0
CHP by producer Main activity producers	0	0	0	0	0	0
Autoproducers	0	30	60	150	370	670
Total generation Fossil	814 660	1,255 957	1,655 935	2,591 880	3,556	5,062 377
Coal Lignite	540 19	760 18	650 13	497 8	166	74
Gas Oil Diesel	68 33 0	153 26 0	260 12 0	372 3 0	382 0 0	303 0 0
Nuclear Hydrogen	17 0	52 0	53 0	43 0	24 0	0
Renewables	137 124	246 154	667 189	1,668 195	2,980 201	4,685 204
Hydro Wind PV	12	65	229	525 218	763 469	969 963
Biomass Geothermal	2 0	18 5	58 39 54	102 237	226 430	383 567
Solar thermal Ocean energy	0 0	0 1	75 23	315 76	781 110	1,402 197
Distribution losses	198	299	376	540	630	690
Own consumption electricity Electricity for hydrogen production	54 647	84 970		170	230 19	280 70 4,047
Final energy consumption (electricity) Fluctuating RES (PV, Wind, Ocean)	567	879 69	1,176 310	1,895 819	2,696	2,129
Share of fluctuating RES	1.4%	5.5%	18.7%	31.6%	1,342 37.7%	42.1%
RES share 'Efficiency' savings (compared to Ref.)	16.9% 0	19.6% 28	40.3% 34	64.4% 312	83.8% 526	92.6% 607
table 13.147: india: hea	t sur	plv				
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants	0	12	47	137	420	873
Fossil fuels Biomass	0	0 10	0 37 9	0 96	0 189	0 175
Solar collectors Geothermal	0	2 0	0	34 7	185 46	541 157
Heat from CHP Fossil fuels	0	166 108	305 148	681 197	1,669 336	3,014 536
Biomass Geothermal	0 0	58 0	114 43	281 203	600 733	1,031 1,447
Fuel cell (hydrogen)	0	0	0	0	0	0
Direct heating ¹⁾ Fossil fuels	8,699 3,452 5,240	9,825 4,308 5,385	10,571 4,534 5,353 593	11,617 4,329 4,962	11,822 3,331	10,694 1,170
Biomass Solar collectors Geothermal	5,240 6 0	117 16	5,555 593 91	4,962 1,978 348	4,405 3,085 1,002	3,489 4,207 1,828
Total heat supply ¹⁾		10,003				
Fossil fuels Biomass	8,699 3,452 5,240	4,416 5,453	10,922 4,682 5,504	12,434 4,526 5,339	13,933 3,667 5,194	15,179 1,706 4,695
Solar collectors Geothermal	6	119 16	602 135	2,012 558	3,270 1,780	4,748 3,432
Fuel cell (hydrogen)	0	0	0	0	22	598
RES share (including RES electricity)	60.3%	55.9% 500	57.1%	63.6% 1,944	73.7%	88.5% 5 110
1) heat from electricity (direct and from electric heat	eat numps) i		721		3,324	5,110
table 13.148: india: co ²			covered in the	moder under	ciccure appin	ances
MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	785	938	783	549	211	64
Coal Lignite	692 28	826 23	643 15	383	87	0
Gas Oil Discol	34 30 0.0	67 23 0	114 10 0	156 2 0	120 0 0	64 0
Combined heat & power production	0.0	18	25	32	55	0 87
Coal Lignite	0	14 0	20	22	33 0	48 0
Gas Oil	Ö Ö	4 0	0 5 0	10 0	22 0	39 0
CO2 emissions electricity	707		007			
& steam generation Coal	785	956 840	807	581 405	266 120	151 48
	28	23 71	15 119	166	4 142	103
Lignite Gas Oil & diocol	34		10			
Gas Oil & diesel	30	23	10 1.524	2 1.332	0 927	0 499
Gas Oil & diesel CO ₂ emissions by sector % of 1990 emissions	30 1,307 222%	23 1,620 275%	1,524 259%	1,332 226% 353	927 157%	499 85% 186
Gas Oil & diesel CO ₂ emissions by sector % of 1990 emissions Industry Other sectors	30 1,307	23 1,620	1,524	1,332	927	499
Gais Oil & diesel CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	30 1,307 222% 224 135 119 785 44	23 1,620 275% 309 149 167 938 57	1,524 259% 336 139 203 783 64	1,332 226% 353 90 297 549 43	927 157% 297 60 339 211 20	499 85% 186 15 226 64 8
Gas Oil & diesel CO ₂ emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation	30 1,307 222% 224 135 119 785	23 1,620 275% 309 149 167 938	1,524 259% 336 139 203 783	1,332 226% 353 90 297 549	927 157% 297 60 339 211	499 85% 186 15 226 64

2007	2015	2020	2000	2010	2000
152	256	397	658	914	1,304
3	2	2	1	1	0
	31	54 3	76 1		78 0
0	0	0	0	0	0
0	1		5		0 7
36		56 93			57 346
ŏ	1	30	111	237	482
0	0	24	53	124	62 216
					56
0	7		5		138 16
Ō	Ő	Ő	Ō	Ó	0
Õ	ő	ő	Ō	0	23 0
	2	5			66 32
ŏ	ŏ	ō	õ	10	0
0	0	0	0	0	0
0	7	13	31	76	138
152	263	411	690	990	1,442 117
78	133	114	90	36	16
3 17	2 33	2 57		1 99	0 101
6	6	3	1	0	0
4	8	8	6	3	0
44	81	227	510	851	1,325
36	46	56	57	57	57 346
0	1	30	111	237	482
		8	38	44 70	73 95
0	0	24 7	53	124	216 56
					884
5.0%	11.5%	31.7%	49.8%	56.2%	61.3%
28.9 %	30.6%	55.3%	74.0%	86.0%	91.9%
marv	energ	v dem	and		
2007	2015	2020	2030	2040	2050
25,159	30,737	34,056	42,979	49,214	54,671 12,078
9,870	22,026 11.611	21,854 9.675	21,309 6,557	2,803	12,078 851
255	203		69	33	0
6,187	7,130	7,548	8,829	9,273	4,075 7,152
183	567	576	467	260	42 502
446	6,144 554	679	702	724	42,593 734
42 6	129	824 1,081	1,890 3,931	2,747 7,770	3,488 13,262
6,773	7,072	7,401	3,931 7,835	7,770	13,262
	160	1'550	6 677	10141	16 457
28.8%	150 4 26.5% 1,329	1,558 34.2% 3,712	6,571 274 49.4% 11,523	12,161 396 64.6% 17,708	16,451 709 77.9% 23,286
	152 78 3 3 17 6 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	152 256 397 658 17 31 54 76 6 6 3 1 0 0 0 0 4 8 8 6 0 1 30 111 0 0 0 0 0 4 8 8 6 57 36 46 56 57 31 31 0 1 30 111 13 31 0 0 24 53 0 0 24 53 0 0 2 2 5 0 <	152 226 397 658 914 78 130 110 85 26 17 31 54 76 86 6 6 3 1 0 0 0 0 0 0 0 4 8 8 6 3 0 0 1 30 111 237 0 1 30 111 237 0 1 30 111 237 0 1 30 111 237 0 0 24 53 124 0 0 2 0 0 0 0 0 2 0 0 0 0 0 2 2 5 16 37 0 0 2 2 5 16 37 0 0 0 0 0 0

table 13.149: india: installed capacity

2007

2015

2020

table 13.151: india: final energy demand

table 19.191. Illuia. Ill	iai ene	ergy u	eman	u i		
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	16,449 14,818 1,708 1,608 52 6 42 7 0 0.7%	20,437 17,967 2,454 2,275 51 44 84 16 0 2.5%	23,295 20,490 3,159 2,769 64 103 223 90 0 6.1%	29,271 25,838 5,417 4,061 90 295 971 625 0 17.0%	34,366 30,304 6,847 4,641 93 318 1,746 1,463 49 26.6%	38,496 33,807 7,277 3,055 101 344 3,589 3,321 188 52.8%
Industry Electricity RES electricity District heat RES district heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	4,778 924 156 0 1,319 867 499 0 1,168 0 0 27.7%	6,336 1,542 302 170 1,827 961 684 37 1,115 1 0 25.6%	7,529 2,003 807 328 1,916 992 866 214 1,155 56 0 34.0%	9,562 2,794 1,798 743 1,937 854 1,227 630 1,143 233 0 47.6%	11,933 3,795 3,180 1,913 1,913 1,308 651 1,219 1,235 1,074 714 24 68.2%	14,211 4,935 4,568 3,463 3,463 3,463 3,463 2,67 2,95 9,25 1,795 8,45 1,313 3,74 86.8%
Other Sectors Electricity District heat <i>RES district heat</i> Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	8,332 1,074 181 0 431 1,236 5,550 6 68.9%	9,177 1,538 301 0 471 1,207 250 250 250 5,616 65.5%	9,803 2,006 808 6 438 959 453 379 5,527 5,527 68.9%	10,860 3,056 1,967 36 192 617 454 1,348 5,065 78.3%	11,524 4,132 3,463 77 127 465 246 1,850 4,387 240 86.9%	12,319 5,134 241 241 15 95 123 2,412 3,408 94.8% 94.8%
Total RES RES share	7.074 47.7%	7,697 42.8%	9,506 46.4%	13,976 54.1%	19,976 65.9%	27,842 82.4%
Non energy use Oil Gas Coal	1,631 1,265 366 0	2,470 1,915 555 0	2,805 2,175 630 0	3,433 2,662 771 0	4,061 3,149 912 0	4,689 3,636 1,053 0

2040

2050

2030

244

13

glossary & appendix | Appendix - INDIA

÷

india: total new investment by technology

table 13.152: india: total investment

MILLION \$	2005-2010	2011-2020	2021-2030	2005-2030

Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	70,244 55,635 1,010 40,716 13,259 650 0 0	164,259 77,430 3,911 55,456 16,035 2,028 0 0 0	253,877 112,166 8,047 81,435 14,963 6,472 1,249 0 0	488,380 245,231 12,967 177,608 44,257 9,150 1,249 0 0
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	70,218 55,635 1,010 40,716 13,259 650 0 0	127,429 208,189 28,445 56,360 71,588 14,984 16,122 17,170 3,520	124,971 260,230 41,805 16,015 69,866 47,312 36,222 46,491 2,520	322,617 524,054 71,259 113,091 154,713 62,946 52,344 63,661 6,040
Advanced Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Occan energy	70,244 55,635 1,010 40,716 13,259 650 0 0	88,604 482,235 28,445 56,360 99,210 63,733 85,596 127,225 21,666	23,885 702,578 41,805 16,015 129,580 111,364 236,104 130,617 37,094	182,733 1,240,448 71,259 113,091 242,049 175,747 321,700 257,841 58,760

notes

developing asia: reference scenario

table 13.153: developing asia: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	934 159 94 358 119 2 44 8 132 1 0 17 0 0	1,295 376 108 420 75 24 194 2 1 27 0 0 0	1,573 488 116 517 68 4 65 40 225 12 5 33 0 0 0	2,448 991 124 734 53 4 70 276 52 26 47 0 0 0	3,088 1,261 132 950 38 4 75 101 327 92 47 61 0 0	3,623 1,428 140 1,165 23 4 80 130 130 378 132 68 75 0 0 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	44 34 4 3 0 0 0	50 38 5 3 4 0 0	56 42 6 4 4 0 0 0	65 49 6 4 5 1 0 0	76 57 5 5 6 1 0	98 74 7 7 3 0
CHP by producer Main activity producers Autoproducers	7 38	9 41	10 46	11 54	12 64	13 85
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV	978 777 194 98 361 122 2 44 0 158 132	1,344 1,031 413 113 423 79 3 65 0 248 194 2	1,629 1,249 530 122 521 73 4 65 0 315 225 12	2,513 1,971 1,041 130 738 58 4 70 0 472 276 52	3,164 2,460 1,318 139 955 44 4 75 0 629 327 92	3,721 2,855 1,502 147 1,172 30 4 80 0 786 378 132
PV Biomass Geothermal Solar thermal Ocean energy	0 8 17 0 0	1 24 27 0 0	12 5 40 33 0 0	26 71 47 0	92 47 102 61 0 0	68 133 75 0
Biomass Geothermal Solar thermal	17 0	1 24 27 0	5 40 33 0	26 71 47 0	47 102 61 0	68 133 75 0
Biomass Geothermal Solar thermal Ocean energy Distribution losses Own consumption electricity Electricity for hydrogen production	8 17 0 81 48 0	1 24 27 0 0 117 69 0	5 40 33 0 0 132 78 0	26 71 47 0 0 183 108 0	47 102 61 0 0 234 138 0	68 133 75 0 0 286 168 0

table 13.154: developing asia: heat supply

RES share (including RES electricity)	48.7%	41.8%	40.7%	36.9 %	36.2%	36.0%
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal Fuel cell ((hydrogen)	10,836 5,563 5,269 4 0 0	12,022 6,991 5,025 6 1 0	12,946 7,678 5,242 24 2 0	15,063 9,502 5,493 64 4 0	17,323 11,048 6,158 110 6 0	19,261 12,329 6,762 160 10 0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	10,559 5,286 5,269 4 0	11,712 6,681 5,025 6 1	12,579 7,312 5,241 24 2	14,620 9,062 5,491 64 4	16,817 10,548 6,153 110 6	18,659 11,736 6,753 160 10
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	259 259 0 0	252 252 0 0	257 256 1 0 0	285 282 2 0 0	310 305 5 0	376 367 9 0 0
District heating plants Fossil fuels Biomass Solar collectors Geothermal	18 18 0 0 0	59 0 0	110 110 0 0	158 158 0 0	196 196 0 0	226 226 0 0
PJ/A	2007	2015	2020	2030	2040	2050

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.155: developing asia: co2 emissions

······································	0					
MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	524	708 331 114 197 64 3	841	1,297	1,572	1,709
Coal	154		419	790	982	1,063
Lignite	106		119	118	123	127
Gas	177		243	344	435	500
Oil	58		58	41	29	16
Diesel	29		3	3	3	3
Combined heat & power production	45	45	47	54	60	74
Coal	31	32	34	39	43	53
Lignite	8	6	6	7	7	8
Gas	3	2	2	2	2	3
Oil	4	4	5	6	8	11
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	569 184 114 180 91	753 363 120 199 71	889 453 125 244 66	1,351 829 125 346 51	1,632 1,025 130 437 40	1,783 1,116 135 503 30
CO2 emissions by sector	1,488	1,853	2,129	2,916	3,448	3,846
% of 1990 emissions	216%	269%	308%	423%	500%	557%
Industry	411	484	525	618	684	734
Other sectors	137	183	194	237	279	320
Transport	319	358	422	601	779	957
Electricity & steam generation	536	720	854	1,311	1,588	1,726
District heating	85	108	135	148	118	109
Population (Mill.)	^{1,011}	^{1,131}	1,203	1,333	1,439	^{1,516}
CO2 emissions per capita (t/capita)	1.5	1.6	1.8	2.2	2.4	2.5

13

glossary & appendix

APPENDIX - DEVELOPING

ASIA ÷

GW	2007	2015	2020	2030	2040	2050
Power plants	229	306	360	550	671	758
Coal	26	56	71	144	184	208
Lignite Gas	15 92	16 112	17 134	18 208	19 244	20 26
Oil	40	-39	35	200	222	20
Diesel	2	2	3	3	4	
Nuclear Biomass	6 1	83	7	9 11	10 16	1
Hydro	44	65	76	93	110	12
Wind	0	1	4 3 5	17	29	30
PV Geothermal	0 3	1	5	14 7	26 9	38 1
Solar thermal power plants	0	Ó	0	0	Ó	(
Ocean energy	0	0	0	0	0	(
Combined heat & power production	10	14	15	15	17	22
Coal Lignite	7 1	9 1	9 1	9 1	11	14
Gas	1 2	1 3	1	1 3	1	
Oil Biomass	2	3	4 0	3	4 0	
Geothermal	0	0	0	0	0	į
Hydrogen	Õ	Õ	Õ	Õ	Ō	Ċ
CHP by producer						
Main activity producers Autoproducers	1	2 12	2 12	2 13	2 15	20
•	,					
Total generation Fossil	240 185	320 238	374 274	565 414	688 488	78
Coal	33	64	80	154	194	22
Lignite	16	17	18	19	20	2
Gas Oil	92 42	113 42	135 39	209 29	245 25	26 21
Diesel	2	2	37	3	4	4
Nuclear	6	8	7	9	10	1
Hydrogen Renewables	48	74	93	142	190	23
Hydro	44	65	76	93	110	12
Wind PV	0	1	4	17 14	29 26	3
Biomass	1	3	5	11	16	2
Geothermal	3	4	3 5 5 0	7	9	1
Solar thermal Ocean energy	0	0	0	0	0	(
Fluctuating RES	0	2	7	31	55	76
(PV, Wind, Ocean) Share of fluctuating RES	0.1%	0.6%	1.8%	5.5%	7.9%	9.8%
Share of Inicinating RES	U 1 %					

RES share 20.2% 23.1% 24.8% 25.1% 27.6% 30.2%

table 13.157: developing asia: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	31,903 22,958 4,798 1,026 6,998 10,136	37,421 27,488 7,208 1,080 7,935 11,265	41,810 31,198 8,415 1,126 9,241 12,416	53,745 41,783 13,005 1,122 12,216 15,440	62,690 15,479 1,170 14,557 18,315	69,233 55,021 16,688 1,214 16,020 21,099
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share	476 8,469 476 2 4 7,366 621 0 26.6%	709 9,224 698 7 10 7,818 690 0 24.7%	709 9,903 810 43 42 8,293 715 0 23.7%	11,199 994 187 158 9,080 780 0 20.8%	818 12,352 1,177 331 280 9,742 821 0 19.7%	873 13,340 1,361 475 405 10,248 851 0 19.3%

table 13.158: developing asia: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	23,620 21,242 4,468 4,372 7 8 1 0 0.2%	27,568 24,888 5,150 4,870 134 12 2 0 2.6%	30,702 27,813 6,071 5,753 134 172 12 2 2.9%	38,945 35,679 8,709 8,211 172 310 16 3 3.6%	45,839 42,196 11,346 10,662 210 454 20 4 4 0 4.0%	52,040 48,021 13,984 13,098 249 612 25 5 0 4.4%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	7,234 1,374 222 240 0 2,356 1,137 1,345 0 782 0 0 13.9%	9,077 2,010 371 264 0 2,846 1,196 1,771 0 989 0 0 15.0%	10,341 2,471 478 305 0 3,056 1,240 2,064 6 1,197 1 0 16.3%	13,232 3,711 697 360 0 3,520 1,356 2,749 15 1,518 3 0 16.9%	15,046 4,323 859 406 0 3,819 1,414 3,291 27 1,763 5 0 17.6%	16,156 4,600 971 486 0 3,977 1,427 3,685 39 1,934 7 0 18.3%
Other Sectors Electricity District heat <i>RES district heat</i> Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	9,541 1,667 269 36 0 191 1,275 395 4 5,973 65.5%	10,662 2,135 394 40 0 201 1,814 476 5,990 0 59.9%	11,401 2,613 505 55 0 236 1,846 553 18 6,081 0 57.9%	13,739 4,250 798 74 0 332 2,059 867 49 6,108 0 50.6%	15,804 5,678 1,129 91 2,260 1,173 83 6,098 0 46.3%	17,881 7,106 1,501 106 505 2,463 1,477 121 6,103 0 43.2%
Total RES RES share	7,258 34.2%	7,886 31.7%	8,461 30.4%	9,501 26.6%	10,423 24.7%	11,294 23.5%
Non energy use Oil Gas Coal	2,378 1,823 534 21	2,680 2,054 602 24	2,889 2,215 649 26	3,266 2,503 733 29	3,643 2,792 818 32	4,019 3,081 902 36

developing asia: energy [r]evolution scenario

table 13.159: developing asia: electricity gene	eration
---	---------

table 15.159: developin	ig asi	a: erec	tricit	y gene	ratio	1
TWh/a	2007	2015	2020	2030	2040	2050
Power plants	934	1,294	1,451	1,838	2,098	2,345
Coal Lignite	159 94	288 83	310 62	348 28	178	- 6 9
Gas	358	515	534 72	544	513	463
Oil Diesel	119 2	77	12	59 2	28 2	9
Nuclear	44 8	65 19	60 28	40 38	12 53	0 74
Biomass Hydro	132	19	210	240	263	286
Wind PV	1	29 4	99 19	320 106	569 255	685 415
Geothermal	17	29	40	60	91	113
Solar thermal power plants Ocean energy	0	20	11	45	110 18	194 35
Combined heat & power production Coal	34	50 33 5	75 40	149 55	209 44	250 23
Lignite Gas	4	5	3 11	2 37	0 82	0 122
Oil	3 3	5 2 5	2	1	0	0
Biomass Geothermal	0	5	12 7	33 21	49 34	59 47
Hydrogen	ŏ	ō	ò	-0	0	0
Hydrogen CHP by producer Main activity producers	7	9	10	11	12 197	15
Autoproducers	38	41	65	138	197	235
Total generation	978	1,344	1,525	1,987	2,307	2,595
Fossil Coal	777 194	1,011 321	1,036 350	1,076 403	853 222	687 92
Lignite	98	88 520	65 545	30	595	0
Gas Oil	361 122	79	545	581 60	29	585 9
Diesel Nuclear	2 44	3 65	3 60	2 40	12 12	1
Hydrogen	0	0	0	0	0	0
Renewables	158 132	269 180	429 210	871 240	1,442 263	1,908 286
Hydro Wind	1	29	99	320	569	685
PV Biomass	0 8	4 24	19 40	106 71	255 102	415 133
Geothermal	17	30	47	81	125	160
Solar thermal Ocean energy	0	2 0	11	45 8	110 18	194 35
Distribution losses	81	117	125	160	205	235
Own consumption electricity	48	69	78	160 105	205 125	143
Electricity for hydrogen production Final energy consumption (electricity)	847	1,139	1,319	1,721	1,967	2,171
Fluctuating RES (PV, Wind, Ocean)	1	33	121	434	842	1,135
Share of fluctuating RES	0.1%	2.5%	7.9%	21.8%	36.5%	43.7%
RES share 'Efficiency' savings (compared to Ref.)	16.1% 0	20.0% 22	28.1% 128	43.8% 590	62.5% 975	73.5% 1,329
table 13.160: developir	ng asi	a: hea	t supp	oly		
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants	18	53	97	165	431	948
Fossil fuels	18	11 20	8 45	8 79	4 207	0 446
Biomass Solar collectors	0	11	21	36	108	247
Geothermal	0	11	23	41	112	256
Heat from CHP	259	264	366	676	941	1,104
Fossil fuels Biomass	259 0	224 28	249 57	352 135	444 189	473
Geothermal	0	13	60	188	308	212 419
Fuel cell (hydrogen)	0	0	0	0	0	0
Direct heating ¹⁾ Fossil fuels	10,559 5,286	11,251 6,032	11,803 5,839	12,625	13,331 5,031	13,643
Biomass	5,269	4,925 214	5,094	5,511 5,011 1,549	4,704	3,963 4,064
Solar collectors Geothermal	, 4 0	214 80	646 224	1,549 554	4,704 2,309 1,287	4,064 3,378 2,238
Total heat supply ¹⁾ Fossil fuels	10,836 5,563	11,569 6,267	12,266 6,096	13,466 5,872	14,704 5,479	15,695 4,436
Biomass Solar collectors	5,563 5,269	6,267 4,973 225	5,196 667	5,225 1,585	5,479 5,100 2,417	4,436 4,722 3,624
Castlaumal	7	104	207	1,505	1 707	2,017

1) heat from electricity (direct and from electric h	eat pumps) no	ot included; co	overed in the	model under `	electric applia	ances'
'Efficiency' savings (compared to Ref.)	0	454	680	1,597	2,619	3,566
RES share (including RES electricity)	48.7%	46%	50%	56%	63%	72%
Fuel cell (hydrogen)	0	0	0	0	0	. 0
Geothermal	4	225 104	667 307	784	2,417 1,707	3,624 2,913

table 13.161: developing asia: co2 emissions	IS
--	----

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	524 154 106 177 58 29	650 253 87 242 65 3	643 266 64 250 60 2	606 278 27 255 45 2	402 138 6 235 21 1	257 52 199 6 1
Combined heat & power production	45	40	43	58	66	66
Coal	31	29	32	39	29	15
Lignite	8	6	3	1	0	0
Gas	3	3	6	16	36	51
Oil	4	3	2	2	0	0
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	569 184 114 180 91	690 282 93 244 70	686 298 67 256 65	665 317 28 271 49	467 168 6 271 23	323 66 0 250 7
CO ₂ emissions by sector	1,488	1,714	1,686	1,660	1,385	1,085
% of 1990 emissions	216%	248%	244%	241%	201%	157%
Industry	411	433	427	402	355	253
Other sectors	137	163	144	127	108	83
Transport	319	358	402	467	475	466
Electricity & steam generation	536	661	652	609	405	261
District heating	85	99	62	55	43	22
Population (Mill.)	^{1,011}	^{1,131}	1,203	1,333	1,439	1,516
CO2 emissions per capita (t/capita)	1.5	1.5	1.4	1.2	1.0	0.7

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	229 26 15 92 40 2 6 1 44 0 0 3 0 0 0	327 43 12 138 39 2 60 15 3 4 1 0	367 45 9 138 37 2 6 4 71 33 11 6 4 1	512 51 4 154 28 5 6 81 103 59 9 8 3	644 40 131 16 1 2 8 89 178 142 14 17 5	731 23 0 105 6 1 0 11 96 201 231 17 30 10
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	10 7 1 2 0 0 0	13 8 1 2 1 0 0	17 8 1 3 2 2 1 0	31 10 0 9 1 6 4 0	44 9 0 19 0 9 7 0	53 5 0 28 0 11 9 0
CHP by producer Main activity producers Autoproducers	1 9	2 11	2 15	2 29	2 42	3 50
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	240 185 33 16 92 42 2 6 0 48 44 0 0 1 3 0 0 0	340 246 50 13 139 41 2 80 86 60 15 3 3 4 4 1 0	384 245 54 10 141 38 6 0 133 71 33 11 6 7 7 4 1	542 259 61 4 163 29 50 278 81 103 59 12 13 8 3	688 218 48 151 151 151 20 0 468 89 178 89 178 17 20 17 5	784 168 28 0 133 6 1 0 0 616 966 201 231 222 266 300 10
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.1%	18 5.2%	45 11.7%	165 30.3%	325 47.2%	442 56.3%
RES share	20.2%	25.4%	34.6%	51.3%	68.1%	78.6%

table 13.162: developing asia: installed capacity

table 13.163: developing asia: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	31,903 22,958 4,798 1,026 6,998 10,136	36,651 5,911 838 8,953 10,752	38,829 26,927 5,800 602 9,323 11,201	42,238 27,255 5,246 250 9,875 11,884	42,602 24,329 3,092 50 9,988 11,199	42,702 20,912 1,005 0 9,382 10,525
Nuclear Renewables Hydro Volar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	476 8,469 476 2 4 7,366 621 26.6%	709 9,488 648 104 245 7,609 881 26.0% 922	655 11,248 756 356 775 8,003 1,347 11 29.0% 2,966	436 14,547 864 1,152 2,129 8,128 2,245 29 34,4% 11,457	131 18,142 947 2,048 3,731 7,724 3,627 65 42.6% 20,036	0 21,790 1,030 2,466 5,817 7,315 5,037 126 50.9% 26,559

table 13.164: developing asia: final energy demand

tuble 19.104. develop	ing asi	a. 11110	ii chei	gy uc	mana	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	23,620 21,242 4,468 4,372 82 7 8 1 0 0.2%	26,799 24,119 5,100 4,866 132 66 36 7 0 1.4%	28,940 26,051 5,821 5,481 128 86 126 35 0 2.1%	32,619 29,353 7,004 6,378 137 130 357 157 1 4.1%	34,455 30,813 7,530 6,485 137 296 592 370 21 9.0%	35,804 31,785 8,016 6,442 45 576 894 657 60 15.9%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	7,234 1,374 222 240 0 2,356 1,137 1,345 0 782 0 782 0 13.9%	8,537 1,959 392 266 114 2,481 1,116 1,652 89 922 51 0 18.4%	9,142 2,159 607 390 252 2,267 1,094 1,821 191 1,056 165 0 24.8%	9,935 2,421 1,061 714 630 1,620 1,036 2,169 468 1,136 371 0 36.9%	1,111 673	10,574 2,846 2,093 1,285 1,255 382 2,684 1,275 911 1,036 0 62.1%
Other Sectors Electricity <i>RES electricity</i> District heat <i>RES district heat</i> Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	9,541 1,667 269 36 0 191 1,275 395 4 5,973 65.5%	10,482 2,105 421 173 1,480 607 125 5,919 28 62.1%	11,088 2,463 693 64 42 137 1,233 658 455 6,019 58 65.5%	12,415 3,417 1,498 111 98 74 994 762 1,081 5,823 152 69.7%	12,922 3,839 2,400 366 63 719 813 1,555 4,996 570 76.4%	13,195 4,074 2,996 729 711 49 375 868 2,103 3,926 1,072 81.9%
Total RES RES share	7,258 34.2%	8,153 33.8%	9,659 37.1%	12,606 42.9%	15,556 50.5%	18,652 58.7%
Non energy use Oil Gas Coal	2,378 1,823 534 21	2,680 2,054 602 24	2,889 2,215 649 26	3,266 2,503 733 29	3,643 2,792 818 32	4,019 3,081 902 36

developing asia: advanced energy [r]evolution scenario

table 13.165: developing asia: electricity generation

TWh/a	2007 934	2015 1,294	2020 1,451	2030	2040 2,454	2050 3,298
Power plants Coal Lignite Gas	159 94 358	288 83 515	301 52 534	1,881 136 22 486	2,404 5 4 403	3,270 0 50
Oil Diesel Nuclear	119 2 44	77 3 65	72 3 60	59 2 40	28 2 12	9 1 0
Biomass Hydro Wind	132 1	19 180 29	28 210 106	29 240 402	30 263 680	30 286 988
PV Geothermal Solar thermal power plants	0 17 0	29 2	22 40 16	143 148 122	309 291 310	746 359 598
Ocean energy Combined heat & power production	0	50	75	52 149	117 209	232 250
Coal Lignite Gas	34 4 3	33 5 5 2	40 3 11	48 2 44	31 0 92	5 0 136
Oil Biomass Geothermal	3 0 0	2 5 1	12 7	1 33 21	0 52 34	0 63 47
Hydrogen CHP by producer Main activity producers	0 7	0 9	0 10	0 11	0	0 15
Autoproducers Total generation	38 978	41 1,344	65 1,525	138 2,030	197 2,663	235 3,548
Fossil Coal Lignite	777 194 98	1,011 321 88	1,017 341 _55	800 184 24	565 36 4	199 4 0
Gas Oil Diesel	361 122 2	520 79 3	545 74 3	530 60 2	495 29 2	185 9 1
Nuclear Hydrogen Renewables	44 0 158	65 0 269	60 0 448	40 0 1,190	12 0 2,086	3,349
Hydro Wind PV Biomoco	132 1 0	180 29 4 24	210 106 22	240 402 143	263 680 309	286 988 746 93
Biomass Geothermal Solar thermal Ocean energy	8 17 0 0	24 30 2 0	40 47 16	62 169 122 52	82 325 310 117	406 598 232
Distribution losses Own consumption electricity	81 48	117 69	125 78	160 105	205 125	235 143
Electricity for hydrogen production Final energy consumption (electricity)	847	1,139	1,319	1,757	2,259	2,995
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.1%	33 2.5%	135 8.9%	597 29.4%	1,106 41.5%	1,966 55.4%
RES share 'Efficiency' savings (compared to Ref.)	16.1% 0	20.0% 22	29.4% 128	58.6% 581	78.3% 942	94.4% 1,274
table 13.166: developin	ng asi 2007	a: hea 2015	t supp 2020	2030	2040	2050
PJ/A District heating plants Fossil fuels	18 18	53 11	97 8	208	528	1,153
Biomass Solar collectors Geothermal	0 0 0	20 11 11	45 21 23	100 48 53	253 132 140	542 300 311
Heat from CHP Fossil fuels	259 259	264 224	366 249	686 363	948 435	1,107 462
Biomass Geothermal Fuel cell (hydrogen)	0 0 0	28 13 0	57 60 0	135 188 0	205 308 0	227 419 0
Direct heating ¹⁾ Fossil fuels Biomass	10,559 5,286 5,269	11,252 6,031 4,927	11,803 5,838 5,096	12,572 5,328	13,157 4,048 4,601	12,874 1,858
Biomass Solar collectors Geothermal	5,269 4 0	4,927 214 80	645 224	5,328 4,978 1,551 715	2,651 1,857	3,972 3,860 3,185
Total heat supply¹⁾ Fossil fuels Biomass	10,836 5,563 5,269	11,569 6,265	12,266 6,095 5,198	13,466 5,698	14,704 4,486	15,695 2,319 4,741 4,160
Solar collectors Geothermal Fuel cell (hydrogen)	0 0	4,975 225 104 0	667 307 0	5,213 1,599 956 0	5,059 2,783 2,304 71	4,160 3,915 561
RES share	48.7%	45.8%	50.3%	57.7%	69.4%	85.0%
(including RES electricity) Efficiency savings (compared to Ref.) 1) heat from electricity (direct and from electric h		454	680	1,597 model under	2,619	3,566
table 13.167: developin	ng asi	a: co2	emissi	ions		
MILL t/a Condensation power plants	2007 524 154	2015 650	2020 625 258	2030 404	2040 215	2050 28
Coal Lignite Gas	106 177 58	253 87 242	258 53 250 60	109 21 228 45	4 185 21	0 21
0il Diesel Combined heat & power production	29	65 3 40	43	45 2 59	61	6 1 60
Coal Lignite Gas Oil	31 8 3 4	29 6 3 3	32 3 6 2	35 20 20	21 0 40 0	3 0 57 0
CO2 emissions electricity & steam generation Coal	569 184	690 282	668 290	463 144	276	88 3
Lignite Gas Oil & diesel	114 180 91	93 244 70	250 57 256 65	23 248 49	225 225 23	0 78 7
CO2 emissions by sector % of 1990 emissions	1,488 216%	1,709 248%	1,667 242% 426	1,409 204%	973 141%	428
Industry Other sectors Transport	411 137 319	433 163 358	144 402	385 129 437	297 76 355	156 39 193
Electricity & steam generation District heating Population (Mill.)	536 85 1,011	661 95 1,131	634 62 1,203 1.4	409 48 1,333 1.1	218 27 1,439	31 7 1,516 0.3
CO2 emissions per capita (t/capita)	1.5	1.5	1.4	1.1	0.7	0.3

table 13.168: developin	ng asia	a: inst	alled	capac	ity	
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	229 26 15 92 40 2 6 1 44 0 0 3 0 0	327 43 12 138 39 2 8 2 60 15 3 4 1 0	371 44 138 37 2 6 4 71 355 13 6 5 2	549 20 3 138 28 2 5 4 81 130 79 22 20 16	743 1 119 16 1 2 5 89 213 172 43 49 33	1,055 0 33 6 1 0 4 96 291 414 54 54 92 64
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	10 7 1 2 0 0 0	13 8 1 2 1 0 0	17 8 1 3 2 2 1 0	31 9 0 11 6 4 0	44 6 0 21 0 10 7 0	53 1 0 31 0 12 9 0
CHP by producer Main activity producers Autoproducers	1 9	2 11	2 15	2 29	2 42	3 50
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	240 185 33 16 92 42 2 6 0 48 44 0 1 3 0 0 0	340 246 500 13 139 41 2 8 8 0 86 60 15 3 3 4 1 0	388 242 52 8 141 38 6 0 140 71 35 13 6 7 5 2	580 212 29 4 148 29 5 0 363 81 130 79 11 26 20 16	787 166 7 1 140 16 2 0 620 89 213 172 14 50 49 33	1,109 72 1 0 64 6 1 0 1,037 96 291 414 17 63 92 64
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0 0.1%	18 5.2%	50 13.0%	225 38.8%	418 53.0%	769 69.4%
RES share	20.2%	25.4%	36.0%	62.6%	78.7%	93.5 %

table 13.169: developing asia: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	31,903 22,958 4,798 1,026 6,998 10,136	36,596 26,408 5,812 838 9,025 10,733	38,666 26,708 5,607 510 9,436 11,155	41,536 24,177 3,551 205 9,554 10,867	42,228 18,986 1,044 33 8,817 9,092	40,639 10,789 217 0 4,368 6,204
Nuclear Renewables Hydro Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.	476 8,469 476 2 7,366 621 0 26.6%	709 9,479 648 104 245 7,601 881 26.0% 977	655 11,303 756 382 803 7,990 1,347 29,2% 3,129	436 16,923 864 1,447 2,553 8,030 3,841 187 40,7% 12,159	131 23,111 947 2,448 5,011 7,503 6,781 6,781 54.7% 20,411	0 29,851 1,030 3,557 8,998 6,826 8,605 8,605 73.4% 28,621

table 13.170: developing asia: final energy demand

tuble ipiirioi developi	ing upi			- 5 <i>j</i> 40 <i>i</i>		
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	23,620 21,242 4,468 4,372 82 7 8 1 0 0.2%	26,799 24,119 5,100 ^{4,866} ¹³² ⁶⁶ ³⁶ ⁷ 1.4%	28,940 26,051 5,821 5,481 128 86 126 37 0 2.1%	32,326 29,060 6,704 5,971 130 127 457 268 19 6.1%	33,773 30,130 6,830 4,832 271 1,417 1,110 188 22.4%	34,215 30,196 6,416 2,657 35 441 2,873 2,712 409 55.2%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	7,234 1,374 222 240 0 2,356 1,137 1,345 0 782 0 13.9%	8,537 1,959 392 266 113 2,481 1,108 1,659 922 51 0 18.4%	9,142 2,159 634 390 252 2,267 1,078 1,837 191 1,056 165 0 25.1%	9,940 2,430 1,425 766 667 1,563 765 2,350 470 1,143 452 0 41.8%	10,369 2,684 2,103 1,080 1,035 742 406 2,534 933 1,030 882 77 58.3%	10,579 2,943 2,778 1,486 1,457 152 93 1,447 1,482 920 1,466 590 81.9%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	9,541 1,667 269 36 0 191 1,275 395 4 5,973 0 65.5%	10,482 2,105 421 19 173 1,469 623 125 5,915 5,915 28 62.1%	11,088 2,463 723 64 42 137 1,205 692 454 6,015 58 65.8%	12,417 3,440 2,016 111 97 394 690 681 1,081 5,821 5,821 5,821 99 74.2%	12,932 3,927 3,076 367 0 588 519 1,718 5,019 5,019 5,019 84.7%	13,201 4,178 3,943 732 718 0 213 368 2,378 2,378 3,944 1,388 93.7%
Total RES RES share	7,258 34.2%	8,148 33.8%	9,714 37.3%	13,778 47.4%	18,530 61.5%	24,570 81.4%
Non energy use Oil Gas Coal	2,378 1,823 534 21	2,680 2,054 602 24	2,889 2,215 649 26	3,266 2,503 733 29	3,643 2,792 818 32	4,019 3,081 902 36

developing asia: total new investment by technology

table 13.71: developing asia: total investment

MILLION \$ 2005-2010 2011-2020 2021-2030 2005-2030

Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	73,623 65,080 3,244 45,042 501 1,023 15,271 0 0	123,768 135,730 9,307 88,047 3,528 5,831 29,017 0 0	182,538 143,146 17,201 71,231 12,912 16,098 25,704 0 0	379,929 343,957 29,752 204,320 16,940 22,953 69,992 0 0
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	73,623 65,080 3,244 45,042 501 1,023 15,271 0 0	89,036 229,087 14,139 73,684 40,024 24,702 54,251 18,973 3,313	63,293 288,353 21,542 49,863 72,979 65,710 56,350 18,234 3,674	225,952 582,521 38,925 168,590 113,504 91,436 125,872 37,207 6,987
Advanced Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	73,623 65,080 3,244 45,042 501 1,023 15,271 0 0	87,518 248,196 14,141 73,684 42,680 28,355 54,251 27,452 7,633	39,358 524,250 18,190 49,863 97,924 91,391 162,781 70,009 34,090	200,499 837,526 35,574 168,590 141,105 120,769 232,303 97,461 41,723

notes

china: reference scenario

table 13.172: china: electricity generation

$\begin{array}{c c} Geothermal power plants & 0 & 0 & 0 & 1 & 2 & 4 \\ Ocean energy & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline Combined heat & power production & 88 & 256 & 328 & 492 & 657 & 822 \\ Goal & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ Gas & 4 & 51 & 82 & 166 & 244 & 308 \\ Iignite & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	table 19.172. cillia. ele		ity gei	leratio	JII		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TWh/a	2007	2015	2020	2030	2040	2050
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Şolar thermal power plants	2,576 0 63 34 0 62 2 485 9 0 0 0	4,180 0 74 44 0 227 4 734 98 5 0 0	4,875 0 86 41 0 322 7 848 168 168 16 0 1	6,352 99 32 0 487 59 1,046 225 50 1 2	7,478 0 118 23 0 652 110 1,244 282 84 2 3	8,329 0 151 14 0 817 149 1,442 339 118 4 4
Main activity producers 0 35 56 117 179 241 Autoproducers 88 221 272 375 478 581 Total generation 3,319 5.622 6.692 8.847 10.653 12,188 Fossil 2,659 4,548 5,316 6,627 7,798 8,698 0	Coal Lignite Gas Oil Biomass Geothermal Hydrogen	84 0 4 0 0 0	200 0 51 0 5 1	232 0 82 0 12 2	274 0 166 0 50	320 0 244 0 89 4	369 0 308 0 140 4
Coal 2,659 4,379 5,107 6,627 7,798 8,698 Lignite 0	Main activity producers		35 221	56 272	117 375		
Own consumption electricity 397 594 702 887 1,072 1,258 Electricity for hydrogen production 0	Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal	2,659 0 67 34 0 62 0 496 485 9 0 2 0 0	4,548 4,379 0 125 44 0 227 734 98 5 98 5 98 1 0	5,316 5,107 168 41 0 322 0 1,054 848 168 16 19 2 1	6,924 6,627 265 32 0 487 1,046 1,046 225 50 109 4 2	8,183 7,798 0 362 23 0 652 0 1,818 1,244 282 84 199 6 3	9,171 8,698 459 14 0 817 2,200 1,442 339 118 289 8 4
Share of fluctuating RES 0.3% 1.8% 2.7% 3.1% 3.4% 3.7%	Own consumption electricity Electricity for hydrogen production	397 0	594 0	702	887 0	1,072	1,258 1,258 10,268
RES share 15.0% 15.1% 15.8% 16.2% 17.1% 18.1%	Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES					366 3.4%	
	RES share	15.0%	15.1%	15.8%	16.2%	17.1%	18.1%

table 13.173: china: heat supply

Direct heating ¹⁾ Fossil fuels Biomass	24,350 17,817 6 351	29,791 22,980 6 555	31,226 24,610 6 244	34,186 27,842 5,661	36,716 30,722 4 997	38,054 32,476 4 263
Biomass Solar collectors Geothermal	6,351 182 0	6,555 256 0	6,244 373 0	5,661 684 0	4,997 997 0	4,263 1,315 0
Total heat supply ¹⁾	27,629	33,980	35,689	0 39,021	0 41,971	43,697
Fossil fuels Biomass	21,081 6,366	27,049 6,667	28,828 6,473	32,138 6,176	35,273 5,669	37,224 5,118
	0,000	2,007	373	684	997	1,315
Solar collectors	182	256				
Solar collectors Geothermal Fuel cell ((hydrogen)	182 0 0	256 7 0	15 0	23 0	32 0	40

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.174: china: co2 emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Oil Diesel	2,734 2,675 0 38 21 0	4,362 4,297 0 35 31 0	5,048 4,977 40 30 0	6,141 6,077 0 42 22 0	6,106 6,047 0 44 16 0	5,866 5,809 0 48 9 0
Combined heat & power production	136	277	295	306	334	368
Coal	132	240	242	224	227	244
Lignite	0	0	0	0	0	0
Gas	4	37	52	83	107	124
Oil	0	0	0	0	0	0
CO ₂ emissions electricity & steam generation Coal Lignite Gas Oil & diesel	2,870 2,807 0 42 21	4,639 4,537 0 71 31	5,342 5,220 93 30	6,447 6,301 0 124 22	6,441 6,274 0 151 16	6,234 6,053 0 172 9
CO ₂ emissions by sector	5,852	8,449	9,449	11,409	12,095	12,460
% of 1990 emissions	261%	377%	421%	508%	539%	555%
Industry	1,523	2,019	2,060	2,147	2,227	2,215
Other sectors	541	697	757	841	922	998
Transport	413	683	846	1,394	1,849	2,301
Electricity & steam generation	2,734	4,405	5,106	6,233	6,216	5,991
District heating	641	645	680	793	882	955
Population (Mill.)	1,336	1,403	1,439	^{1,471}	1,464	1,426
CO2 emissions per capita (t/capita)	4.4	6.0	6.6	7.8	8.3	8.7

table 13.175: china: installed capacity

taste 19.179. entina. ma	Junio	u capa	-			
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	686 482 0 24 20 0 8 1 145 6 0 0 0 0	1,132 774 0 41 21 0 28 1 220 44 3 0 0 0	1,348 903 0 46 19 0 40 1 255 74 9 0 0 0	1,762 1,187 0 50 16 0 60 11 316 95 26 0 0 0	2,069 1,398 0 50 12 0 80 21 355 107 44 0 0 0 0	2,309 1,557 0 56 7 0 101 29 379 117 62 1 1
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	22 21 0 1 0 0 0 0	73 54 0 18 0 1 0 0	97 64 0 31 0 2 0 0	153 77 0 68 0 7 0 0	197 91 0 92 0 13 1 0	228 106 0 101 0 20 1 0
CHP by producer Main activity producers Autoproducers	0 22	17 56	28 69	60 94	85 112	100 129
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	708 548 503 0 25 20 0 8 0 152 145 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,205 908 828 0 59 21 0 28 280 269 220 44 3 220 44 4 3 0 0 0	1,444 1,063 966 0 78 19 0 40 342 255 74 9 3 0 0 0 0	1,916 1,398 1,265 0 118 16 0 60 457 316 95 26 19 1 0 0	2,266 1,643 1,489 0 142 12 0 80 543 355 107 44 34 1 0 0	2,537 1,827 1,663 0 156 7 0 101 0 60 379 117 62 49 1 1 0 0
Fluctuating RES (PV, Wind, Ocean)	6	47	83	121	151	179
Share of fluctuating RES	0.8%	3.9%	5.7%	6.3%	6.7%	7.1%
RES share	21.5%	22.3%	23.6%	23.9%	23.9%	24.0%

table 13.176: china: primary energy demand

	-	•	-				
PJ/A		2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil		83,922 73,016 55,333 0 2,716 14,966	117,168 103,141 77,483 0 4,983 20,675	130,483 114,673 84,900 6,155 23,618	158,146 138,311 97,048 0 8,456 32,807	172,864 149,423 97,745 0 10,916 40,762	183,886 157,109 95,527 0 12,953 48,629
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share		678 10,228 1,747 32 182 8,267 0 12.2%	2,476 11,550 2,642 353 274 8,247 33 0 9.8%	3,513 12,297 3,053 605 434 8,148 58 0 9.4%	5,313 14,523 3,766 810 871 8,960 116 0 9.2%	7,113 16,328 4,478 1,015 1,310 9,358 166 0 9,4%	8,913 17,864 5,191 1,220 1,754 9,481 217 0 9,7%

table 13.177: china: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	53,694 49,186 5,882 5,734 3 46 99 15 0 1.0%	73,865 67,250 9,965 9,408 102 201 254 38 0 2.4%	81,498 74,380 12,351 11,622 152 289 288 45 0 2.7%	100,196 92,157 20,389 19,212 196 528 453 74 0 2.9%	115,970 107,010 27,130 25,479 260 779 611 104 0 3.3%	129,442 119,561 33,871 31,714 323 1,064 770 139 1 3.6%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	25,008 6,738 1,008 2,551 15 10,524 1,691 3,505 0 0 0 0 4.1%	35,379 11,933 1,798 3,125 90 14,399 2,015 3,820 3 84 0 0 5.6%	38,390 14,068 2,216 3,253 167 14,788 2,033 4,075 7 168 0 0 6.7%	45,439 18,421 2,990 3,498 316 15,812 2,144 4,625 14 925 0 0 9.3%	50,889 21,520 3,672 3,816 379 16,564 2,219 5,092 22 1,656 0 0 11.3%	54,023 23,634 4,266 4,092 443 16,523 2,189 5,298 27 2,260 0 13.0%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors Total RES	18,295 2,946 441 697 4 2,634 2,830 863 182 8,143 0 47.9%	21,906 4,815 725 1,023 29 3,067 4,342 253 7,632 39.4%	23,639 5,903 930 1,167 60 3,049 4,286 1,765 366 7,104 0 35.8%	26,329 8,122 1,318 1,290 117 2,794 5,086 2,733 669 5,635 0 29.4% 12,586	28,992 10,341 1,765 1,388 2,537 5,886 3,701 975 4,164 0 24.3% 13,654	31,667 12,560 2,267 1,496 162 2,273 6,688 4,670 1,287 2,693 0 20.2% 14,609
RES share	9,853 20.0%	10,854 16.1%	11,351 15.3%	13.7%	13,654	12.2%
Non energy use Qil Gas Coal	4,509 3,104 359 1,045	6,615 4,555 527 1,534	7,118 4,900 567 1,650	8,039 5,535 640 1,864	8,960 6,169 713 2,078	9,881 6,803 787 2,291

china: energy [r]evolution scenario

table 13.178: china: electricity generation

	2007	2015 2015	2020	2030	2040	2050			
TWh/a Power plants	3.231	5,079	5,758	6,505	6,823 2,598	7,249			
Coal Lignite	2,576	3,912 0	4,067 0	3,651 0	0	1,660 0			
Gas Oil	63 34	74 50	96 45	151 25	195 10	220 0			
Diesel Nuclear	0 62	0 105	0 250	0 187	0 146	0			
Biomass Hydro	485	18 752	28 850	58 1,050	93 1,290	127 1,510			
Wind PV Conthermal	9	155 5 0	370 22	954 195	1,357 420 29	1,568 820 58			
Geothermal Solar thermal power plants Ocean energy	0 0 0	0 8 0	1 28 1	12 220 2	620 65	1,025 260			
Combined heat & power production		299	484	975	1,529	1,990			
Coal Lignite	84 0	190 0	275	485 0	- <u>660</u>	764			
Gas Oil	4	81 0	139 0	310	490 0	616			
Biomass Geothermal	0 0	27 1	67 3	172 8	347 33	503 107			
Hydrogen CHP by producer	0	0	0	0	0	0			
Main activity producers Autoproducers	0 88	64 236	184 300	535 440	934 595	1,223 767			
Total generation Fossil	3,319 2,760	5,378 4,307	6,242 4,622	7,480 4,622	8,352 3,952	9,238 3,261			
Coal Lignite	2,659	4,102	4,342	4,136	3,257	2,425			
Gas Oil	67 34	155 50	235 45	461 25	685 10	836 0			
Diesel Nuclear	0 62	0 105	0 250	0 187	0 146	0			
Hydrogen Renewables	496	966	1,370	2,671	4,254 1,290	5,978 1,510			
Hydro Wind	485 9	752 155	850 370	1,050 954	1,357	1,568			
PV Biomass Goothermal	020	5 45	22 95 4	195 230	420 440	630			
Geothermal Solar thermal Ocean energy	0 0 0	1 8 0	28 1	20 220 2	62 620 65	165 1,025 260			
Distribution losses	201	301	356	450	472	492			
Own consumption electricity Electricity for hydrogen production	397 0	594 0	702	887 16	958 39	998			
Final energy consumption (electricity) Fluctuating RES (PV, Wind, Ocean)	2,717 9	4,479 160	5,176 393	6,127	6,895	7,693			
Share of fluctuating RES	0.3%	3.0%	6.3%	15.4%	22.1%	28.7%			
RES share 'Efficiency' savings (compared to Ref.)	15.0% 0	18.0% 266	21.9% 572	35.7% 1,696	50.9% 2,663	64.7% 3,562			
table 13.179: china: heat supply									
PJ/A	2007	2015	2020	2030	2040	2050			
District heating plants Fossil fuels	2,576 2,561	2,695 2,566	2,540 2,248	1,956 1,393	1,342 666	675 13			
Biomass Solar collectors Geothermal	15 0 0	108 19 3	152 114 25	196 196 172	148 215 313	88 236 337			
Heat from CHP	704	1,806	2,653	4,317	5,772	7,131			
Fossil fuels Biomass Conthermol	704 0 0	1,628 167 11	2,263 365 25	3,539 709 70	4,287 1,191 293	4,556 1,613 962			
Geothermal Fuel cell (hydrogen)	0	0	0	0	275	0			
Direct heating ¹⁾ Fossil fuels	24,350 17,817	28,303 20,980	29,211 21,232	28,248 18,413	26,089 12,755	23,113 6,175			
Biomass Solar collectors	17,817 6,351 182	6,886 386	7,085 719	1,995	6,960 4 426	6,050 6,912 3,976			
Geothermal	0	52	175	415	1,949				
Total heat supply ¹⁾ Fossil fuels	27,629 21,081	32,805 25,174	34,404 25,743	34,522 23,345 8,330 2,190	33,203 17,708 8,299 4,641	30,919 10,744			
Biomass Solar collectors	6,366 182	7,161	7,602 833 225	2,190	8,299 4,641	7,751 7,148			
Geothermal Fuel cell (hydrogen)	0 0	65 0	225	656 0	2,555 0	5,276			
RES share (including RES electricity) 'Efficiency' savings (compared to Ref.)	23.7%	23%	25%	32%	47%	65%			
*Efficiency' savings (compared to Ref.) 1) heat from electricity (direct and from electric h		1,175	1,285	4,499	8,768	12,778			
table 13.180: china: co2			unune	unuer	erceane appli				
MILL t/a	2007	2015	2020	2030	2040	2050			
Condensation power plants	2,734	4,091	4,230	3,075	1,917	1,099			
Coal Lignite	2,675	4,022	4,152 0.0	2,994 0.0	1,838	1,029			
Gas Oil Diesel	38 21 0	35 34.7 0.0	45 33.0 0.0	63 17.3 0.0	73 6.8	69 0.0			
Diesel Combined heat & power production		292	399	604	0.0 722	0.0 766			
Coal Lignite	132 0	233 0	307 0	436 0	495 0	511 0			
Gas Oil	4 0	59 0	93 0	168 0	227 0	255 0			
CO2 emissions electricity & steam generation	2,870	4,383	4,630	3,678	2,640	1,864			
Coal Lignite	2,807	4,255	4,459	3,430 0	2,333	1,540			
Gas Oil & diesel	42 21	94 35	138 33	231 17	300 7	324 0			
CO2 emissions by sector	5,852	7,830 349%	8,033 358%	6,557 292%	4,779	3,209			
% of 1990 emissions Industry Other sectors	261% 1,523 541	1,853	1,848	1,571	213% 1,095	143% 553			
Other sectors Transport Electricity & steam generation	541 413 2,734	603 593	570 645	475 705	319 774	184 818			
Electricity & steam generation									
District heating	641	4,168 613	4,421 549	3,474 333	2,411 179	1,598 58			

1,336 **4.4**

1,403 **5.6**

Population (Mill.) CO2 emissions per capita (t/capita)

1,439 **5.6**

1,471 **4.5**

1,464 **3.3**

1,426 **2.3**

table 13.181: china: installed capacity

RES share	21.5%	25.9%	31.2%	44.6%	54.8%	65.4%
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	6 0.8%	73 6.1%	175 11.9%	506 25.1%	756 31.9%	1,047 39.8%
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	708 548 503 0 25 20 0 8 0 152 145 6 0 1 0 0 0 0	1,198 875 780 0 71 24 0 13 0 310 225 70 3 9 9 0 3 0	1,465 977 841 0 115 21 0 31 456 2566 163 11 166 11 9 0	2,017 1,095 846 0 236 13 0 230 8 99 317 403 103 36 337 1	2,370 1,052 733 0 315 5 0 18 0 1,300 369 516 221 67 10 98 19	2,629 909 596 0 313 0 0 0 0 1,721 397 541 432 96 25 155 74
CHP by producer Main activity producers Autoproducers	0 22	32 59	91 72	249 102	383 128	424 159
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	22 21 0 1 0 0 0 0	90 55 30 5 0 0	162 88 0 63 0 10 10	350 163 0 161 0 25 1 0	511 224 0 233 0 49 5 0	584 250 246 0 72 16
GW Power plants Coal, Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	2007 686 482 0 24 20 0 8 1 145 6 0 0 0 0 0	2015 1,108 724 0 41 244 0 13 4 2255 70 30 0 3 0 0	2020 1,302 753 0 52 211 0 31 6 256 163 111 0 9 0	2030 1,667 682 0 75 13 0 23 11 317 403 103 2 37 1	2040 1,859 509 0 81 55 0 18 18 369 516 221 5 98 19	2050 2,046 346 0 67 0 0 24 397 541 432 10 155 74
	0007	0015	0000	0000	0040	0050

table 13.182: china: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	83,922 73,016 55,333 0 2,716 14,966	109,735 95,652 70,581 6,075 18,996	116,798 98,333 71,158 7,317 19,858	110,674 84,490 56,068 0 8,899 19,523	104,584 67,780 38,309 10,500 18,971	100,191 52,735 23,173 0 10,580 18,981
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	678 10,228 1,747 32 182 8,267 0 12.2%	1,145 12,937 2,707 558 451 9,131 90 0 11.8% 7,455	2,727 15,738 3,060 1,332 1,011 10,025 306 4 13.5% 13,692	2,040 24,144 3,780 3,434 3,684 1,130 1,130 7 21.8% 47,423	1,593 35,211 4,644 4,885 8,385 13,351 3,712 234 33,7% 68,139	0 47,457 5,436 5,645 13,790 13,848 7,802 936 47.4% 83,472

table 13.183: china: final energy demand

table 19.109. cillia. Il	iai en	ergy u	eman	u		
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	53,694 49,186 5,882 5,734 3 46 99 15 0 1.0%	70,170 63,555 8,775 8,224 12 206 333 60 0 3.0%	75,259 68,141 9,992 8,952 16 300 721 158 3 4.6%	79,821 71,782 12,054 9,775 20 600 1,618 578 41 9,9%	81,940 72,980 14,270 10,737 25 857 2,547 1,297 1,297 104 15.5%	82,799 72,918 17,096 11,343 27 1,205 4,320 2,796 202 24.2%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	25,008 6,738 1,008 2,551 10,524 1,691 3,505 0 0 0 0 4.1%	33,512 10,974 1,972 3,367 149 12,846 1,950 4,062 71 221 21 0 7.3%	35,561 12,279 2,694 3,647 343 12,942 1,959 4,180 148 302 105 0 10.1%	3,935 547 1,113 233 0	34,718 14,406 7,337 4,282 1,202 6,505 774 4,017 2,049 1,646 1,039 0 38.2%	31,864 14,145 9,153 4,569 1,906 1,195 193 3,541 3,639 2,497 2,085 0 60.5%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	18,295 2,946 441 697 2,634 2,830 863 182 8,143 47.9%	21,268 4,815 865 1,091 48 2,414 3,333 1,378 315 7,893 28 43.0%	22,588 5,633 1,236 1,497 141 2,038 3,293 1,537 570 7,958 62 44.1%	23,661 6,716 2,398 2,118 1,856 2,296 1,587 1,447 7,486 155 50.2%	778	23,957 9,228 5,971 3,175 1,325 479 398 1,285 3,273 4,514 1,604 69.7%
Total RES RES share	9,853 20.0%	11,848 18.6%	14,017 20.6%	20,591 28.7%	29,872 40.9%	40,098 55.0%
Non energy use Qil Gas Coal	4,509 3,104 359 1,045	6,615 4,555 527 1,534	7,118 4,900 567 1,650	8,039 5,535 640 1,864	8,960 6,169 713 2,078	9,881 6,803 787 2,291

china: advanced energy [r]evolution scenario

table 13.184: china: electricity generation

table 13.184: china: ele					0040	0050
TWh/a Power plants Coal Lignite	2007 3,231 2,576	2015 5,079 3,914 0	2020 5,779 3,942 0	2030 6,520 2,897 0	2040 7,374 1,326	2050 8,510 43 0
Gas Oil Diesel Nuclear Biomass	63 34 0 62 2	74 50 0 105 _18	106 45 0 250 28	155 25 0 187 63	143 10 0 146 94	50 0 0 127
Hydro Wind PV Geothermal Solar thermal power plants	485 9 0 0 0	752 155 0 6 0	850 445 42 3 65 2	1,050 1,215 295 96 502 35	1,290 1,713 1,114 313 1,115 110	1,510 2,039 1,525 697 1,858
Ocean energy Combined heat & power production Coal Lignite	88 84 0	299 190 0	484 275 0	975 365 0	1,329 314 0	1,680 272 0
Gas Oil Biomass Geothermal Hydrogen	4 0 0 0	81 0 27 1 0	139 0 67 3 0	401 0 172 37 0	558 0 362 95 0	693 0 505 211 0
Hydrogen CHP by producer Main activity producers Autoproducers	0 88	64 236	184 300	535 440	734 595	913 767
Total generation Fossil Coal Lignite	3,319 2,760 2,659 0	5,378 4,309 4,104	6,263 4,508 4,218 0	7,495 3,843 3,262	8,703 2,351 1,640	10,190 1,058 315 0
Gas Oil Diesel Nuclear Hydrogen	67 34 0 62	155 50 0 105	245 45 0 250	556 25 0 187	701 10 0 146	743 0 0 0
Renewables Hydro Wind PV Biomass	496 485 9 0 2	964 752 155 5 45	1,505 850 445 42 95	3,465 1,050 1,215 295 235	6,206 1,290 1,713 1,114 456	9,132 1,510 2,039 1,525 632
Geothermal Solar thermal Ocean energy	0 0 0	1 6 0	6 65 2 356	133 502 35 395	408 1,115 110 430	908 1,858 660 459
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	201 397 2,717	301 594 4,479	702 5,197	790 790 6,284	810 56 7,419	459 820 154 8,748
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	9 0.3%	160 3.0%	489 7.8%	1,545 20.6%	2,937 33.7%	4,224 41.5%
RES share 'Efficiency' savings (compared to Ref.)		17.9% 266	24.0% 572	46.2% 1,694	71.3% 2,642	89.6% 3,500
table 13.185: china: he	at suj 2007	2015	2020	2030	2040	2050
PJ/A District heating plants Fossil fuels Biomass Solar collectors Geothermal	2,576 2,561 15 0	2,695 2,566 108 19 3	2,540 2,248 152 114 25	1,467 1,044 147 147 129	2,131 1,037 234 362 497	2,116 42 275 741 1,058
Heat from CHP Fossil fuels Biomass Geothermal Fuel cell (hydrogen)	704 704 0 0 0	1,806 1,628 167 11 0	2,653 2,263 365 25 0	4,436 3,398 709 329 0	5,270 3,183 1,236 851 0	6,653 3,138 1,618 1,896 0
Direct heating ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	24,350 17,817 6,351 182 0	28,303 20,980 6,886 386 52	29,211 21,228 7,085 719 179	28,620 18,713 7,268 2,167 472	25,736 8,745 7,585 6,154 3,251	21,475 811 6,616 8,708 5,340
Total heat supply ¹⁾ Fossil fuels Biomass Solar collectors Geothermal	27,629 21,081 6,366 182 0 0	32,805 25,174 7,161 405 65 0	34,404 25,739 7,603 833 229 0	34,522 23,156 8,123 2,313 930 0	33,203 12,965 9,055 6,517 4,600	30,919 3,992 8,510 9,449 8,294 675
Fuel cell (hydrogen) RES share (including RES electricity) 'Efficiency' savings (compared to Ref.)	23.7%	23.3% 1,175	25.2% 1,285	32.9% 4,499	66 60.9% 8,768	86.9% 12,778
1) heat from electricity (direct and from electric h table 13.186: china: coa			covered in the	model under	`electric appli	ances'
MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants Coal Lignite Gas Qil	2,734 2,675 0 38 21	4,093 4,024 0.0 35 34.7	4,108 4,025 0.0 50 33.0	2,458 2,376 0.0 65 17.3	998 938 0.0 53 6.8	43 27 0.0 16 0.0
Diesel Combined heat & power production Coal Lignite Gas	132 0 4	0.0 292 233 0 59	0.0 399 307 0 93	0.0 542 318 0 223	0.0 485 224 0 261	0.0 465 177 287
Oil CO2 emissions electricity & steam generation Coal Lignite	0 2,870 2,807	4,385 4,257	4,507 4,332	0 3,000 2,694	0 1,483 1,162	0 507 204
Gas Oil & diesel	42 21	94 35	142 33	288 17	314 7	303 0
CO2 emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating Population (Mill.)	5,852 261% 1,523 541 413 2,734 641 1,336	7,813 348% 1,853 602 593 4,170 595 1,403	7,875 351% 1,848 569 640 4,299 520 1,439	5,744 256% 1,642 452 620 2,796 234 1,471	2,948 131% 809 225 499 1,260 154 1,464	925 41% 274 61 311 257 21 1,426
CO ² emissions per capita (t/capita)	4.4	5.6	^{1,439} 5.5	^{1,4/1} 3.9	^{1,464} 2.0	0.6

GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	686 482 0 24 20 0 8 1 145 6 0 0 0 0	1,107 725 0 41 24 0 13 4 225 70 3 0 2 0	1,341 730 57 21 0 31 6 256 196 22 0 21	1,762 542 0 77 13 0 23 12 317 513 155 16 84 10	2,223 260 0 60 5 0 18 14 369 651 586 52 177 31	2,548 12 0 30 0 0 18 397 703 803 115 282 189
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	22 21 0 1 0 0 0 0	90 55 0 30 5 0 0	162 88 0 63 0 10 10 1 0	373 117 0 226 0 25 6 0	433 92 0 276 0 51 14 0	467 81 0 282 0 72 32 0
CHP by producer Main activity producers Autoproducers	0 22	32 59	91 72	271 102	305 128	309 158
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind P V Biomass Geothermal Solar thermal Ocean energy	708 548 503 25 20 0 8 152 145 6 0 1 0 0 0	1,197 875 780 0 711 244 0 133 0 309 2255 700 3 9 0 2 0	1,503 960 818 0 120 0 31 0 513 2566 196 22 16 1 21 1	2,134 974 658 0 303 13 0 23 0 1,138 317 513 155 37 21 84 10	2,656 692 352 0 335 5 0 1,946 369 651 586 666 666 177 31	3,015 405 94 0 311 0 0 0 2,610 397 703 803 900 147 282 189
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	6 0.8%	73 6.1%	219 14.6%	678 31.8%	1,269 47.8%	1,694 56.2%
RES share	21.5%	25.8%	34.1%	53.3%	73.3%	86.6%

table 13.188: china: primary energy demand

table 13.187: china: installed capacity

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	83,922 73,016 55,333 0 2,716 14,966	108,851 94,771 68,488 0 7,331 18,952	115,083 96,058 67,216 0 9,160 19,683	107,859 76,267 46,211 0 11,949 18,107	104,763 47,821 20,753 0 12,190 14,878	107,104 24,601 5,027 0 8,061 11,513
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	678 10,228 1,747 32 182 8,267 0 12.2%	1,145 12,934 2,707 558 444 9,131 93 0 11.9% 8,340	2,727 16,297 3,060 1,602 1,218 10,033 377 7 14.1% 15,407	2,040 29,551 3,780 4,374 5,183 11,681 4,408 126 27.4% 50,239	1,593 55,349 4,644 6,167 14,541 14,401 15,200 3 96 52.8% 67,960	0 82,502 5,436 7,340 21,623 14,763 30,960 2,376 77.0% 76,664

table 13.189: china: final energy demand

table 15.169: china: II	nai en	ergy a	eman	a		
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	53,694 49,186 5,882 5,734 3 46 99 15 0 1.0%	70,170 63,555 8,775 8,225 11 206 333 60 0 3.0%	75,259 68,141 9,992 8,874 15 305 795 191 4 5.0%	79,214 71,175 11,454 8,598 16 595 2,178 1,007 66 14.3%	79,866 70,906 12,170 6,922 15 823 4,263 3,040 147 32.6%	78,514 68,633 12,796 4,302 14 1,113 6,951 6,230 416 60.3%
Industry Electricity RES electricity District heat RES district heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	25,008 6,738 1,008 2,551 15 10,524 1,691 3,505 0 0 0 0 4,1%	33,512 10,974 1,968 3,367 149 12,847 1,942 4,069 71 221 0 7.3%	12,938 1,942 4,197 148 302 107 0	36,062 13,729 6,347 3,731 830 11,813 1,344 3,950 545 665 284 0 24.0%	34,750 14,480 10,326 4,565 2,045 3,848 756 3,516 3,494 1,894 2,126 71 57.4%	31,920 14,301 12,816 5,259 3,773 72 160 775 4,907 2,706 3,029 710 87.3%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	18,295 2,946 441 697 4 2,634 2,830 863 182 8,143 0 47.9%	21,268 4,815 863 1,091 48 2,414 3,298 1,413 315 7,893 28 43.0%	22,588 5,633 1,354 1,497 141 2,038 3,216 1,614 570 7,958 62 44.6%	23,659 6,716 3,105 2,119 472 1,822 2,145 1,427 1,621 7,654 155 55.0%	23,987 7,869 5,611 2,774 1,243 824 749 959 2,660 7,210 941 73.6%	23,917 9,294 8,329 3,440 2,468 0 153 214 3,801 1,802 1,802 9 0.4%
Total RES RES share	9,853 20.0%	11,843 18.6%	14,433 21.2%	23,311 32.8%	41,568 58.6%	57,195 83.3%
Non energy use Oil Gas Coal	4,509 3,104 359 1,045	6,615 4,555 527 1,534	7,118 4,900 567 1,650	8,039 5,535 640 1,864	8,960 6,169 713 2,078	9,881 6,803 787 2,291

4

13

china: total new investment by technology

table 13.190: china: tot MILLION \$			2021-2030	2005-2030
Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	443,185 221,228 1,695 180,411 33,653 4,387 1,081 0 0	651,642 381,480 7,463 291,724 60,833 16,536 3,228 1,696 0	594,423 360,425 42,522 244,298 44,483 25,698 3,374 50 0	1,689,250 963,133 51,680 716,433 138,970 46,621 7,684 1,745 0
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	443,185 221,228 1,695 180,411 33,653 4,387 1,081 0 0 0	528,449 594,053 53,136 293,003 168,390 22,708 6,706 49,185 926	294,099 855,428 61,806 246,134 271,694 125,820 21,758 127,515 700	1,265,733 1,670,709 116,638 719,548 473,737 152,915 29,545 176,700 1,626
Advanced Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass	443,185 221,228 1.695	505,186 720,949 53,136	236,795 1,323,677 64,107	1,185,167 2,265,854 118,939

Reliewables	221,220	120,747	1,222,077	2,203,034
Biomass	1,695	53,136	64,107	118,939
Hydro	180,411	293,003	246,134	719,548
Wind	33,653	205,998	351,521	591,172
PV	4,387	45,714	182,747	232,847
Geothermal	1,081	9,745	166,756	177,582
Solar thermal power plants	, 0	111,502	289,316	400,819
Ocean energy	0	1,852	23,096	24,948

notes

oecd pacific: reference scenario

table 13.191: oecd pacific: electricity generation

TWh/a	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	1,798 492 128 440 174 5 407 24 116 7 0 6 0 0	1,960 588 130 428 76 5 540 30 131 17 2 9 4 1	2,056 601 130 457 47 5 595 34 134 28 5 10 9 1	2,244 610 130 460 42 5 706 42 141 62 10 12 23 1	2,406 632 131 463 39 4 787 50 148 86 20 13 32 1	2,547 631 133 466 36 868 58 155 110 30 155 110 30 41
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen CHP by producer	53 35 38 5 2 0	61 4 5 41 7 3 0 0	65 5 45 7 4 1 0	71 6 2 49 8 5 1 0	75 6 0 53 8 6 2 0	79 6 0 57 8 7 2 0
Main activity producers Autoproducers	22 31	25 36	26 39	27 44	28 47	29 50
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	1,851 1,289 133 478 179 5 407 155 116 7 0 26 7 0 0	2,021 1,284 592 135 469 83 5 540 197 131 17 2 333 9 4 1	2,121 1,300 606 133 502 54 5 595 0 226 134 28 38 134 28 38 11 9 1	2,315 1,312 616 132 509 50 706 297 141 62 10 47 13 23 1	2,481 1,336 638 131 516 47 787 0 358 148 86 20 56 15 32 1	2,626 1,339 636 133 523 44 868 68 155 110 80 65 17 41
Distribution losses Own consumption electricity Electricity for hydrogen production Final energy consumption (electricity)	87 110 1,654	92 117 1,812	97 124 1,900	102 130 2,082	107 137 2,237	113 143 2,370
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	7 0.4%	20 1.0%	34 1.6%	73 3.2%	107 4.3%	141 5.4%
RES share	8.4%	9.7%	10.7%	12.8%	14.4%	16.0%

table 13.192: oecd pacific: heat supply

293 250 21 22 0 7,926 6,213 1,134 206	267 17 15 0 7,647 6,286 905		11 6 0 7,120 6,417	7 4 0 7,073 6,495 441	7,215 6,836 330	Biomass Geothermal Fuel cell (hydrogen) Direct heating ³⁾ Fossil fuels Biomass
250 21 22 0 7,926 6,213	267 17 15 0 7,647 6,286	11 14 6 8 0 0 7,120 7,397 5,417 6,343	11 6 0 7,120 6,417	7 4 0 7,073 6,495	4 1 0 7,215 6,836	Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁾ Fossil fuels
250 21 22 0 7,926	267 17 15 0 7,647	11 14 6 8 0 0 7,120 7,397	11 6 0 7,120	7 4 0 7,073	4 1 0 7,215	Biomass Geothermal Fuel cell (hydrogen) Direct heating ¹⁾
250 21 22 0	267 17 15 0	$\begin{array}{cccc} 11 & 14 \\ 6 & 8 \\ 0 & 0 \end{array}$	11 6 0	7 4 0	4 1 0	Biomass Geothermal Fuel cell (hydrogen)
250 21 22 0	267 17 15 0	$\begin{array}{cccc} 11 & 14 \\ 6 & 8 \\ 0 & 0 \end{array}$	11 6 0	7 4 0	4 1 0	Biomass Geothermal
250 21 22	267 17 15		11 6	7 4	4 1	Biomass Geothermal
250 21 22	267 17 15		11 6	7 4	4 1	Biomass Geothermal
250 21	267 17	11 14	11	7	4	Biomass
250	267			200	207	
293				288	269	Fossil fuels
	299	311 301	311	299	274	Heat from CHP
		1 2	-	0	0	deothermal
8	4	1 2	ī	õ	õ	Geothermal
4	2	1 2		0	0	Solar collectors
91	78	55 68	55	42	53	Biomass
157	138	101 122		78	90	Fossil fuels
260	223	158 193		121	143	District heating plants
2050	2040	2020 2030	2020	2015	2007	
	2040		2020	2015	2007	PJ/A

1) heat from electricity (direct and from electric heat pumps) not included; covered in the model under 'electric appliances'

table 13.193: oecd pacific: co2 emissions

MILL t/a	2007	2015	2020	2030	2040	2050
Condensation power plants	914	892	886	865	837	794
Coal	471	518	529	510	504	469
Lignite	146	139	133	130	122	118
Gas	170	176	184	189	179	177
Oil	120	53	32	29	27	25
Diesel	6.3	6.5	6.5	6.5	5.2	3.9
Combined heat & power production Coal Lignite Gas Oil	39 6 16 12	41 6 19 11	41 6 3 22 10	39 6 23 8	36 6 0 25 6	34 4 25 5
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	953 477 152 186 138	933 524 144 195 70	926 536 137 206 48	904 516 132 212 43	874 509 122 204 38	828 474 118 202 33
CO2 emissions by sector	2,144	2,070	2,039	1,984	1,911	1,822
% of 1990 emissions	136%	132%	130%	126%	121%	116%
Industry	342	334	328	304	282	259
Other sectors	253	249	247	252	257	263
Transport	412	409	394	366	337	309
Electricity & steam generation	928	909	902	881	853	808
District heating	209	169	169	182	181	182
Population (Mill.)	200	202	201	197	190	180
CO2 emissions per capita (t/capita)	10.7	10.2	10.1	10.1	10.1	10.1

13

glossary & appendix | APPENDIX - OECD

PACIFIC

-

tubic 19.174. Occu paci	110.11	istanc	u cap	acity		
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	394 79 20 91 59 5 64 4 68 4 0 1 0 0	439 89 117 50 5 74 5 69 6 1 1 2 0	451 92 19 128 35 5 80 5 70 10 4 2 3 0	482 91 19 23 5 94 7 7 72 19 7 2 4 0	564 104 22 174 20 4 112 8 71 27 14 2 5 0	673 115 27 233 18 3 134 9 70 34 21 2 6 0
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	12 1 3 7 1 0 0 0	14 1 3 8 2 1 0 0	14 2 2 8 2 1 0 0	16 2 0 10 2 1 0 0	17 2 0 12 2 1 0 0	18 2 0 13 2 1 0 0
CHP by producer Main activity producers Autoproducers	7 6	8 6	7 7	7 8	8 9	8 10
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	406 265 79 23 98 60 5 64 77 68 4 0 77 68 4 1 0 0 0	453 293 90 21 124 52 74 0 86 69 6 1 6 1 2 0	465 291 20 136 36 5 80 94 70 10 4 6 2 3 0	497 291 19 149 25 5 94 112 72 19 7 8 2 4 0	581 339 106 22 186 22 4 112 0 129 71 14 9 2 5 0	690 412 117 27 246 20 3 134 145 70 34 21 10 3 6 0
Fluctuating RES (PV, Wind, Ocean)	4	8	13	27	41	56
Share of fluctuating RES	1.0%	1.7%	2.9%	5.4%	7.1%	8.1%
RES share	19.0%	18.9%	20.2%	22.6%	22.2%	21.0%

table 13.194: oecd pacific: installed capacity

table 13.195: oecd pacific: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	37,588 31,650 9,285 1,367 5,912 15,086	38,567 30,710 10,149 1,300 5,630 13,632	39,228 30,505 10,211 1,230 5,943 13,121	40,421 29,787 9,808 1,185 6,281 12,513	40,650 28,515 9,568 1,097 6,335 11,515	40,793 27,115 9,033 1,064 6,467 10,552
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share	4,437 1,500 416 24 30 778 253 0 4.0%	5,891 1,967 472 61 74 1,052 304 4 5.1%	6,491 2,232 101 138 1,153 355 4 5.7%	7,702 2,932 508 223 242 1,530 426 4 7.3%	8,585 3,549 533 310 347 1,873 483 483 483 8.7%	9,469 4,208 558 396 466 2,222 563 4 10.3%

table 13.196: oecd pacific: final energy demand

-	2007	2015	2020	2020	2040	2050
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	24,127 20,707 5,836 5,699 41 8 88 7 0.3%	24,211 21,155 5,903 5,652 67 42 143 14 0 0.9%	24,392 21,336 5,694 5,432 67 42 153 16 0 1.0%	24,883 21,869 5,317 5,044 67 43 163 21 0 1.2%	25,287 22,315 4,940 4,653 67 45 175 25 0 1.4%	25,612 22,682 4,564 4,260 67 47 189 30 1 1.7%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	7,323 2,337 196 309 74 1,158 1,723 1,469 0 3222 6 0 8.2%	7,486 2,606 254 308 65 1,484 1,540 1,035 12 455 45 0 11.1%	7,620 2,696 287 315 77 1,422 1,492 1,090 503 67 0 12.7%	7,851 2,872 369 88 1,274 1,359 1,127 49 710 130 0 17.1%	8,085 3,043 439 351 102 1,153 1,227 1,162 63 913 172 0 20.9%	8,320 3,214 513 376 121 1,011 1,096 1,196 86 1,113 227 0 24.8%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	7,548 3,529 296 102 25 76 2,000 1,710 88 13 6.0%	7,765 3,774 368 100 21 103 1,882 1,750 40 92 24 7.0%	8,022 3,992 1425 142 1,792 1,792 51 90 41 8.0%	8,700 4,459 572 151 41 53 1,781 1,988 72 131 64 10.1%	9,290 4,836 698 156 45 12 1,755 2,186 95 174 76 11.7%	9,798 5,129 818 162 52 7 1,709 2,361 120 218 93 13.3%
Total RES RES share	1,064 5.1%	1,432 6.8%	1,671 7.8%	2,289 10.5%	2,847 12.8%	3,438 15.2%
Non energy use Oil Gas Coal	3,420 3,324 64 32	3,056 2,970 57 29	3,056 2,970 57 29	3,014 2,930 56 29	2,973 2,889 55 28	2,931 2,848 55 28

oecd pacific: [r]evolution scenario

table 13.197: oecd pacific: electricity generation

table 13.197: oecd pacif						
TWh/a	2007	2015	2020	2030	2040	2050
Power plants	1,798	1,939	1,946	1,953	1,956	1,963
Coal Lignite	492 128	505 117	518 85	459 39	329 7	60 0
Gas Oil	440 174	528 122	562 86	603 64	581 20	367 2
Diesel Nuclear	5 407	3 430	2 303	1 164	0 45	0
Biomass	24	430 30	37 155	41	55	58 195
Hydro Wind	116 7	135 38	120	256	185 465	830
PV Geothermal	0 6	18 11	50 15	100 18	170 21	295 34
Solar thermal power plants Ocean energy	0 0	3 0	10 3	25 14	40 37	50 72
Combined heat & power production	53	73	94	124	167	226
Coal	3	3	2	0	0	0
Lignite Gas	5 38	6 52	4 68	0 77	0 69	0 53
Oil Biomass	38 5 2 0	5 6	4 13	1 39	0 85	0 147
Geothermal	0	ĩ	3	6	13 0	26
Hydrogen CHP by producer						
Main activity producers Autoproducers	22 31	29 44	37 57	49 75	71 96	113 113
Total generation	1,851	2,012	2,040	2,077	2,123	2,189
Fossil Coal	1,289 495	1,340 507	1,331 520	1,244 459	1,007 329	482 60
Lignite Gas	133 478	123 580	89 630	39 680		0 420
Oil	179	127	90	65	21	2
Diesel Nuclear	5 407	430	2 303	1 164	0 45	0
Hydrogen Renewables	155	242	406	669	1,071	1,707
Hydro Wind	116	135 38	155 120	170 256	185 465	195 830
PV	0 26	18 36	50 50	100	170 140	295 205
Biomass Geothermal	7	12	18	80 24	34	60
Solar thermal Ocean energy	0	3 0	10 3	25 14	40 37	50 72
Distribution losses	87	93	94	92	87	81
Own consumption electricity	110	122	123	119	1Ĭ1 11	103 11
Electricity for hydrogen production Final energy consumption (electricity)	1,654	1,797	1,821	1,860	1,915	1,994
Fluctuating RES (PV, Wind, Ocean)	7 0.4%	56 2.8%	173	370	672	1,197 54.7%
Share of fluctuating RES	8.4%		8.5% 10 0%	17.8% 32 2%	31.6% 50.4%	
RES share 'Efficiency' savings (compared to Ref.)	0.4/8	12.0% 19	19.9% 107	32.2% 314	50.4% 541	78.0% 763
table 13.198: oecd pacif	fic: h	eat su	pplv			
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants	143	142	180	310	294	220
Fossil fuels Biomass	90 53	89 52	106 71	159 136	126 138	66 109
Solar collectors	0	0	1	9	15	19
Geothermal	0	0	2	6	15	26
Heat from CHP Fossil fuels	274 269	335 311	413 346	467 300	619 266	847 193
Biomass Geothermal	4 1	12 12	37 30	108 58	236 117	422 233
Fuel cell (hydrogen)	ō	10	Ő	0	0	0
Direct heating ¹⁾	7,215	6,868	6,658	6,396	6,061	5,682
Fossil fuels Biomass	6,836 330 30	6,030 565	5,374 697	4,183 1,006 575	2,897 1,291	1,506 1,361 1,778
Solar collectors Geothermal	30 19	107 166	230 357	575 633	1,024 849	1,778 1,036
Total heat supply ¹⁾	7,632	7,344	7,251	7,173	6,974	6,749
Fossil fuels	7,196	6,430	5,826	4,641 1,251 584	3,289	1,765
Biomass Solar collectors	387 30	629 107	805 231	584	1,665 1,038	1,892 1,797
Geothermal Fuel cell (hydrogen)	19 0	179 0	389 0	697 0	981 0	1,295 0
RES share	5.7%	12%	20%	35%	53%	74%
(including RES electricity) 'Efficiency' savings (compared to Ref.)	0	148	338	718	1,194	1,730
1) heat from electricity (direct and from electric he	at pumps)	not included; o	overed in the	model under	'electric appli	ances'
table 13.199: oecd pacif						
Part Part						

table 13.199: oecd pacif	able 13.199: oecd pacific: co² emissions						
MILL t/a	2007	2015	2020	2030	2040	2050	
Condensation power plants Coal Lignite Gas Oil Diesel	914 471 146 170 120 6.3	875 445 125 217 84 4	832 456 87 227 60 3	716 384 39 248 44 1	509 263 7 225 14 0	185 44 139 1 0	
Combined heat & power production Coal Lignite Gas Oil	39 6 16 12	43 5 6 24 8	45 3 33 5	37 0 35 1	32 0 32 0	24 0 24 0	
CO2 emissions electricity & steam generation Coal Lignite Gas Oil & diesel	953 477 152 186 138	917 449 131 241 96	877 459 91 259 67	753 384 39 283 47	541 263 7 257 15	209 44 163 1	
CO2 emissions by sector % of 1990 emissions Industry Other sectors Transport Electricity & steam generation District heating	2,144 136% 342 253 412 928 209	1,980 126% 314 218 371 892 185	1,749 111% 278 185 325 850 112	1,389 88% 209 129 244 731 76	924 59% 140 81 141 523 39	385 24% 107 18 50 196 14	
Population (Mill.) CO2 emissions per capita (t/capita)	200 10.7	202 9.8	²⁰¹ 8.7	197 7.0	190 4.9	180 2.1	

GW **561** 92 6 35 Power plants Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy 17 132 80 0 183 20 91 59 54 4 68 4 0 1 00 194 11 0 6 9 89 144 121 3 6 11 12 139 64 2 41 6 81 36 2 3 1 0 8 89 257 211 22 7 87 79 71 3 4 4 59 6 71 14 13 1 0 8 21 0 0 12 0 25 4 0 Combined heat & power production 0 2 13 1 2 1 0 0 16 7 1 0 0 15 0 14 2 0 Coal Lignite Gas Oil Biomass Geothermal Hydrogen 7 1 0 0 0 10 0 0 CHP by producer Main activity producers Autoproducers 6 8 10 13 17 19 216 20 195 265 79 23 98 60 5 64 **77** 68 4 0 **77** 68 4 0 4 311 79 14 151 64 2 41 **173** 81 366 83 3 1 300 92 6 167 35 1 22 0 **263** 87 79 71 294 73 1 209 11 0 6 Total generation 77 20 142 82 Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen **Renewables** Hydro Wind PV Biomass Geotherma 144 121 257 211 14 13 5 6 11 9 21 2 1 0 Geothermal Solar thermal Ocean energy 0 0 4 4 Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES 1.0% 14.7% 26.4% 39.4% 57.9% 5.4% 19.0% 21.9% 32.9% 44.9% 57.0% 74.4% **RES** share

table 13.200: oecd pacific: installed capacity

table 13.201: oecd pacific: primary energy demand

-				<i></i>		
PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	37,588 31,650 9,285 1,367 5,912 15,086	36,448 28,934 7,495 1,181 6,918 13,340	34,355 26,750 6,654 821 7,626 11,650	31,111 22,372 4,859 351 8,396 8,765	26,731 16,121 3,081 59 7,680 5,301	22,417 8,530 604 0 4,671 3,255
Nuclear Renewables Hydro Wind Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	4,437 1,500 416 24 30 778 253 0 4.0%	4,691 2,823 486 137 1,577 440 7,7% 2,120	3,305 4,299 558 432 447 2,163 688 11 12,5% 4,873	1,789 6,950 922 1,034 3,338 993 50 22.3% 9,310	491 10,120 666 1,674 1,794 4,476 1,376 133 37.9% 13,918	0 13,887 702 2,988 3,039 4,849 2,050 259 61.9% 18,376

table 13.202: oecd pacific: final energy demand

PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	24,127 20,707 5,836 5,699 41 88 7 0 0.3%	23,584 20,527 5,608 5,121 70 257 160 19 0 4.9%	22,790 19,887 5,239 4,462 94 426 251 50 55 9.1%	21,574 18,861 4,679 3,326 110 734 493 159 16 19,2%	20,061 17,535 4,051 1,874 125 1,062 963 486 28 38.5%	18,622 16,278 3,514 602 142 1,162 1,579 1,231 30 68.8%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	7,323 2,337 196 309 74 1,158 1,723 1,469 0 322 6 0 8.2%	7,544 2,678 322 353 89 1,014 1,553 1,420 12 470 45 0 12.4%	7,379 2,650 527 401 132 625 1,343 1,678 39 560 84 0 18.2%	7,015 2,569 828 462 213 214 816 1,929 149 691 184 0 29.4%	6,517 2,401 1,211 515 301 5 239 1,888 246 931 293 0 45.8%	5,993 2,182 1,702 559 426 0 139 1,517 321 945 329 0 62.1%
Other Sectors Electricity District heat <i>RES district heat</i> Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	7,548 3,529 296 102 25 76 2,000 1,710 30 88 13 6.0%	7,375 3,633 437 111 28 57 1,771 1,406 95 228 74 11.7%	7,269 3,655 728 176 58 0 1,454 1,323 191 300 170 19.9%	7,168 3,632 1,170 295 136 0 833 1,160 426 524 298 35.6%	6,966 3,530 1,780 377 221 1 383 903 778 610 384 54.2%	6,771 3,416 2,664 485 370 0 197 33 1,457 649 535 83.8%
Total RES RES share	1,064 5.1%	2,076 10.1%	3,267 16.4%	5,517 29.2%	8,316 47.4%	11,814 72.6%
Non energy use Oil Gas Coal	3,420 3,324 64 32	3,056 2,970 57 29	2,904 2,822 54 27	2,713 2,637 51 26	2,527 2,456 47 24	2,345 2,279 44 22

glossary & appendix

APPENDIX - OECD

PACIFIC

-

oecd pacific: advanced energy [r]evolution scenario

table 13.203: oecd pacific: electricity generation

table 13.203: oecd pacif						0050
TWh/a Dowor plants	2007 1,798	2015 1,946	2020 1,932	2030 1,960	2040 2,031	2050 2,089
Power plants Coal Lignite	492 128	650 45	530 14	450	48	2,007 0 0
Gas Oil	440 174	450 122	552 85	596 63	589 20	32 1
Diesel Nuclear	407	3	2 303	1 164	0 45	0
Biomass Hvdro	24 116	430 34 135	34 155	42 170	49 185	47 195
Wind PV	7 0	45 18	140 50	229 100	652 170	915 390
Geothermal Solar thermal power plants	6	11 3 0	17 40	41 65 35	58 130	84 295
Ocean energy Combined heat & power production	0 53	73	10 109	³⁵ 142	85 180	130 233
Coal Lignite	3 5	3	2 4	0		0
Gas Oil	38 5 2	52 5	78 5	84 2	61 0	9 0
Biomass Geothermal	0	6 1	16 4	48 9	96 22	173 51
Hydrogen CHP by producer	0	0	0	0	0	0
Main activity producers Autoproducers	22 31	29 44	37 72	49 93	71 109	113 120
Total generation Fossil	1,851 1,289	2,019 1,336	2,041 1,272	2,102 1,199	2,211 719	2,322
Coal Lignite	495 133	653 51	532 18	450 3	48 0	0
Gas Oil	478 179	502 127	630 90	680 65	650 21	41 1
Diesel Nuclear	5 407	3 430	2 303	1 164	0 45	0
Hydrogen Renewables	155	253	466	739	1,447	2,280
Hydro Wind	116	135 45	155 140	170 229	185	195 915
PV Biomass	26	18 40	50 50	100 90 50	170 145	390 220
Geothermal Solar thermal Ocean energy	7 0 0	12 3 0	21 40 10	50 65 35	80 130 85	135 295 130
Distribution losses	87	93	94	92	87	81
Own consumption electricity Electricity for hydrogen production	110	122	123	119	105 10	93 10
Final energy consumption (electricity)	1,654	1,804	1,821 200	1,882	2,008 907	2,139 1,435
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	0.4%	3.1%	9.8%	17.3%	41.0%	61.8%
RES share 'Efficiency' savings (compared to Ref.)	8.4% 0	12.5% 19	22.8% 107	35.2% 311	65.5% 532	98.2% 745
table 13.204: oecd pacif	fic: h	eat su	pply			
PJ/A	2007	2015	2020	2030	2040	2050
District heating plants Fossil fuels	143 90	142 89	181 106	346 97	429 17	404
Biomass Solar collectors	53 0	52 0	71	156	223 150	194 161
Geothermal	0	0	2	69 24	39	48
Heat from CHP Fossil fuels	274 269	335 311	480 407	551 340	701 233	994 34
Biomass Geothermal Evel cell (budgesen)	4 1 0	12 12 0	42 32 0	133 77 0	266 202 0	504 456
Fuel cell (hydrogen) Direct heating ¹⁾	7,215	6,868	-		5,724	0 5,159
Fossil fuels Biomass	6,836 330	6,030 565	6,590 5,321 645	6,277 3,778 1,028	2,324 1.035	227 1,475
Solar collectors Geothermal	30 19	107 166	268 356	807 664	1,394 971	2,166 1,290
Total heat supply ¹⁾	7,632	7,344	7,251 5,834	7,173	6,974 2,574	6,749
Fossil fuels Biomass Solar collectors	7,196	6,430 629	5,834 758 269	7,173 4,215 1,317	1 524	261
Geothermal Fuel cell (hydrogen)	30 19 0	107 179 0	209 390 0	876 765 0	1,544 1,212 121	2,173 2,328 1,795 193
RES share	5.7%	12.5%	19.5%	41.2%	62.5%	96.1%
(including RES electricity) 'Efficiency' savings (compared to Ref.)	0	148	338	718	1,194	1,730
1) heat from electricity (direct and from electric he					electric appli	ances'
table 13.205: oecd pacif					2040	2050
MILL t/a Condensation power plants	2007 914	2015 894	2020 765	2030 670	2040 281	2050 13
Coal Lignite	471 146	573 48	467 14	377 3	38 0	0
Gas Oil	170 120	185 84	223 59	245 44	228 14	12 1
Diesel	6.3	4	3	1	0	0
Combined heat & power production Coal	39 6	43 5	52 4	41 0	29 0	4 0
Lignite Gas	6 16	6 24	4 38	40 40	0 28	0 4
Oil CO2 emissions electricity	12	8	7	2	0	0
& steam generation Coal	953 477	937 577	817 470	712 377	309 38	17 0
Lignite Gas	152 186	54 209	18 260	285	0 257	0 16
Oil & diesel	138	96	68	47	15	1
CO2 emissions by sector % of 1990 emissions	2,144 136%	1,988 126%	1,671 106%	1,286 82%	616 39%	74 5%
Industry Other sectors	342 253	314 218	270 182	183 117	107 67	16
Transport Electricity & steam generation	412 928 209	370 911 175	326 782	238 686	129 292 21	31 15 2
District heating Population (Mill.) CO2 emissions per capita (t/capita)	209 200 10.7	175 202 9.8	111 201 8.3	62 197 6.5	190 3.2	180 0.4
	10.7	7.0	0.0	0.5	J.2	U. 7

table 13.206: oecd pacific: installed capacity						
GW	2007	2015	2020	2030	2040	2050
Power plants Coal Lignite Gas Oil Diesel Nuclear Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	394 79 20 91 59 54 4 68 68 4 0 1 0 0	469 98 7 113 80 3 59 6 71 16 13 2 1 0	512 81 2 136 63 2 41 5 81 48 36 3 13 3	560 90 149 34 1 22 7 87 71 71 6 11	690 11 0 173 11 0 6 7 89 202 121 9 36 24	790 0 0 17 0 0 0 0 0 7 89 283 279 13 66 37
Combined heat & power production Coal Lignite Gas Oil Biomass Geothermal Hydrogen	12 3 7 1 0 0 0	16 1 3 10 1 1 0 0	21 12 14 1 3 1 0	27 0 17 0 8 1 0	33 0 13 0 16 4 0	39 0 2 0 29 8 0
CHP by producer Main activity producers Autoproducers	7 6	8 8	9 12	11 16	14 19	20 19
Total generation Fossil Coal Lignite Gas Oil Diesel Nuclear Hydrogen Renewables Hydro Wind PV Biomass Geothermal Solar thermal Ocean energy	406 265 79 23 98 60 5 64 0 77 68 4 0 4 1 0 0 0	484 315 99 9 122 82 3 59 0 110 71 16 13 7 2 1 0	534 301 81 150 64 2 41 0 191 81 488 36 8 3 13 3	587 293 90 166 35 1 222 273 87 71 71 15 8 11 10	723 208 11 0 187 11 0 6 0 509 202 202 121 23 13 36 24	829 19 0 19 0 0 0 0 0 893 279 35 211 666 37
Fluctuating RES (PV, Wind, Ocean) Share of fluctuating RES	4	29	86	152	348	599
RES share	1.0% 19.0%	6.0% 22.8%	16.1% 35.9%	25.9% 46.4%	48.1% 70.3%	72.3% 97.7%

table 13.207: oecd pacific: primary energy demand

PJ/A	2007	2015	2020	2030	2040	2050
Total Fossil Hard coal Lignite Natural gas Crude oil	37,588 31,650 9,285 1,367 5,912 15,086	36,059 28,498 7,969 489 6,749 13,291	33,596 25,729 5,691 165 8,272 11,600	30,911 21,097 4,118 27 8,536 8,416	25,455 12,516 437 0 7,167 4,912	21,299 3,500 27 0 667 2,805
Nuclear Renewables Hydro Volar Solar Biomass Geothermal Ocean Energy RES share 'Efficiency' savings (compared to Ref.)	4,437 1,500 416 24 30 778 253 0 4.0%	4,691 2,869 486 162 1,598 440 8.0% 2,509	3,305 4,562 558 504 593 2,116 755 36 13.6% 5,632	1,789 8,024 612 824 1,470 3,493 1,499 126 26.0% 9,510	491 12,449 666 2,347 2,624 4,234 2,272 306 48.9% 15,195	0 17,799 702 3,294 4,794 4,969 3,573 468 83.6% 19,494

table 13.208: oecd pacific: final energy demand

tubic 19.200. occu pa		nai ch	cigy c	icinai	u	
PJ/a	2007	2015	2020	2030	2040	2050
Total (incl. non-energy use) Total (energy use) Transport Oil products Natural gas Biofuels Electricity <i>RES electricity</i> Hydrogen RES share Transport	24,127 20,707 5,836 5,699 41 8 88 7 0 0.3%	23,584 20,527 5,608 5,104 63 257 184 23 0 5.0%	22,783 19,880 5,239 4,484 68 427 251 57 8 9.3%	21,573 18,860 4,679 3,254 77 759 565 199 24 20.6%	19,940 17,414 3,930 1,758 67 990 1,087 712 27 43.8%	18,274 15,930 3,163 402 58 913 1,762 1,730 27 84.4%
Industry Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal Hydrogen RES share Industry	7,323 2,337 196 309 74 1,158 1,723 1,469 0 322 6 0 8.2%	7,544 2,678 336 353 89 1,014 1,546 1,427 12 470 45 0 12.6%	7,403 2,650 605 468 1,55 342 1,326 1,898 77 558 84 0 20.0%	7,040 2,577 906 558 346 0 786 1,792 298 827 202 202 36.6%	6,546 2,430 1,591 649 551 0 237 1,335 444 951 371 130 61.0%	6,030 2,241 2,200 739 724 0 0 86 162 597 1,493 505 207 94.9%
Other Sectors Electricity RES electricity District heat Coal Oil products Gas Solar Biomass and waste Geothermal RES share Other Sectors	7,548 3,529 296 102 25 76 2,000 1,710 30 88 13 6.0%	7,375 3,633 455 111 28 57 1,750 1,427 95 228 74 11.9%	7,238 3,655 834 176 58 0 1,393 1,356 191 299 170 21.4%	7,141 3,634 1,277 197 0 614 1,235 508 531 302 39.4%	6,938 3,533 2,313 455 386 996 996 490 395 65.3%	6,737 3,420 3,358 628 614 4 18 106 1,569 442 551 97.0%
Total RES RES share	1,064 5.1%	2,112 10.3%	3,517 17.7%	6,360 33.7%	10,245 58.8%	14,926 93.7%
Non energy use Qil Gas Coal	3,420 3,324 64 32	3,056 2,970 57 29	2,904 2,822 54 27	2,713 2,637 51 26	2,527 2,456 47 24	2,345 2,279 44 22

256

13

glossary & appendix | APPENDIX - OECD PACIFIC

-

oecd pacific: total new investment by technology

table 13.209: oecd pacific: total investment

MILLION \$	2005-2010	2011-2020	2021-2030	2005-2030	

Reference scenario				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	217,584 5,924 9,843 4,895 256 1,294 6,815 613	239,174 57,070 9,122 16,984 5,298 8,438 6,422 10,033 773	233,012 42,563 9,365 10,287 11,493 4,948 2,178 4,292 0	689,770 129,274 24,411 37,115 21,686 13,686 13,642 9,893 21,140 1,386
Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal Ocean energy	209,968 5,924 9,843 4,895 256 1,294 6,815 613	180,219 211,392 16,884 35,694 44,088 84,953 15,479 11,516 2,777	157,162 145,400 21,454 13,321 43,079 48,799 6,708 4,341 7,699	547,348 386,433 44,262 58,858 92,062 134,008 23,481 22,673 11,089
Advanced Energy [R]evolution				
Conventional (fossil & nuclear) Renewables Biomass Hydro Wind PV Geothermal Solar thermal power plants Ocean energy	209,968 5,924 9,843 4,895 256 1,294 6,815 613	195,884 280,497 17,437 35,694 52,329 84,953 18,436 62,389 9,258	161,466 149,858 26,144 13,321 27,404 48,799 16,693 0 17,497	567,319 49,505 58,858 84,628 134,008 36,423 69,204 27,368

notes

2005 - 2010: 5 years of energy [r]evolution scenarios - 5 years of development

Since Greenpeace published the first Energy [R]evolution scenario in May 2005 (covering the EU-25 countries) during a seven month long ship tour from Poland all the way down to Egypt, the project has developed significantly. That very first scenario was launched on board the ship with the support of former EREC Policy Director Oliver Schäfer. This was the beginning of a long lasting and fruitful collaboration between Greenpeace International and the European Renewable Energy Council. The German Space Agency's Institute for Technical Thermodynamics, under Dr. Wolfram Krewitt's leadership, was the scientific research institute behind all the analysis which supports the scenario. Between 2005 and 2009 these three very different stakeholders have managed to put together over 30 scenarios for countries from all continents of the world and published two editions of the Global Energy [R]evolution. It has since become a well respected blueprint for progress towards an alternative energy future. The work has been translated into over 15 different languages, including Chinese, Japanese, Arabic, Hebrew, Spanish, Thai and Russian.

The concept of the Energy [R]evolution scenario has been under constant development from the beginning. Now, for example, we are able to calculate the employment effects in parallel with the scenario development. The program MESAP/PlaNet has also been developed by software company seven2one, providing many features to make the project more sophisticated. For the 2010 edition we have developed a specific standard report tool which provides us with a "ready to print" executive summary for each region or country. This allows our calculations to interact between all the world regions, resulting in the global scenario opening up like a cascade. All these new development times and more user friendly outputs. Over the past few years an experienced team of 20 scientists from all regions of the world has been formed in order to review the regional and/or country specific scenarios and to make sure that they are appropriate to the specific geographical area.

In some cases the Energy [R]evolution Scenarios have been the first ever long term energy scenario produced for a particular country, for example the Turkish scenario published in 2009. Since the first Global Energy [R]evolution scenario published in January 2007, we have organised side events at every single UNFCCC climate conference, countless energy conferences and panel debates. Over 200 presentations in more than 30 languages always had one message in common: "The Energy Revolution is possible; it is needed and will pay for itself in benefits for future generations!" Many high level meetings have taken place, for example on 15th July 2009, when the Chilean President Michelle Bachelet attended our launch event for the Energy [R]evolution in Chile.

The Energy [R]evolution work is a cornerstone of the Greenpeace climate and energy work worldwide and we would like to thank all the stakeholders who have been involved. Unfortunately, in October 2009, Dr Wolfram Krewitt from DLR passed away far too early and left a huge gap for everybody. His energy and dedication helped to make the project a true success story. Arthouros Zervos and Christine Lins from EREC have been involved in this work from the very beginning and Sven Teske from Greenpeace International has led the project since its first beginnings in late 2004. The well received layout of all the Energy [R]evolution series has been produced – also from the very beginning – by Tania Dunster and

Jens Christiansen from "onehemisphere" in Sweden, and with enormous passion, especially in the final phase as the reports have gone to print. Finally, all the Global Energy [R]evolution Scenarios have been reported in a number of scientific and peer review journals such as Energy Policy.

Listed here is a selection of milestones from the progress of the Energy [R]evolution story between 2005 and June 2010.

June 2005: First Energy [R]evolution Scenario for EU 25 presented in Luxembourg for members of the EU's Environmental Council. July – August 2005: National Energy [R]evolution scenarios for France, Poland and Hungary launched during an "Energy [R]evolution" ship tour with a sailing vessel across Europe. January 2007: First Global Energy [R]evolution Scenario published parallel in Brussels and Berlin.

April 2007: Launch of the Turkish translation from the Global Scenario. July 2007: Launch of Futu[r]e Investment – an analysis of the needed global investment pathway for the Energy [R]evolution scenarios. November 2007: Launch of the Energy [R]evolution for Indonesia in Jakarta/Indonesia.

January 2008: Launch of the Energy [R]evolution for New Zealand in Wellington/NZ.

March 2008: Launch of the Energy [R]evolution for Brazil in Rio de Janeiro/Brazil.

March 2008: launch of the Energy [R]evolution for China in Beijing/China.

June 2008: Launch of the Energy [R]evolution for Japan in Aoi Mori & Tokyo/Japan.

June 2008: Launch of the Energy [R]evolution for Australia in Canberra/Australia .

August 2008: Launch of the Energy [R]evolution for the Philippines in Manila/Philippines.

August 2008: Launch of the Energy [R]evolution for the Mexico in Mexico City/Mexico.

October 2008: Launch of the second edition of the Global Energy [R]evolution Report.

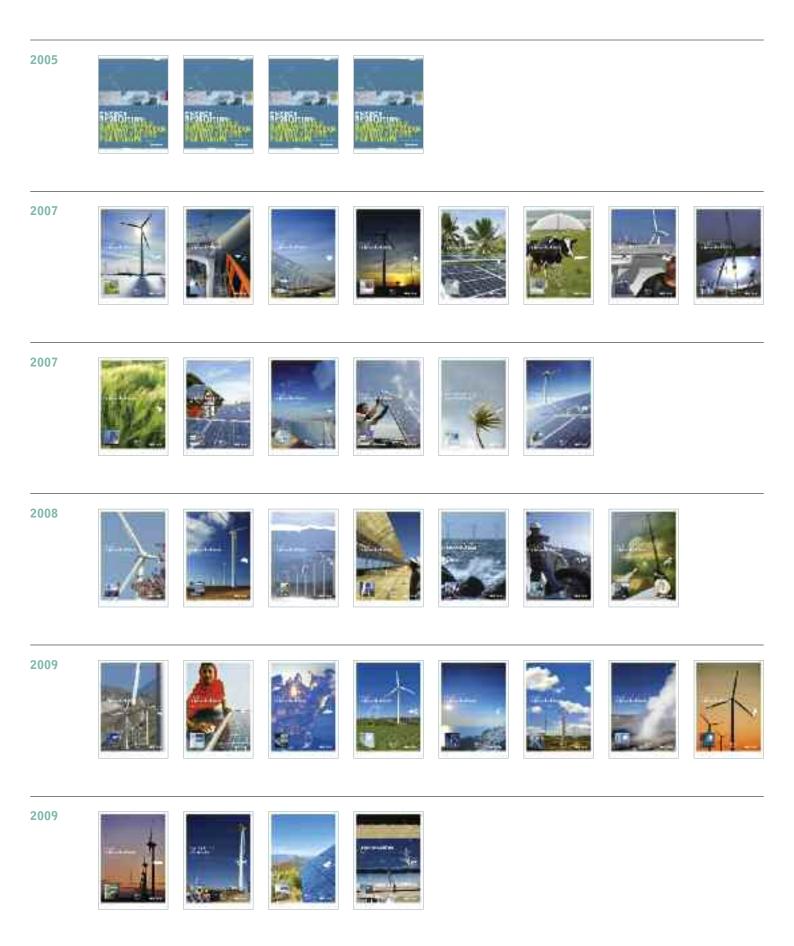
December 2008: Launch of the Energy [R]evolution for the EU-27 in Brussels/Belgium.

December 2008: Launch of a concept for specific feed in-tariff mechanism to implement the Global Energy [R]evolution Report in developing countries at a COP13 side event in Poznan/Poland. **March 2009:** Launch of the Energy [R]evolution for the USA in Washington/USA.

March 2009: Launch of the Energy [R]evolution for India in Delhi/India. April 2009: Launch of the Energy [R]evolution for Russia in Mosko/Russia.

May 2009: Launch of the Energy [R]evolution for Canada in Ottawa/Canada.

June 2009: Launch of the Energy [R]evolution for Greece in Athens/Greece.


June 2009: Launch of the Energy [R]evolution for Italy in Rome/Italy. July 2009: Launch of the Energy [R]evolution for Chile in Santiago/Chile. July 2009: Launch of the Energy [R]evolution for Argentina in Buenos Aires/Argentina.

September 2009: Launch of the first detailed Job Analysis "Working for the Climate" – based on the global Energy [R]evolution report in Sydney/Australia.

October 2009: Launch of the Energy [R]evolution for South Africa in Johannesburg/SA.

November 2009: Launch of the Energy [R]evolution for Turkey in Istanbul/Turkey.

November 2009: Launch of "Renewable 24/7" a detailed analysis for the needed grid infrastructure in order to implement the Energy ER]evolution for Europe with 90% renewable power in Berlin/Germany.

energy [r]evolution

GREENPEACE

Greenpeace is a global organisation that uses non-violent direct action to tackle the most crucial threats to our planet's biodiversity and environment. Greenpeace is a non-profit organisation, present in 40 countries across Europe, the Americas, Africa, Asia and the Pacific. It speaks for 2.8 million supporters worldwide, and inspires many millions more to take action every day. To maintain its independence, Greenpeace does not accept donations from governments or corporations but relies on contributions from individual supporters and foundation grants.

Greenpeace has been campaigning against environmental degradation since 1971 when a small boat of volunteers and journalists sailed into Amchitka, an area west of Alaska, where the US Government was conducting underground nuclear tests. This tradition of 'bearing witness' in a non-violent manner continues today, and ships are an important part of all its campaign work.

Greenpeace International

Ottho Heldringstraat 5, 1066 AZ Amsterdam, The Netherlands t +31 20 718 2000 f +31 20 718 2002 sven.teske@greenpeace.org www.greenpeace.org

european renewable energy council - [EREC]

Created in April 2000, the European Renewable Energy Council (EREC) is the umbrella organisation of the European renewable energy industry, trade and research associations active in the sectors of bioenergy, geothermal, ocean, small hydro power, solar electricity, solar thermal and wind energy. EREC thus represents the European renewable energy industry with an annual turnover of €70 billion and employing 550,000 people.

EREC is composed of the following non-profit associations and federations: AEBIOM (European Biomass Association); EGEC (European Geothermal Energy Council); EPIA (European Photovoltaic Industry Association); ESHA (European Small Hydro power Association); ESTIF (European Solar Thermal Industry Federation); EUBIA (European Biomass Industry Association); EWEA (European Wind Energy Association); EUREC Agency (European Association of Renewable Energy Research Centers); EREF (European Renewable Energies Federation); EU-OEA (European Ocean Energy Association); ESTELA (European Solar Thermal Electricity Association).

EREC European Renewable Energy Council Renewable Energy House, 63-67 rue d'Arlon, B-1040 Brussels, Belgium t +32 2 546 1933 f+32 2 546 1934 erec@erec.org www.erec.org

image ICE MELTING ON A BERG ON THE GREENLANDIC COAST. GREENPEACE AND AN INDEPENDENT NASA-FUNDED SCIENTIST COMPLETED MEASUREMENTS OF MELT LAKES ON THE GREENLAND ICE SHEET THAT SHOW ITS VULNERABILITY TO WARMING TEMPERATURES. **front cover images** INDUSTRY CLIMBERS CONTROL THE ROTOR BLADES OF A WIND POWER STATION IN LETSCHIEN, GERMANY. © PAUL LANGROCK/ZENIT/GREENPEACE. © GREENPEACE/STEVE MORGAN. © GREENPEACE/MARKEL REDONDO.