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ABSTRACT  
 
Pedestrian mobility models are becoming essential in 
several technologies and techniques. Applications of these 
models could be found in the areas of infrastructure 
design, evacuation planning, architecture, robot-human 
interaction, pervasive computing or navigation and 
localization. Within the scope of this paper, the purpose 
of such models is to realistically represent the stochastic 
nature of pedestrian’s movement. Our aspiration is to 
generate a “movement” or transition model for 
positioning systems that are based on sequential Bayesian 
filtering techniques, such as particle-filtering [AMGC02] 
[GSS93]. However, the developed models can be applied 
to many of the above application domains. 

In this paper the three dimensional pedestrian 
movement model presented in [KKRA09] is extended in 
order to make use of the valuable prior knowledge of 
maps of the surrounding environment. The result is a 
three dimensional mobility model that is capable of 
representing pedestrian movement in challenging indoor 
and outdoor localization environments. Examples of such 

environments are multi-floor buildings, streets, ways, 
meadows, coppices and forests. Additionally, some 
quantitative and qualitative analyses of the model and the 
improvement it brings to the overall positioning 
performance will be illustrated. 

The model actually consists of two movement 
models, operating at the microscopic level and suitable 
for pedestrian navigation. The constituents are a Three 
Dimensional Stochastic Behavioral Movement Model 
(3D-SBMM) to characterize random motion, and a Three 
Dimensional Diffusion Movement Model (3D-DMM) to 
characterize geographical goals a pedestrian might walk 
towards. In order to account for the fact that humans 
might switch between a goal-directed motion and a 
stochastic motion, a top-level Markov process is designed 
to determine when to switch between the 3D-SBMM or 
the 3D-DMM. Both models use the a priori knowledge of 
maps and floor plans. 

The designed model is implemented, tested and 
evaluated in an already available distributed simulation 
and demonstration environment for mobility, localization 
and context applications.   

The benefit of movement models in the framework of 
dynamic positioning estimators and a summary of related 
work will be discussed in section 1. The three 
dimensional movement model, its constituents, properties 
and computations will be explained in details in section 2. 
The question of “Can maps and floor plans replace a 
proper movement model?” is discussed in section 3. 
System design and implementation will be illustrated in 
section 4. Experimental results will be given in section 5. 
Finally, some conclusions and future work will be given 
in section 6.   
 
1. INTRODUCTION  
 
1.1. MOVEMENT MODELS & DYNAMIC 

POSITIONING ESTIMATORS 
 
Dynamic indoor and urban canyon navigation are 
application areas that are becoming increasingly 
important. Efficiency, reliability and accuracy of these 
applications can be improved if appropriate movement 
models combined with the knowledge of maps and floor 
plans are used. 



The reason that a movement model is needed lies in 
the dynamic nature of most pedestrian indoor localization 
applications, where the user’s position will be estimated 
continuously. Moreover, a dynamic positioning system is 
more accurate than a “single-shot” static estimator which 
essentially provides a position estimate based on 
positioning measurements at a single time instance.  

An accurate and realistic movement model (known as 
the a-priori state transition model) of the dynamic system 
is needed to implement a mathematically reasonable 
dynamic positions estimator. We have grounded our work 
on the formalism of sequential Bayesian estimators, of 
which the well known Kalman Filter is a special case 
[AMGC02]. Basically, a sequential Bayesian estimator 
updates an estimate of a system’s state over the course of 
time, given a set of new observations at each time 
instance. The estimator thus incorporates the new 
observations with all previous ones. But in order to do so 
correctly, it needs to include the possible changes of the 
system’s state from one time instance to the next. This 
can be done through the use of movement models. 
Essentially, the more “predictable” the system state 
transitions are, the more the measurements can be filtered 
over time. Additionally, if measurements happen to be 
unavailable for one or more time steps, the movement 
model will still yield a prediction of the state estimate. 
Dead-reckoning essentially builds on this principle 
whereby the underlying movement model is very simple. 

Better movement models will of course increase the 
accuracy of these dynamic estimators. For the pedestrian 
case, movement parameters like position, velocity, 
attitude, etc. are modeled. With the additional  knowledge 
of maps, the movement model will result in a pedestrian 
who is not crossing walls, walking faster in open areas, 
walking slower in undulating terrain or with obstacles, not 
entering restricted areas and who is attracted toward 
points of interest, etc. Such prior knowledge enhances the 
model and improves its performance. 

 The map-enhanced movement model presented here 
is used to generate a probabilistic distribution of the 
system’s states over the course of time. It is used in the 
framework of a dynamic location and direction sequential 
estimator that uses particle filtering as the fusion engine. 
Additionally, it is used in simulation and validation of 
indoor positioning systems by allowing us to simulate 
realistic pedestrian traces, and applying these traces as the 
controlling parameters of a system that simulates sensors 
such as indoor GNSS receivers and compasses. 

 
1.2.  SUMMARY OF RELATED WORK 
 
Pedestrian movement models are used in the literature to 
represent the stochastic nature of pedestrian movement 
[Hel92a] [Tek02] [OkM93]. Interest might vary among 
different forms of pedestrian movement models according 
to the application. For example, in navigation; a detailed 
model of pedestrian behavior is of interest, while in 
pedestrian groups modeling; only statistical measures 
might be of interest.  

 

1.2.1. CLASSIFICATION OF MOVEMENT 
MODELS 

 
Pedestrian movement models are often categorized by the 
type of moving objects used to represent the persons to be 
simulated. There are mezoscopic models, macroscopic 
models and microscopic models [Hel92a] [Tek02]. 

At the mezoscopic level it is sufficient to describe the 
pedestrian movement models using approximate 
equations for the mean values of velocities as a function 
of some parameters like the pedestrian’s age or activity 
[HSBP00]. Mezoscopic modeling was primarily made for 
traffic simulations, but later applied to pedestrian 
modeling.   

Sometimes it is the case that further quantities 
describing the velocity probability density (typically the 
mean velocity and velocity variance) of pedestrians are of 
interest. In such cases fluid dynamic equations [Hel92b] 
are used to model the human behavior – this is denoted as 
macroscopic pedestrian modeling. The origins of these 
models are the gas-kinetic equations and they evolve from 
transportation modeling. The root of these models is the 
continuum model by Lighthill and Whitham (1955) 
[Add05] which solves differential flow equations. 

At the microscopic level every pedestrian is treated 
as an individual agent who occupies a certain space at a 
certain time; then the interaction between the pedestrians 
is observed. There exist several analytical models that try 
to describe the microscopic behavior of a pedestrian, but 
with formulations that are difficult to solve. Accordingly, 
they are approached using Monte Carlo Simulations 
known as Microscopic Pedestrian Simulation Models 
(MPSMs). “Agent Based Models” is another terminology 
that is used in the literature to refer to microscopic 
models. Monitoring individual pedestrian’s behavior can 
lead us to general characteristics regarding group 
behaviors such as the behavior in queues and the 
generation of freely-forming groups [Hel91].   

In the pedestrian navigation domain, the microscopic 
description is the category of interest. They also have 
practical applications in evacuations planning, designing 
of pedestrian areas, and as an experimental & 
optimization design tool. A closer look to the work done 
at the microscopic level will be given next since 
pedestrian navigation is our area of application. 

 
1.2.2. MICROSCOPIC MOVEMENT MODELS 
 
Intentions and interactions of a pedestrian movement are 
of interest at all levels of description of pedestrian 
movement models. 

Major microscopic pedestrian simulation models that 
could be found in the literature are Benefit Cost Cellular 
Model [Res04] [Tek02], Cellular Automata Model 
[YFL+03] [WLF03] [DJT01], Magnetic Force Model 
[OkM93], Social Force Model [HeM95] [LKF05] and 
Queuing Network Model [MaS98] [OsB07].  

Our three dimensional movement models addressed 
in this paper can also be added to the above models. 

 



1.2.3 MAP MATCHING 
 
Map matching [BPWR05] [Sco94] in general is the 
concept in which tracking data and movement models are 
related to maps. The overall objective is to increase the 
accuracy of positioning using the knowledge that the 
tracked object is restricted in movements according to the 
map. With the aid of map matching navigation services 
can be improved.  

Map matching can happen in real-time or offline 
according to the application. In the real-time scenario 
only the current and last-but-one position measurements 
are available. On the other hand, in the offline scenario 
some or even all position measurements are available. 

There are two different types of map matching; 
“Classical Map Matching”, and “Movement Model Based 
Map Matching” [KSR07].  

In Classical Map Matching, the objective is to 
improve the location estimation by snapping the 
measurements to the nearest path (polyline) in the map. 
The standard approach of Classical Map Matching is the 
Incremental Method [BPWR05], in which an incremental 
match of the position measurements to the road network 
points is done. Another approach is the Global Method 
[BPWR05], in which curves in the road network that are 
as close as possible to the measured trajectory are 
searched and matched.  The basic four steps of Classical 
Map Matching are illustrated in [TTC04].  

 In Movement Models Based Map Matching [KSR07], 
the map is used to restrict the probabilistic movement of 
the tracked object. Accordingly, the tracked object will 
only move in allowed areas. 

Different kind of maps and several levels of 
abstraction can be used in Movement Model Based Map 
Matching according to the tracked object. Examples of 
such maps are roadmaps, topographical maps and floor 
plans. For example, with the knowledge of a floor plan, 
the pedestrian will not be allowed to cross walls. 
Additionally, through the knowledge of geographical 
maps, the speed of the pedestrian might be governed by 
the presence of obstacles and terrain steepness.  

 
2. A COMBINED 3D-DMM AND 3D-SBMM 

 
The Diffusion Movement Model is well suited for a goal-
oriented movement, while the Stochastic Behavioral 
Movement is well suited for a non-goal-oriented 
movement [KKRA08]. Details of our work toward 
extending both models into 3D and the approach to 
combine them in order to cover both types of movement 
will be given next. 

 
2.1 THREE DIMENSIONAL STOCHASTIC 

BEHAVIORAL MOVEMENT MODEL (3D-
SBMM) 

 
Pedestrian mobility at the kinematical level is 
characterized by physical parameters such as speed and 
direction of motion. The knowledge of speed and 
direction combined with the elapsed time can be used to 

calculate the new pedestrian position. However, speed 
and direction are affected probabilistically by several 
hidden states. These states are human parameters that 
identify his situation such as age, pursued activity, 
emotions, degree of disorientation and age or other non-
human parameters that affect his situation such as 
weather, obstacles and time of day. Accordingly they can 
be categorized into human and non-human movement 
constraint states.  

Movement constraint states can also be categorized 
into two groups using another methodology. The first 
category includes states that the system can find out 
accurately such as age, weather, time of day and states 
that can be derived from external data like ground 
steepness or obstacles at the pedestrian’s position. The 
other category includes states that are varying according 
to the human behavior. In general it is not simple to 
determine straightforwardly states falling into this 
category. Examples of these are pursued activity, 
disorientation, and other emotional or cognitive states.  

To illustrate the importance of these states in defining 
the pedestrian movement some examples will be given 
next: 
• It is more usual for a disoriented pedestrian to walk 

irregularly compared to somebody who is walking a 
familiar route.  

• At some specific times of the day and weekdays the 
pedestrian might tend to move slower. Additionally, 
the knowledge of the time of the day and the 
weekday can be used to predict the pedestrian 
activity which directly affects the speed calculation 
(this can be particularly important in evacuation 
planning or in situations where the density of people 
varies strongly). 

• A pedestrian running to catch a train is faster in 
general compared to another pedestrian who is 
window shopping.  

• The pedestrian cannot penetrate a wall under any 
normal circumstances. It is important here that we 
have to consider in the design that some of these 
parameters affect the movement more than others. 
Building layouts are obviously amongst the main 
parameters that strongly constrain the movement of 
the pedestrian. 

• Some special kind of activities such as rolling, 
jumping and climbing, result in some special kind of 
movement. 
In our approach the second category variables are 

modeled in a simplified fashion using Markov processes. 
The idea of using Markov Chains for describing human 
behaviors could also be found in [PeL99], [ZhN02] and 
[AdA04]. The transition probabilities of these Markov 
chains are set according to statistics and a-priori 
assumptions that are rooted in common sense. 

We have explained in detailed our design of a two 
dimensional Behavioral Movement Model in [KKRA08], 
[WKAR06] and [Khi05]. In order to add the third 
dimension to the designed model, the speed and direction 
models are also constructed in the Z-direction. With this 
extension we are able to probabilistically predict 



pedestrian movement as a function of behavioral 
parameters in X, Y and Z-directions at every time step. 
Speed and direction are designed to be a function of: 
1. Parameters that affect the human movement such as 

age and activeness. The same eleven parameters in 
[KKRA08] are considered. 

2. The building geometry and the stairs type play an 
important role in building the Z-direction part of the 
model. 

3. The previous speed in X, Y and Z- directions. 
It is important to note that movement in Z-direction is 

connected strongly to movement in X and Y - directions. 
For example, a pedestrian who is moving very fast in X, 
Y- directions might not be able to keep his X, Y- speed if 
he starts additionally moving in the Z-direction. On the 
other hand, if the pedestrian enters a stairs area with a 
high speed in X and Y, then his initial vertical speed will 
also be high.  

Whereas this model is based on real statistical data 
and capable of representing movement well in situations 
without external constraints, it is not suited for situations 
in which walls or roads have a strong influence on the 
movement. This model leads to a high probability of 
getting stuck in a room or having problems in getting 
through narrow openings and sharp turns [KKRA08]. 
This is due to the random movement that the model 
follows which does not react to the presence of a door, a 
narrow opening or a sharp turn. Additionally, the model 
does not include the behavior of a pedestrian heading 
towards a specific destination. 

 
2.2 THREE DIMENSIONAL DIFFUSION 

MOVEMENT MODEL (3D-DMM) 
 
The 3D-DMM is an extension of the 2D diffusion 
movement model demonstrated in [KKRA08]. This 
model is derived from the principle of gas diffusion in 
space studied in thermodynamics and is a standard 
solution for path finding of robots [ScA93]. The idea of 
this model is to have a virtual source at a certain location 
continuously effusing “gas” that disperses in free space 
and which gets absorbed by walls and other obstacles 
[KAL03]. To reduce the computational effort, we project 
the 3D environment into a Quasi-3D-Environment that is 
described in section 2.2.1. Section 2.2.2 describes the 
computation of the diffusion matrix and section 2.2.3 
handles the methodology to calculate the appropriate Z-
position in the Quasi-3D-Environment. Considering 
additionally maps in the 3D-DMM will be explained in 
section 2.2.4 and, finally, advantages and disadvantages 
of the model are described in section 2.2.5. 
 
2.2.1 PROJECTON OF THE 3D ENVIRONMENT 

INTO A QUASI-3D- ENVIRONMENT  
 
Many of the indoor environments have more than one 
storey or floor. In such cases, it is necessary to consider 
several floor plans and accordingly different heights (Z-
direction). For the 3D-DMM this means that the gas will 
flow in three dimensions, but this would be unrealistic for 

a human motion model since motion does not follow the 
third dimension freely. Since a normal pedestrian will 
walk on the ground of a floor, the 3D environment – 
including stairs - can be projected into the 2D projection 
domain. 

For projecting the floor levels just the 2D floor plans 
can be taken like in the 2D environment. Additionally, the 
stairs areas should be handled separately: For projecting 
the stairs into the 2D area one needs the 2D top view of 
the stairs.  

There exist different kinds of stairs:  stairs with and 
without pedestal , dog-legged stairs and newel stairs. All 
kind of stairs share a common feature which is the 
possibility to project them into 2D area(s).  Difficulties 
for computing the diffusion matrix arise in the stairs area, 
because of the change in the ground height at each step 
and the different connection of the exit and entrance of 
the stairs to the respective layer. The procedure of 
handling this special area while computing the diffusion 
matrix is described in the following section. 
 
2.2.2 COMPUTATION OF THE DIFFUSION 

MATRIX 
 
The computation of the diffusion matrix for the 2D 
environment is extensively described in [KKRA08]. To 
keep the model’s complexity low, the 3D-DMM is 
confined to rectangular areas representing different floor 
levels. For such rectangular area a set of destination 
points has to be specified, where each destination point 
represents a source effusing gas. This destination point 
can be seen as the most important free variable in our 
model: for a probabilistic model this can be chosen 
randomly and change from time to time; in a scenario 
where we model human behavior when a person moves to 
a certain known destination we just set the destination 
point appropriately. For each destination point a so called 
diffusion matrix is pre-computed by applying a filter. The 
diffusion matrix for a particular destination point contains 
the values for the gas concentration at each possible 
waypoint when gas effuses from that destination point. 
The path is computed by backtracking from the 
destination point towards lower values of the diffusion 
matrix until the current waypoint is reached. 

According to the gas diffusion principle in 3D, the 
gas will flow between floors using the stairs. Thus, when 
calculating the diffusion matrix for a specific floor, the 
diffusion matrix of the stairs area of the upper and/or 
lower floors has to be considered. And since the stairs are 
always connected to two different levels and its diffusion 
matrix will affect the diffusion matrix calculation of both 
layers, one has to consider each stairs area as a separate 
layer. Each layer of the stairs is the projection of that 
stairs in 2D.  So for example, to compute the diffusion 
matrix for the 3 level building shown in Figure 1, one has 
to consider 3 floor plans and 2 plans for the stairs between 
the levels (we call it x ½ level).  

For computing the diffusion values of each floor, we 
first integrate the respective stairs area into the floor plan 
of the respective level. Integration of a stairs area means 



that the projected stairs area is included in the floor plan 
of a level. Then, we compute the diffusion matrix for each 
level separately.  

We classified floors into two types that will be 
considered differently during the diffusion process: 
• A floor that is connected to other floors but with the 

connecting stairs areas in different X-, Y-locations. 
This means that the projection of the connecting 
stairs areas do not overlap or lie on top of each other 
in the projection domain. A floor that is connected to 
only one other floor belongs also to this category 
(level 1 and 3 in Figure 1).   

• A floor that is connected to other floors with the 
connecting stairs areas at the same location (level 2 in 
Figure 1). This means that the projections of the 
connecting stairs areas lie on top of each other or 
overlap in the 2D projection domain. In this case the 
diffusion matrix of this floor has to be computed for 
each of the two different stairs areas (level 1 ½ and 2 
½ in Figure 1).  
Since the area of the stairs is projected and there are 

no walls at the entrance and exit of the stairs, we have to 
introduce a virtual wall that prevents the gas from flowing 
through the not connected entrance or exit at the same 
time if we integrate the stairs area in a floor plan. The 
concept with the virtual wall is introduced to let the gas 
correctly flow into the next level through the valid 
connecting area. In addition, in the case of two reachable 
staircases as in level 2, with the virtual wall one can 
distinguish between the stairs going upstairs and that 
going downstairs. 

The following pseudo-code describes the diffusion 
process for a building with several levels: 

Here, imax is the maximum number of iterations the 
diffusion filter is applied and Nb_of_levels is the 
number of different floor levels. The diffusion filter is 
iteratively applied for all floor levels. The diffusion filter 
is applied twice for floor levels that are connected to 
overlapping stairs or stairs that lie on top of each other. 
The virtual wall is included while integrating stairs.  

The filtering algorithm for computing the diffusion 
matrix will reach the steady state after several iterations 
and, therefore, calculating the diffusion matrix for level 2 
twice in one 3D iteration step will not affect the diffusion 
results.  

It should be noted that if the diffusion matrix values 
of one stairs area are changed, they are changed also for 
all the integrated (same) stairs areas in other levels. 
Additionally, any change of the values of that stairs area 
will have an influence on both levels since the stairs area 
is situated between two levels and is connected to both of 
them. This will ensure the flow of the gas in both up and 
down directions and that is important in the case where 
there are more than one stairs areas in a building.  

According to the above mentioned algorithm, one 
iteration of the diffusion process for a three floor building 
consists of three steps that can be seen in Figure 2. 
Because layer 2 is connected to two stairs areas the 
computation of the diffusion matrix is done twice: first 
with integrated stairs area 1 ½ (Step 2a) and secondly 
with integrated stairs area 2 ½ (Step 2b). Additionally, the 
virtual wall can be seen as a blue line in Figure 2. The 
virtual wall is added at the exit/entrance that is not 
connected to the respective layer. More explanation could 
be found in [KKRA09]. 

The area under the stairs in level 1 is not considered 
in our computations, because it is very improbable, that a 
person is crawling rather than walking under the stairs. 
But if it is possible to walk in the area below the staircase, 
the diffusion for this area could be similarly computed in 
two steps like in level 2, step 2. 
 
2.2.3 CALCULATING THE Z-POSITION 
 
A methodology to calculate the position in the Z-direction 
at every time step is to generate a matrix that contains for 
every (X, Y) coordinates a relevant Z-coordinate. In this 
case the knowledge of X and Y positions will be enough 

 

Level 1 

Level 2 

Level 2½ 

Level 1 ½ 

Level 3 

Figure 1: A building with 3 levels and two 
projections of the stairs (“x ½  level”) 

apply Diffusion Filter on level n 
 
   if (stairs overlap){ 
      

integrate overlapping stairs of 
level (n+1/2) in level n 

 
  apply Diffusion Filter on    
  level n 

 
    } 
 
  } 
} 

for (i=0; i < imax; i++){ 
 
 for (n=0; n < Nb_of_levels; n++){ 
 

integrate all non overlapping 
stairs of level (n+1/2) and (n-
1/2) in level n 

 
   if (stairs overlap){ 
      

integrate overlapping stairs 
of level (n-1/2) in level n 

   } 



Step 1 Step 3 Step 2 

= 

= 

Virtual Wall 

a b 

1½ 2 ½

1 ½ 

2 ½ 

Level 1 

Level 2 

Level 3 

Level 1     and Level 
1 ½ 
With this also Level 
1 ½  in Level 2 is 
changed 

Level 2     and Level 
1 ½   
With this also Level  
1 ½  in Level 1 is 
changed 
 

Level 2      and Level 
2 ½ 
With this also Level  
2 ½  in Level 3 is 
changed 

Level 3     and Level 
2 ½ 
With this also Level  
2 ½  in Level 2 is 
changed 

Diffusion Matrix is computed for: 

Figure 2: Diffusion Matrix is computed for all 3 layers in 3 steps (3 layers example) 

to return the appropriate Z. With the projection of the 
stairs into the 2D area, the information of the Z-position 
can be appended: For each step area of the staircase a 
different Z-value can be stored. This means, that the Z-
position is stored for different areas: The different floor-
level areas and the different areas for each step of the 
staircase have different heights, respectively.  

 
2.2.4 MAPS HANDLING 

 
In this section we will describe the extension of the 
diffusion movement model for handling maps in indoor 
and outdoor environments. Maps contain useful 
information that influences pedestrian movement such as 
the different types of areas which have different degree of 
accessibility. Examples of these areas are forests, fields, 
streets, ways, meadows, coppices, flowerbeds, houses, 
walls, etc. 

Typically, persons do not walk through forests, 
fields, coppice, flowerbeds, etc. Meadows are more 
accessible for kids or in sunbathing areas. Furthermore, 
most probably persons do stay on ways or streets (on the 
pedestrian sidewalk). Walls are not accessible, whereas 
houses could be entered through doors. Inside houses, 
floor plans are active, but also maps could be considered: 
The areas with non accessible furniture stands (tables, 
cupboards, etc.) are not reachable.  On the other hand, 
chairs are accessible. Therefore, the idea is to apply the 
diffusion movement model including maps, indoor and 
outdoor where different accessible areas can be handled 
differently.  

For handling the degree of accessibility we have to 
modify the layout map matrix which is considered in the 
computation of the diffusion matrix. The new layout map 
matrix L  is defined as: 

,
,

,

1 if is accessible, 1...255

0 if is not accessible

, : 0, , , 0, ,

i j
i j

i j

x y

l v
l v

l

i j i N j N

⎧ =⎪=⎨
⎪⎩

∀ = =K K

 (3) 

where x yN N× is the size of the rectangular area. For 
inaccessible points (e.g. walls and closed areas) the values 
of the layout map matrix are set to zero. For the accessible 
areas the layout map matrix will have different values 
depending on the accessibility. The most accessible areas 
will have a value v of 1 whereas the least accessible area 
will have a value v of 255. According to the accessibility 
of a specific area the values v lie between 1 and 255. The 
values lie between 0 and 255 following an 8-bit PCM-
representation. This representation was selected since it 
provides a reasonable range in the diffusion matrix. 

The diffusion process with these new defined values 
of the layout map matrix is as follows: 

First, for the rectangular area a set W  of wN destination 

points ( ) ( ){ }1 1, , , ,
w wN Nx y x yK  has to be specified, where 

each destination point represents a source effusing gas. 
For each destination point a so called diffusion matrix 

mD is pre-computed. The diffusion matrix for a particular 
destination point contains the values for the gas 
concentration at each possible waypoint assuming that the 
gas has effused from that destination point. For this, a 
filter F of size n n×  is applied: 

, 2

1 , : , 0,1, , .p qf p q p q n
n

= ∀ = K  (2) 

The diffusion is expressed by a convolution of the 
diffusion matrix mD  with the filter matrix F element-

( ),m m mW x y ∈W  (1) 



wise, multiplied by the layout map matrix L :  

, , 1, 1 ,
1 1

( 1) ( )
n n

i j i j i p j q p q
p q

d k l d k f+ − + −
= =

+ = ⋅ ⋅∑∑      . (4) 

Here, the l values represent a weighting of the diffusion 
values according to their accessibility. 
Constantly refreshing the source is represented by forcing 

, : 1
m mx yd =       . (5) 

at the destination point. Equation (4) is evaluated 
repeatedly until the entire matrix is filled with values that 
are greater than zero (except for walls and closed areas):  

, 0 , : 0, , , 0, ,i j x yd i j i N j N> ∀ = =K K       . (6) 
The path is computed by backtracking from the 
destination point mW  towards lower values of the 
diffusion matrix until the current waypoint is reached. 

Figure 3 shows a graphical representation of the 
layout map matrix for a scenery with two ways (white), a 
closed building (dark gray walls), fields (light gray) and 
coppice/trees (dark gray). A graphical representation of 
the diffusion matrix for that layout with a destination 
point in the field is given in Figure 4. Destination points 
are represented by red dots in our figures. The gas 
concentration is high in the dark red area and low in the 
blue area. 

 
 

Figure 3: Layout map matrix 
 
From Figure 4 one can see that the person coming 

from the way will be walking further on the way and then 
going to the destination point situated on the field. She is 
not using the shortest way due to the given layout map 
matrix. This is comparable to the human behavior, since it 
is more convenient to stay as far as possible on the way.  

 

 
 

Figure 4: Diffusion matrix and trace for a starting point 
on the way 

 

Figure 5 shows the trace for a starting point on the 
field. The person goes on the street and follows it until the 
shortest way to the destination point from the street is 
reached. If the destination point on the field is very close, 
then the path would be the direct one over the field.  
 

 
 

Figure 5: Diffusion matrix and trace for a starting point 
on the field 

 
Figure 6 shows the layout map matrix adequate for 

our office environment. The walls are given in black, not 
easy reachable forest area is marked with dark gray, and 
flowerbed area is given in light gray. The area where 
people may walk is given in white. Additionally the stairs 
area is marked in blue and again red dots are possible 
destination points. No destination points can be located in 
black and dark gray areas. The diffusion result for one 
layer is given in Figure 7.  One can see that gas coming 
from the destination point in the left down corner effuses 
faster in the white areas (dark red color) and slower in the 
dark gray areas. Additionally, gas will not flow in closed 
rooms of the building.  

By using maps one can easily handle restricted areas 
such as forests, walls, etc. In addition, one can precisely 
define areas where a person may stand and where not, 
both in indoor and outdoor environments.  

In order to reduce the computational effort during the 
run time, the diffusion matrix mD is pre-computed for all 
the destination points and the angles of the paths toward 
each of them are saved [KKRA08]. Since the destination 
point for the pedestrian is not known during runtime, the 
destination points are chosen randomly (assuming here a 
uniform distribution). The destination point is stored until 
it is reached, changed or if the 3D-SBMM is selected (see 
section 2.3).  
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Figure 6: Layout Map for our simulation environment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Diffusion matrix for our simulation 
environment 

 
2.2.5 ADVANTAGES AND DISADVANTAGES 

OF THE 3D-DMM 
 
With the 3D-DMM the pedestrian does not “get stuck” in 
rooms or fails to enter them. Additionally, a simulated 
moving person finds the exit of a room faster than with 
the 3D-SBMM, especially when the door opening is 
small. Furthermore, goal-oriented movement is included. 
A disadvantage of using the 3D-DMM is that if we 
assume that the destination point is not known then this 
true destination point may not be in or close to our set of 
destinations, so that the model is not able to capture the 
actually observed motion particularly towards the end of 
the true trace that is walked. Another disadvantage is that 
it does not model local random motion very well, such as 
when a person is not walking to some target – for 
example whilst walking around in an office talking to 
somebody. Additionally, a pedestrian does not always 
follow the shortest path. Therefore, a combination of both 
3D-SBMM and 3D-DMM is proposed in our new model. 
We found that a combination of both models is 
particularly advantageous and will be described next.  
 

2.3 THREE DIMENSIONAL COMBINED 
MOVEMENT MODEL 

 
Both the 3D-DMM and 3D-SBMM have advantages and 
disadvantages. Our approach was to combine both models 
intelligently trying to obtain the advantages of both 
models and get rid of as much of the disadvantages as 
possible. The models are combined via an extended 
Markov model. The combined three dimensional model 
switches between motions that are non-goal-oriented 
(section 2.1) or goal-oriented (section 2.2) with a small 
transition probability. Details on such combined 
movement model can be found in [KKRA08] [KKRA09].  
 The previously illustrated 3D-DMM does not include 
a speed model. Accordingly, if the pedestrian switches to 
a targeted movement, the 3D-SBMM will still be used to 
model the speed and accordingly the distance at every 
time step. The diffusion model effectively determines the 
heading that is followed. 
 
2.4 THREE DIMENSIONAL POSITION 

COMPUTATION 

 
For computing the 3D position the model continuously 
checks if the pedestrian enters any of the stairs areas in 
his current floor. While the pedestrian is outside the stairs 
area, the third dimension calculations are turned off since 
a normal pedestrian can walk only on surface areas. This 
saves us some computational costs. Additional 
computational costs are saved by only testing the stairs 
areas that are close to the pedestrian. If the pedestrian is 
detected to be in any of the stairs areas, then the third 
dimensional calculations in the current used model is 
turned on. Here, specific stairs area (Figure 8) 
considerations are applied. Examples of such 
considerations are the area geometry, the stairs type, and 
the activity of the pedestrian (walking up the stairs or 
going down). The side walls of the stairs are used to 
prevent our modeled speed of the pedestrian from 
resulting in a wall crossing movement. 

Figure 8: Coordinates of three dimensional stairs 



 The knowledge that the pedestrian has entered the 
stairs area heading up or down is essential. It will be used 
in calculating the pedestrian speed since the speed going 
down the stairs is faster normally than the speed going up. 
Additionally, it is used with the knowledge of the 
pedestrian’s exit location to set the new floor level when 
detecting the pedestrian leaving the stairs area. We can 
easily check if the pedestrian has entered the side going 
up or down of the staircase with the knowledge of the 
building floor plan and his/her entry location. It has to be 
noted that the stairs area in the highest and lowest floors 
are accessible from one side only since each of them is 
connected to only one floor. 

The extended Markov model will still be used to 
decide if the pedestrian in the stairs area is just walking 
around or targeting a goal somewhere up or down the 
stairs. According to the used 3D model (targeted or not-
targeted) and applying the above stairs restrictions, the 
pedestrian’s new position on the stairs can be calculated 
out of the old position and the elapsed time since the last 
calculated position. 

After every computed position on the stairs, the 
pedestrian’s new position is checked if it is still in the 
stairs area. If the pedestrian is detected leaving the stairs 
area the pedestrian floor level is either incremented or 
decremented according to the movement direction. 
Outside the stairs area the pedestrian will follow the 3D 
calculation will be stopped. 

For simplicity, X and Y positions only are 
calculated at every time step, while the Z-position is 
retrieved using the methodology explained in section 
2.2.3. Our pseudo-code formulation for generating a new 
three dimensional position is:  

 
3. CAN MAPS AND FLOOR PLANS REPLACE A 

PROPER MOVEMENT MODEL? 
 

Several authors in the navigation community thought that 
the knowledge of maps and floor plans might be enough 
to probabilistically predict the movement of the 
pedestrian over time as in [KrR08]. In such 
implementations walls were hindering the movement and 
maps were deciding the most probable paths.   

Such implementation of the pedestrian movement 
model will work only in special cases and will fail in 
many others. To illustrate that, we will consider the 
example of a Sequential Bayesian Positioning Estimator 
that is based on Likelihood Particle Filter (LPF). A LPF is 
a particle filter that is using measurements for drawing 
importance samples and transition models (movement 
models) for weighting the particles. Let’s assume that at 
the beginning particles were distributed equally inside and 
outside a building since the starting position of the 
pedestrian is unknown. Additionally, we assume that the 
area outside the building is an open area where the 
pedestrian can walk everywhere.  

First, we investigate the case of using only floor 
plans and maps for weighting (no proper movement 
model): particles that are inside the building will get good 
weights if they do not cross walls. Particles outside the 

else { 
- Generate and return 
position by running the 
3D Combined Movement 
Model (see section 2.3) 
in 2D only. Special case 
since human walk normally 
on surface areas.   

} 
} 

else { 
- Generate and return new 
pedestrian position on the 
stairs using the 3D 
Combined Movement Model 
(see section 2.3) 

- Check if the new pedestrian 
position is outside the 
stairs area: 

 If (true) { 
- Increase, decrease or 

keep the old value of 
the pedestrian floor 
level depending on the 
“movement direction” 
variable and his/her 
exit location 

- Set “already in stairs 
area” to false 

 } 
   } 
} 

Generate 3D position (old 
position, timeDuration) { 
If (“already in stairs area” = 
false) { 
- Search staircases that are 

close to the pedestrian in 
the current floor 

- Check if the pedestrian is 
inside any of them: 
If (condition true) { 
- Check if the pedestrian 
enters the side going up 
or down of the staircase 
based on the floor plan 
and his/her entry 
location. Accordingly set 
“movement direction” 
variable to up or down 

- Generate and return new 
pedestrian position on 
the stairs using the 3D 
Combined Movement Model 
(see section 2.3) 

- Set “already in stairs 
area” to true  

} 



building will never get weighted as they do not cross 
walls and, therefore, they will also have good weights. 
For the case where the tracked pedestrian is inside the 
building only few of the particles inside the building will 
be following the pedestrian and at the same time not 
crossing walls (getting good weights). On the other hand, 
all the particles outside the building will have better 
weights since they are not weighted at all. Re-sampling 
will result in increasing the number of particles outside 
the building and decreasing the number of particles inside 
the building. This will result in divergence of the 
algorithm with time. 

Secondly, we examine the case of using proper 
pedestrian movement models that incorporate the 
knowledge of maps and floor plans: particles inside the 
building will get good weights if they do not cross walls 
and follow the proper movement model. Particles that are 
outside the building will get good weights if they follow 
the proper movement model. For the case where the 
pedestrian is inside the building, measurements will be 
consistent with the normal pedestrian behavior inside 
rooms, corridors or stair areas. Accordingly, particles 
inside the building will get higher weights (measurements 
will be consistent with the movement model inside the 
building) compared to the ones outside the building 
(measurements will be inconsistent with the movement 
model outside the building). Re-sampling will result in 
increasing the number of particles inside the building and 
an improvement of performance and reliability. 

The above example shows that maps and floor plans 
can improve movement models but not replace them. An 
optimal pedestrian movement model should do more than 
only incorporating maps and floor plans. 

 
4. SYSTEM DESIGN AND IMPLEMENTATION 

 
Some analyses of the added value of our developed three 
dimensional combined movement model on the overall 
dynamic positioning performance were required.  

Sequential Bayesian Estimators are widely used in 
estimation problems that are related to noisy and 
heterogeneous sensors. Their ability to represent sensor 
outputs using probability density distributions (“soft 
estimations”) rather than providing point estimates (“hard 
decisions”) is a major advantage of these estimators. 
Without the use of the concept of probability densities, 
combining several noisy and heterogeneous sensors 
would have been difficult [ROAW02].  Another key 
advantage of such technique is the ability to include the 
system dynamics (mobility or movement models) in the 
estimation process. Through the use of movement models, 
floor plans, maps and human movement characteristics 
could be incorporated and as a result, more accuracy and 
availability could be achieved. 

The developed model was tested and evaluated using 
an already available distributed simulation and 
demonstration indoor/outdoor environment for 
positioning. The environment is based on Sequential 
Bayesian Estimation techniques and allows plugging-in 

different types of sensors, Bayesian filters and movement 
models.     

Several ground truth points were carefully measured 
to the sub-centimeter accuracy using a tachymeter. The 
tachymeter employs optical distance and angular 
measurements and uses differential GPS for initial 
positioning. The Leica Smart Station (TPS 1200) was 
used for this purpose. A test user was equipped with a 
version of the above environment that is: 

1. Based on two fusion engines running separately 
for comparison; a Particle Filter engine and an 
Extended Kalman Filter engine. 

2. Having our 3D map and floor plans enhanced 
movement model integrated and used in the 
particle filter engine. 

3. Having a simple random walk to be used in the 
Extended Kalman Filter (EKF) engine.  

4. Using the following sensors: commercial GPS, 
electronic compass and a foot-mounted Inertial 
Measurement Unit (IMU) with Zero Updates 
(ZUPTs) [KrR08]. 

The test user was requested to walk through a specific 
path that is passing through several of our ground truth 
points. Whenever our user passed through one of the 
ground truth points, the estimated position was compared 
to the true position. Errors between the true positions and 
estimated pedestrian positions were recorded and 
visualized. Some results will be given and discussed in 
the next section.  

 
5. SIMULATION RESULTS 
 
In the evaluation example, the user started outside our 
office building passing by two reference points before 
entering the building. The user then made three rotations 
around the ground floor of our building environment 
before going outside again. In each of the rotations, the 
user was entering five offices (same five offices are 
repeated in each round). After the third rotation the user 
left the building passing by the same starting reference 
points outside the building. 

The position error vs. time of both the PF and the 
EKF estimators is shown in Figure 9. From the Figure, we 
can see that the estimator which incorporates a proper 
movement model is having an average position error of 
1.82 meters. On the other hand, the estimator that is using 
a simple random walk model has an average position 
error of 59.78 meters. We can also notice that the EKF 
estimator was having a noticeable low position error at 
the first two reference point. The reason is that the user 
was outside and the GPS coverage was still available. 
Additionally, we can see that the position error of the 
EKF estimator at few reference points later was still not 
very high. The reason is that the IMU and the compass 
measurements were still good enough to generate 
reasonable estimations. However, with time and due to 
the noisy measurements and the lack of an appropriate 
movement model, the EKF estimator starts diverging and 
the position error grows. At the time the pedestrian goes 
again outside the building, we can see that the EKF error 



goes down dramatically and this is due to the return of the 
GPS coverage and availability of accurate measurements 
accordingly. 

On the other hand, the PF estimator continues to keep 
a small position error even in the case of noisy 
measurements. This is due to the use of a proper map and 
floor plan enhanced movement model. Figure 9 gives a 
clear indication of the performance improvement resulting 
from incorporating proper pedestrian movement models 
into positioning estimators. 
 From our performance analysis we have noticed that 
a proper movement model has made our positioning 
estimator more reliable. This can be shown if we 
introduce short disturbances to any of the sensors during 
the evaluation run. With the integrated movement models, 
any unrealistic sensor measurements will be excluded 
since they will be inconsistent with the movement model. 
As expected, positioning estimators that incorporate 
proper movement models are more resistant to short 
sensor disturbances. 
 
6. CONCLUSIONS AND OUTLOOK 
 
We have presented a human pedestrian motion model that 
accounts for targeted and untargeted motion in three-
dimensional environments such as buildings that have 
stairs to connect different levels. Since human motion is 
restricted to surfaces we have essentially projected 3D 
motion onto the appropriate surface, be it a normal floor 
or the stairs. Each projected step area is having a different 
height. Our model follows a combination between a 
diffusion process to represent paths that humans typically 
take to reach a destination and a behavioral model that 
incorporate the effect of the pedestrian situation on his 
movement. When our motion model is applied in a 
sequential non-linear (Bayesian) localization scheme such 

as particle filtering, the model is typically used in the 
“prediction step” where we draw from a suitable proposal 
density (our model). However as in the Likelihood 
particle filter, the model is used in the “update step” 
where we give appropriate weights to particles that are 
moved according to the measurements. The model could 
also be used to calculate shortest paths or to estimate 
pedestrian densities in building planning. 

The advantage of integrating the knowledge of maps 
outside the building in the movement models was not 
visible since the walk outside was very short as can be 
seen in Figure 9. Longer walks outside the building in 
order to have a deeper view on the added value of 
integrating maps in the movement models to the overall 
positioning performance are foreseen for future 
publications. 

Future work will also be in validating the model 
through observing the true human motion (recorded from 
many test subjects over longer time) and comparing it 
with what our model would propose in the same 
conditions. This approach will provide us with a measure 
of the probabilistic accuracy of our new model.  

Implementation of other movement models such as 
the Social Force Model is also foreseen for future 
considerations. This will bring us a step further toward 
modeling all types of pedestrian’s movements and their 
motivations.  
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Figure 9: Position Error for a Particle Filter based Position Estimator (with a proper movement model) VS. Extended Kalman 
Filter based Position Estimator (with a random walk model)  
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EKF (no proper movement model is used), Avg. Pos. Error = 59.7747 m
PF with the Floor-Plans enhanced 3D movement model, Avg. Pos. Error = 2.112 m
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