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Abstract
In recent years there has been increased interest in using synthetic aperture radar (SAR) to study and monitor glaciers

for climate change research. This paper describes the estimation of ice extinctions through modelling of Pol-InSAR

(polarimetric interferometric SAR) coherences as a combination of a surface contribution (from the snow-firn interface

and wind-induced features) and a volume response. Ground-to-volume scattering ratios derived from a novel polarimetric

decomposition are used in conjunction with Pol-InSAR interferometric coherence magnitudes to invert the extinction of

the ice layer. The inversion is performed with experimental airborne Pol-InSAR data at L- and P-band collected using

DLR’s E-SAR system over the Austfonna ice cap in Svalbard, Norway as part of the 2007 ICESAR campaign. Extinction-

dependencies on frequency and glacier zone are investigated, and validation is performed comparing P-band sounder data

to inverted extinction values.

1 Introduction

In the last decade Pol-InSAR has become an established

technique for the extraction of geophysical parameters

from volume scatterers, particularly for vegetation applica-

tions. However, the use of Pol-InSAR over glaciers to date

is restricted to a small number of airborne studies [1,2] due

to limited data availability and to difficulties in validation.

The goal of this work is to develop and invert a model

parameterising Pol-InSAR observables in terms of glacial

properties. A model relating interferometric coherence and

extinction is proposed which takes into account the influ-

ence of both volume and surface scattering. Extinction is a

relevant parameter for glaciologists as it contains informa-

tion on the density and internal structure of the ice.

The extinction modelling approach is presented in section

2. Experimental Pol-InSAR data collected at L- and P-

band using DLR’s E-SAR system are described in section

3 and are used in section 4 to invert extinctions for the

Austfonna ice cap in Svalbard, Norway. Results are val-

idated against extinctions derived from nadir-looking P-

band sounder data. A summary of the results is given in

section 5.

2 Modelling glacier ice extinctions

Extinction accounts for the combined effects of absorp-

tion and scattering in a medium and may be expressed as

κe = cos θr/dpen where dpen is the penetration depth at

which the one-way power falls to 1/e. The cos θr fac-

tor accounts for the off-vertical travel distance of the wave

within the medium and θr is the incidence angle after re-

fraction. κe is the one-way power extinction coefficient in

units of Nepers/m, although it is conventionally quoted in

decibels as 10 log10 eκe dB/m.

A simple model relating extinction and interferometric co-

herence is proposed which is based on the work of [2, 3]

and is extended through parameterisation of the relative

surface and volume contributions by means of polarimetric

decomposition (section 2.1). This permits a new closed-

form solution for extinction (section 2.2).

2.1 Ground-to-volume scattering ratios

The radar signal is a superposition of all scattering con-

tributions in the illuminated scene, and surface and vol-

ume components must be separated in order to determine

geophysical properties of the ice volume. A 3-component

polarimetric decomposition for glacier ice is used, consist-

ing of a ground component from the snow-firn interface

(described by the first-order Small Perturbation Method

(SPM) ), a random volume of dipoles and an oriented sas-

trugi field (caused by wind-induced features at the snow

surface). Assuming components are uncorrelated, the

combined covariance matrix is a sum of the matrices for

the individual mechanisms:

[Ctotal] = [Cg] + [Cv] + [Cs], (1)

where subscript g is ground (i.e. snow-firn interface), v is

volume and s is sastrugi. Covariance matrices for each

component are given in [4] .

The ground-to-volume scattering ratio m is defined to

quantify the relative surface and volume power contribu-

tions for each polarisation in the H-V basis. m is computed

using the powers along the main diagonals of the modelled

covariance matrices:

mHH =
Cg 11 + Cs 11

Cv 11

(2)

mHV =
Cs 22

Cv 22

mVV =
Cg 33 + Cs 33

Cv 33

.

Note that a ground contribution for HV (Cg 22) is not in-

cluded in Eq. 2 because the first-order SPM does not pre-

dict a cross-polar component.
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2.2 Coherence model for glacier ice

The ground-to-volume scattering ratios are used in com-

bination with Pol-InSAR coherences for determination of

the ice extinction coefficient. The ice volume is assumed to

consist of material in an intermediate stage between snow

and pure ice called firn. The firn volume is modelled as

a semi-infinite half-space consisting of a uniform distribu-

tion of scatterers with relative dielectric constant εr ≃ 2.8.

The firn volume extends from the snow-firn surface (lo-

cated at z = 0) downwards with radar viewing geometry

given in Figure 1. The two antennae are separated by base-

line B and observe a point on the ground at incidence angle

θ. As the EM wave enters the snow, it is refracted at an an-

gle θsnow to the vertical, and is refracted once more to θr

in the ice volume according to Snell’s law. The difference

in look angles from each antenna is ∆θ in air and ∆θr in

the volume (not shown).

θr

∆θ

B

dpen

θ

θsnow
snow

firn

z = 0

Figure 1: InSAR geometry (not to scale) for a glacier sce-

nario assuming an infinite uniform volume.

The principle Pol-InSAR observable is the complex coher-

ence γ. Neglecting temporal decorrelation and assuming

sufficient compensation of system (e.g. Signal-to-Noise

Ratio) and geometric (range spectral shift) decorrelation

contributions, γ is dependent solely on the vertical distri-

bution of scatterers. The coherence magnitude |γ| is postu-

lated to be a combination of volume scattering with com-

plex coherence γvol and a surface scattering component

whose relative strength is given by ground-to-volume scat-

tering ratio m [2]:

|γ| =

∣

∣

∣

∣

γvol(κe) + m

1 + m

∣

∣

∣

∣

, (3)

where, due to an unknown snow depth, it is assumed that

sastrugi and ground contributions both lie at z = 0. As-

suming an infinite, uniform volume, γvol can be repre-

sented by [5]:

γvol =
1

1 + j cos θrkzvol

2κe

, (4)

where kzvol =
4π

√
εr

λ
∆θr

sin θr

is the vertical wavenumber in

the volume, j is the imaginary unit, and λ is the wavelength

in free space. Multiple scattering is neglected and it is as-

sumed that topographic variations are negligible, which is

reasonable for the relatively flat ice caps and sheets exam-

ined here.

With knowledge of m from Eq. 2, κe can be determined

using Eqs. 3 and 4 at each polarisation and each pixel in-

dependently:

κe =
cos(θr)|kzvol|

2(1 + m)

√

|γ|2(1 + m)2 − m2

1 − |γ|2
. (5)

The absolute value |kzvol| is taken to obtain a positive (and

physically meaningful) extinction when selecting the pos-

itive square root in Eq. 5.

3 Experimental data

The test sites are located on the Austfonna ice cap, sit-

uated in Svalbard, Norway (79.7◦N, 24.0◦E). Two sites

were overflown, one in the firn zone near the summit of

the ice cap (referred to as ‘Summit’), and one in the su-

perimposed ice (SI) zone near the Etonbreen outlet glacier

(‘Eton’). The firn zone is characterised by percolation fea-

tures caused by refrozen meltwater whereas the SI zone

consists of more homogeneous ice. Topography is very

gentle with surface slopes of less than 1◦ at both sites.

Airborne SAR data were acquired over the test sites as

part of the ICESAR campaign in spring 2007, which was

a joint project between the Microwaves and Radar Sys-

tems Institute of the German Aerospace Center (DLR) and

the Alfred-Wegener Institute, and supported by the Euro-

pean Space Agency (ESA). Repeat-pass fully-polarised L-

band (1.3 GHz) and P-band (350 MHz) data were collected

using DLR’s E-SAR system as well as single-pass nadir-

looking P-band sounder data (also at 350 MHz).

4 Results and Discussion

4.1 Extinction inversion

Polarimetric decomposition as described in section 2.1 was

applied on a pixel-by-pixel basis to the experimental data.

Ground-to-volume scattering ratios estimated from Eq. 2

were then used in combination with Pol-InSAR coherences

in Eq. 5 for determination of the ice extinction coefficient.

Detailed decomposition results are presented in [4], and

thus the focus in this study is on the extinctions and their

validation. A spatial averaging window of 100 effective

looks was used to compute interferometric coherences. Re-

sults from multiple baselines (up to six) were combined by

first applying a mask of 0.01 < kz < 0.1 to eliminate solu-

tions from extremely small baselines (which have virtually

no interferometric sensitivity) and from longer baselines

more susceptible to insufficiencies in modelling and to un-

certainties in m and |γ|. Results were then averaged from

the remaining valid baselines on a pixel-by-pixel basis.
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Figure 2: Extinctions κe [dB/m] at HH for Summit L-band

(left) and P-band (right). Location of P-band sounder pro-

files are shown in white, where the red triangle indicates

the start position of the profile.

Figure 3: Same as Figure 2 for Eton L-band (left) and

P-band (right).

Table 1: Mean extinctions averaged across the entire im-

age (Pol-InSAR) and across the sounder profile.

mean κe [dB/m]

HH VV HV Sounder HV

Summit L 0.103 0.131 0.117

P 0.094 0.091 0.125 0.087

Eton L 0.047 0.064 0.079

P 0.040 0.033 0.107 0.057

Inverted extinction coefficients at HH polarisation for L-

and P-band at both Summit and Etonbreen test sites are

given in Figures 2 and 3. Pixels for which none of the

baselines satisfied the kz criteria are shown in gray and

pixels in white could not be inverted. Extinctions averaged

over each image are shown in Table 1 to compare results

between test sites, frequencies and polarisations.

As expected, extinctions at Etonbreen are lower than those

at Summit due to the lack of large-scale melt features to

produce volume scattering. Some areas of Etonbreen could

not be inverted because the square root in Eq. 5 becomes

negative due to a large m which is inconsistent with the

measured decorrelation |γ|. For the co-pols, L-band shows

slightly higher extinctions than P-band (Table 1), which is

expected from scattering theory that predicts both absorp-

tion and scattering extinction coefficients to increase with

increasing frequency.

The P-band cross-pol shows elevated extinction values at

both test sites which are attributed to the presence of an

uncompensated ground component. This is possible as the

first-order SPM used in this study for surface scattering

predicts an HV contribution of zero, and thus second-order

terms from the SPM or an alternate model should perhaps

be considered for low-frequency surface scattering such as

from P-band. However, the similarity of the co-pol ex-

tinctions at P-band and all polarisations at L-band suggests

that the random volume assumption of the model (predict-

ing polarisation-independent κe) is reasonable.

Deviations from a random volume however will result in

inaccuracies in modelled m and κe. To permit inversion,

the observation space could be extended using a unified po-

larimetric and interferometric approach (instead of being

applied in two steps as done here) utilizing both amplitude

and phase information, although the challenge remains of

finding a model consistent with all observables.

4.2 Validation with Sounder data

Validation of inverted extinctions is carried out using

P-band sounder data acquired nearly simultaneously to

the Pol-InSAR data, where sounder profile locations are

shown in Figures 2 and 3. The received power ver-

sus depth (z) recorded by the sounder was converted to

a weighted relative scattering cross section σw using the

radar equation by:

σw(z) =
Pr(z)R2(z)

Vs(z)
C, (6)

where Pr is the received power, R the range, Vs is the

scattering volume at this range bin and C is a constant

factor including transmit power, wavelength and antenna

gain terms. There is an R2 dependence in Eq. 6 rather

than R4 after [6], since for a planar interface such as a

smooth ice layer, considerably more backscattered energy

is returned to a nadir-looking receiver. σw is related to ex-

tinction through σw = σve−2κeR, where σv is the volume

scattering cross section. No absolute characterisation of

σv is possible due a lack of radiometric calibration. σw is
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normalised such that σw norm = 0 dB at z = 0 for HH, and

a linear fit of lnσw norm(z) versus depth yields an estimate

of the power extinction rate κe. Figure 4 shows σw norm

versus depth for the Summit test site averaged across the

entire sounder profile. The co-pols HH and VV are cor-

rupted by strong off-nadir surface clutter interference, al-

though HV shows a nearly constant extinction rate with in-

creasing depth, confirming the uniform ice volume model

assumption in section 2.2.
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Figure 4: Normalised σw [dB] versus depth for P-band

sounder data (averaged over the entire profile) overplotted

with linear fit.

Fitted κe values at HV for the sounder data are given in

Table 1. Extinction results compare favourably to inverted

P-band values from Pol-InSAR. Slightly higher extinctions

for the sounder data compared to the Pol-InSAR co-pols at

Eton could be due to englacial layer-type scattering which

in the model was assumed to come from the surface at

z = 0 and removed during polarimetric decomposition. κe

from Pol-InSAR thus reflects only volume-type scattering

and leads to reduced overall extinction estimates.
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Figure 5: Normalised P-band κe HH (red) and P-band HV

sounder σ0
SND (blue) profiles for Summit.

To determine whether changes in subsurface scattering

over the sounder profile are correlated with changes in ex-

tinctions inverted with Pol-InSAR, σw values are trans-

formed into an equivalent sounder backscattering coeffi-

cient σ0
SND through integration over depth. The sounder

backscattering coefficients are scaled to zero mean and

unity standard deviation for comparison with the inverted

extinctions. Figure 5 plots scaled and normalised κe and

σ0
SND coefficients for P-band at the Summit test site. There

is a clear correlation between sounder subsurface backscat-

ter and inverted extinctions from Pol-InSAR, implying that

both systems are observing the same ice structure.

5 Summary

In this paper a model relating Pol-InSAR observables to

glacier ice extinctions has been presented and inverted for

experimental airborne data at L- and P-band. The mod-

elling approach was divided into two parts: ground-to-

volume scattering ratios were derived through polarimetric

decomposition into volume, surface and sastrugi compo-

nents. These ratios were then used in conjunction with Pol-

InSAR coherences and an infinite, uniform-volume-under-

ground model to invert ice extinctions. Inverted extinc-

tions compare favourably with P-band sounder subsurface

extinction rates and with changes in subsurface sounder

backscatter across the profile.

The presented extinction model may be useful for exam-

ining the long-term variability of polar regions by tracking

interannual changes in extinction. Future spaceborne con-

cepts such as the BIOMASS Earth observation proposal

(P-band) would also benefit from an increased understand-

ing of long-wavelength radar observables over glacier ice.
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