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Abstract  

One common method to estimate biomass is measuring forest height and applying allometric equations to get 
forest biomass. Conditions like changing forest density or changing forest structure bias the allometric relations 
or biomass estimation fails completely. Remote sensing systems like SAR or LIDAR allow to measure vertical 
structure of forests. In this paper it is investigated whether vertical structure is sensitive to biomass. For this pur-
pose vertical biomass profiles were calculated using forest inventory data. Fourier and Legendre decomposition 
were tested and finally, vertical structure was quantified by decomposing the biomass profiles by means of Leg-
endre polynomials. This is a case study based on inventory data from the Traunstein test site, a temperate mixed 
forest, located in the southeast of Germany.  
 

1. Introduction 

Forest biomass stock and spatial distribution is still an 
unknown parameter for many forest regions of the 
world. Today’s information is largely based on ground 
measurements on a plot basis without remote regions 
coverage. At the same time, magnitude, location and 
causes of several terrestrial carbon sinks are not well 
quantified [1]. Thus, a method capable of quantifying 
biomass by means of Remote Sensing could help to 
reduce these uncertainties and contribute to a better 
understanding of the carbon cycle.  

In this paper, a new approach for biomass estimation 
based on the vertical forest structure is proposed. This 
approach, can be implemented by remote sensing sys-

tems, like multibaseline SAR or LIDAR, being able to 
resolve the vertical structure of forests. 
The investigations are based on inventory data from 
the Traunstein test site, a highly structured temperate 
mixed forest situated in the south east of Germany. 
On the test site 231 ground plots (0.05 ha) on a 100m 
by 100m grid were measured. Main tree species are 
Norway spruce (Picea abies), beech (Fagus sylvatica) 
and silver fir (Abies alba). The maximum biomass per 
plot is 800 Mg/ha with a forest maximum measured 
height of 45 m. Average tree Biomass level is around 
350 Mg/ha.  
 
1.1 Biomass a function of Height 

In [9] a biomass estimation using the allometric rela-
tionship between biomass and forest height from 
ground inventories has been proposed:  
 

58.166.1 HB                        Eq.1 
 

where B is the biomass and H forest top height.  
This approach performs best for fully stocked single 
species even-aged forest systems, while changes in 
density and structure due to management, distur-
bances, or species composition introduce significant 
deviations. Figure 1 shows the height to biomass rela-
tion for Traunstein test site, where biomass saturation 
achieves high values (~800 Mg/ha, for 0.05 ha plots). 
However, in this scenario the changing conditions of 
the forest in terms of density, tree species composition 
and management system limit the accuracy using 
Equation 1 to estimate biomass from height measured 

 
Figure 1. Height-Biomass relation on forest 
level. 
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by remote sensing techniques like Pol-InSAR [1]0-
[7]. Forest structure heterogeneity increases the vari-
ance in the height to biomass allometry so that the re-
lationship between height and biomass becomes inac-
curate for complex forest systems, as in the case of 
Traunstein test site. 
To improve biomass estimation accuracy in heteroge-
neous forest systems, additional forest parameters 
need to be measured. While density or species com-
position are rather difficult to be estimated by SAR, 
Multibaseline (Pol-In) SAR techniques are able to re-
solve forest vertical structure [2][3]0[5][8][10] 
[11][12]. It can be hypothesized that vertical forest 
structure is a suitable predictor for forest biomass 
from itself but also as it is related to density and spa-
tial species composition. 
In this context, the main objective of the present study 
is to investigate whether vertical forest structure, at a 
plot level, is linked to total biomass and to develop a 
methodology for estimation above-ground biomass 
from forest structure parameters.  

2. Biomass Profiles 

2.1 Physical interpretation. 

Forest structure depends on competition amongst 
trees and their static characteristics. Competition is 
based on the availability of three types of resources: 
nutrients, light and water. Thus, the capacity of the 
trees to asses them, defines their form and height, 
leading to a characteristic spatial distribution within 
the forest. Accordingly, an important factor that im-
pacts the structural evolution of a forest is the limited 
availability of resources determining the amount of 
biomass that an ecosystem can produce.   

Forest structure changes in time due to mainly forest 
growth and dieback but also by human impact (log-
ging and harvesting) and other calamities (fire, storm 
damages or insect diseases…). Hence, a stand with a 
constant top height changes as the different compo-
nents of the system (trees) change and occupy the 
available space, depending on the ongoing processes 
or disturbances. The theory of allometry is based on 
the relations between living organisms to derive bio-

mass from single variables, like ground measured 
height [9]. 
 
2.2 Biomass Profiles.  

Above-ground biomass of a single tree can be divided 
into two main components: crown and stem. As the 
exact biomass content of a stand is a parameter that 
requires intensive measurements, allometric relations 
are used to define the biomass of stems and crowns. 
Allometric equations are species dependent and are 
chosen to fit best to the growing conditions found in 
the test site [13][14]. Defining the form of stem and 
crown as well as amount of biomass per compartment 
for every tree, a vertical biomass distribution in 1m 
steps is given.  
A vertical biomass profile is obtained by summing up 
the biomass of all trees within a measurement plot 
(0.05ha) in 1m steps along height (see Figure 2-left). 
Profiles can be characterized by decomposing them 
into a set of basis functions. Two sets of functions 
have been applied: Fourier and Legendre series.  
Fourier series: a biomass profile function B(z) is ex-
pressed by a set of sines and consines functions: 
 
 
 
where: 
 
 
 
 
 
 
 
The profile is assumed to be represented within one 
period [-π, π]. The Legendre series B(z) described as 
[2][10][11]: 
 
 
 
 
 
where an is the Legendre coefficient and equation 5 
shows the Legendre polynomial up to the fourth order 
as a function of height: )(zPk  where k stands for the 
order (0 to 4). 
 
 
 
 
 
 
 
 
 
The ability of both methods to reconstruct vertical 
biomass profiles is compared in Figure 2-right. Leg-
endre polynomials tend to reconstruct the original 

 
Figure 2.  Biomass profiles. Left: sample vertical 
biomass profile; right: Reconstruction of biomass 
profiles with 5 Legendre components (green) and 
Fourier coefficients (red). 

 
 

   

   

   33035
8

1

35
2

1

13
2

1

1

2
4

2
3

2
2

1

0










zzzP

zzzP

zzP

zzP

zP































dznzzBb

dznzzBa

dzzBa

n

n

)sin()(

)cos()(

)(0

Eq.2

Eq.3 

Eq.5

Eq.4

 









1 1

0 )sin()cos(
2

)(
n n

nn nzbnza
a

zB  












1

1

)()(
2

12

:;)()(

dzzPzB
n

a

wherezPazB

nn

n
nn

902



profile with fewer components and adopt better the 
main features of the profile (especially in the bottom a 
top of the curve). Fourier reconstruction tends to un-
derestimate biomass in the lower parts of the profile 
and overestimate in the upper because it is forced to 
keep the same value at the beginning and the end of 
the period. Thus Legendre polynomials are chosen for 
a further analysis.  

The first Legendre component P0 (z) describes a box 
with the same integral as the vertical biomass profile. 
P1 (z) to P3 (z) describe vertical structure as the pro-
portion of the total biomass accounted by each poly-
nomial (see Figure 3). For the rest of the polynomials 
any correlation with the total biomass was found. 

3. Validation 

)(1 zP  to )(3 zP  cover the structural parameter sensi-
tivity to total biomass. They were used to investigate 

the structure to biomass relationship. In Figure  bio-
mass covered by Legendre polynomial  P1 (z) to P3 (z) 
is plotted against total biomass describing a linear re-
lationship, which can be described by: 
 
 

B is the biomass in Mg/ha, H the height of the profile 
in m; a  the Legendre coefficient, i the samples along 
height (intervals of 1m), P the Legendre polynomial 
and j the order of the Legendre polynomial. 
The correlation coefficient is with an r² 0.92 very high 
proofing a strong relation amongst the two parame-
ters.  

To test the robustness of Equation 3 a performance 
analysis by means of a Monte Carlo simulation was 
performed. For this purpose, deviations of 10%, 20%, 
30% and 40% from the real values (assuming a Gaus-
sian distribution) were added on the Legendre coeffi-
cients a1 to a3 and on forest height. Results from error 
analysis are summarized in Table 1. 

Figure 4 shows results of the Monte Carlo simulation 
for the 10% error. The blue and yellow lines show the 
fitted lines for the maximum deviations. Changes in 
the Correlation coefficient and in the root mean 
square error (RMSE) are shown in Figure 6. For the 
10% error case (Figure 6 top) the RMSE moves 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Correlation of the biomass represented 
by individual Legendre Components (0, 1, 2 and 
3) versus total biomass.. 

 
Figure 4.  Measured (real) biomass vs. esti-
mated biomass; Performance analysis for 10% 
standard deviation for each component with 
lower (yellow) and upper (blue) boundary of the 
fitted line.  

 
Figure 5.  Biomass represented by Legendre Co-
efficient 1 to 3; Correlation coefficient r²=0.92. 

j

H

i j
j PaB 

 


0

3

1

88.2

Table 1. Results of performance analysis 
(Monte Carlo simulations). 
 

 
 

RMSE (Mg/ha) r2 

Deviation Min  Max Mean Min  Max  Mean

10% 4 6 5 0.89 0.93 0.91 
20% 3 10 6 0.87 0.94 0.90 
30% 2 11 6 0.85 0.92 0.89 
40% 1 13 7 0.68 0.81 0.88 

Eq.6 
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around 5Mg/ha with r² around 0.91(see Table 1). For 
a 40% error (Figure 6 bottom-left) the RMSE in-
creases until 7 Mg/ha with a low variance. The corre-
lation coefficient decreases to 0.88 with high variance 
and showing a second relative maximum in 0.73 
(Figure 6 bottom-right). Monte Carlo simulations 
show that biomass reconstruction is stable at least for 
deviations up to 30%.  

4. Conclusions.  

The results of this study indicate a strong relation be-
tween vertical structure of forests and above-ground 
biomass. Compared to a simple height to biomass re-
lation the correlation is significantly improved, from a 
correlation coefficient r2 0.52 to r2 0.92.  
Legendre polynomials are performing well when used 
to describe vertical forest structure. Biomass is pri-
mary related to low frequency Legendre components. 
There is also a strong indication that the polynomials 
up to the third order are sufficient to describe vertical 
forest structure for biomass estimations. The investi-
gation was done on inventory data from a single test 
site. Validity of this approach needs to be tested on a 
larger range of forest conditions.  
It was shown that the approach is quite stable, even 
errors of 30% leaded to acceptable results.   
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Figure 6. Histograms of performance analysis 
with 10 % error in the upper line and 40% in the 
lower; left: Root Mean Square Error (RMSE); 
right: Correlation Coefficient  
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