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A Note on the Spatisl Jet-Instability of the Compressible Cylindrical Vortex
Sheet ‘

Summary

The instability of compressible circular jets with respect to spatially
growing disturbances is the subject of this note. The linearized inviscid
disturbance equations have been derived for a compressible circulasr jet with
variable temperature and density profile. The eigenvalues of the instability
problem for the cylindrical vortex sheet have been computed and discussed for
various Strouhal numbers, Mach numbers and temperature ratios. It is found
that contrary to temporal amplification the phase velocity of spatially grow-
ing disturbances can exceed the jet veloeity. Furthermore, additional disturb-

ance modes can exist in the spatial case,

Eine Bemerkung zur Freistrahl-Instabilit#t einer kompressiblen zylindrischen

Wirbelschicht bei rdumlicher Anfachung

bersicht

Dieser Bericht beschéftigt sich mit der Instabilitit des kompressiblen, runden
Freistrahls bei réumlich angefachten Stdrungen. Die reibungslose, linearisierte
Stérungsgleichung wird fir einen kompressiblen runden Freistrahl mit varisbler
Temperatur~ und Dichteverteilung hergeleitet. Die Eigenwerte des Instabilitats-—
problems fiir eine zylindrische Wirbelschicht bei verschiedenen Strouhalzahlen,
Machzahlen und Temperaturverhidltnissen werden berechnet und diskutiert. Es
zeigt sich, daB im Gegensatz zur zeitlichen Anfachung die Phasengeschwindigkeit
réumlich angefachter Stdrungen groBer als die Freistrahlgeschwindigkeit sein

kann. AuBerdem koénnen zusfitzliche Stdrungsmoden auftreten.
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1. Introduction

The instability of circular jets to smell wavy disturbances was firstly in-
vestigated by Lord RAYLEIGH (9], He found that the simplest case of a circular
jet - a cylindrical vortex sheet - is unstable to inviscid axisymmetric dis-
turbences. Further theoretical contributions to instebility of circular jets
were made by SCHADE [10], while BATCHELOR and GILL [1] and MICHALKE and SCHADE
[7] calculated the eigenvalues of incompressible circular jets with simple
velocity profiles., LESSEN, FOX and ZIEN [6] and GILL [3] treated the influence
of the Mach number on the instability of the cylindrical vortex sheet. KAMBE
[5] dealt with the viscous instability of a parabolic jet. All these investiga-
tions were based on temporally growing disturbences. It is, however, known
from the papers of GASTER [2] and MICHAIKE and FREYMUTH [8] that disturbances
growing spatially in basic flow direction seem to be more significant for the

realistic jet instability than temporally growing disturbances.

For this reason, spatially growing disturbances will be applied to circular
jets in the following. For compressible circular jets with variable basic
temperature and density profiles the linearized disturbance equations will be
derived. For the special case of the cylindrical vortex sheet the eigenvalues

of the spatial instability problem will be calculated and discussed.

2. The linesrized disturbance eguations

Since we are dealing with circular jets, we use cylindrical coordinates (x,r,y)
where the x~axis coincides with the jet axis. The velocity components are

(cx’ Cps ¢y). The undisturbed basic jet flow consists of only one velocity

and Uf{ee) = 0. The basic

and Tf{e) =T

component U(r) in x—direction with U(0) = U1

temperature distribution is T(r) with T(0) =T Hence the

1 0’

local sound speed af(r) is given by
(1) alr) = oy JT(r)/Ty

The pressure Py is constant in the undisturbed jet. Hence it follows from

the equation of state that the density distribution is

(2) Blr) = py Ty/T(r)



The temperature ratioc will be denoted by
3y T/T,= pilp, =lag/a)? = T
(3) o 1"p1 Po"qo 01 -

We superimpose small disturbances cé, c;, ch, p's p' upon the basic flow
and assume that the Reynolds number is large and the Prandtl number is unity.
Then the Euler equatioh can be used, and the entropy of a fluid particle has

to be constant. Hence the following linearized disturbance equations are ob-

tained
ac' ac' duU dp'
= | X X 4 b -
st Ve tar Ol 7 e
ac' ac' ap'
= [—L —r = -
3¢ U 5 ar
] ] 1
(1) 5 %0,y L .1 o
at ax r dy
dp' ap' dp _,1 3 1 ac)y dc,
3t U toh g t BT e (o) tr gy ] =0
ap' ap' ap' ap' dp
2.1 — LI
3t *Uar = o lar * Uz +<r gr
Furthermore we assume wavy disturbances of the type
(5) [l ' 1 b aY C[D Y S "’( "’() - ilax+myp-Bt)
e, Cpr S, P, p'] = [TLF), ¥(r), wir), p(r), p(r)]e

For spatially growing disturbances the cyclic frequency f and the integer
azimuthal wave-number m have to be real, while a = a, + itxi is generally
complex. a, is the axial wave-number and - a; > 0 is the spatiasl growth
rate. With (5) the equations (4) can be reduced to the following system for

the amplitude functions




- 1d, =y dU =1 _ _[s2.m27~
(6) lap[(u-a/a)—r-d—r~(rv)—Er—v]”[;\+?2_]p
(7) i« (U-pra)v = - 9B
dr
—e i =dU _V p
PU=Z P dr U-8/a U-p/a

(8) swe-m1 __D__
a r

where

(9) ¥ = o [1—(‘—&0%‘-)2] :

Equations (6) and (7) can be resolved into a single, second-order differential
equation for either the pressure amplitude function 7P(r) or the amplitude
function ¥(r) of the radial velocity component. The boundary conditions of
the instability problem require that the solution has to be regular at r =0

and has to vanish at r = oo,

In & flow region with constant basic velocity U,, density p, and sound

speed a, equations (6) and (7) yield

2~ - 2
d°p .1 dp _[42 M3 =
(o) Shes G-+ ]B =0

which has the general solution

(11) pi{r) = C4 Im(lvr)+C2Km(?\vr)

and
|lv

—57a) [Cy I (A, F) + Co K (Ayr)]



Herer Im. and Km are the modified Bessel functions of order m and Iﬁ

" and Kﬁ its derivatives with respect to the srgument. 01 and 02 are

" arbitrary constants.

3. The spatial instability of the eylindrical vortex sheet

A circular jet flow, produced by & cylindrical vortex sheet at r = R, con-

sists of a uniform velocity U(r) = U1 for r< R and U(r) 20 for r > R.

p, and a(r) = a

14

Furthermore, we assume that p (r) for r < R, while

1
plr) = p, and a(r) = a  for r >R. Then the solution of the disturbance
equation (6) and (7) is given by (11) and (12). The pressure amplitude function

satisfying the boundary conditions is

p(r) =CqI, (Aqr) for 0=r <R,

(13)

P(l’) CgKm (lol') for R<r

with
U, —B /a
(14) ?\21=a2 [1_.(_1__?__

2
01 ) ] ) _ R(h1)>0

(15)  W=d? [1-(’;/—“)2] Rirg)>0 .
0

As matching conditions at r = R we have to require that the pressure and the
radial displacement are steady functions. The amplitude of the latter is known
to be proportional to V(U’-ﬂ/a)-T. These two conditions yield two linear
homogeneous equations for C, and C_. Hence an eigenvalue equation exists
for non-trivial solutions. This was derived and evaluated by LESSEN, FOX and
ZIEN [6] for temporally growing disturbances, while BATCHELOR and GILL [1]

discussed the incompressible case,

In the following the eigenvalue equation shall be evaluated for spatislly
growing disturbances i.e., for complex o . Introducing the Mach number

M= U1/a.1 and the abbreviations for the non-dimensional quantities

{16) Z=GU1/B

and

10




(11} o= BR/Y,

which is a Strouhal number, (14) and (15) become

(18) MR = of(z) = o V22 -M?(1-2)7
(19) A R = of,lz) =0 V22 .- M%/7" |

The general eigenvalue equation due to LESSEN, FOX and ZIEN [6] can then be

written

1 K, (of Jlof I {of)-mI1_(of,)]
T loft, K, _q(of ) +mK  (of NI (of;)

(20) (1-2)% +

This complex equation has been solved numerically for axisymmetric disturbances
(m = 0) and first azimuthal disturbances (m = 1) by means of a subroutine for

computing the modified Bessel functions of complex argument.

Let us first discuss the solution of (20) for M =0 and m = O. Then we have

0f1 = ofo = ¢z= R, and (20) becomes

1 Ko(oz)11(oz)

)2 g -
(21) (1-2) +T“ K1(oz)Io(oz) 0

For gz = WR—w00 equ. (21) yields the solution

(22) z=aU1/p=1—i:v%;

which agrees with the solution for the plane vortex sheet. We note that the
spatial growth rate becomes larger, if for fixed To the jet temperature T1
is increased. For o0z = GQR—»0 one can expand the modified Bessel functions

and obtain from (21) to 0(c° z°)

2.2
(23) (1-2)% + &4

T+ [f{o)-logz] =0

with

(24) flog) =tn2-C-lnho

Here C is the Euler constant. An approximate solution of (23) for ¢-—>0 is

11



o 2
F25) ‘ -z=.1—#[f(o)—%]-i72—°_r-§ Vf(o).

From the real part of (25) it follows that for ¢—»0Q the phase velocity is

approximately

c B/a 2

-ph . e L r_ z
(26) U, U, 1+ >T% [-lne)z1.,

This result is quite different from that for temporally growing disturbances
where the condition cph/U1 ¥ 1 is valid. The proof of this necessary condi-
tion is, however, restricted to temporally growing disturbances and does not
hold for spatially growing ones. A phase velocity greater than the maximum

Jet velocity has, in fact, been found experimentally in eircular jets+).

The phase velocity cPh and the imaginary part of 2z vs. the Strouhal number
0 are shown in Figure | for M = 0, ™ =1 and m= 03 1. We see that the
axisymmetry becomes important for Strouhal numbers o< 6 approximately. For
the axisymmetric disturbances with m = O the phase velocity is cph = U1

and has & maximum at nearly o = 1.5, while the spatial growth rate is always
smaller than that of the plane vortex sheet. The first azimuthal disturbance
with m = 1 1s more unstable than the axisymmetric one only for Strouhal
numbers 0<2, For mZ1 and 0-+0 or ¢ —sc the limit of z is given

by (22).

Besides of this disturbance mode I, plotted in Figure 1, for complex o' there
exist additional disturbance modes for small Strouhal numbers with non-vanish-

ing o Equation (21) can be written in the form

1 K (aR)L(aR) o?

™~ K(aR) I,(aR) ~ 0.

(27) (@R -0)? +

If now b > 0 is real and is a zero of the Bessel function Jo(b), then
- 2

(28) aR =~ib + g“g(a)

is a solution of (27) for o-—» 0 with

1 K (=ib) i K
T*bZ K,(=ib) ~ T"b? H{T{b)

(29)  g(0) =

+} private communication by E. PFIZENMAIER
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(1)
[»]
at b = 2.405. The eigenvalues z of this mode II are shown in Figures 2 and 3

(1)

where H and H1 are the Hankel functions. The first zero of Jo(b) is

together with that of mode I vs. Strouhal number ¢ for m = Q, The parameter
is the temperature ratio TY. The behaviour of the imaginary part of z for
mode II is of 0O(b 0_1) for g—= 0. At Strouhal numbers O = 2 mode II dis-
appears, since its wave-number X, vanishes, The maximum of the phase velocity
Cph = B/ar of mode I depends on the temperature ratio T and is for T = 0.7

nearly 1.75 U1, while for mode II ¢, — for 0 -—0 and approximately for

Ph
0 —» 2, For temperature ratios T»— 0.7 mode I and II interchange the stabi-

lity characteristics about 0 = 1.25.

The physical meaning of mode II is not quite clear. But some insight is gained

)

radial distribution of the amount of pressure amplitude and the curve of

. . . . + "
by comparing the pressure distribution of both modes ’. For this reason, the

constant pressure phase in the (x,r)-plane have been calculated and plotted
in Figure I for both modes at a Strouhal number ¢ =1 for M = 0, T = 9
and m = 0. Mode I shows the well-known behaviour with a maximum of pressure
amplitude at the jet border and of a slight phase variation across the Jet.
Contrary to this, mode II has a maximum of pressure amplitude only at the jet
axis. Furthermore, the pressure fluctuations have a rapid phase variation
across the jet. Up till now the mode II has never been found experimentally.
Tt may be supposed that the pressure distribution of mode II is only due to
the assumption of an infinitely extended parallel flow and is not compatible

with a realistic jet escaping out of a nozzle,

Finally, the influence of the Mach number on the instability of the cylindrieal
vortex sheet will be discussed. For the Strouhal numbers 0 = 0,5; 13 2 the
eigenvalues have been calculated from (20) for 0= M = 2, m=0; 1 and

™ = 1, The phase velocity and the ratio of spatial growth rate to wave-number
are plotted in Figure 5 vs. Mach number. It is evident that for sufficiently
high Mach number the eylindrical vortex sheet becomes less unstable which was
also found by LESSEN, FOX and ZIEN (6] for temporally growing disturbances.

The stabilizing influence of the Mach number is larger for a temperature ratio
™ < 1 as shown in Figure 6 for 7™ = 0.6 and m = 0. This is in agreement

with results found by GROPENGIESSER [4] for a plane free shear layer.

+) This suggestion was made by D. BECHERT who found additional spatially grow-—
ing modes even for the plane Jjet (private communication).
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Figure 1 The phase velocity and the spatial amplification ratio of axisymmetric
(m = 0) and first azimuthal (m = 1) disturbances vs. Strouhal number

for the cylindrical vortex sheet at Mach number M = 0 and temperature
ratic T* = 1,

Mode I

Figure 2 Resal part of the eigenvalue of the axisymmetric mode I and IT vs.
Strouhal number for various temperature ratios at Mach number M = 0.

16




aiu-}
30{ B
T
m=0
2.0
T°/T1=0.|5 06 0.7 08 10
1.04 ‘ ‘ ~
T°/T1 =_0.5 06 07 08 10
. BR
] Uy
0 0.5 1.0 15 20 25

Figure 3 Imeginary part of the eigenvalue of the axisymmetric mode I and II
vs. Strouhal number for various temperature ratios at Mach number

M= 0,
20, _'r_\; _%_Od %__,__-———Mode I: a, R=0816; a;R=~0.547
T T Mode I: o R=0.139; a;R=-2.331
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Figure 4 The radial distribution of the amount of pressure amplitude and the
curve of constant pressure phase for the axisymmetric mode I and II
at a Strouhal number ¢ = 1, Mach number M = O and temperature ratio
%=1,

T
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Figure 5 The phase velocity and the ratio of spatial growth rate to wave-number
of the axisymmetric and first azimuthal mode I vs. Mach number for
various Strouhal numbers and a temperature ratio ™ = 1,

1.5
Cph,_ Play
Up Uy
I 1.04
0.5
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Figure 6 The phase velocity and the ratio of spatial growth rate to wave-number
of the axisymmetric disturbance vs. Mach number for various Strouhal
numbers and a temperature ratio T* = 0.6.

18




