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Abstract – This work presents a new approximation for the Kolmogorov complexity 
of strings based on compression with smallest Context Free Grammars (CFG). If, for 
a given string, a dictionary containing its relevant patterns may be regarded as a 
model, a Context-Free Grammar may represent a generative model, with all of its 
rules (and as a consequence its own size) being meaningful. Thus, we define a new 
complexity approximation which takes into account the size of the string model, in a 
representation similar to the Minimum Description Length. These considerations 
result in the definition of a new compression-based similarity measure: its novelty lies 
in the fact that the impact of complexity overestimations, due to the limits that a real 
compressor has, can be accounted for and decreased. 

 
1. Introduction 
 

The Kolmogorov complexity K(x) of an object x, defined as the length of the shortest 
description of x, represents an ideal quantification of the intrinsic information content of a 
string [1]. This idea, being uncomputable, could be labelled as exquisitely theoretical: yet, 
practical uses relying on its approximations have been described. Li and Vitányi proposed the 
most widely used computable approximation of K(x), the size C(x) of the compressed version 
of x, obtained by means of any off-the-shelf compressor, considering the shortest description 
of a string as the lower bound for what a real compressor can achieve [2]. This allowed the 
definition of the Normalized Compression Distance (NCD), a similarity metric successfully 
applied to diverse datasets [3]. Nevertheless, other compression-based techniques had been 
described before the definition of NCD and successfully employed to perform unsupervised 
clustering and classification. The first important work in this field was the definition by 
Benedetto et al. in [4] of an intuitive relative entropy distance between two isolated strings, 
with the link between this notion and algorithmic information theory being established in [3]. 
A few months later, Watanabe et al. used a different approach based on the direct extraction 
of dictionaries from representative objects, the Pattern Representation using Data 
Compression [6]. These dictionaries are used in a second step to compress general data, 
previously encoded into strings, and estimate the amount of information shared by the chosen 
objects. The dictionary containing the relevant information of an object, or class of objects, 
may be in turn regarded as a model for that object [7]: we propose then a new estimation for 
K(x) which takes into account not only the size of the compressed file C(x), but also the 
complexity of the dictionary D(x) used to compress x, in a two-part representation with a 
formalism similar to Rissanen’s concept of Minimum Description Length (MDL) [8]. To 
estimate the complexity of the model we use as dictionary an approximation of the smallest 
Context Free Grammars (CFG), regarded as a generative model of the string: this allows 
defining a new compression-based similarity measure, in which the typical complexity 
overestimations introduced by real compressors are accounted for and decreased. 
Furthermore, the separation between the complexities of model and data given the model 
allows tuning the complexity estimation, to focus on the data structure represented by the 



model rather than on the full data, and may be adopted to separate meaningful information 
from noise.  

The paper is structured as follows. Section 2 introduces the ideas of Kolmogorov 
complexity and compression-based similarity measures. The proposed complexity estimation 
using CFG is introduced in section 3, while section 4 presents some applications to DNA 
genomes and satellite images. We conclude in section 5. 
 
2. Preliminaries 
 
2.1. Kolmogorov Complexity and Normalized Information Distance 
 
The Kolmogorov complexity of a binary string is the size in bits (binary digits) of the shortest 
self-delimiting program q used as input by a universal Turing machine to compute x and halt:  
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with Qx being the set of instantaneous codes that generate x [1]. One interpretation of K(x) is 
as the quantity of information needed to recover x from scratch. So, strings presenting 
recurring patterns have low complexity, whereas the complexity of random strings is high and 
almost equals their own length. It is important to remark that K(x) is not a computable 
function of x. The joint complexity K(x,y) is defined as the length of the shortest program 
which outputs x followed by y. An important application of these notions is the ultimate 
estimation of shared information between two objects: the Normalized Information Distance 
(NID) [2]. The NID minimizes any admissible metric, and is proportional to the length of the 
shortest program that computes x given y, as well as computing y given x. The distance 
computed on the basis of these considerations is, after normalization, 
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The NID is a metric, so its result is a positive quantity r in the domain 0 ≤  r ≤1, with r = 0 

iff the objects are identical and r = 1 representing maximum distance between them. 
 
2.2. Normalized Compression Distance 
 
Since the complexity K(x) is not a computable function of x, Li and Vitányi define a suitable 
approximation by considering it as the size of the ultimate compressed version of x, and a 
lower bound for what a real compressor can achieve [3]. This allows approximating K(x) with 
C(x) = K(x) + k, i.e. the length of the compressed version of x obtained with any off-the-shelf 
lossless compressor C, plus an unknown quantity k:  the presence of k is required by the fact 
that it is not possible to estimate how close to the lower bound represented by K(x) this 
approximation is. To clarify this consider two strings b and p having the same length n, where 
the former is the random output of a Bernoulli process, and the latter represents the first n 
digits of the number π . The quantity K(p) will be much smaller than K(b), since exists a 
program of length K(p) << n that outputs π , while a program that outputs b will have a length 
close to n: K(p) << K(b).  Nevertheless, a standard compressor will not be effective in 
representing neither b nor p in a compact way, so nbCpC ≅≅ )()( . This example shows how 
k ranges from a negligible value to a strong bias for the complexity estimation. The equation 
(2) can be estimated by the Normalized Compression Distance (NCD) as follows: 
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where C(x,y) is an approximation of the joint Kolmogorov complexity K(x,y) and represents 
the size of the file obtained by compressing the concatenation of x and y . The NCD can be 
explicitly computed between any two strings or files x and y with a basically parameter-free 
approach. It has to be remarked that the approximation of K(x) with C(x) is data dependant, 
being some compressors more efficient than others on certain data types. Therefore, the 
choice of the compressor is not a free parameter in itself: for each dataset a compression 
algorithm able to fully exploit the redundancies in that kind of data should be adopted [9]; 
better compression, in fact, means better approximation of the Kolmogorov complexity. 
Performance comparisons for general compression algorithms have shown that this 
dependence is generally loose [10], but increases when compressors for specific data types are 
employed: for example, good results have been achieved by using image compressors such as 
Jpeg2000 in applications to satellite images [11], by exploiting the vertical spatial information 
within the images intrinsically within the computation of the information distance, whereas a 
compressor for general data is limited since it linearly scans the data, failing at capturing the 
full information about the spatial distribution of the pixels. 

About other fields of applications, the choice of ad hoc compression algorithms for 
sequences of DeoxyriboNucleic Acid (DNA) and RiboNucleic Acid (RNA) yields better 
results for unsupervised clustering of genomes belonging to different species [13] or for the 
estimation of the information content in the sequences [14].  

 
2.3. Kolmogorov Complexity and Minimum Description Length 

 
The Minimum Description Length (MDL) of an object x is the shortest combination of the 

description for one of the available models describing x and the description of x given that 
model [8]. Relations between MDL and algorithmic complexity have been considered in 
many works, see for example [15-17]; the Kolmogorov complexity of an object x may be 
regarded as the MDL consisting of the size of the representation of the best model Mx of x, 
plus the length of the description of x according to Mx, but in Kolmogorov’s frame the model 
and the data given the model are indissolubly joint and the description of Mx is implicit. So, 
for every x, we have )()( xMDLxK ≤ . Recently Kolmogorov complexity has been also 
considered to be a way to formalize the celebre empiric rule known as Occam’s razor [18], 
which basically states that, if many explanations exist for a given phenomenon, one should 
always choose the simplest one. An event x is likely to have been generated by its simplest 
model as well in MDL (if the size of the representation of x does not vary), which is in turn 
assimilated to the shortest program which outputs x in Kolmogorov’s frame. A formal two-
part model for complexity in terms of Kolmogorov bringing the notions of algorithmic 
complexity and MDL even closer is introduced by Guegen and Datcu in [19]. Connecting 
these topics to compression-based similarity measures is the MDL-Compress algorithm, 

1. Identify symbols a  and b  such that ab  is the most frequent pair of adjacent symbols 
in the dataset previously encoded into a string. If no pair appears more than once, stop. 

2. Introduce in R a new rule abA → . 
3. Replace all occurrences of ab with A . 
4. Repeat from step 1. 
 
Fig. 1. Pseudo-code to generate the set of rules R constituting an approximation of the smallest Context-Free 
Grammar G(x) related to a string x. 



applied to network security in [20]. 
 
3. Complexity Approximation with Grammars 
 
3.1. Complexity Approximation using Smallest CFG 
 

A two-part complexity approximation for a string x would consist of the complexity of a 
model for a string, plus the complexity of the data given the model. Considering then a 
dictionary D(x) as extracted in [6] as a data model for x [7], and keeping in mind the 
formalism of MDL, we could assimilate the complexity of x to the following two-part 
representation: 

 
)()()( xDxCxK +≈  .                         (4) 

 
Nevertheless, it is hard to estimate (4) if we consider the technique described in [6], since 

dictionaries are extracted with a LZ-family compressor [12], and contain redundancies 
(having the prefix-closure property) and elements which are not relevant (never used in the 
compression step). From a completely random string r, with a large enough alphabet, in which 
a pattern is never repeated twice, we would extract a dictionary D(r), with a size |D(r)|>0 and 
a certain complexity, that would not be able to compress at all r, from which it was extracted. 
The estimated complexity would be then clearly overestimated, if we attain ourselves to (4). 
We are interested then in computing the smallest dictionary D(x) useful in compressing x, 
which as a consequence is empty if x cannot be compressed, and in estimating its complexity.  

The solution is to consider an approximation of the smallest grammar G(x) which contains 
all the relevant patterns within x. This idea comes from the link between Kolmogorov 
complexity and the smallest CFG generating a string. Both of them are not computable and 
represent the most compact representation of the object that can be achieved: the problem of 
finding the smallest grammar which generates a string is NP-hard, and this problem is 
assimilated to the computation of the Kolmogorov complexity of the string itself [21] [22]. 
The CFG generating x can be regarded as a generative model for x, representing a compact 
representation of the regularities within the data, and its set of production rules R may be 
regarded as a list of entries in a dictionary. In this work we use an approximation for smallest 
context-free grammars introduced by Larsson and Moffat in [23], described by the pseudo-
code in Fig. 1. Finally, we can introduce our complexity approximation based on compression 
with smallest grammars Cg(x), defined as follows: 
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where xC  is the number of elements of the object x, initially composed by N elements, after 
being compressed by G(x). The latter contains a set of production rules R which may be 
regarded as the smallest dictionary of x, and has a size |G(x)| equal to the total number of rules 
in R. It is important to notice that the complexity estimation in the second term of the equation 
decreases as the compression power of its production rules grows. Thus, the complexity 
overestimation due to the limits that a real compressor has is accounted for and decreased, 
when the possibility of compactly representing x is found. This approximation for complexity 
gives by definition 0)( =xCg  if x  is the empty string, and has the following characteristics. 
 



Lemma 1. The second term of the sum, representing the complexity of the data model, is 
bounded between 0 and )(xG  - This corrects the overestimated size of  )(xG  for a very 
simple object x , which we assume could be described in a more compact form than its 
compression with an approximated smallest grammar: in other words, this term accounts for 
complexity overestimations due to the limits that a real compressor has. When the grammar 
grows in size and complexity and is not very effective at compressing x , the second term 
approaches its limit )(xG .  

Proof – It has to be shown that the factor in parentheses lies in the interval [0,1). To state 
that it is upper bounded by 1 it is sufficient to notice that all the values in the term 

|)(|log
log

2

2

xGC
N

x+
 are positive, and when this term goes to 0 the upper bound is approached, but 

never reached since N2log  is always strictly positive (note that we are in the case 1>N ). 
Showing that the lower bound is 0 is equivalent to state that the following holds: 
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In the limit case of 0)( =xG , we have that NCx = , the equation above is true and the 
lower bound of 0 is reached. If we add any production rule to the grammar, the term to the 
right in (6) does not decrease; consider that the best compression that we can achieve, after 
the introduction of a single new rule in R ,  is reducing x  to a size 2/xC , in the limit case of 
a pattern composed of two symbols repeated for the whole length of the string, i.e. 2/N  
times: thus, after adding such rule to the grammar, the term to the right of the equation doesn’t 
change, since xC2log  decreases by 1, while )(xG  increases by 1. If instead we add a rule 

which is not optimally compressing x , xC2log  decreases by a quantity 1<Δ , while )(xG  
still increases by 1. So the term to the right in (6) is lower bounded by N2log . Note that, as 

)(xG  grows with rules that are not optimal in compressing x , the term in parenthesis in (5) 
approaches 1, avoiding to give a strong “discount” to the complexity of the grammar adopted. 
The complexity of the data model does not derive directly from the space needed to store the 
set of production rules contained in )(xG : in fact, it is always smaller.  

The fact that a single rule which compresses x  to a size of  2/N  does not increase our 
complexity estimation is justified by another consideration: we could have reduced to 2/N  
the size of x  by modifying our coding of the source, generating a string  'x  which would be 
as complex as x . 

 
Lemma 2. Cg(x) is upper bounded by the size N of x   - The size N of x  is the same 

quantity bounding the Kolmogorov complexity )(xK  for a maximally random string. 
Proof – Consider the limit case of x  being maximally random and not compressible at all: 

it will produce an empty grammar, erasing the second term of the sum in (5), i. e. NCx =  and 
0)( =xG . If on the contrary x  can be compressed, each rule added to the grammar will 

decrease xC  of at least two, and increase the second term of the equation of at most one. In 
any case, the sum will never exceed N. 

 
Lemma 3. Cg(x) is not a monotone function of x – It does not hold the property 

),()( xCgxyCg ≥  yx,∀ . 
Proof – It is enough to provide a counterexample for which )()( xCgxyCg ≥  is not true. 

Suppose to have a binary string { }000=s , with 0|)(| =sG , 3=Cs , and a complexity 



3)( =sCg , another string { }0'=s , and the concatenation { }0000'=ss , with 1|)'(| =ssG , 
2' =Css , and 2)'( =ssCg . So the complexity decreases: this is because the size of 'ss  is now 

a power of 2, allowing better compressibility (see also lemma 4). Even if the monotonicity 
property is not respected, it may be argued that a very simple binary string with a size which 
is a power of 2 would be more easily built by a program running in a universal Turing 
machine. Also, this property could be satisfied by changing the way in which the grammar is 
built, allowing for a dynamic representation of patterns of different sizes, or different 
encodings for long runs of the same symbols-sequences: this would require a more complex 
approximation of the CFG that is outside the scope of this paper. This example also indicates 
that our complexity approximation works better on long strings, since on the long run these 
differences become negligible. 

 
Lemma 4. Complexity of a maximally redundant object x  does not increase with its size N, 

if { }Np p =∃ 2|  – When x  is maximally redundant,  )(xCg  is constant if its size N is a 
power of two. 

Proof – Consider, without loss of generality, a string { }01=x  with initial complexity 
2)( =xCg . If we append to x its copy, we obtain { }22 01=x  which will generate a rule in the 

grammar )(xG  of the kind 01>−A : after compressing 2x  with )(xG  we still have 
2)( 2 =xCg . Appending again x to 2x  will result in a new rule AAB >− , which again will 

yield  2)( 3 =xCg . This process can be repeated over and over. It has to be noticed that, if the 
size N  of x  doesn’t satisfy { }Np p =∃ 2| , )(xCg  increases of a small quantity; it should be 
considered that a simpler algorithm is required in a low-level language to output a string 
which size is a power of 2. 

 
Lemma 5. The estimated complexity Cg(x) of an object x almost equals the complexity 

Cg(xx) of the concatenation of x with itself - the complexity of the concatenation of an object 
x  with itself, or with an identical object y ,  is very close to the complexity of x  considered 
separately.  

Proof – Merging two identical objects x  and y  will create a repeated sequence: so, after 
substitution of the most recurring patterns, each subset of x  and y  will have a counterpart in 
the other object and will be added as a pattern to the CFG. Substitution of each of these 
sequences, which occur only twice in the whole xy , will make in (5) decrease the first term of 
the sum by one for each substitution, and bring the second term close to )(xyG , at the same 
time increasing it by 1 for each rule, balancing the decrement of the first term. An important 
consequence of this property is that )()()( yCgxCgxyCg ≅≅ , if yx = . 

Verification – To confirm empirically the validity of this property we carried out some 
experiments on 200 different strings, considering their complexity after concatenation of the 
objects with themselves: the average absolute difference between Cg(x) and Cg(xx) was less 
than %1.0 , which confirmed our hypothesis.  
 
3.2. NCD using Complexity Estimated with Smallest CFG 
 

We define the Normalized Compression Distance using Grammars (NCDG) by using a 
modified version of (3), where )(xC  is substituted by )(xCg  as defined in (5): 
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Fig. 2.  Hierarchical clustering on DNA mitochondrial genomes using NCD. Polar Bear and Brown Bear
genomes are not considered to be similar at all, with the former being placed among a group of genomes 
belonging to rodents. 

 Fig. 3.  Hierarchical clustering on DNA mitochondrial genomes using NCDG. The genomes belonging to bears 
are correctly found more similar to each other, and the group of rodents (Wallaroo, Opossum, Platypus, Rat,
Mouse) is well separated in a cluster. Note that Blue and Finback Whales are still close, but not as much as in 
fig. 2. 

 



From lemmas 3 and 5, it derives that 0),( ≅yxNCDG  if yx =  but, nevertheless, the 
conditions for NCDG to be a metric described in [2] do not hold, since our complexity 
approximation is not monotonic. 
 
4. Experiments 
 
4.1. DNA Samples 
 

We test the validity of our complexity approximation on a set of mitochondrial genomes 
freely available on the web from the database GenBank [24]. A genome is a long sequence of 
just four elements (adenine, cytosine, guanine and thymine), and each of them has been 
encoded in a first step with an alphabet of 16 symbols, with each symbol representing the 
combination of any pair of basic components: so, each one is represented by a string with half 
the size of the original one. The DNA genomes used are the ones of 20 animal species divided 
in three categories: rodents, ferungulates, and primates, in a similar experiment to one 
contained in [3]. More specifically, the list of species used is as follows. Rodents: rat (Rattus 
norvegicus), house mouse (Mus musculus), opossum (Didelphis virginiana), wallaroo 
(Macropus robustus), and platypus (Ornithorhynchus anatinus); ferungulates: grey seal 
(Halichoerus grypus), harbor seal (Phoca vitulina), brown bear (Ursus arctus), polar bear 
(Ursus thibetanus), white rhino (Ceratotherium simum), horse (Equus caballus), finback 
whale (Balaenoptera physalus), and blue whale (Balaenoptera musculus);  primates: gibbon 
(Hylobates lar), gorilla (Gorilla gorilla), human (Homo sapiens), chimpanzee (Pan 
troglodytes), pygmy chimpanzee (Pan paniscus), orangutan (Pongo pygmaeus), and Sumatran 
orangutan (Pongo pygmaeus abelii). 
We generated the best fits of a binary tree to each distance matrix obtained applying the 

similarity measures NCD and NCDG. In this and the next experiment, the NCD distances 
were computed with the open-source utilities suite Complearn using default parameters [25]. 
Figs. 2 and 3 report the results of hierarchical clustering obtained with the two measures by 
means of the tool maketree, also provided by Complearn. In both cases the hierarchical 
clustering obtained looks accurate, since primates are correctly located in an independent 
branch of the tree, and the two species of seals are correctly considered close to each other. 
With NCDG, anyway, results improve: the genome related to the brown bear is correctly 
considered the closest to the one belonging to the polar bear, which is not the case for NCD; 
furthermore, for NCDG the class of rodents lies completely in a separated branch of the 
binary tree, while it is dislocated in two branches with the other method. It has to be remarked 
that the pertinence of the platypus to the family of rodents is discussed [26]. In [3] the authors 
obtain different results from the ones presented here, but in that case the ad hoc compressor 
for DNA sequences mentioned in section 2.2 was used, resulting in a better approximation of 
Kolmogorov complexity and better results. The tree score reached [3] is also higher for the 
NCDG distance matrix ( 97.0≅Ts ) than for NCD ( 93.0≅Ts ). 
 
4.2. Satellite Imagery 
 

In our second experiment we used a dataset consisting of 60 single band SPOT 5 images, 
all of them of size 64x64 and in byte format, divided into the classes clouds, sea, desert, city, 
forest and fields. Three compression-based clustering methods are compared with the NCDG 
as defined in (7): NCD, PRDC, and McDCSM [7]. The images are linearly scanned outputting 
sequences which are used in a subsequent step to compute the distances between each pair of 
objects. In Fig. 4 all the clusterings presents the same confusion in the separation of a sea 
image (PRDC yields an additional false alarm), but for NCDG the latter is brought closer to 
its class, with respect to the clustering obtained on the basis of the previous methods. 



 

Figure 4. Visual description of the classes used (top left) and hierarchical clustering of similarity measures
obtained with the following methods (starting from top right and in clockwise order): PRDC, McDcSM,
Grammars, NCD. The dataset consists of 60 single band SPOT5 image subsets of size 64x64. False alarms are
circled. Changing from PRDC to McDcSM allows to remove one false alarm. In compression with grammars 
we have the best clusters separation. 

 Intraclass distance Interclass distance Discrimination 

NCD 1.017 1.110 0.093 
NCDG 0.828 0.961 0.133 

Table 1. Average NCD and NCDG distances on a 200 image subsets dataset. The distances computed are 
40000, 10000 intraclass and 30000 interclass. 

Table I reports the average interclass and intraclass distances obtained on with NCD and 
NCDG on an extended dataset of 200 objects, along with a “discrimination factor” which 
quantifies the separability between the classes as the average difference between interclass 
and intraclass distances: the latter is some 40% higher for NCDG. 
 
5. Conclusions 

 
We presented a new compression-based similarity measure based on Context-Free 

Grammars (CFG), relying on the concept of MDL and illustrating the relations that these 
ideas have with Kolmogorov complexity. The smallest CFG is assimilated to the smallest 
dictionary useful in compressing an object: since dictionaries capture the relevant patterns 
within the data, their use in the compression step allows considering separately their 
complexity, tuning the complexity estimation. This two-part representation of complexity 
results in the definition of a new similarity measure, the NCDG. The novelty of this approach 
lies in the fact that the impact of complexity overestimations, due to the limits that a real 
compressor has, is accounted for and decreased. 



The preliminary results presented in this section suggest that the proposed approach may 
improve result obtained in data compression based similarity measures by means of a standard 
compressor. This approximation may be tuned in order to focus on the properties of the data 
structure rather than on the data giving the model, and may be used to separate meaningful 
information inside the data from noise by adopting another selection of the rules constituting 
the grammar. On the other hand, computing an approximated smallest CFG requires 
polynomial time rather than the linear time needed by most compression algorithms. 
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