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A free dendrite growth during solidification into external forced flow is analyzed using a sharp interface

model. A criterion for selection of the stable growth mode is derived for the axisymmetric dendrite

growing into non-isothermal binary system under convective flow. The criterion obtained rallies

analytic results for dendrite growth under forced convection in a pure system [Ph. Bouissou, P. Pelce,

Phys. Rev. A 40 (1989) 6673] and dendrite growth in a stagnant binary system [M. Ben Amar, P. Pelce,

Phys. Rev. A 39 (1989) 4263].
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1. Introduction

Dendrite growth controls the microstructure evolution during
solidification of melts and solutions [1–3]. Together with
quantitative experimental observation of the dynamics and
morphology of dendrite growth [4–6,8], new results on theore-
tical modeling based on sharp- and diffuse-interface methods
were obtained to verify the ideas underlying the main concepts of
dendrite growth [4,6,8–10]. Among these recent problems, the tip
kinetics during free dendritic growth into undercooled liquid
[7–9] and effect of liquid convection on the mechanism and mode
selection of dendritic growth [10] were intensively analyzed from
both experimental and theoretical points.

One of the theoretically and practically important problems is
in obtaining stable mode of the growing dendrite. The problem of
finding a stability criterion for the growing dendrite has deep
scientific roots coming from the stability tests of the first
analytical solution given by Ivantsov [11–13]. After establishing
robust stable conditions for the dendritic tip growing into a one-
component stagnant liquid [14,15], these were extended to the
one-component dendritic growth under forced flow [16–18] as
well as to the binary dendritic growth in stagnant media [19].
However, in many cases, knowledge of stable dendritic growth in
binary system mode is a crucial question in evaluation and

verification of the dendritic theory predictions in comparison
with experimental data [20]. Therefore, the present analytical
investigation is devoted to the problem of a selection criterion for
the crystalline dendritic tip growing into a binary liquid under
forced convective flow.

The Article is organized as follows. A statement of the problem
together with analytical solution in the Oseen approximation is
given in Section 2 for the growing binary dendrite under forced
convective motion. Section 3 deals with the stability analysis in
linear approximation to obtain the dispersion law of the growing
dendrite. The latter one defines the critical wave-number
selecting marginal mode between degenerating and growing
perturbations at the dendritic surface around its tip in the
presence of anisotropy of surface energy. The main result of the
present analysis is found in Section 4 as a selection criterion given
by the solvability condition for the problem. A short discussion
about the obtained stable mode for the growing dendritic tip is
presented in Section 5 in comparison with previously found
criteria for one-component and binary growing dendrites. Finally,
Section 6 gives a summary of our conclusions.

2. The model

2.1. Governing equations

Let us consider a forced convection heat and momentum
transfer problem when the crystal interface is assumed to be
rough so that the Gibbs–Thomson relation determines the
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interface temperature as a function of the local curvature 1/R of
the solid–liquid interface

Ti ¼ T0�
T0s
QR

, ð1Þ

where T0 is the crystallization temperature of the pure liquid, s
the effective anisotropic liquid–solid surface tension, and Q the
latent heat per unit volume of solid.

The temperature field satisfies the diffusion equation in the
solid and liquid phases

@Ts

@t
¼DTDTs,

@Tl

@t
þð~w � rÞTl ¼DTDTl, ð2Þ

and the concentration of impurities satisfies

@Cl

@t
þð~w � rÞCl ¼DCDCl ð3Þ

in the liquid only. Here the advection of heat and mass by the fluid
velocity field ~w is taken into account, DT and DC are the diffusive
coefficients for temperature and concentration, respectively, t the
time, and subscripts s and l designate solid and liquid phases,
respectively.

At the interface, the temperature continuity holds. Also, the
conservation of heat and impurities must be satisfied, i.e.

Tl ¼ Ti�mCl, Ts ¼ Tl, Q~v � ~n ¼DT cpðrTs�rTlÞ � ~n, ð4Þ

Clð1�k0Þ~v � ~nþDCð~n � rÞCl ¼ 0, ð5Þ

where ~v is the solidification velocity directed along the normal
vector to the interface, cp the heat capacity, k0 the equilibrium
partition coefficient and m the liquidus slope.

The velocity field ~w in the case of the small Reynolds number
limit under consideration is described by the so-called Oseen and
mass conservation equations [21]

U
@~w

@z
¼�

1

r1

rpþnD~w, r � ~w ¼ 0, ð6Þ

where U is the external flow velocity far ahead of the crystal, r1

and n density and kinematic viscosity of the liquid, respectively.

2.2. Steady-state solution

The two-dimensional solid–liquid interface of the growing
crystal is assumed parabolic, of tip radius r, and moves at the
velocity V along the z-direction. The external flow at infinity is
parallel to the Oz axis and is directed to the crystal. Consequently,
we consider a case of the so-called ‘‘up-stream branch forced
flow’’. The Cartesian coordinates z and x of the growth and
transverse directions, respectively, can be written in terms of the
parabolic coordinates x and Z as follows:

z¼
r
2
ðZ�xÞ, x¼

r
2

ffiffiffiffiffiffi
xZ

q
, ð7Þ

where the crystal surface Z¼ 1 has a tip radius r.
Solution for the velocity field can be easily found in the Oseen

approximation. Omitting tedious and cumbersome mathematical
manipulations (for details, see Ref. [22]), one can find the
following expressions for the components ux and uZ of the
velocity field:

ux ¼

ffiffiffiffiffiffi
xZ

p
ffiffiffiffiffiffiffiffiffiffiffi
xþZ

p df

dZ
, uZ ¼�

f ðZÞ
2

ffiffiffiffiffiffiffiffiffiffiffi
xþZ

p , ð8Þ

where

f ðZÞ ¼ 2ðUþVÞ
ffiffiffi
Z
p
�2UgðZÞ, ð9Þ

and

gðZÞ ¼
ffiffiffi
Z
p erfcð

ffiffiffiffiffiffiffiffiffiffiffiffi
RZ=2

p
Þ

erfcð
ffiffiffiffiffiffiffiffiffiffi
R=2

p
Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpRÞ

p
erfcð

ffiffiffiffiffiffiffiffiffiffi
R=2

p
Þ
½expð�R=2Þ�expð�RZ=2Þ�,

ð10Þ

with R¼ rU=n the Reynolds number.
Using Eqs. (7) and (8), one can integrate the Eqs. (2) and (3) of

heat and mass transport in the liquid in their steady-state
approximation. Seeking for a simple solution depending on Z
only and rewriting Eqs. (2) and (3) supplemented by the boundary
conditions (4) and (5) in parabolic coordinates (see Ref. [16]), we
arrive at

uZ
dT l

dZ
¼

2DT

r
ffiffiffiffiffiffiffiffiffiffiffi
xþZ

p ffiffiffiZp d2Tl

dZ2
þ

1

2
ffiffiffiZp dT l

dZ

� �
,

dT l

dZ

� �
Z ¼ 1

¼�
Q

cp

rV

2DT
,

ð11Þ

uZ
dCl

dZ ¼
2DC

r
ffiffiffiffiffiffiffiffiffiffiffi
xþZ

p ffiffiffiZp d2Cl

dZ2
þ

1

2
ffiffiffiZp dCl

dZ

� �
,

dCl

dZ

� �
Z ¼ 1

¼�ð1�k0ÞCi
rV

2DC
,

ð12Þ

where Ci is the concentration at the solid–liquid interface. From
Eqs. (11) and (12), solutions for temperature and concentration
fields are

TlðZÞ ¼ TiþðT1�TiÞ
IðZÞ
Ið1Þ

, ClðZÞ ¼ CiþðC1�CiÞ
I1ðZÞ
I1ð1Þ

, ð13Þ

with

IðZÞ ¼
Z Z

1
exp Pf

Z Z0

1

gðZ00Þffiffiffiffiffi
Z00
p dZ00�ðPf þPgÞZ0

� �
dZ0ffiffiffiffiffi
Z0
p ,

I1ðZÞ ¼
Z Z

1
exp Pf

DT

DC

Z Z0

1

gðZ00Þffiffiffiffiffi
Z00
p dZ00�ðPf þPgÞ

DT

DC
Z0

� �
dZ0ffiffiffiffiffi
Z0
p ,

Pg ¼
rV

2DT
, Pf ¼

rU

2DT
,

Ti ¼ T1þ
Q

cp
Pg expðPf þPgÞIð1Þ,

Ci ¼
C1

1�ð1�k0Þ exp½ðPf þPgÞDT=DC �PgI1ð1ÞDT=DC
, ð14Þ

where Pg and Pf are the Peclet numbers related to the processes of
growth and flow, respectively, T1 and C1 are the temperature and
concentration in the liquid fixed far from the solid–liquid
interface, respectively.

It is noteworthy that the Ivantsov parabolas are no longer
solutions of the free-boundary problem when surface tension
effects are taken into account. However, in the case of weak
surface tension effects, steady solutions can be found close to an
Ivantsov parabola if a solvability condition is satisfied [18,23]. We
use here the solvability condition previously derived by Pelce and
Bensimon [23] as the vanishing of an oscillating integral in the
formZ þ1
�1

G½X0ðlÞ�YmðlÞdl¼ 0, YmðlÞ ¼ exp i

Z l

0
kmðl1Þdl1

" #
: ð15Þ

The main interest of this formulation is that it is adaptable to
other kinds of fronts, e.g., to the Saffman–Taylor finger [17]. One
needs the curvature operator G and a continuum of solutions X0(l)
from which the function km(l) of the local non-zero marginal
mode of the conjugate dispersion equation for the perturbations is
deduced. The condition of application of the solvability criterion is
that km(l) is large compared to the inverse of the scale of the
unperturbed solution. It is obtained using Wentzel–Kramers–
Brillouin (WKB) approximation which has been applied to the
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flame propagation [24] and dendritic growth [25]. In other related
problems, e.g., in description of the Saffman–Taylor fingers
[26,27], it has been shown that one can get non-trivial solvability
condition by considering elements Ym(l) (they vary on a
wavelength scale l, which is small compared to the tip radius of
the parabola). In the next section we find these elements in the
presence of a forced flow within the framework of the Oseen
equations.

3. Linear stability analysis

We use the linear stability analysis provided by Bouissou and
Pelce [18] in which the growth rate of a perturbation has a
wavelength small compared to the characteristic spatial scale of
the unperturbed solution. We consider that a perturbation
disturbs the fluid on a distance of the order of l. The latter
enables us to expand the stationary velocity components (8) in a
series in Z�1 around the parabola Z¼ 1. Taking into account only
the main contributions, we arrive at

ux ¼

ffiffiffiffiffiffiffiffiffiffiffi
x

1þx

s
½VþaðRÞUðZ�1Þ�, uZ ¼�

Vffiffiffiffiffiffiffiffiffiffiffi
1þx

p , ð16Þ

where

aðRÞ ¼

ffiffiffiffiffiffi
R

2p

r
expð�R=2Þ

erfcð
ffiffiffiffiffiffiffiffiffiffi
R=2

p
Þ
: ð17Þ

Hence, from Eqs. (16) and (17) it follows that only the tangent
fluid velocity ux is dependent of the forced flow close to the tip of
the growing parabola.

For the following analysis, we use new local Cartesian
coordinates (xc, yc) fixed to the crystal, where xc and yc are,
respectively, the tangent and normal axes to the solid–liquid
interface at a point where the normal to the interface has an angle
y with the growth axis. These coordinates enables us to rewrite
the velocity components (16) in the form of a shear flow whose
magnitude is a function of y as

u ¼�V siny�
aU

r siny cosyyc , v ¼�V cosy, ð18Þ

where u and v designate the tangent and normal velocity
components to the interface. Expressing temperature and con-
centration derivatives from (4) and (5) as

dT l

dyc

¼
Qv

DT cp
,

dCl

dyc

¼
Cið1�k0Þv

DC
at yc ¼ 0: ð19Þ

A similar expansion in series for the temperature and concentra-
tion fields in the liquid is obtained as follows:

Tl ¼ T0�
QV

DT cp
cosyyc , Cl ¼ Ci�

Cið1�k0ÞV

DC
cosyyc: ð20Þ

Let us now pay our attention to the linear stability theory of
the aforementioned problem. Let u0, v0 and T 0 designate the
perturbations of the stationary field. x0 corresponds to the
perturbation of the steady solid–liquid interface with a wave-
length l assumed very small compared to r. The solutions of the
perturbed temperature conductivity Eq. (2) in the solid and
hydrodynamic Eq. (6) within the framework of the Oseen
approximation can be written in the form

u0 ¼ �ieoS expðotþ ikxc�ekycÞ, v0 ¼ �oS expðotþ ikxc�ekycÞ,

x0 ¼S expðotþ ikxc�ekycÞ, T 0s ¼ Ts0 expðotþ ikxc�ekycÞ, ð21Þ

where a relation v0 ¼ �@x0=@t at the solid–liquid interface between
perturbations is taken into consideration. Here o and k represent
the frequency and wave-number of the perturbations,

respectively, parameter e has the same sign as real part of k since
all perturbations cannot diverge as yc goes to þ1, S and Ts 0 are
the perturbation amplitudes of the interface and temperature
field, respectively, in the solid.

Consider the perturbed form of nonlinear equation for the
temperature in the liquid. Keeping in mind only linear terms in
perturbations, one obtains

@T 0l
@t
þu

@T 0l
@xc
þv

@T 0l
@yc
þv0

dTl

dyc

¼DT
@2T 0l
@x2

c

þ
@2T 0l
@y2

c

 !
: ð22Þ

If the forced flow is negligible, the solution has the similar form to
T 0s at large k consistent with the well-known Mullins–Sekerka
criterion [12] for k within the framework of the thermal problem
of solidification of a pure melt (see, among others, [18]).
Substituting

T 0l ¼ gðycÞ expðotþ ikxc�ekycÞ ð23Þ

into Eq. (22) and taking into account Eq. (20), one can get the
following equation for the new amplitude function g(yc):

d2g

dy2
c

�2ek dg

dyc

¼ LðgðycÞ,ycÞ, ð24Þ

where

LðgðycÞ,ycÞ ¼ oþkVeexpð�ieyÞ� aUk siny cosy
r yc

� �
gðycÞ

DT
þ
oQV cosy

cpD2
T

S:

ð25Þ

We search for a solution of Eq. (24) around the Mullins–
Sekerka solution [12] with a constant amplitude g(yc)¼Tl 0¼const.
Substitution Tl 0 in the right-hand side of (24) gives the first order
approximation for g(yc). The result is

gðycÞ ¼ Tl0�
o

2ek þ
V

2
expð�ieyÞ� aU siny cosy

4kr i

� �
Tl0

DT

�

þ
oQV cosy
2D2

T cpek
S

#
ycþ

aU siny cosy
4erDT

iT l0y2
c , ð26Þ

where the strong inequality V=DT 5k is taken into account (we
estimate k from the Mullins–Sekerka theory as 107 m�1 [12] and
V/DT as 102 m�1 for metallic binary alloys).

Eq. (3) written for the concentration perturbations C0l in the
liquid can be solved in the same manner. The result is

C0l ¼ hðycÞexpðotþ ikxc�ekycÞ,

hðycÞ ¼ Cl0�
aUk siny cosy

2rDCðV cosy=DC�2ekÞ
iC l0y2

c

þ oþVke expð�ieyÞþ aUk siny cosy
V cosy=DC�2ek

i

r

� �
Cl0

DC

�

þ
oCið1�k0ÞV cosy

D2
C

S

)
yc

V cosy=DC�2ek : ð27Þ

Now, expanding the boundary conditions (4) and (5) in a series,
we arrive at the following set of conditions imposed at the solid–
liquid interface yc¼0:

T 0l ¼
QV cosy

DT cp
x0�mC0lþ

mCið1�k0ÞV cosy
DC

x0�
Qd

cp

@2x0

@y2
c

,

T 0s ¼mC0l�
mCið1�k0ÞV cosy

DC
x0 þ

Qd

cp

@2x0

@y2
c

,

Q

cp

@x0

@t
¼DT

@T 0s
@yc
�
@T 0l
@yc
�

QV2 cos2 y
D2

T cp
x0

 !
,
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1�k0

DC
ðCiv

0�V cosyC0l Þ ¼
@C0l
@yc
þ

Cik0ð1�k0ÞV
2 cos2 y

D2
C

x0, ð28Þ

where d¼ scpT0=Q2 stands for the capillary length. Substitution of
perturbations (21), (23) and (27) into the boundary conditions
(28) gives four linear relations for the perturbation amplitudes S,
Tl 0, Ts 0, and Cl 0.

To emphasize the method of deduction of the dispersion
relation from Eq. (28), consider a frame with the normal axis and
tangent axis to the interface and whose origin moves normally to
the solid–liquid interface at the velocity V cosy. Because of the
rotational symmetry of the system, a perturbation of wave
number k grows with the rate oðkÞ. If now the origin of the
frame moves in the z-direction with the constant velocity V, the
growth rate of the same perturbation is oðkÞþ iVk siny due to the
tangential velocity of the new frame V siny [19]. Therefore,
replacing oðkÞ by �iVk siny at the neutral stability curve and
eliminating the perturbation amplitudes from expressions (28),
we arrive at the following equation for the wave number k:

k2 ¼
V

2dDT
þ

mCið1�k0ÞV

dðQ=cpÞDC

� �
expðiyÞ�

aU siny cosy
8rDT

i

þ
mCið1�k0ÞaUV siny cosy

8dðQ=cpÞrD2
Ck2

2V cos2 y
DCk

i�siny
� �

, ð29Þ

where, in accordance with our estimates k� 107 m�1,
V=DT � 102 m�1, V=DC � 106 m�1, U � V , d� 10�10 m, r� 10�5 m,
we write down only the terms corresponding to the solution in
the absence of a forced flow and terms describing the influence of
this flow for pure thermal and impurity problems. The first term
in the right-hand side of Eq. (29) is the solution of the thermal
problem without impurities and external flow [17,18,23], the first
two summands give the solution of the thermal problem
complicated by impurity transport in the liquid without external
flow [19], the first and third summands describe the solution with
a forced flow in the absence of the solute transport [18]. As a
result, solution of the complete Eq. (29) gives the critical wave
number with which perturbations neither grow or decay at the
dendrite tip growing into the binary system under convective
flow.

4. Solvability condition and stability criterion

Now, we consider the case of a fourfold symmetry of the
crystal. Therefore, the capillary length can be written as
dðyÞ ¼ d0ð1�b cos 4yÞ, where b¼ 15ec 51 is the anisotropic factor,
ec is the strength of anisotropy of the surface energy at the solid–
liquid interface, and d0 the capillary constant.

Substituting the wave-number kTC corresponding to their
solution in the right-hand side of (29) and expanding the terms
containing the fluid velocity U in series in y, we can get an
approximate expression for the wave-number as

k¼ kTC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
expðiyÞþ iað1�b cos 4yÞ siny cosy

1�b cos 4y

s
, ð30Þ

where kTC the critical wave-number for the non-isothermal binary
system and a the parameter which defines intensity of convective
flow by the external flow velocity U. These are

kTC ¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VP

2d0DT

s
, P¼ 1þ

2mCið1�k0ÞDT

DCQ=cp

� �
,

a¼ aUd0

4PrV
1þ

2DT

DC
�

4ð1�k0ÞmCiD
2
T

PðQ=cpÞD2
C

 !
: ð31Þ

Taking into account that

l¼�
r
2

tany
cosy

þ ln
1

cosy
þtany

� �� �

(see, among others Ref. [23]), let us rewrite the solvability
condition (15) by analogy with Bouissou and Pelce [18] in the
formZ þ1
�1

GðwÞ exp½
ffiffiffi
C
p

CaðwÞ�dw¼ 0, w¼ tany, ð32Þ

where

CaðwÞ ¼
i

2

Z w

0

½ð1þ iw0Þð1þw02Þ5=2
þ iaw0Bðw0Þ�1=2 dw0ffiffiffiffiffiffiffiffiffiffi

Bðw0Þ
p ,

BðwÞ ¼ ð1þw2Þ
2
ð1�bÞþ8bw2, ð33Þ

and constant C is normalized by a factor VPr2=ð2d0DT Þ.
We evaluate this integral in the limit of small anisotropy by

means of the method developed by Bouissou and Pelce [18]. The
numerator of the integrand vanishes for w close to w¼ i

(stationary phase point) and the denominator for w¼ ið1�
ffiffiffiffiffiffi
2b

p
Þ

(point of singularity). As the dominant contribution to the integral
is determined by the neighborhood of w¼ i, function CaðwÞ can be
approximated by

CtðjÞ ¼ 29=8b7=8
Z j

1=
ffiffiffiffiffi
2b
p
½j07=2�tðj02�1Þ�1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j02�1
p dj0, ð34Þ

with

w¼ ið1�
ffiffiffiffiffiffi
2b

p
jÞ, t¼ 2�5=4b�3=4a:

The integral (34) can be approximately calculated by analogy
with the similar integral met in the problem of dendritic growth
in a pure (one-component) system [18]. Following the result of
this analysis, only two dominant contributions to the integral (34)
exist: the contribution from the loop and the contribution from
the stationary phase points. The first of them should be calculated
between a distance � t2=7 (a splitting distance of the stationary
phase points) at the intersection of the steepest descent path and
the real axis and j¼ 1. It gives an oscillating factor to the
exponentially small value of the integral which behaves as
cos½A1

ffiffiffi
C
p

b7=8
ð1þB1t11=10Þ�. Each stationary phase points contri-

butes by a term with oscillating part of the form
cos½A2

ffiffiffi
C
p

b7=8
ð1þB2t11=10Þ�, where A1, A2, B1 and B2 are constants.

The cancelation of the sum of these contributions in Eq. (30) gives
the following selected values of C

C ¼
n2

b7=4
½1þbðb�3=4aÞ11=14

�, ð35Þ

where n is an arbitrary integer and b a numerical constant.
Substitution of the normalization requirement into Eq. (34) leads
to the expression for the scaling factor s� in the form

s� � 2d0DT

r2V
¼ s0b

7=4 1þ
2DT ð1�k0ÞmCi

DCQ=cp

� �
½1þbðb�3=4aÞ11=14

��1,

ð36Þ

where s0 stands for a numerical constant which can be found
from the asymptotic analysis [15] or from the fitting of the model
predictions to experimental data.

5. Discussion

Eq. (36) is the central result of our treatments. It gives a
criterion for the stable mode of a dendritic tip in the presence of
anisotropy of surface energy (by the parameter b) and for the non-
isothermal binary systems under forced flow in the liquid
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phase. The criterion joins results obtained from the dendritic
model of Bouissou and Pelce [18] for the non-isothermal pure
(one-component) system with convective flow and the dendritic
model of Ben Amar and Pelce [19] for non-isothermal binary
stagnant system. Hence, from the criterion (36), previously
obtained results on selection of stable modes in the growing tip
dendrite can be summarized as follows.

5.1. Comparison with previous models

5.1.1. Growth under forced convection in a pure (one-component)

system

With infinite solute diffusion, DC-1, the parameters P and a
in Eqs. (30) and (31) are equal to P¼1 and a¼ aUd0=ð4PrVÞ,
respectively. In this case criterion (36) transforms into the result
extracted from analysis of Bouissou and Pelce (see Eq. (45) in Ref.
[18]). Note that with U¼0 and a¼ 0, Eq. (36) further transforms to
the case of dendritic growth in a pure stagnant system [15,17].

5.1.2. Growth in a stagnant binary system

In Eqs. (30)–(31), the wave-number kTC being consistent with
those one given by Ben Amar and Pelce (see Eq. (50) in Ref. [19]).
With the absence of convection, i.e., at U¼0 and a¼ 0, the system
of Eqs. (30)–(31) completely merges with the results of Ref. [19].

5.2. Effect of convective flow on the stable mode of dendrite tip

growth

Now, we quantitatively evaluate effect of the forced flow on
the growth of the dendritic tip. It is done in examples of the
critical wave-number for neutral branch of the stability curve as
well as for the stability criterion for the stable mode of the
dendrite growth. In calculations the following values are accepted
(which are closely related to values of parameters for metallic
binary systems): dimensionless ratio of the thermal diffusivity
and kinematic viscosity is DT=n¼ 10, dimensionless ratio of the
capillary constant and dendritic tip radius is d0=r¼ 10�5,
anisotropy parameter is b¼ 0:195, dimensionless ratio of the
thermal diffusivity and atomic diffusion coefficient is
DT=DC ¼ 5� 103, coefficient of solute distribution is k0¼0.5,
concentration in the liquid far from the interface is C1 ¼ 1 at%,
slope of the liquidus line is m¼10 K/at%, and ratio of the latent
heat and specific heat is Q/cp ¼ 300.

First, the modulus of the critical wave number (30) can be
presented as jkj=jkja ¼ 0, where jkja ¼ 0 is the modulus of the wave
number without convection (U¼0) in a binary system. Fig. 1
demonstrates that with the decreasing of the intensity of flow the
critical wave number increases for a fixed growth Peclet number
Pg. Therefore, one can conclude that the convection shifts the
critical wave number to the region of smaller jkj. In other words,
the critical wave-length becomes larger in the presence of
convection.

Second, the complete stability criterion (36) can be rewritten
in the following form:

s�

s�ja ¼ 0
¼ ½1þbðb�3=4aÞ11=14

��1, ð37Þ

with

s�ja ¼ 0 ¼ s0b
7=4 1þ

2DT ð1�k0ÞmCi

DCQ=cp

� �

the criterion of growth in stagnant binary system. As is shown in
Fig. 2, with the decreasing the flow Peclet number Pf and
increasing of the growth Peclet number Pg the contribution of
the convection into the stability of the dendrite tip gradually
decreases.

6. Conclusions

The two-dimensional problem of a steady-state dendritic
growth with forced convective flow was taken up in a binary
system. For the axi-symmetric crystal shape with anisotropy of
surface energy, the analysis of a stable mode for tip of parabolic
dendrite is performed. The critical wave-number is found as a
marginal state at which perturbations neither grow or decay. The
solvability condition gives a stability criterion (36) of an operating
dendritic mode for a binary system under convective flow.

As a final note, the criterion (36) is derived for small growth
Peclet numbers Pg ¼ Vr=ð2DT Þ. Consequently, the present analysis
of the influence of convection on dendrite growth is restricted to
small growth velocity V and the narrow region of the ratio Peg/
Pef¼V/U. The extension to the region of arbitrary values of Pf will
be given in a forthcoming article.

Fig. 1. Ratio for the critical wave number jkj=jkja ¼ 0 as a function of the growth

Peclet number Pg ¼ Vr=ð2DT Þ and various selected values of the flow Peclet

numbers Pf ¼Ur=ð2DT Þ as predicted by Eqs. (30) and (31).
Fig. 2. Ratio s�=s�ða¼ 0Þ as a function of the growth Peclet number Pg and various

selected values of the flow Peclet numbers Pf as predicted by Eq. (37).
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