1

10

11

12

13

14

15

16

17

18

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluid2000;00:1-30 Prepared usindldauth.cls [Version: 2002/09/18 v1.01]

Discontinuous Galerkin solution of preconditioned Eulguations

for very low Mach number flows

A. Nigro!, C. De Bartold*, R. Hartmang, F. Basst

1 Dip. di Meccanica-Universita della Calabria Ponte P. Biicabo 44/C 87036 - Rende (CS), Italy.
2 |nstitute of Aerodynamics and Flow Technology, German gygoe Center (DLR), Lilienthalplatz 7, 38108 Braunschweig
Germany.

3 Dip. di Ingegneria Industriale-Universita di Bergamo ig@aMarconi 5 24044 - Dalmine (BG), Italy.

SUMMARY

In this work we present a Discontinuous Galerkin (DG) mettedigned to improve the accuracy and efficiency
of the steady-state solution at very low Mach number flowsgisin explicit scheme. The algorithm is based
on a perturbed formulation of the compressible Euler eqnatiand employs the preconditioning of both the
instationary term of the governing equations and the digisip term of the numerical flux function (full
preconditioning approach).

The performance of the scheme is demonstrated by solvingnascid flow past a NACA0012 airfoil at
different very low Mach numbers using various degrees ofmmhial approximation. We present numerical
results computed with and without perturbed variables twilastrate the influence of the cancellation errors on
both the convergence and the accuracy of the DG solutiomsva¥lach numbers. Copyrigh® 2000 John Wiley

& Sons, Ltd.
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KEY WORDS; Discontinuous Galerkin finite element method; Low Mach bem Cancellation error;

Preconditioning; Euler equations.

1. INTRODUCTION

DG methods have received more and more attention in the &etsybecause of their appealing
features that justify the widespread applications of thmséhods. In particular, the minimal amount
of numerical dissipation and the potential to reduce thédinig requirements and the time necessary
to achieve a desired accuracy level of DG solutions, maleerttd@thod very appealing for low Mach
number flow computations [1, 2].

The difficulty in solving the compressible Euler equatiohtos Mach number is due to the large
disparity of wave speeds. Well known, undesirable effeéttow speed flow on most numerical
schemes include low convergence speed and loss of acc{Bady,5]. Another issue related to the
numerical solution of low speed flows concerns the carefplémentation of non-reflecting boundary
conditions [6, 7, 8].

Several preconditioning techniques, applied to the gamgraequations and to their discretizations,
have been developed in the past to cope with the stiffnesaendacy problems [6, 9, 10, 11]. These
techniques basically scale the wave speeds to the samedadrdergnitude premultiplying the time
derivative terms of the governing equations by a precawwiitig matrix. For the large family of upwind
schemes, preconditioning enters also in the formulatioruaferical flux functions in order to properly
balance the artificial dissipation implied by the numerfad formulation, [4, 5, 12]. Some of the most
recognized local preconditioners for inviscid and viscioa's were proposed by Turkel [9, 10], Lee
and van Leer [11], Weiss and Smith [13] and Choi and Merkl§.[14

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 3

Recently, Nigro in [15] and [16] introduced the low Mach nuenkpreconditioning for DG
discretizations and reported for Mach numbers dowNlte= 102 that the preconditioning technique
results in a significant improvement of the convergencedpEerthermore, it has been shown that

preconditioning enhances the accuracy of numerical soisti

Nevertheless, it is difficult or impossible to solve Euleuations at very low Mach numbers even
with preconditioning. This is due to cancellation errorsiahhoccur as an accumulation effect of
round-off errors. Round-off errors depend mainly on thetft@ppoint representation used and are

thus unavoidable.

The problem of the cancellation error can be minimized bynigiating the governing equations
in terms of perturbed variables [17, 18]. Reference quastdre introduced in the equations for the

thermodynamic variables and the computations are perfforehe fluctuations.

The governing equations are unaltered and the method casdakin conjunction with standard
numerical strategies, like preconditioning. Several jmes studies [14, 19, 20, 21, 22] showed that
this problem can be alleviated by employing the concept ofyggressure, in which the pressure is
decomposed into a constant reference pressure and aeglatissure. Sesterhenn et al. [17] extended
the relative treatment to all variables and flux vectors.éttheless, Lee [23] showed that this approach
produced a slight improvement in the convergence procefeafnergy equation while the precision
of floating-point variables was a much more important faatothe calculations of the temperature
field at very low Mach numbers. Usually, double precisiorowa#i to circumvent the problem of
cancellation errors for engineering accuracy. Notwithdbag, this floating point representation cannot
be sufficient to obtain higher accurate results: the higieatcuracy of solution, the larger the number
of computations with round-off error occuring at each cotagian. Thus, the perturbed formulation of
the governing equations becomes mandatory to obtain ataghblrate representation of the unknowns

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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4 A.NIGRO., C. DE BARTOLO, R. HARTMANN, F. BASSI

at low Mach numbers using higher order schemes.

Finally, concerning the set of dependent variables, it lekshown in [24] that the conservative
incompressible formulation is well defined only for the eply variables and the primitive variables
including pressure. It has also been shown that these twm$etriables are best suited for solving
practical problems, with the primitive variables being marccurate than the entropy variables for
low speed and incompressible flow computations. For thessores the primitive variables are often
preferred for low Mach number computations [13, 14, 23, 2] they have also been used to develop

numerical schemes well suited for both compressible anshipeessible flows.

In this paper we present a preconditioned DG discretizatfdhe 2D compressible Euler equations
suitable to compute inviscid very low Mach number flows. Thecpnditioning affects both the time
derivative terms of the governing equations, through thieaof the Weiss and Smith preconditioning
matrix [13], and the numerical dissipation of the Roe’s Riam solver used to compute the numerical
flux (full preconditioning technique). The method is apphite only to steady-state simulations as
the preconditioning of the unsteady terms destroys the ticecaracy of the governing equations. The
conservative system of equations is written in terms ofysbad variables and iterated to steady state

using an explicit scheme.

This paper aims at giving a contribution on developing a eorative DG scheme that is suitable
for compressible and incompressible flows. In particularehwe extend the DG discretization of the
Euler equations, written in the most appropriate set of pimvariables, to the incompressible limit,
we consider the relationships between convergence cleaistitts and the Mach number for different
degrees of polynomial approximation, and, finally, we exsrthe influence of the cancellation error
on both the accuracy of solutions and the convergence dieaisiics, taking into account the effect of
the polynomial degree.
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A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 5

The outline of the paper is as follows. In Section 2 we preghat preconditioned form of
the compressible Euler equations using primitive varigldad perturbed variables. In Section 3
we describe the DG discretization of the governing equatidhe boundary conditions and the
preconditioned numerical flux function. In Section 4 we geene details on the explicit time stepping
scheme. The performance of the numerical scheme is thenrdgrated in Section 5 by computing an
inviscid flow around a NACA0012 airfoil for different verywoMach numbers (down tv = 10-19)
and different degrees of polynomial approximati®h-€ 1, 2, 3). Finally, a few conclusions are drawn

in Section 6.

2. GOVERNING EQUATIONS

2.1. The preconditioned compressible Euler equations

We consider the preconditioned two-dimensional complés&iuler equations in conservative form,

o9
—+V.F=0.
r— +V-F=0 (1)

The primitive variableg and the cartesian componehtndg of the flux functionF are given by:

p pu po
u 2
puc+p pou
q= , f= , 9= ; )
v puv p1)2 +p
T pHuU pHo

where p is the pressureTl is the fluid temperaturej ando are the velocity components,is the
density andH is the total enthalpy per unit mass. By assuming that the @bil/s the perfect gas state
equationH is given byH = cpT+0.5 (u2 + 1)2), wherec, denotes the isobaric specific heat capacity

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30

Prepared usindldauth.cls



6 A.NIGRO., C. DE BARTOLO, R. HARTMANN, F. BASSI

102 of the fluid, andp can be calculated as= p/T.
103 The matrixI" used in the present work is the local preconditioning matfi¥Veiss and Smith [13]

104 written in the following form

0 pT 0O O
Bu pTU P 0
F = B (3)
Ov PTO 0 »p
OH -1 prH4pcp pu po

s wherepr= 2 and@ is given by

p=const
1 pr
o=(---2"). 4
(Urz pCp) )

106 Here,U, is a reference velocity which, for an ideal gas, is defined as

gc, if |v|] <ec,
U=1 |v|, ifec<|v| <c, (5)

c, if|v]>c,

107 wherec is the acoustic speed aands a small number included to prevent singularities at sitign
108 points. Furthermore, by assuming that the fluid obeys théepegas state equatiomy can be

1

o

o calculated aptr = —p/T. Choosinge = O(M), the low Mach preconditioning ensures that the
110 convective and acoustic wave speeds are of similar magnifurdportional to the flow speed [26].

111 In the next section we will show how preconditioning entergtie formulation of the numerical
112 flux function in the normal direction at Gauss integratioring® on inter-element faces. Hence it is
13 worthwhile introducing here the wave speeds of the predimmdid Euler equations in the direction of
114 the unit vectom, which are given by the eigenvalueslbfl(%nl + g—gnz), Where% andg—g are the

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 7

115 inviscid flux jacobians with respect to the primitive vatliedy andh; andn; are the components of the

116 unitvectorn = (n1, n2)T. The propagation speeds in this direction are

Ji=A2=Un, Az=U,+C, Aa=u,—c,

117 where

¢ = Ja2u2 + U2,
1- pU?
= 6
a="— (6)
PT
P e
op
Pp= :
ap T=const

For an ideal gagp, = 1/T andf = 1/c2. At low speed ad); — 0,a — 1/2, and all the
eigenvalues become of the same orden@asWe note that all the above equations have been written
in non-dimensional form using the dimensional relatiopshwith the reference values of lendth
densityp;, pressurep, and gas constarR.. The non-dimensionalized quantities have the following

orders of magnitude:
p!paT ~ O(l)a u,o,Un ~ O(M)> HstN O(l)s

u,,c ~0O(M), ®~O0O(M?, (7)

118 2.2. Perturbed variables

19 In this work the relative thermodynamic dependent varispleandT’ are defined as,

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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8 A.NIGRO., C. DE BARTOLO, R. HARTMANN, F. BASSI

P'=p— Po
(8)
T =TTy

120 where p,, and T, are the freestream pressure and temperature respectwetphermore the
122 momentum fluxes are defined considering the relative prespir Then the primitive variableg

122 and the cartesian componehtndg of the convective flux functiof are given as follows,

p’ pu po
u puu+ p’ pou
q= ; f= ;9= : 9)
D pup pov + p’
T pHu pHo

123 The perturbed formulation of the p_reconditionéd goverqugjations (_)btained using Eq.(9) is
124 mathematically equivalent to the original one, Eq.(1). &ntigular, the preconditioning matrix, Eq.(3),

125 IS not modified and the ideal gas law is maintained.

126 3. THE PRECONDITIONED DG DISCRETIZATION

1

N

7 Multiplying Eq. (1) by a vector-valued test functianand integrating by parts, we obtain the weak

128 formulation:

N

/VTFa—qu—/ VvT-Fdx+/ VIF-nds=0 W e H1(Q) (10)
Q ot Q oQ

129 whereQ is the domain with boundar§Q, andn is the unit outward normal vector. To discretize
130 In space, we definvﬁ to be the space of discontinuous vector-valued polynoroifatkegreep on a

131 subdivisionTy of the domain into non-overlapping elements such¢hat | k. Thus, the solution

K€Th

132 and test function space is defined by

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 9

VP = {ve L2(Q) V|ce Pp,lceTh},

133 wherePy, is the space of polynomial functions of degree at mmsthe discrete problem then takes

134 the following form: findqg,, € Vﬁ such that

> I/VEF% dx—/VvE-F(qh)dx

xeTh

+/ v:THi (97, ar . n) ds+/
0k \0Q

o Vi Hp (qp: @, n) ds] =0 (11)
135 for all vi, € VP, whereH; (a7, gy, n) andHp (q;, qﬁ, n) are numerical flux functions defined on
136 interior and boundary faces, respectivetly. takes into account the possible discontinuitiegjgfat
137 elementinterfaces. On interior edgss\o<, H; depends on the elements interior sm,feand on the
138 neighbouring elements staig . On boundary edgesc N 6Q2, Hp depends on the interior staqﬁr and
139 @ consistent boundary staqﬁ. We note thatH, may be different fronH;.

Given a set of basis functiong;, j = 1,..., N, of the discrete function spa(k‘eiﬁJ with N = #Vﬁ

we define the residual vectBr = {(R(qn), ‘/’j)}jzl _\ Where

(R(Gh), Vh) = / VT - F(gh) dx — /

T -
Vi Hi (aof, g, n) ds—/
K 0k \0Q

N
Vi Ho (g, of.n) ds,
0kNoQ
1o forallvy e Vﬁ. Then the spatial DG discretization of Eq. (11) results mfibllowing global system
141 Of equations:
dQ

Mr—< —-R=0 12
e , (12)

142 whereQ is the global vector of degrees of freedom (dof) wifh = ijl’_'_’N Qjwj. Ris the
143 residual vector as defined above avig stands for the discretization of the first integral of Eq.)(11

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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10 A.NIGRO., C. DE BARTOLO, R. HARTMANN, F. BASSI

Hence Mr is a block diagonal matrix where the block correspondingrte element couples all the
dof of all variables within the element (the coupling amorg df different variables is due to the

action ofT").

3.1. Boundary Conditions

When ox belongs tooQ the boundary fluxes, denoted Yy (q+,qb, n), are chosen to weakly
prescribe the boundary conditions of the problem. Haris, the unit outward normal vectog;™ is
the interior state at the boundary agflis computed according to the conditions that must be satisfie
on the boundary.

At far-field, Hp is the numerical flux functioi; (g, g°, n), whereqP is computed by imposing a
set of simplified non-reflecting boundary conditions [6] tsmimize spurious reflections. In particular
at the inflow boundary the stat® has the same pressureqis, whereas the velocity vector and the
temperature is prescribed based on the freestream valoegefSely, at the outflow boundary, the state
P has the same temperature and velocity vectartasvhereas the pressure is prescribed based on the
freestream value. We remark that the simplified non-refigdlioundary conditions require a far-field
boundary well far away from the aerodynamic surface in otdget efficient and accurate solutions.

At solid walls, Hy, is the inviscid flux function in the direction normal to thelivg (qb) - n, where
gP has the same pressure and temperatugtasvhereas the velocity vecte? = v — (v-n)™n

ensures that the normal velocity component is zero on thadsamy,(v - n)° = 0.

3.2. Flux difference splitting

The numerical fluxH; (q*, g, n) appearing in Eq. (11) is computed based on a preconditionfing
the artificial dissipation term of the Roe’s approximater®Rémn solver [27]. In terms of primitive
quantitiesy, the value oH; at each face is given by

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 11

Hi (a*,q7,n) =

NI =

(F(q+) ‘n+F@)-n—Fr(qt,q7, n)) , (13)

whereFr is given by

TIAr|Aq. (14)

Here,Aq = q~ — q* and the matrifAr| is defined in terms of the preconditioned eigenvalues and

eigenvectors by

|Ar| = TrIArlffl-

The symbol = denotes that the matrices are computed using the Roe-a&a¢kvagables [28] and
the subscript” that the diagonal matrix of eigenvalues and the modal matrderived from the
preconditioned system, wherer is the diagonal matrix of the preconditioned eigenvalues, By
diagonalizes the matri}Z—l(‘Z—g -n). We note, that for the non-preconditioned system, Eq.@®)ces

to the standard Roe’s flux difference splitting.

4. TIME DISCRETIZATION OF THE PRECONDITIONED EULER EQUATINS

The semidiscrete system Eq.(12) is discretized in timedasean explicit multistage time-stepping
method. In order to overcome the restrictive explicit CFhabdity limit (the Courant number is
approximately equal to/A2p + 1) for linear stability of TVD Runge-Kutta schemes, wherés the
polynomial degree of the spatial discretization), bothldual time—stepping and the preconditioning
techniques have been used to improve the convergence spsteadtly state solutions.

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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12 A.NIGRO., C. DE BARTOLO, R. HARTMANN, F. BASSI

180 The solution is advanced from tinteo timet + At with ans-stage SSP Runge-Kutta scheme [29],

181 given by

Q°=q",
) i—1
Q' =D aikQ* + i AIMFTR(QY) i=12 .5 (15)
k=0
Qt+At — QS,

182 wherei is the stage counter for thestage scheme andyx and Sk are the multistage coefficients
183 for theith stage.

184 The local time step\t on each element is computed by considering the following relation:

o |x|
t = : , 16
2p+1 AX4+ AL (16)
185 where the preconditioned convective spectral rA@iiandAX are defined as
AY = (U] + &) AS",
A= (Jo']+¢) as. (17)

186 The variablesA S* and ASY represent the projections of the elemenonto thex andy axis,

17 respectively, whereas, ¢, andi’, €, are obtained applying Equations (6) along xendy directions

188 and using the mean values of the flow quantities on each etermEmally, p is the polynomial degree
189 Of the spatial discretization angd is a factor introduced to take into account that SSP can be mor

100 efficient than TVD Runge-Kutta schemes.

©
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A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 13
5. RESULTS

In this section, we present some numerical results denaiimgirthe performance of the proposed
preconditioned DG discretization for inviscid very low Manumber flows. To this end, we consider
an inviscid flow past a NACA0012 airfoil at zero angle of akaomparing the preconditioned DG
discretizations with and without perturbed variables. DfBuons on a triangular O-type grid, for
different very low Mach numbers and using line&), quadratic P2) and cubic P3) elements are
performed. Fig. 1 shows the computational grid. The grichimposed of 1792 elements, and the far-
field boundary is located far away from the aerodynamic setfall computations are performed in

double precision, storing 16 significant digits.

The computational results are organized in two subsegtions focusing on the convergence
characteristics of the preconditioned Euler equationstaadther on the accuracy of the converged
solutions.

The residual histories of pressurp, temperature,T, horizontal,u, and vertical,o, velocity
components versus iteration number are shown to représenbhvergence characteristics.

The accuracy of the converged solutions is analyzed botlitatiely and quantitatively. First,
the normalized pressure fields are presented for a quaditaimparison. Then, for the quantitative
analysis, the scaling of computed pressure fluctuationseastaich number reduces is compared with

the M2 theoretical scaling.

5.1. Effect of the perturbed variables on convergence dftarastics

The residuals are measured in terms of the absolute vallre oéitio between the dependent variable
changes and the local time step, both computed for each etemesing the mean values of the flow
guantities. The residual of the generic dependent varigblwas defined as:

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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Figure 1: Computational Grid

Regq) = Max {|A(0)/At], , Vx € Q} withg=p, T, u, o. (18)

The convergence histories of velocity are represented éydhiduals of the horizontal velocity
component as similar histories are obtained for the vértiebocity component. Fig. 2 shows the
convergence characteristics of pressure (left colummpeature (middle column) and velocity (right
column) atM = 102, M = 10~*andM = 1075, for linear (P; top row), quadratic®, middle row)
and cubic P5 bottom row) elements, without the perturbed variables. fgsiduals are normalized
with respect to the residual at the first time step. Overadlsee that, for a given polynomial degree, all
the convergence characteristics have the same convergpeed, which is independent of the Mach
number. Nevertheless, the efficiency of the preconditiswme reduces due to the CFL stability
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A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 15

condition.

Furthermore in Fig. 2 the influence of cancellation error ba tesidual decay can be clearly
seen. Examining the convergence histories of pressur@eerture, and velocity we can make two
observations. The first is that, for a given polynomial degtke lower the Mach number, the smaller
the residual decay. The second is that, for a given Mach ngritgehigher the polynomial degree, the
smaller the reduction of the residual, even if this influeisdess evident than the first.

However, both the influence of Mach number and polynomiateiegn the decrease of the residual did
not allowed to obtain a solution at the lowest Mach numMes= 10 using the highest polynomial

degreePs.

Figure 3 shows the convergence characteristics with thaugiexd variables. The residuals are
not normalized in order to highlight for the dependence ofivengence characteristics on the
Mach number. We see that all the residuals decrease as thie hMaeber reduces. Specifically, the
convergence of pressure and temperature scal@(®$2), while the residual of velocity scales as
O(M?). Then, as from Eq. (16) and Eq. (17) the order of magnitudéneflocal time stepping is
O(M~1), due to the order given in Eq. (7), the resulting orders of mitage of the computed pressure,
temperature and velocity changes &€éM?2), O(M?2) and O(M), respectively, in perfect agreement

with the theoretical behaviour.

Figure 4 shows the convergence characteristics with thieifed variables, obtained scaling the
residuals of pressure, temperature and velocity as follows

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30

Prepared usindldauth.cls



241

242

243

244

245

246

247

248

249

250

251

252

253

254
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Regp) = Max[%,w e Q} ,

|AT /At
ReqT) = Max TK’VK eQy, (19)
Requ) = Max[ml:\iliﬁtl",wc € Q} .

The plots show that the perturbed variables do not affecttimvergence speed in comparison to
the non-perturbed solution, Fig. 2. We notice that the tesidecay of pressure and velocity are now
independent of the Mach number.

Different is the case of the temperature. We see that ever itise the perturbed variables, the
residual of temperature reduces less as compared to tluadsif pressure because they stagnate
at a level closer to the starting value. In particular, theageof the temperature residual strongly
reduces when Mach number approaches zero. The reason bettasiour can be found in the order
of magnitude of the convective fluxes as the Mach number @gbes zero. Due to the orders of
magnitude of the non-dimensionalized quantities, Eq. §A considering thap’ ~ O(M?), the

convective fluxes in th& andy direction Eq. (9) can be expressed as follows:

o (M)

0 (M?)
f,g~
0 (M?)

O (M) + O (M3)

We see that the range of the order of magnitude of the flux iretre¥gy equation is wider than that
in the other equations. Thereby, the temperature suffers fnom the cancellation problem than the
other variables [23].

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30
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255 The dependency of the residual reduction on the polynonaigiek is the same previously observed

256 without the perturbed variables.

257 Furthermore, we note that, using the perturbed variablagewhe residual decay of pressure and
258 velocity is sufficient enough to obtain accurate flow varadhistributions, the lowest level of residual
259 reduction of the temperature shows a strong effect of theadkation error and this not always allowed

260 to compute accurate temperature fields.

261 Finally, we observe that the explicit scheme results in agfficient solution technique even
262 Using preconditioning. This is due to the restrictive liatibns on the CFL number for higher order
263 discretizations. A multigrid strategy might be implemehter the explicit time-stepping scheme in
264 order to accelerate the convergence of the preconditiontt Equations to the steady-state solution.
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Figure 2: History of the nonlinear residuals vs. numberefition steps for the pressure (left column),

temperature (middle column) and velocity (right column)normalized form without the perturbed

variables aM = 1072, M = 10~*andM = 1075. Py ( top row), P, ( middle row) andPs ( bottom

row) elements.
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Figure 3: History of the nonlinear residuals vs. numberefition steps for the pressure (left column),
temperature (middle column) and velocity (right columnithvthe perturbed variables M = 1072,

M = 10~%andM = 1075, P; (top row), P, ( middle row) andPs ( bottom row) elements.
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Figure 4: History of the nonlinear residuals vs. numberefition steps for the pressure (left column),
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5.2. Effect of the perturbed variables on the solution aacyr

5.2.1. Normalized isolinesIn the following we present the contour plots of the normedipressure,
Pnorm, temperatureThorm, and absolute value of velocityy|,orm- The normalized variableynorm,

was defined as:

Onhorm = (4 — dmin) / (Amax — Gmin) »

whereq = p, T, |v|. Figures 5 and 6 show the normalized contours of pressuitecfiimn),
temperature (middle column) and velocity vector (rightuzoh) atM = 105, using Py (top row),

P> (middle row) andPs (bottom row) elements, without and with the perturbed \@es, respectively.
We see that on the basis of normalized pressure and absalute of velocity isolines there is no
difference between the perturbed and the non-perturbedico$, whereas isolines of temperature
begin to deteriorate usings elements and non-perturbated variables.

The solutions atM = 1076, see Figures 7 and 8, show more clearly how using the pedurbe
variables improves the numerical accuracy in the low Machlimer limit. Here, theP; solutions
obtained using non-perturbated variables exhibit nurakascillations, and the results worsen as the
polynomial degree increases. This is due to the higher nawfogomputations performed when the
higher order approximations are used. In other words, thgetathe number of computations with
rounding errors occurring at each computation, the worsestilution. Like for thePs solution at
M = 107, it was not possible to obtain a converged solution for loMach numbers, regardless of
the polynomial degree. From these results we see that theped variables are fundamental to obtain
convergence of continuity and momentum equations at vevyMach numbers, although the energy
equation still does not converge. In fact the perturbed tdation of the Euler equations allowed to
obtain accurate pressure and velocity isolines even foemdly low Mach number adiabatic flows,

Copyright(© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluid2000;00:1-30

Prepared usindldauth.cls



22 A.NIGRO., C. DE BARTOLO, R. HARTMANN, F. BASSI

286 M = 10715 see Figure 9, independently of the polynomial degree ohtimaerical solution, thus

287 extending the DG scheme to the incompressible limit.

Pnorm Thorm [0lnorm

Figure 5: Non-perturbed method: testMt= 10~°. Contours of normalized pressure (left column),
temperature (middle column) and velocity (right columR).( top row), P> ( middle row) andPs (
bottom row) elements.
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Pnorm Thorm [0lnorm

Figure 6: Perturbed method: test Bt = 10~°. Contours of normalized pressure (left column),
temperature (middle column) and velocity (right columBj. ( top row), P, ( middle row) andPs

( bottom row) elements.
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Pnorm Thorm [vlnorm

P1 P1 P1

P3 P3 P3

Solution not possible Solution not possible Solution not possible

Figure 7: Non-perturbed method: testMt= 10~5. Contours of normalized pressure (left column),
temperature (middle column) and velocity (right columRj.( top row), P> ( middle row) andPs (

bottom row) elements.
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Pnorm Thorm [0lnorm

P1 P1 P1

Figure 8: Perturbed method: test bt = 1076, Contours of normalized pressure (left column),
temperature (middle column) and velocity (right columBj. ( top row), P, ( middle row) andPs

( bottom row) elements.
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Pnorm Thorm [0lnorm

Figure 9: Perturbed method: test it = 10~1°. Contours of normalized pressure (left column),
temperature (middle column) and velocity (right columBj. ( top row), P, ( middle row) andPs

( bottom row) elements.

5.2.2. Pressure fluctuationsFig. 10 shows the pressure fluctuati@qpg,ax — Pmin)/ Pmax Versus the
Mach numberaM = 1072, M = 1074 M = 108 andM = 10715, usingP;, P, and P; elements,
with the perturbed variables. We see that the perturbeddtation of the Euler equations preserves
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201 the accuracy of the solutions at extremely low Mach numHBdarperfect agreement with the theory,

202 the pressure fluctuations scale exactly with the squareedfitich number down tM = 10715,

10"
o P1 *
10°} o P2 e
X P3 .
————————— M’ )4
§ 1 '/'
10" | R
e b
= e
10" 7
o ra
E 2 '//
S107F '//
— Ve
p
_ 76 e
10° | -
,/'
'/
10-31 §/ 1 1 1 | | 1
10" 10" 10™ 10™ 10 107 10° 10° 10’
Mach

Figure 10: Pressure fluctuations vs. Mach numbePfoiP, andP; elements using perturbed variables.

Dashed and dotted line displays the theoretical behavitt%of

293 6. CONCLUSIONS

204 Inthis work we have presented the main features of a pretiondd DG discretization for inviscid very
205 low Mach number computations. The method solves the corsipte€uler equations written in terms
206 Of primitive variables and iterates to steady-state usmgxplicit scheme. The algorithm employs the
207 perturbed formulation of the governing equations and theMiach number preconditioning of both the
208 time-derivative term of the governing equations and of inaerical flux function (full preconditioning
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approach).

Numerical results have been presented solving the 2D casipfe Euler equations at different
very low Mach numbers using linear, quadratic and cubic eles) with and without the perturbed
variables. The perturbed formulation allowed to invegtigan the relationship between convergence
characteristics and Mach number. For a given polynomiateksghe convergence characteristics of
continuity, momentum and energy equations were found iadéent of the Mach number, showing
that the scaling of the computed pressure, temperature atatity changes as Mach number
reduces are in agreement with thé?, M2 and M theoretical scaling, respectively. Furthermore,
for a given Mach number, it was shown that the residual decagace when polynomial degree
increases even using perturbed variables. In all casestherence speed was not affected by the
perturbed variables. Some convergence problems were foutite energy equation at very low Mach
numbers due to cancellation errors. Nevertheless, it has beown that the perturbed formulation
is mandatory to obtain accurate pressure and velocityildisions at low Mach numbers, especially

when computations are performed using high order reprasens of the unknowns.
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