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1 Dip. di Meccanica-Università della Calabria Ponte P. Bucci cubo 44/C 87036 - Rende (CS), Italy.4

2 Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Lilienthalplatz 7, 38108 Braunschweig,5

Germany.6
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SUMMARY8

In this work we present a Discontinuous Galerkin (DG) methoddesigned to improve the accuracy and efficiency9

of the steady-state solution at very low Mach number flows using an explicit scheme. The algorithm is based10

on a perturbed formulation of the compressible Euler equations and employs the preconditioning of both the11

instationary term of the governing equations and the dissipative term of the numerical flux function (full12

preconditioning approach).13

The performance of the scheme is demonstrated by solving an inviscid flow past a NACA0012 airfoil at14

different very low Mach numbers using various degrees of polynomial approximation. We present numerical15

results computed with and without perturbed variables which illustrate the influence of the cancellation errors on16

both the convergence and the accuracy of the DG solutions at low Mach numbers. Copyrightc© 2000 John Wiley17

& Sons, Ltd.18
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1. INTRODUCTION22

DG methods have received more and more attention in the last years because of their appealing23

features that justify the widespread applications of thesemethods. In particular, the minimal amount24

of numerical dissipation and the potential to reduce the gridding requirements and the time necessary25

to achieve a desired accuracy level of DG solutions, make this method very appealing for low Mach26

number flow computations [1, 2].27

The difficulty in solving the compressible Euler equations at low Mach number is due to the large28

disparity of wave speeds. Well known, undesirable effects of low speed flow on most numerical29

schemes include low convergence speed and loss of accuracy,[3, 4, 5]. Another issue related to the30

numerical solution of low speed flows concerns the careful implementation of non-reflecting boundary31

conditions [6, 7, 8].32

Several preconditioning techniques, applied to the governing equations and to their discretizations,33

have been developed in the past to cope with the stiffness andaccuracy problems [6, 9, 10, 11]. These34

techniques basically scale the wave speeds to the same orderof magnitude premultiplying the time35

derivative terms of the governing equations by a preconditioning matrix. For the large family of upwind36

schemes, preconditioning enters also in the formulation ofnumerical flux functions in order to properly37

balance the artificial dissipation implied by the numericalflux formulation, [4, 5, 12]. Some of the most38

recognized local preconditioners for inviscid and viscousflows were proposed by Turkel [9, 10], Lee39

and van Leer [11], Weiss and Smith [13] and Choi and Merkle [14].40
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Recently, Nigro in [15] and [16] introduced the low Mach number preconditioning for DG41

discretizations and reported for Mach numbers down toM = 10−3 that the preconditioning technique42

results in a significant improvement of the convergence speed. Furthermore, it has been shown that43

preconditioning enhances the accuracy of numerical solutions.44

Nevertheless, it is difficult or impossible to solve Euler equations at very low Mach numbers even45

with preconditioning. This is due to cancellation errors which occur as an accumulation effect of46

round-off errors. Round-off errors depend mainly on the floating point representation used and are47

thus unavoidable.48

The problem of the cancellation error can be minimized by formulating the governing equations49

in terms of perturbed variables [17, 18]. Reference quantities are introduced in the equations for the50

thermodynamic variables and the computations are performed for the fluctuations.51

The governing equations are unaltered and the method can be used in conjunction with standard52

numerical strategies, like preconditioning. Several previous studies [14, 19, 20, 21, 22] showed that53

this problem can be alleviated by employing the concept of gauge pressure, in which the pressure is54

decomposed into a constant reference pressure and a relative pressure. Sesterhenn et al. [17] extended55

the relative treatment to all variables and flux vectors. Nevertheless, Lee [23] showed that this approach56

produced a slight improvement in the convergence process ofthe energy equation while the precision57

of floating-point variables was a much more important factorin the calculations of the temperature58

field at very low Mach numbers. Usually, double precision allows to circumvent the problem of59

cancellation errors for engineering accuracy. Notwithstanding, this floating point representation cannot60

be sufficient to obtain higher accurate results: the higher the accuracy of solution, the larger the number61

of computations with round-off error occuring at each computation. Thus, the perturbed formulation of62

the governing equations becomes mandatory to obtain a highly accurate representation of the unknowns63
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at low Mach numbers using higher order schemes.64

Finally, concerning the set of dependent variables, it has been shown in [24] that the conservative65

incompressible formulation is well defined only for the entropy variables and the primitive variables66

including pressure. It has also been shown that these two sets of variables are best suited for solving67

practical problems, with the primitive variables being more accurate than the entropy variables for68

low speed and incompressible flow computations. For these reasons the primitive variables are often69

preferred for low Mach number computations [13, 14, 23, 25] and they have also been used to develop70

numerical schemes well suited for both compressible and incompressible flows.71

In this paper we present a preconditioned DG discretizationof the 2D compressible Euler equations72

suitable to compute inviscid very low Mach number flows. The preconditioning affects both the time73

derivative terms of the governing equations, through the action of the Weiss and Smith preconditioning74

matrix [13], and the numerical dissipation of the Roe’s Riemann solver used to compute the numerical75

flux (full preconditioning technique). The method is applicable only to steady-state simulations as76

the preconditioning of the unsteady terms destroys the timeaccuracy of the governing equations. The77

conservative system of equations is written in terms of perturbed variables and iterated to steady state78

using an explicit scheme.79

This paper aims at giving a contribution on developing a conservative DG scheme that is suitable80

for compressible and incompressible flows. In particular, here we extend the DG discretization of the81

Euler equations, written in the most appropriate set of primitive variables, to the incompressible limit,82

we consider the relationships between convergence characteristics and the Mach number for different83

degrees of polynomial approximation, and, finally, we examine the influence of the cancellation error84

on both the accuracy of solutions and the convergence characteristics, taking into account the effect of85

the polynomial degree.86
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The outline of the paper is as follows. In Section 2 we presentthe preconditioned form of87

the compressible Euler equations using primitive variables and perturbed variables. In Section 388

we describe the DG discretization of the governing equations, the boundary conditions and the89

preconditioned numerical flux function. In Section 4 we givesome details on the explicit time stepping90

scheme. The performance of the numerical scheme is then demonstrated in Section 5 by computing an91

inviscid flow around a NACA0012 airfoil for different very low Mach numbers (down toM = 10−15)92

and different degrees of polynomial approximation (P = 1,2,3). Finally, a few conclusions are drawn93

in Section 6.94

2. GOVERNING EQUATIONS95

2.1. The preconditioned compressible Euler equations96

We consider the preconditioned two-dimensional compressible Euler equations in conservative form,97

Ŵ
∂q
∂ t

+ ∇ · F = 0. (1)

The primitive variablesq and the cartesian componentsf andg of the flux functionF are given by:98
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


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


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, (2)

where p is the pressure,T is the fluid temperature,u andv are the velocity components,ρ is the99

density andH is the total enthalpy per unit mass. By assuming that the fluidobeys the perfect gas state100

equation,H is given byH = cpT +0.5
(

u2 + v2
)

, wherecp denotes the isobaric specific heat capacity101
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of the fluid, andρ can be calculated asρ = p/T .102

The matrixŴ used in the present work is the local preconditioning matrixof Weiss and Smith [13]103

written in the following form104

Ŵ =


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








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


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, (3)

whereρT=
∂ρ
∂T

∣

∣

∣

p=const.
and2 is given by105

2=

(

1

U2
r

−
ρT

ρcp

)

. (4)

Here,Ur is a reference velocity which, for an ideal gas, is defined as106

Ur =































εc, if |v| < εc,

|v| , if εc < |v| < c,

c, if |v| > c,

(5)

wherec is the acoustic speed andε is a small number included to prevent singularities at stagnation107

points. Furthermore, by assuming that the fluid obeys the perfect gas state equation,ρT can be108

calculated asρT = −ρ/T . Choosingε = O(M), the low Mach preconditioning ensures that the109

convective and acoustic wave speeds are of similar magnitude, proportional to the flow speed [26].110

In the next section we will show how preconditioning enters in the formulation of the numerical111

flux function in the normal direction at Gauss integration points on inter-element faces. Hence it is112

worthwhile introducing here the wave speeds of the preconditioned Euler equations in the direction of113

the unit vectorn, which are given by the eigenvalues ofŴ−1( ∂f
∂q n1 +

∂g
∂q n2), where ∂f

∂q and ∂g
∂q are the114
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inviscid flux jacobians with respect to the primitive variables, andn1 andn2 are the components of the115

unit vectorn = (n1,n2)
T . The propagation speeds in this direction are116

λ1 = λ2 = un, λ3 = u′
n + c′, λ4 = u′

n − c′,

where117

un = v · n,

u′
n = un(1 − α),

c′ =

√

α2u2
n + U2

r ,

α =
1 − βU2

r

2
, (6)

β =

(

ρp +
ρT

ρcp

)

,

ρp =
∂ρ

∂p

∣

∣

∣

∣

T=const.
.

For an ideal gasρp = 1/T andβ = 1/c2. At low speed asUr → 0, α → 1/2, and all the

eigenvalues become of the same order asun. We note that all the above equations have been written

in non-dimensional form using the dimensional relationships with the reference values of lengthlr ,

densityρr , pressurepr and gas constantRr . The non-dimensionalized quantities have the following

orders of magnitude:

p, ρ, T ∼ O(1), u, v,un ∼ O(M), H, cp ∼ O(1),

u′
n, c

′ ∼ O(M), 2 ∼ O(M−2). (7)

2.2. Perturbed variables118

In this work the relative thermodynamic dependent variables p′ andT ′ are defined as,119
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p′ = p − p∞

T ′ = T − T∞

(8)

where p∞ and T∞ are the freestream pressure and temperature respectively.Furthermore the120

momentum fluxes are defined considering the relative pressure, p′. Then the primitive variablesq121

and the cartesian componentsf andg of the convective flux functionF are given as follows,122

q =
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




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. (9)

The perturbed formulation of the preconditioned governingequations obtained using Eq.(9) is123

mathematically equivalent to the original one, Eq.(1). In particular, the preconditioning matrix, Eq.(3),124

is not modified and the ideal gas law is maintained.125

3. THE PRECONDITIONED DG DISCRETIZATION126

Multiplying Eq. (1) by a vector-valued test functionv and integrating by parts, we obtain the weak127

formulation:128

∫

�

vTŴ
∂q
∂ t

dx −

∫

�

∇vT · F dx +

∫

∂�

vTF · n ds = 0 ∀v ∈ H 1 (�) (10)

where� is the domain with boundary∂�, andn is the unit outward normal vector. To discretize129

in space, we defineVp
h to be the space of discontinuous vector-valued polynomialsof degreep on a130

subdivisionTh of the domain into non-overlappingelements such that� =
⋃

κ∈Th
κ . Thus, the solution131

and test function space is defined by132

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids2000;00:1–30

Prepared usingfldauth.cls



A DISCONTINUOUS GALERKIN METHOD FOR INVISCID VERY LOW MACH NUMBER FLOWS 9

Vp
h =

{

v ∈ L2 (�) v |κ∈ Pp, κ ∈ Th

}

,

wherePp is the space of polynomial functions of degree at mostp. The discrete problem then takes133

the following form: findqh ∈ Vp
h such that134

∑

κǫTh

{∫

κ

vT
hŴ
∂qh

∂ t
dx −

∫

κ

∇vT
h · F(qh) dx

+

∫

∂κ\∂�

v+T

h Hi
(

q+
h ,q−

h ,n
)

ds +

∫

∂κ∩∂�

v+T

h Hb

(

q+
h ,qb

h,n
)

ds

}

= 0 (11)

for all vh ∈ Vp
h , whereHi

(

q+
h ,q−

h ,n
)

andHb
(

q+
h ,qb

h,n
)

are numerical flux functions defined on135

interior and boundary faces, respectively.Hi takes into account the possible discontinuities ofqh at136

element interfaces. On interior edges∂κ\∂�, Hi depends on the elements interior stateq+
h and on the137

neighbouring elements stateq−
h . On boundary edges∂κ ∩ ∂�, Hb depends on the interior stateq+

h and138

a consistent boundary stateqb
h. We note thatHb may be different fromHi .139

Given a set of basis functionsψ j , j = 1, . . . , N, of the discrete function spaceVp
h with N = #Vp

h

we define the residual vectorR =
{(

R(qh), ψ j

)}

j =1,...,N where

(R(qh), vh) ≡

∫

κ

∇vT
h · F(qh)dx −

∫

∂κ\∂�

v+T

h Hi
(

q+
h ,q−

h ,n
)

ds −

∫

∂κ∩∂�

v+T

h Hb

(

q+
h ,qb

h,n
)

ds,

for all vh ∈ Vp
h . Then the spatial DG discretization of Eq. (11) results in the following global system140

of equations:141

MŴ
dQ
dt

− R = 0, (12)

whereQ is the global vector of degrees of freedom (dof) withqh =
∑

j =1,...,N Q jψ j . R is the142

residual vector as defined above andMŴ stands for the discretization of the first integral of Eq. (11).143
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Hence,MŴ is a block diagonal matrix where the block corresponding to one element couples all the144

dof of all variables within the element (the coupling among dof of different variables is due to the145

action ofŴ).146

3.1. Boundary Conditions147

When ∂κ belongs to∂� the boundary fluxes, denoted byHb
(

q+,qb,n
)

, are chosen to weakly148

prescribe the boundary conditions of the problem. Here,n is the unit outward normal vector,q+ is149

the interior state at the boundary andqb is computed according to the conditions that must be satisfied150

on the boundary.151

At far-field, Hb is the numerical flux functionHi (q+,qb,n), whereqb is computed by imposing a152

set of simplified non-reflecting boundary conditions [6] to minimize spurious reflections. In particular153

at the inflow boundary the stateqb has the same pressure asq+, whereas the velocity vector and the154

temperature is prescribed based on the freestream values. Conversely, at the outflow boundary, the state155

qb has the same temperature and velocity vector asq+, whereas the pressure is prescribed based on the156

freestream value. We remark that the simplified non-reflecting boundary conditions require a far-field157

boundary well far away from the aerodynamic surface in orderto get efficient and accurate solutions.158

At solid walls,Hb is the inviscid flux function in the direction normal to the wall F
(

qb
)

· n, where159

qb has the same pressure and temperature asq+, whereas the velocity vectorvb = v+ − (v · n)+ n160

ensures that the normal velocity component is zero on the boundary,(v · n)b = 0.161

3.2. Flux difference splitting162

The numerical fluxHi (q+,q−,n) appearing in Eq. (11) is computed based on a preconditioningof163

the artificial dissipation term of the Roe’s approximate Riemann solver [27]. In terms of primitive164

quantitiesq, the value ofHi at each face is given by165
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Hi
(

q+,q−,n
)

=
1

2

(

F(q+) · n + F(q−) · n − F̃Ŵ
(

q+,q−,n
)

)

, (13)

whereF̃Ŵ is given by166

Ŵ̃|ÃŴ|1q. (14)

Here,1q = q− − q+ and the matrix|ÃŴ| is defined in terms of the preconditioned eigenvalues and167

eigenvectors by168

|ÃŴ| = T̃Ŵ |3̃Ŵ|T̃−1
Ŵ .

The symbol ˜ denotes that the matrices are computed using the Roe-averaged variables [28] and169

the subscriptŴ that the diagonal matrix of eigenvalues and the modal matrixare derived from the170

preconditioned system, wherẽ3Ŵ is the diagonal matrix of the preconditioned eigenvalues, and T̃Ŵ171

diagonalizes the matrix ˜Ŵ−1( ∂F
∂q · n). We note, that for the non-preconditioned system, Eq.(13) reduces172

to the standard Roe’s flux difference splitting.173

4. TIME DISCRETIZATION OF THE PRECONDITIONED EULER EQUATIONS174

The semidiscrete system Eq.(12) is discretized in time based on an explicit multistage time-stepping175

method. In order to overcome the restrictive explicit CFL stability limit (the Courant number is176

approximately equal to 1/(2p + 1) for linear stability of TVD Runge-Kutta schemes, wherep is the177

polynomial degree of the spatial discretization), both thelocal time–stepping and the preconditioning178

techniques have been used to improve the convergence speed to steady state solutions.179
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The solution is advanced from timet to timet +1t with ans-stage SSP Runge-Kutta scheme [29],180

given by181

Q0 = Qt ,

Qi =

i−1
∑

k=0

αik Qk + βik1tM−1
Ŵ R(Qk) i = 1,2, ..., s, (15)

Qt+1t = Qs,

wherei is the stage counter for thes-stage scheme andαik andβik are the multistage coefficients182

for thei th stage.183

The local time step1t on each elementκ is computed by considering the following relation:184

1t =
σ

2p + 1
·

|κ |

3x
c +3

y
c
, (16)

where the preconditioned convective spectral radii3x
c and3y

c are defined as185

3x
c =

(∣

∣ū′
∣

∣ + c̄′
x

)

1Sx ,

3
y
c =

(

∣

∣v̄ ′
∣

∣ + c̄′
y

)

1Sy. (17)

The variables1Sx and1Sy represent the projections of the elementκ onto thex and y axis,186

respectively, whereas̄u′, c̄′
x andv̄ ′, c̄′

y are obtained applying Equations (6) along thex andy directions187

and using the mean values of the flow quantities on each element κ . Finally, p is the polynomial degree188

of the spatial discretization andσ is a factor introduced to take into account that SSP can be more189

efficient than TVD Runge-Kutta schemes.190
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5. RESULTS191

In this section, we present some numerical results demonstrating the performance of the proposed192

preconditioned DG discretization for inviscid very low Mach number flows. To this end, we consider193

an inviscid flow past a NACA0012 airfoil at zero angle of attack comparing the preconditioned DG194

discretizations with and without perturbed variables. DG solutions on a triangular O-type grid, for195

different very low Mach numbers and using linear (P1), quadratic (P2) and cubic (P3) elements are196

performed. Fig. 1 shows the computational grid. The grid is composed of 1792 elements, and the far-197

field boundary is located far away from the aerodynamic surface. All computations are performed in198

double precision, storing 16 significant digits.199

The computational results are organized in two subsections, one focusing on the convergence200

characteristics of the preconditioned Euler equations andthe other on the accuracy of the converged201

solutions.202

The residual histories of pressure,p, temperature,T , horizontal, u, and vertical,v, velocity203

components versus iteration number are shown to represent the convergence characteristics.204

The accuracy of the converged solutions is analyzed both qualitatively and quantitatively. First,205

the normalized pressure fields are presented for a qualitative comparison. Then, for the quantitative206

analysis, the scaling of computed pressure fluctuations as the Mach number reduces is compared with207

theM2 theoretical scaling.208

5.1. Effect of the perturbed variables on convergence characteristics209

The residuals are measured in terms of the absolute value of the ratio between the dependent variable210

changes and the local time step, both computed for each element κ using the mean values of the flow211

quantities. The residual of the generic dependent variable, q, was defined as:212
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Figure 1: Computational Grid

Res(q) = Max
{

|1(q̄)/1t|κ , ∀κ ∈ �
}

with q = p, T, u, v. (18)

The convergence histories of velocity are represented by the residuals of the horizontal velocity213

component as similar histories are obtained for the vertical velocity component. Fig. 2 shows the214

convergence characteristics of pressure (left column), temperature (middle column) and velocity (right215

column) atM = 10−2, M = 10−4 andM = 10−6, for linear (P1 top row), quadratic (P2 middle row)216

and cubic (P3 bottom row) elements, without the perturbed variables. Theresiduals are normalized217

with respect to the residual at the first time step. Overall, we see that, for a given polynomial degree, all218

the convergence characteristics have the same convergencespeed, which is independent of the Mach219

number. Nevertheless, the efficiency of the preconditionedscheme reduces due to the CFL stability220
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condition.221

Furthermore in Fig. 2 the influence of cancellation error on the residual decay can be clearly222

seen. Examining the convergence histories of pressure, temperature, and velocity we can make two223

observations. The first is that, for a given polynomial degree, the lower the Mach number, the smaller224

the residual decay. The second is that, for a given Mach number, the higher the polynomial degree, the225

smaller the reduction of the residual, even if this influenceis less evident than the first.226

However, both the influence of Mach number and polynomial degree on the decrease of the residual did227

not allowed to obtain a solution at the lowest Mach numberM = 10−6 using the highest polynomial228

degreeP3.229

230

Figure 3 shows the convergence characteristics with the perturbed variables. The residuals are231

not normalized in order to highlight for the dependence of convergence characteristics on the232

Mach number. We see that all the residuals decrease as the Mach number reduces. Specifically, the233

convergence of pressure and temperature scale asO(M3), while the residual of velocity scales as234

O(M2). Then, as from Eq. (16) and Eq. (17) the order of magnitude of the local time stepping is235

O(M−1), due to the order given in Eq. (7), the resulting orders of magnitude of the computed pressure,236

temperature and velocity changes areO(M2), O(M2) andO(M), respectively, in perfect agreement237

with the theoretical behaviour.238

Figure 4 shows the convergence characteristics with the perturbed variables, obtained scaling the239

residuals of pressure, temperature and velocity as follows:240
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Res(p) = Max

{

|1 p̄/1t|κ
M3

, ∀κ ∈ �

}

,

Res(T) = Max

{∣

∣1T̄/1t
∣

∣

κ

M3 , ∀κ ∈ �

}

, (19)

Res(u) = Max

{

|1ū/1t|κ
M2

, ∀κ ∈ �

}

.

The plots show that the perturbed variables do not affect theconvergence speed in comparison to241

the non-perturbed solution, Fig. 2. We notice that the residual decay of pressure and velocity are now242

independent of the Mach number.243

Different is the case of the temperature. We see that even if we use the perturbed variables, the244

residual of temperature reduces less as compared to the residual of pressure because they stagnate245

at a level closer to the starting value. In particular, the decay of the temperature residual strongly246

reduces when Mach number approaches zero. The reason of thisbehaviour can be found in the order247

of magnitude of the convective fluxes as the Mach number approaches zero. Due to the orders of248

magnitude of the non-dimensionalized quantities, Eq. (7),and considering thatp′ ∼ O(M2), the249

convective fluxes in thex andy direction Eq. (9) can be expressed as follows:250

f, g ∼

























O (M)

O
(

M2
)

O
(

M2
)

O (M)+ O
(

M3
)

























.

251

We see that the range of the order of magnitude of the flux in theenergy equation is wider than that252

in the other equations. Thereby, the temperature suffers more from the cancellation problem than the253

other variables [23].254
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The dependency of the residual reduction on the polynomial degree is the same previously observed255

without the perturbed variables.256

Furthermore, we note that, using the perturbed variables, while the residual decay of pressure and257

velocity is sufficient enough to obtain accurate flow variable distributions, the lowest level of residual258

reduction of the temperature shows a strong effect of the cancellation error and this not always allowed259

to compute accurate temperature fields.260

Finally, we observe that the explicit scheme results in an inefficient solution technique even261

using preconditioning. This is due to the restrictive limitations on the CFL number for higher order262

discretizations. A multigrid strategy might be implemented for the explicit time-stepping scheme in263

order to accelerate the convergence of the preconditioned Euler equations to the steady-state solution.264
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Pressure Temperature Velocity

Figure 2: History of the nonlinear residuals vs. number of iteration steps for the pressure (left column),

temperature (middle column) and velocity (right column), in normalized form without the perturbed

variables atM = 10−2, M = 10−4 andM = 10−6. P1 ( top row), P2 ( middle row) andP3 ( bottom

row) elements.
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Pressure Temperature Velocity

Figure 3: History of the nonlinear residuals vs. number of iteration steps for the pressure (left column),

temperature (middle column) and velocity (right column), with the perturbed variables atM = 10−2,

M = 10−4 andM = 10−6. P1 ( top row),P2 ( middle row) andP3 ( bottom row) elements.
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Pressure Temperature Velocity

Figure 4: History of the nonlinear residuals vs. number of iteration steps for the pressure (left column),

temperature (middle column) and velocity (right column), in scaled form with the perturbed variables

at M = 10−2, M = 10−4 and M = 10−6. P1 ( top row), P2 ( middle row) andP3 ( bottom row)

elements.
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5.2. Effect of the perturbed variables on the solution accuracy265

5.2.1. Normalized isolinesIn the following we present the contour plots of the normalized pressure,266

pnorm, temperature,Tnorm, and absolute value of velocity,|v|norm. The normalized variable,qnorm,267

was defined as:268

qnorm = (q − qmin) / (qmax − qmin) ,

whereq = p, T, |v|. Figures 5 and 6 show the normalized contours of pressure (left column),269

temperature (middle column) and velocity vector (right column) atM = 10−5, using P1 (top row),270

P2 (middle row) andP3 (bottom row) elements, without and with the perturbed variables, respectively.271

We see that on the basis of normalized pressure and absolute value of velocity isolines there is no272

difference between the perturbed and the non-perturbed solutions, whereas isolines of temperature273

begin to deteriorate usingP3 elements and non-perturbated variables.274

The solutions atM = 10−6, see Figures 7 and 8, show more clearly how using the perturbed275

variables improves the numerical accuracy in the low Mach number limit. Here, theP1 solutions276

obtained using non-perturbated variables exhibit numerical oscillations, and the results worsen as the277

polynomial degree increases. This is due to the higher number of computations performed when the278

higher order approximations are used. In other words, the larger the number of computations with279

rounding errors occurring at each computation, the worse the solution. Like for theP3 solution at280

M = 10−6, it was not possible to obtain a converged solution for lowerMach numbers, regardless of281

the polynomial degree. From these results we see that the perturbed variables are fundamental to obtain282

convergence of continuity and momentum equations at very low Mach numbers, although the energy283

equation still does not converge. In fact the perturbed formulation of the Euler equations allowed to284

obtain accurate pressure and velocity isolines even for extremely low Mach number adiabatic flows,285
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M = 10−15, see Figure 9, independently of the polynomial degree of thenumerical solution, thus286

extending the DG scheme to the incompressible limit.287

pnorm Tnorm |v|norm

Figure 5: Non-perturbed method: test atM = 10−5. Contours of normalized pressure (left column),

temperature (middle column) and velocity (right column).P1 ( top row), P2 ( middle row) andP3 (

bottom row) elements.
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pnorm Tnorm |v|norm

Figure 6: Perturbed method: test atM = 10−5. Contours of normalized pressure (left column),

temperature (middle column) and velocity (right column).P1 ( top row), P2 ( middle row) andP3

( bottom row) elements.
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pnorm Tnorm |v|norm

Figure 7: Non-perturbed method: test atM = 10−6. Contours of normalized pressure (left column),

temperature (middle column) and velocity (right column).P1 ( top row), P2 ( middle row) andP3 (

bottom row) elements.
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pnorm Tnorm |v|norm

Figure 8: Perturbed method: test atM = 10−6. Contours of normalized pressure (left column),

temperature (middle column) and velocity (right column).P1 ( top row), P2 ( middle row) andP3

( bottom row) elements.
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pnorm Tnorm |v|norm

Figure 9: Perturbed method: test atM = 10−15. Contours of normalized pressure (left column),

temperature (middle column) and velocity (right column).P1 ( top row), P2 ( middle row) andP3

( bottom row) elements.

5.2.2. Pressure fluctuationsFig. 10 shows the pressure fluctuations(pmax − pmin)/pmax versus the288

Mach number atM = 10−2, M = 10−4, M = 10−6 andM = 10−15, usingP1, P2 andP3 elements,289

with the perturbed variables. We see that the perturbed formulation of the Euler equations preserves290
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the accuracy of the solutions at extremely low Mach numbers.In perfect agreement with the theory,291

the pressure fluctuations scale exactly with the square of the Mach number down toM = 10−15.292

Figure 10: Pressure fluctuations vs. Mach number forP1, P2 andP3 elements using perturbed variables.

Dashed and dotted line displays the theoretical behavior ofM2.

6. CONCLUSIONS293

In this work we have presented the main features of a preconditioned DG discretization for inviscid very294

low Mach number computations. The method solves the compressible Euler equations written in terms295

of primitive variables and iterates to steady-state using an explicit scheme. The algorithm employs the296

perturbed formulation of the governing equations and the low Mach number preconditioning of both the297

time-derivative term of the governing equations and of the numerical flux function (full preconditioning298
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approach).299

Numerical results have been presented solving the 2D compressible Euler equations at different300

very low Mach numbers using linear, quadratic and cubic elements, with and without the perturbed301

variables. The perturbed formulation allowed to investigate on the relationship between convergence302

characteristics and Mach number. For a given polynomial degree, the convergence characteristics of303

continuity, momentum and energy equations were found independent of the Mach number, showing304

that the scaling of the computed pressure, temperature and velocity changes as Mach number305

reduces are in agreement with theM2, M2 and M theoretical scaling, respectively. Furthermore,306

for a given Mach number, it was shown that the residual decaysreduce when polynomial degree307

increases even using perturbed variables. In all cases the convergence speed was not affected by the308

perturbed variables. Some convergence problems were foundfor the energy equation at very low Mach309

numbers due to cancellation errors. Nevertheless, it has been shown that the perturbed formulation310

is mandatory to obtain accurate pressure and velocity distributions at low Mach numbers, especially311

when computations are performed using high order representations of the unknowns.312
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