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Introduction

 Global climate models: no atmospheric chemistry
 Future ozone layer?
 Chemically triggered climate modifications?

21st  November 2009

source: NASA
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Global chemistry-climate models (CCMs)

 Atmosphere ↔ deep ocean
 Atmospheric physics ↔ atmospheric chemistry

We use and refine a CCM

Introduction
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 Model description

 Performance on LRZ/ALTIX

 Modelling activities on LRZ/ALTIX

Outline



LRZ Garching 2009

Description

CCM system EMAC  (ECHAM/MESSy Atmospheric Chemistry)
 Overall system by MPI for Chemistry, Mainz
 Fluid dynamics by MPI for Meteorology, Hamburg



LRZ Garching 2009

Description

CCM system EMAC  (ECHAM/MESSy Atmospheric Chemistry)
 Overall system by MPI for Chemistry, Mainz
 Fluid dynamics by MPI for Meteorology, Hamburg

EMAC follows standards → easily portable
 Fortran95 (ISO/IEC-1539-1)
 Message Passing Interface (MPI-2)
 NetCDF data format



LRZ Garching 2009

Description

CCM system EMAC  (ECHAM/MESSy Atmospheric Chemistry)
 Overall system by MPI for Chemistry, Mainz
 Fluid dynamics by MPI for Meteorology, Hamburg

EMAC follows standards → easily portable
 Fortran95 (ISO/IEC-1539-1)
 Message Passing Interface (MPI-2)
 NetCDF data format

EMAC is flexible
 Selectable spatial resolution
 Configurable chemistry scheme
 Modular structure (see http://www.messy-interface.org)
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Atmospheric primitive 
equations − spectral 
representation
- Spectral transformation 
(horizontal)
- Finite differences (vertical)
- Semi-implicit leap frog (time)
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Description

Stiff system of ordinary 
differential equations − 
gaussian grid
Rosenbrock sparse-matrix 
technique with adaptive time step

Radiative transfer, tracer 
transport, other sub-models  ‒
gaussian grid
Miscellaneous techniques

Atmospheric primitive 
equations − spectral 
representation
- Spectral transformation 
(horizontal)
- Finite differences (vertical)
- Semi-implicit leap frog (time)
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Description

Diverse demands on hardware architecture ...

 Various numerical techniques

 Distributed-memory domain decomposition
 Spectral representation: spherical
 Gaussian grid: latitude-longitude, ping-pong blocks
 Tracer advection: vertical and latitude-longitude

 Vectorisation of latitude-longitude blocks
 To exploit cache sizes

→ EMAC valuable for benchmarking
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Good performance, but gain limited

Performance on LRZ/ALTIX

vertical layers CPUs CPU time 
[kh/model year]

wall time
[days/model year]

L41 64 5.4 3.5

L41 128 7.9 2.6

L90 64 12.0 7.9

L90 128 12.1 4.0

L90 256 poor poor

EMAC with 
detailed 
physics/chemistry
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Good performance, but gain limited
 Communication between nodes (hardware specific)
 Load imbalance from photo-chemistry (being tackled)

L41 version: multi-decadal simulations sensible

Performance on LRZ/ALTIX

EMAC with 
detailed 
physics/chemistry

vertical layers CPUs CPU time 
[kh/model year]

wall time
[days/model year]

L41 64 5.4 3.5

L41 128 7.9 2.6

L90 64 12.0 7.9

L90 128 12.1 4.0

L90 256 poor poor
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Development: new upper boundary

L90 expensive → our L41 version
 Appropriate for our purposes 
 But: single layer for whole atmosphere above 25 km
→ Impact on chemistry below

a
ltitu

de
 [km

]

L41
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Development: new upper boundary

Solution: highest layer with chemical parameterisation

 Calibration via L90 version
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Solution: highest layer with chemical parameterisation

 Calibration via L90 version

a
ltitu

de
 [km

]

Development: new upper boundary
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Development: mixed-layer ocean

Implementation of mixed-layer ocean
 Feedback: atmosphere ↔ mixed-layer ocean
 No feedback: mixed-layer ocean ↔ deep ocean 

adapted from NASA
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Mixed-layer ocean ‒ additional computational demands

 Negligible for fix simulation length
 However: spin-up about twenty years
 Much longer for deep ocean

Development: mixed-layer ocean

Response of global surface temperature
under constant forcing
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Development: Lagrangian formulation 

Standard formulation of fluid dynamics: Eulerian
 Separate schemes for dynamics and tracer transport
 Tracer transport numerically diffusive

Implementation of full-Lagrangian tracer transport
 No numerical diffusion

In development: full-Lagrangian dynamical core
 Finite-mass method (Gauger et al., 2000)
 Lagrangain air parcels with variable spatial extent
 Completely new approach in climate modelling
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Important question
  Impact of disturbed emission rates on atmospheric composition and climate

  E.g. human-made nitrogen oxide → near-surface ozone

Usually: difference of CCM simulations with un-/disturbed emission rates 

  Noise from dynamical-chemical feedback
  Poor signal/noise ratio

Our solution: switch off feedback
  Dynamics binary identical despite chemistry unequal
  Main challenge: polar stratospheric clouds
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Production simulations 

Focus on model development:
prerequisite for production simulations

→ Now feasible and going to start
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Production simulations 

Climate impact of nitrogen oxide and sulfur dioxide from shipping

 Affects optical and microphysical cloud properties
 Mostly cooling

Short-wave 
forcing du to 
ship 
emissions
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Production simulations 

Aerosol aging
 Can result in ice nuclei

→ Affects cirrus clouds

Number 
concentration of 
potential ice 
nuclei
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Summary

We use a chemistry-climate model (CCM)
➢   Diverse numerics / types of domain decomposition 
➢   Good performance on LRZ/ALTIX
➢   But: gain limited due to communication between nodes

Model development ...
➢   New upper boundary
➢   Mixed-layer ocean
➢   Lagrangian transport
➢   Chemistry-transport mode

→ Production going to start
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