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A Wave Model Tor Sound Generation in Circular Jeis

Summazl

A wave model is used for the investigation of sound generation in circu-
lar jets. The source term of the Lighthill equation is expressed by a
Fourier series in the azimuthal angle, is Fourier~transformed with re~
spect to time, and each component is assumed to be of wave~type in jet
direction, A far-field solution for +the sound pressure is derived in this
way for single azimuth-frequency components, It is found that the sound
field depends strongly on a convection parameter and on a jet thickness
paranmeter. The influence of axisymmetric and azimuthal source components
ig discussed. For a special source term with arbifrarily chosen amplitude
distributions the conveciion factor and the jet thickness factor of

gound intensity are calculated and discussed. The influence of the am~
plitude distribution of the source componenfs is found to be of minor

lmportance,

Iin Wellenmodell fiir die Schallerzeugung in runden Freistrahlen

Ubersicht

Ein Wellenmodell wird fiir die Untersuchung der Schallerzeugung in runden
Freistrahlen benutzt. Der Quellterm der Lighthillgleichung wird durch
eine Fourierreine in bezug auf den Umfangswinkel dargestellt und fourierw
transformiert in bezug auvf die Zeit. Ferner wird jede Komponente als
wellenformig in Freistrahlrichtung angenommen. Auf diese Weise wird eine
Schalldruck-Fernfeldldsung fir einzelne Azimutal-Frequenzkonmponenten her-
geleitet. Es zeiglt sich, dafl das Schallfeld von einem Konvektionsparame=
ter und einem Freistrahldickenparameter stark beeinflufit wird. Der Ein-
flul von axialsymmetrischen und azimutalen Quellkomponenten wird diskuw-
tiert., Fiir eine spezielle ¥orm des Quellterms mit freigewdhlter Amplitue
denverteilung wird der Konvektions- und der Freistrahldickenfaktor der
Schallintensitét berechnet und diskutiert. Es zeigt sich, daB die Ampli-
tudenverteilung der Quellkomponenten nur einen geringen EinfluB hat,
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1« Introduction

Recent investigations of sound generation in jets were mostly based on an
acoustic model introduced by LIGHTHILL[1]. He showed that with respect

to the radiated sound, the source term of the inhomogeneous wave equation
- which is often called Lighthill equation -~ can be interpreted as a
distribution of acoustic quadrupoles in a medium otherwise at rest. An
alternative approach based on gimple sources was proposed by RIBNER [2].
The results of these methods of replacing the fluctuating flow by virtual
acoustic sources helped to explain many features of the aerodynamic sound
generation., Taking the convection speed of the turbulent eddies into ac-
count, the directivity of the nolse pattern could be deduced by means of
the correlation function of the iturbulent stress (see, for example,
FTOWCS~WILLIAMS [3])e. By this method it is, however, diffiecult to take
the specific structure of the turbulence into account, which may be quite
different in different jets. Therefore MOLLO~CHRISTENSEN [L4] stated

Wthat the theory of aerodynamic noise could never be checked experiment-

ally in detail",

With respect to noise emission MOLLO-CHRISTENSEN, KOLFPIN & MARTUCCELLI
[5] foumd experimentally that spectral components of low and high fre=
quency radiate sound guite differently. Hence it may be supposed that a
method only based on the correlation function can hardly reveal all the
properties of the sound field radiated by the flow, since there is a
strong loss of informationl by using overall-correlations only. With this
in mind, it seems to be worthwhile to lodk for other models for sound

generation in Jjets.

MOLLO-CHRISTENSEN [4] suggested "that turbulence may be more regular

than we think i1t is. The experimental data are telling us that turbulence
comes in packages containing components of all frequencies, and that dif-
ferent frequency components preserve their phase relationships over a

few jet diameten's, The wave~like character of turbulence seems to be
reasonable, since wave-like disturbances are known to exist at least in
the laminar-turbulent transition region, Therefore MOLLO~CHRISTENSEN &
NARASIMHA [6] emphasized the intimate connexion between jet instability
and noise generation, Wave-like phenomena of jet turbulence were also
found experimentally by LAU, FUCHS & FISHER [7]. Furthermore, a wave-
guide model for turbulent shear flow has successfully been used by LAN-
DAHL [8].



With respect to the source term of the Lighthill equation previous theo=-
: ries.of Jet .noise generation have mostly used cartesian coordinates. For
a ecircular jet, however, a c¢ylindrical coordinate system is surely ad=-
equate. Thus one can easily take into account that for fixed time the jet
turbulence has to be periodic with respect to the azimuthal angle, and

S50 ﬁﬁﬁé%gfbﬁ the source term., This periodicity in the azimuthal angle is.
trivial and self-evident, since the instantaneous turbulent fluctuations
must have unique values for fixed time at each point of the jet flow ine-

dependent % any multiple of 21 .

Considering these facts, an alternative approach is proposed here to
study the sound generation in circular jets. Unlike previous theories,
we shall use a solution of the Lighthill equation in which the source
term is given in cylindrical coordinates. We -take into account that the
source term, although random in time, has to be periodic with respect to
the azimuth ¢ and can, therefore, beﬂpresented by a Fourier series in
@ with the period 2W, The second point is that we deal with frequency
components by means of a Fourier transform with respect to time. In spe~
cifying the jet turbulence to be wave~like, we finally assume that each
Fourier component of the source term has wave character inﬁﬁet‘flow =
rection, It is hoped that this "wave model" will explain some features
of the mechanism of sound generation which are difficult to obtain other=
wise,

2+ A solution of the Lighthill eguation for wave-type jet turbulence

The basile equation for the aerodynamic sound generation due to LIGHTHILL

[1] can be written as an inhomogeneous wave equation

1 8 2p d ap
(2.1) I S s = 4
a gt 0 xy

The inhomogeneous part q stands for the acoustic source properties of

the fluctuating flow and is given by

. 8° 1 8° 2
(2.2) g = -ﬂé;;-——-waxa [pcicj] + 5 "‘g‘;“’a‘ lp - ao p]

Here p is the pressure, o5 the velocity vector, p the dengsity and a,
the sound speed in the medium at rest surrounding the flow. The Light-



hill equation (2,1) with the source term (2.2) can be derived from the
inviscid equation of motion and the continuity equation. By means of the
appropriate Green's function the solution of (2.1) can be obtained in in-
tegral form, if the source term ¢ retarded in time 1ls assumed to be

known,

Since we are dealing with circular jets, we use cylindrical coordinates
(x,r,9) where the x-direction coincides with the jet axis. Then with no
s0lid walls bounding the flow the solution of (2.1) becomes except for
an additive constant

©

§
(2.3) p(x,r,¢p,t) = %ﬁ;jlfq(x‘,r‘,w',t - ro/ao) %ﬂ dx'dr tdy'
v

where

-

(2.4) e = b/(X' - x)z + r2 L Efr’GOS(*P' -9 )

is the distance between the source point (x',r',¥') and the measuring
point (x,r,¢p)s In general the source term g vanishes or is negligabl#
snall outside the flow. Hence the integration can be restricted to a cy~-
1indgg{volume V outside of which the source term is zero. Then we have
0¥ ¢ ¥ 21, For values (x,r,p) outside the flow, the solution (2.3)
gives the pressure fluctuations - in the uniform medium at rest with the
sound speed a, = produced by the fluciuvating flow. The integral solution
takes care of all effects of jet noise generation including those of con-
vection and refraction and the different mechanism of self~ and shear-

noise. They do, however, not appear explicitly (cf. LIGHTHILL [1]).

2.1 Fourier representation of the Lighthill integral

We already stated that for fixed time t the source term q has to be peri-
odic with respect to the azimuth @, Hence, in specifying the solution
(243), the source term g can be expressed by the following Fourier se-

ries
Lo ; _ i
(2.5) qlx,r,9,t) = :ZJ [qm(x,r,t) ot qm(x,r,t) et w]
m=0 '

where the superscript = denotes a conjugated complex value, The real



value of m is the azimuthal wave-number. The functions qm are complex
and random in time t. Thus the rms-value of the Fourier series (2.5) is
independent of ¢ . Introducing (2.5) into (2.3) and noting that the dis-
tance'ro in the integrand depends only on % = @' = ¢ , it follows that
the pressure p can also be expressed by a Fourier series

(2.6) Dlx,r,pt) = Z [pm<x,r,t) e B, (x,r4t) e"im“’]

m=0

Then the m=th component of the pressure is given by

t
(247) p, (x,r,t) = ;P_Tifj q (x', 2"yt - 1 /a ) 'i-‘*— oHIX dxtdrtdy
o
v

which again is random in time.

The second step is now to consider only single frequency components. By

means of the Fourier transform

00
b
P (X0 = fpm(x,r,t) Y gy
-00
(2.8)

iwt

[+
Q w('X,I‘) = fqm(xgr’t) e dt

m

one easily obtains from (2.7)
21T
1 .
(2.9) B (x,r) = %ﬁffdxtdr'Qmw(xn,rr)rcfdx 'f-:; exp[:.(kro-a- ny, )]
A o
Q

where

(2.10) k =w/a

is the wave-number of sound. The area AQ can be restricted to that re-
gion where F%MJ>O. This condition defines a limiting radius R of the
source region. In x-direction the Fouriler component Qmw of the source
term will also exist only in a finite region. Hence a length L can be
defined with a non-zero integrand in O % x' ¥ L only. R and L can gene-
rally depend on both m and W and the flow parameters as well. The values

of R and L can, however, only be estimated by experiments,

The last step introduces the wave-model concept by assuming that each

10



source component Qmw is wave=~like with respect to the x-direction. Hence

the amplitude distribution of each wave component is determined by
T 1( t)
o ~Lll0x - w ~iotx
(2411) Qmw(x,r) = fqm(x,r,t) e 7 dt = e Qmw(x,r)
-0

where the phase of the complex amw(x,r) has to be independeat of x for
wave character, ﬁmw and the wave-number o will generally depend on m and

W as well as on the flow parameters, e.g. the Mach number,

It is convenient to introduce polar coordinates rfor the measuring point
in replacing (x,r) by

(2.12) x =P cos@ ; r = T sin®

Then (2.4) becomes

u

(2413) r, = L/?a - 2%'F cos® - 2r'r sind cos?y, + x'2 + r'2

and eque (2.9) yields with (2.11)
LR am

(2.14) Pmu('i",e) = gﬁiffdx'dr' ﬁmw(xi,rv) r,eiax'j' dy, -3_- exp i(kro—b my)
) o o

If we denote the Fourier transform of the total pressure p in (2.6) by

Pw s the spectral density of p is related to the Fourier components P

it
by
2 N 2
(2415) !Pml = z; leuI
Mm=0

if the different functions p_ in the Fourier series (2.6) are assumed to
be uncorrelated. (2.15) means that the directivity of the spectral densi-
ty is a superposition of those of the various m~components. IPwl is a
guantity which could be compared with measurements and which would ap-
proximately agree with the rms-value of a narrow-band-width pressure

signal.
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2.2 The sound field far from the source region

In the following we shall restrict our atteniion to a pressure component
Pmu fer from the source region. Then we have > R, T >>L and the distan-
ce r_  defined by (2.13) can be expanded as follows

(2.16) ?0 =T [1 - (xV/F)lcos© -(r'/T)sin® coéx,+-0((L/?)2,(R/§)2ﬂ

Introducing (2.16) into the last integral of (2.1%) and retaining the

lower order terms only, we readily find

21
(2.17) fd'X- :—:—; exp[i(kro+ mx)] = 2lti“m."f-"1exp [ik('f-n:x:'cose)] Jm(kr'sine)

L]

where Jm is the Bessel function of order m. With (2.17) and from (2.14)

the sound pressure component far from the source region becomes

(2418) B, (F,0) = 4" ¥ 1 (6)

Here
LR
. - C 1o ,
(2.19) Low = 32',[ dx'dr'Qmw(x'.,r')r'Jm(kr'sinO) ela(1 Mccose)x.
0 0

and the convection Mach number
(2.20) Mc = k/a = (w/a)/ao = cph/ao

is the ratio of phase velocity cph and sound speed 2, of the Fourier

component., The spectral density of this component is
2 2, me
(2,21} |me| = |Imw| /¥

The double integral Imw depends on the angle ©, This leads to a direct~
ivity of the radiated sound field which will be different for each com~

ponent,

It should be noted here that the source term g, which due to (2.2) is =
nonlinear function of the velocity components in the jet, can also be ex-
pressed by the pressure fluctuations p' in the jet. Since the flow quane,

tities have to satisfy the nonlinear compressible flow équaticns, we can

12



write the source term

2 2 ; 2 2
(2022) q =15 Jiw%' - Qm%' L0 L g B 9 g']
a, 0t Or r Or r= Oy O0x

We see that the source term g is a 1ineér operator of the pressure fluc-
tuations p'. Hence it follows that the various sound pressure components
me far from the source reglon are merely determined by the corresponding
pressure components in the jet. Therefore, by measuring the relative mag-
nitude of the various components of the pressure fluctuations p' in the
jet, one could obtain an estimate of the relative magnitude of amw which

appears in the integrand of (2,19).

2.3 Discussion of the sound pressure component me

Some essential conclusions mey be drawn by means of the solution (2.18),
even if the amplitude distribution Qmw is not known in detail. First of
all, we can say that me will depend on Emw(x‘,r'), i1ses on the flow pro-
perties.«@h&e-%e9mmesseﬁ$&@&&g-d@#@ﬁﬂ&ﬂes—$h@mMa@&w&umbepnéepeaéense—aim—
the—pornnd-rediation, By using a characteristic velocity Uq! density P,
and length L, it follows from (2,22) with p"'Pan that

g~ P05 L2 [0(M7) + O(u%)] . B o
ittt Mot hy—assumed, MICHALKE [9] found et~deest that for a

disturbed free shear flow, which is a solution of the linearized com=

1 .

pressible equations, the term of 0(M°) exists inside the shear layer,
i.e., for gradients of the mean veloclty and density normal to the flow
direction. This source term was explained to be a consequence of the os-
cillations of the free shear layer, whereas the source term of O(Mz) is
due to the density fluctuatiens. It may be noted, however, that the Mach
number dependence of ﬁmw is not basically a phenomenon of the sound gene~

ration itself.

Tt ig evident from (2.19) that the directivity of a single sound pressure
component is essentially influenced by two acoustic parameters which core
respond to two different mechanisms. The first mechanism is due to the
radial interference of sound sources in the jet. It is oxpressed by the
term kRsin® whick occurs in the argument of the Bessel function of
(219), This term is a parameter for the acoustic jet thickness, since
kR is essentially the ratio of the source region to the sound wavelength.

This effect of non-zero acoustic jet thickness is mostly ignored in pfe—

13



vious theories. The second mechanism is due %o the axial interference
and ¢on?éction of sound sources in the jet, It is expressed by the term

o L{1 - Mccose) in the exponential term of (2.19).

If we introduce the maximum jet velocity U1 and the radius R of the sour-
ce region as characteristic quantities, the terms kR and Mc can be ex-
rressed by the Mach number M = U1/a0. By using the Strouhal number

S = 2Rf/U, with the frequency f =Ww/2W, we find from (2.10)

¥

(2.23) kR = T 8M
and from (2.20)

(2.2) My = (o, /U) ¥

Here the normalized phase velocity cph/U1 of the Fourier component Llike
the normalized wave~number AR(IL/R) may depend on m and 8 as well as on
the flow parameters, e.g. the Mach number M,

Let us first discuss the influence of the jet thickness parameter kRsin®
which accounts for the radial interference of sources within the jet.

The influence of the jet thickness parameter is symmetric around € =m/2.
The behaviour of the Bessel function infers that for a fixed amplitude

istribution § x',r an sin@ <<, e value of e double integra
distributi Qmw( t,r') d kR B6<<1, th 1 f the doubl tegral

I is much smaller for m = 1 than for m = 0, This means that for fixed

mu

o~

Q

1w
than a non-axisymmetric component with m £ 1. Hence in this case the di-

an axisymmetric component of the source term radiates much more scound

rectivity of the spectral density due to (2.15) is approximately given

by |Pm|2 e |Pom|2' On the other hand, for fixed amw and m = O it follows
that with increasing kRsin® the integral Imw becomes smaller, since the
Bessel function Jo decreases and can change the sign. This will occur,
when the radius R and the sound wavelength will be comparable, i.e. for
kR =T SM > 2 approximately, Then the sound intensity of the axisymmetric
component which is proportional to |Pow|2 has a maximum in jet direction
(8 = 0°) and is very small normal to the jet (® =m/2). Contrary to this,
azimuthal source components Qmw with m £ 1 mainly radiate normal to the
jet direction, with no radiation in the direction of the jet axis (O = O,
© =1m). Hence it follows from (2.15) that the spectral density is

I}PMI2 = ipow’2 for €= 0 or ® =N, whereas for 0 < 8 < ® at least |P &

ow|
and ]P1w| can be of the same order of magnitude.

The convection parameter aL(1 - Mrcose) in the exponential term of

14



(2.,19) accounts for the axial interference of the sources in the jet. It
leads to an asymmetry of sound radiation with respect to 8. For a con=
vection Mach number with 0 < MC < 1 the sound radiation of a component
will be enhanced in the direction of the jet (0 = 0), but reduced in up~-
strean direction (8 =m), Furthermore, for Mc > 1, the sound pressure
component (2.18) can reach a meximum value for cos® = Mcuq, since the re-
ducing influence of the exponential term then drops out. In this case the
sources at different x'wpositions will not interfere, and a peak in the
directivity can appear at this angle ©. This effect is called '"Mach wave

radiation' in the literature.

The present theoretical results (2.18),(2.21) and (2.15) are difficuli

to compare with those previously obtained by correlation function tech-
nigue {(¢c.f. FFOWCS-WILLIAMS {3])s The overall~-intensity derived in this
way can be obtained from the present results only by integrating the
spectral density (2.15) over all frequencies W, But for this purpose,
additional assumptions had to be made which would lead to a greater arbi-
trariness, On the other hand, from narrow-band-width measurements, some
directivities of jet noise components were reported by MOLLO~CHRISTENSEN,
KOLPIN & MARTUCCELLI [5) and by KRISHNAPPA & CSANADY [10]., It is felt
that a comparison with these results could be more reasonable. Before
this will be done in section 3.4, and in order to discuss the results in
more detail, the general solution (2,18) will be specialized in the fol-

lowlng section 3.

It should, however, be noted that the solution (2.18) of this section 2.3
obtained for the wave model can be generalized, if the assumption (2.11)
of the wave character of the source components would be suppressed. The
integral solution (2.9) would then lead to a more general integral Im

w
instead of (2.19) valid far from the source region

1 ~ilkx'cos®

LR
(2.25) Liw* gx[fdx'dr' Qmw(x',r')r'Jm(kr'sine) e
o 0

which depends on the acousiic parameters kRsin® and klcos®© ., The first
one is again the jet thickness parameter which accounts for the radial
interferences of sources in the jet. Its influence on the integral Imw ’
as discussed in section 2.3, remains unchanged even in the generalized

W
for the axial interference of sources in the jet. It is obvious from

case {2.25). The second parameter kicos® of the generalized Im accounts

15



(2.25) and (2.19) that the special assumption (2.11) of the wave charac-
ter oniy introduces the effect of convection and additional interference
of the wavy source distribution. If in contrast to (2.11) the phase of

the complex Qmw would depend nonliﬁearily on x, & more complicated Type

of non-uniform convection would be found.

3+ The directivity due to a special wave~like gource Lerm

The speciral density [melg of an ézimuth-frequency component is deter-
nined by the double integral (2.19). It depends essentially, as noted in
section 2.%, on the flow properties via the source amplitude distribution
@mw(x',r') and on the acoustic properties via the jet thickness~ and the
convection parameter., In order to discuss these influences on the direc-
tivity of sound intensity in more detail, we shall now specialize our as-
sumptions. For this reason, we assume for simplicity that the amplitude
distribution amw is independent of m and W. Then the directivities of
different (m,w)-components can well be compared. The additional assump=-
tion, besides of the wave-like character assumed in (2,11) , is made that
the amplitude distribution amw of each source term component is gimilar
in x-direction. Both conditions will likely not be gatisfied in a turbu-
lent Jjet, but they may be used in order to examine ﬁhe main properties

of the solution (2.18). Then we have
(3.1) Qmw(x,r) = Qr) glx)

where Q(r) is generally complex, while g(x) is real. Then the integrati-
ons over x' and r' in the double integral Lo (eque (2.19)) can be treat-
ed separately.

We introduce (3.71) into the integral (2.19) valid far from the source

region and require additionally k¥ >> 1. According to (2.21) the sound

intensity of a Fourier component can then be written

2
P | )
I nw M lal 22 (22
(3.2) pa_ ~2 ’Irl IIXI
o0 poU1 r
Here
g BRI
(3.3} A= &E_.f Gleglx)r drtdx!
) )
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is the maximum source strength and

i

1 1

(3.4) 1= [af &F 7 (mein0d) /[ o A3
0 o

and

1 L

fd;C é(gc) elaIA('l”McOOSe)X/f dl;( é(%)

O . Q

(3.5) 1

X

1

The superscript " denotes gquantities normalized by the maximum values:

nax

(3.6) § = Q/Q i 8 = g/gmax i r=r' /R 3 x=x'/L

Here Iirla 1 is a jet thickness factor which accounts for the radial
interference of the sources im the Jet for finite radius R and which is

a function of the parameters kRsin® and m. |§Zx|2 £ 1 corresponds to a
convection factor and depends on the parameter @L(1 - MccosG)e Both fac-

tors together determine the directivity of sound radiation,

In the following the influence of the radial and axial amplitude distri-
bution of the source term on the directivity will be estimated and dis-
cussed separately. For this purpose the jet thickness factor and the con-
veetion factor are calceulated for arbitrarily chosen distributions Q(%)

and é(%) L]

%+1 Evaluation of the jet thickness factor for various Q(%)

The influence of the jet thickness factor |ir|2 will be examined by as=
suming two different radial amplitude distributions Q(¥) both functions
being real for simplicity. The first one chosen is

(3.7 AE) = & FP0 - D)

which has a maximum at v = 2/3 in the outer part of the source region

and will be denoted by (a). The second one is

(3.8) B(F) =1 - 2°

which has a maximum at the axis at * = O and will be denoted by (b). Both
radial distributions vanish at r = 1, and it is assumed that |@| £ 0 for
r %1, With (3.7) and (3.8) the jet thickness factor |Ir|2 was evaluated

numerically from (3.4). The results are shown in Figure 1 as function of

17



kRsin® for an axisymmetric source term component with m = O and for the
firsh.dZimuthal component with m = 1. We see that the curves (a) and (b)
for the different Q(%)ndistributions chosen gquite differently show the
same tendency. This implies that the special radial amplitude distribution
of the source term components is of minor importance., For m = O the Jjet
thickness factor decreases from uvity with increasing kRsin® . It is only
for real Q thalt there are zeroes of |Ir|2 for large values of kRsin®
which depend on the special Q. Then, for sufficiently large values kR,
there are directions 8 where no sound will be radiated. As mentioned in
section 2.3, for XR ~ 0 we find Iir|2—+ 1 for m = 0 and Iirlan*'o for

m = .

For m = O the jet thickness factor yields a reduction of sbund radiation
normal to the jet. Contrary to this, a non-axisymmetric source term com-
vonent with m ¥ 1 does not radiate in the direction of the jet axis

(0 =0or®=m), and for kR< 2 its contribution may be negligible come
rared with the axisymmetric component as can be seen in Figure 1 for

m= 1. On the other hand, in the region 2 < kR < 5, i.e. for higher Strou-

hal numbers, the azimuthal components with m £ 1 can dominate,

The ©-variation of the jet thickness factor |?£r|2 is shown in Figure 2
for different values kR and m,., We see that the curves are symmetric g~
round @ = 90O as mentioned in section 2.3. The influence of the special
distribution @(T) seems to be not very significant. For kR = 1 the vari-
ation of the jet thickness factor with © is small. For kR = 3, however,
the influence of Iirla is very important. Its value for the axisymmetric
and the first azimuthal component can then be of the same order of magm

nitude for 40° 5@ = 140° as stated in section 2eda

3.2 Evaluation of the convection factor for various g(x)

The convection factor |ix|2 was evaluated for four different axial dis=-

tribution functions g(%). The simplest one is

(3.9) 8(%) =1 for 0 < X< 1
denoted by (I). The second one denoted by (II) is linear i.e.
(3,10) g(x) = x for O = Xk < 1,

The third distribution deroted by (III) is parabolic

(3*11) é(&) = 4 i(1 -~ %)’
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while (IV) is given by
(3.12) &) = & F°(1 - %)

It is again assumed that 3(X) = O for x < O and %X > 1. The functions (I)
and (III) are symmetric with respect to the maximum value, while (11)

and (IV) are asymmetric. The integrals in (3.5) can be obtained analyti-
cally for the chosen g(x), For instance, by using (I) and the abbrevia-

tion C = qL(1 =~ M cos8) one simply obtains

(3-13) |EXI2 P 2(’] - COSC)/02

and for (II)

(Goett)  |E,|2 = 5[(1 - cos)? # (sinc - €32 ] /¢t

The asymptotic behaviour of the convection factor Iixla for |C|—»o is
with (I} and (II) of 0(0“2), with (III) and (IV) of o(c"LP
of the convection factor as function of C = aL(1 - MccosED are shown in

Figure % for the various g{x). We see that the curves are similar for all
distributions g(x) except that their asymptobtic behaviour is different

). The curves

and except that a symmetric g like (I) and (ITI) leads to zeroes of |Ix|2
for certain values of alL{1 = Mccose). Hence it follows that the axial

amplitude distribution too seems to be of minor importance.

For fixed QL and Mc the convection factor ]Ix]2 varies as function of ©
from the value at alL(1 -~ M ) in jet flow direction (O = 0) to the value
at L normal to the jet (8 =m/2) and to the value at aL(q + MC) in up~
stream direction (© = f), Therefore, if M, << 1, the convection factor
is nearly independent of © and determined only by the value of QL. For
values 0 < Mc < 1 the convection factor yields a sound radiation with a
maximum value for € = O and smaller values for © > 0, This is the typical
- convection effect, On the other hand, if Mc > 1, the convection factor
becomes unity at © = arccos Mc"1 as mentioned above and is very small at
© = . This leads to a maximum of the convection factor for © > O which
is due to Mach wave radiation.,

The typical ©-variation of the convection factor for O <« M,< 1 is shown
in Figure 4 and for M,> 1 in Figure 5 for the various distributions g(x)
mentioned above. It is assumed that Al = 6 in both Figures, and Mc = 0.5
in Figure 4, while Mc = 1.5 in Figure 5. In the latter case the peak due
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to the Mach wave radiation is roughly at © = 48° for this convection Mach
number Mé».It.is obvious that, regarding the general tendency, the influe
ence of the distributions g(%), chosen quite differently, turns out to be

not very significant,

3.3 Discussion of the directivity

The directivity of sound intensity of a single azimuth-frequency compo-
nent is after (3.2) given by the product of Iirla and ITX 2, From section
2,1 and 3.2 it follows that for small kR the directivity is determined

mainly by the convection factor of the axisymmetric component. For larger

values of kR, however, the sound intensity of axisymmetric and first azi-
muthal components can be of the same order of magnitude, although theilr

directivities differ considerably.

For M, > 1 and m = O the peak of the convection factor for © > O as shown
in Figure 5 can possibly be compensated by the valley of the jet thicke
ness factor for © > 0 as shown in Figure 2 for kR = 3. Then the total
directivity can again reach a maximum only for © = 0. Contrary to this,
for Mc >1 and m = 1, the peak of the convection factor for © > 0 will

be pronouced by the peak of the jet thickness factor for © > O, Then the
total directivity will be zero at €= O and © =T and have a strong peak
for O< @< W/2. '

For a subsonic flow with Mc~< M< 1 the convection factor is ¢f the type
shown in Figure 4 with a maximum for © = O only., For large kR and m = O
the total directivity will again show & maximum only at © = O, but very
small sound radiation normal to the jet because of the interference of
the sources across the jet. Contrary to this, for m = 1 the total direc-
tivity will be zero at © = 0 and © =T and have a peak for © >0 even in
the subsonic case. This peak, however, is not a consequence of Mach wave
radiation, which can occur only for Mc > 1, or of Refraction, but only

a consequence of the coherence of the first azimuthal source components

distributed across the jet.

In order to illustrate these results, some directivities of single rms-
sound pressure components ~|irr|ix| have been calculated for a subsonic
flow. The convection Mach number is assumed to be Mc = 0.5+ For both
m=0 and m = 1 the amplitude distributions are chosen as in (3.7) and
{(3.14). For aL = 3 and aL = 6 the results are shown in Figure 6 for

kR = 1 and in Figure 7 for kR = L, We see quite clearly the different
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types of the directivity produced by axisymmetric and first azimuthal
components. For kR = 1 in Figure 6 the sound pressure level of the axiw~
symmetric component (m = 0) exceeds that of the first azimuthal component
(m = 1), whereas for kR = 4 (Figure 7) and for 40° £ 6 F 140° we find the

opposite to be true,

3+l Comparison with previous results

In previous theoretical investigations the directivity pattern has been
discussed mainly with respect to the convectlion effect, while the jet
thickness effect has been ignored. The directivities obtained by correw
lation function technique were overall-values. Therefore a guantitative
comparison with the present‘results, obtained for azimuth~frequency com=
ponents only, is difficult. Furthermore, the directivities derived among
others by LIGHTHILL [1], FFOWCS-WILLIAMS [3], RIBNER [2] and JONES [11]
differ considerably. Nevertheless the main tendency of the results is in
agreement with that of our convection factor as shown, for example, in
Figures 4 and 5. The remarkable reduction in intensity at small angles
of ©, which was sometimes found in experiments by MOLLO~CHRISTENSEN,
KOLPIN & MARTUCCELLI (5], by KRISHNAPPA & CSANADY [10] and others, could
not be described by the convection factors previously derived. RIBNER
[12], JONES [11] and KRISHNAPPA & CSANADY [10] exvlained this phenomenon

by means of the "refraction effect”.

Some narrow-band-width measurements of the directivity were reported by
MOLL.O-CHRISTENSEN, KOLPIN & MARTUCCELLI [5]}. Their far-field measurements
were concerned with subsonic jets. In Figure § their rms-sound pressure
directivity is shown for frequency components with Strouhal numbers

S < 0,54 As mentioned above, these curves should approximately agree with
the directivity of |B,| defined by (2.,15). It is found that there appa-
rently is a maximum for 8 = 0. All curves for various Mach numbers

M = 0.9 show the same tendency as our directivity (Figure 6) for m = O
and kR = 1 calculated for the special source type (3.1). In fact, assu-
ming that the jet diameter D is roughly twice the radius R of the source
region, it follows that according to 5 < 0,5 and M < 0,9 we have kR < 1.k
Hence we can conclude from our theoretical results that the directivity
is determined only by the convection factor, and sound is mainly radiae-

ted from axisymmetric components.

In Figure 9 the directivity is shown for frequency components with Strou-

hal numbers § > 2, It is found that the directivity has a remarkable'peak
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at roughly © = 40° and apparently tends to zero for 6 = 0°. This peak of
the directivity cannot be a cohsequence of Mach wave radiation, since the
flew is subsonic and hence the convection Mach number Mc cannot exceed 1,
In the view of our results it can be supposed that this type of directi-
vity can only be a consequence of a dominating sound emission from non-
axisymmetric source components with m £ 1 as shown in Figure 7 for m = 1
and k¥R = 4%, In fact, for § > 2 and M > 0.6 we find kR > 3,6 i.e, the con~
dition for a dominating sound emission of the first and higher azimuthal
source components is satisfied. The shape of the direcﬁivity for 6 — 0
suggests that due to (2.15) the contribution |Pw|2 of the axisymmetric
source component Qow is small compared with that of azimuthal ones at

these Strouhal numbers 8 > 2.

Similar results were found by KRISHNAPPA & CSANADY [10], although here

a peak at © —» 0 appears even at smaller values of kR. The authors explain
this phenomenon as being Yproduced by the sum of an x-x and x-r quadru-
pole, if the intensity of the latter is slightly greater than twice the
intensity of the former'. They concluded that for higher frequencies the
xer quadrupole dominates and, additionally, the refraction effect becomes
important, if the product of Strouhal and Mach number exceeds unity.

Both effects would shift the position of the intensity peak to larger O.
The importance of the parameter SM, which after (2.23) is proportional
.to kR, is in agreement with our results. But an alternative explanation
in the light of our results may be that in the jet, investigated in [10]
the azimuthal source components with m ¥ 1 dominated the axisymmetric

one even at smaller Strouhal numbers. After (2.15) this would lead to a
strong dominance of the directiviiies of azimuthal sound components even
at small kR.

It follows that the different shape of the directivities, measured for
the same frequency bands in [5] and [10], may be a consequence of a dif-
ferent relative strength of the axisymmetric and azimuthal source compo-
nents in both jets. Such a different structure of jet turbulence will
surely depend on whether a laminar-turbulent transition takes place with
a dominating strength of axisymmetric components (ring vortices), or
whether the jet is already fully turbulent at the nozzle exit with a do=-
minating strength of three~dimensional components. The laminar instabi-
lity process in a jet with large jet core will mainly produce axisymme-
tric pressure fluctuations with Strouhal numbers in the order of

§ < 0,02 fRe approximately. Here the Strouhal number S and the Reynolds
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number Re are based on the jet diameter and Re = 104......405.

The different structure of jet turbulence can certainly be checked by
measuring the azimuthal pressure correlation in the near-field of the Jet
like that made by MOLLO~CHRISTENSEN [4]. This method should be applied

to narrow-band-width pressure fluctuations. It seems to be a promising
way to study the structure of jel turbulence in this way with respect to
axisymmetric and azimuthal components, Their influence upon the far~field
noise can then be predicted by the present analysis, Similarily, axial
correlation measurements could be used for checking the wave~concept and

for determining the wave-number ¢« and the length L of each wave component.

Final a remark may be given on the Mach number dependence of zbund ra-

diation. Bj“me@ns of this wave model for serodynamic¢ soungd-generation the

Maeh number dependemge of sound radiation cannot be g8rived, since it is

implicitly given in the Beurce term

‘Tor plane jets,

In summarizing we can say that the wave model and the method used here
for discussing the sound generation mechanism in circular jets, led to a
far-field solution of the Lighthill equation which is relatively simple
and can easily be interpreted. Some results obtained by the wave model
apparently demonstrate new aspects of aerodynamic sound generation. The
main result is the remarkable different sound radiation by axisymmetric
and szimuthal source components. It suggests that a considerable reduce
tion of jet noise could be achieved by suppressing axisymmetric pressure
components in the jet. Separate discussion of the influence of the jet
thicknesns parameter on one hand and of the convection parameter on the
other hand were found to be helpful, The results for different, arbiira-
rily chosen amplitude distributions of the source term components imply
that their influence on the directivity is only of minor importance. As
a result, some experimental directivities can be explained by the present

theory.
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Figure 1 The jet thickness factor of axisymmetric and first azimuthal
components as funciion of the jet thickness parameter for
various radial amplitude distributions of the source term.
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Figure 2 The jet thickness factor of axisymmetric and first azimuthal
components as function of the Jjet angle for various values of
kR and various radial amplitude distributions of the source
term.
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Tigure 3 The convection factor as function of the convection parameter
for various axial amplitude distributions of the scurce term,
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T aL=6

figure & The convection factor of a subsonic flow as function of the
jet angle for various axial amplitude distributions of the
gource term,

Figure 5 The convection factor of a supersconic flow as function of the
jet angle for various axial amplitude distributions of the
source term.
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Figure 6 The directivity of rms~sound pressure components for kR = 1
and Mc = 0.5. The amplitude digtribution of the axisymmetric
and first azimuthal source components are due to (3.7), (3.14)
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Figure 7 The directivity of rms-sound pressure components for kR = &4
and M, = 0,5, The amplitude distribution of the axisymmetric
and first azimuthal source components are due to (3.7), (3,14)
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