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Abstract— In this paper, a position based impedance con- of the robot also for (unplanned) contacts at different sin
troller (i.e. admittance controller) is designed by utilizing \While the application of force sensitive skins [6] or the
measurements of a force/torque sensor, which is mounted até integration of torque sensing [7], [8] are possible appheac

robot’s base. In contrast to conventional force/torque sesing to handl h situati ; tioat It i
at the end-effector, placing the sensor at the base allows to 0 handle such situations, we Investigate on an aiternatve

implement a compliant behavior of the robot not only with ~@pproach in this paper. Our approach aims at integrating
respect to forces acting on the end-effector but also with a force/torque sensor at the base of the robot instead of
respect to forces acting on the robot's structure. The resting  mounting it at the end-effector. This enables to perceive
control problem is first analyzed in detail for the simplified 5 005 || along the robot's structure independently offoi
one-degree-of-freedom case in terms of stability and passty. L .
Then, an extension to the Cartesian admittance control of friction. However, since the }‘orces meas_ured at the b"_ise
a robot manipulator is discussed. Furthermore, it is shown are related to the robot's motion, the manipulator dynamics
how the steady state properties of the underlying position must be taken into account in the design of the admittance
controller can be taken into account in the design of the controller.
outer e}dmittan(_:e controller. Finally, a simulation study of the Apart from applications to fixed mounted manipulators,
Cartesian admittance controller applied to a three-degres-of- . . .
freedom manipulator is presented. we expe_ct that the same issue will also be relevant for im-
plementing whole body impedance controllers of humanoid
. INTRODUCTION robots. Feedback of the feet contact forces is often used in

, ) . walking and balancing controllers of biped robots in oraer t
Impedance control is a prominent example for a complianiy o] the interaction forces of the robot with the grousi [

motion control algorithm used for autonomous manipulatiopoyever, in that case the force feedback is often designed in

and physical human-robot interaction [1], [2]. Differem-i 5 nragmatic way and without rigorous theoretical justifimat
plementations of the general impedance control conceg hay, stability analysis.

been proposed using either impedance or admittance causaly, the design of whole body impedance controllers includ-

ity of the controller. A controller_with impedance causalit ing a compliant behavior of the lower body with respect to
(sometimes called "force based impedance control’) ugualtyrces acting on the main body, we have to take account
requires a precise torque interface and thus can benefit e following key issues. Firstly, for position contredl
greatly of integrated torque sensing and torque control [3}opots it is necessary to incorporate the contact force mea-
[4]. In many commercial robots this is not feasible and only & rements at the feet into the whole body control, sincesthes
conventional position or velocity interface is providedthat _sensors provide an indirect measurement of all forcesgctin

case, a compliant behavior can still be implemented by 5, the robot. Secondly, for keeping the zero-moment-point
tegrating a force/torque sensor (FTS) at the end-effectdr a,yithin the support polygon of the feet, it is necessary tdtiim
designing an outer loop admittance controller (sometimege contact forces and moments. Thirdly, for handling large
called "position based impedance control”) which provideg,qiact forces, a combination with stepping and walking
the desired set-point for an inner loop position or veloCityecpnologies will be required. Within this paper, we treat
controll_er [5]- ) ) the first of these problems. Compared to previous works
In this paper, we focus on the implementation of an ads this problem, we aim at giving an adequate theoretical
mittance controller, which can be implemented on a positiofsification of the base sensor feedback by deriving all the

controlled robot. However, by using a FTS mounted at thgyjevant dynamic equations and by presenting a stability
tip of the robot, the compliant behavior can only be aCh'eVeQnalysis of the one-DOF case.

with respect to forces acting on the end-effector, while the e yse of base mounted FTSs for identification and joint
robot will be "insensitive” to forces acting along the rolsot torque estimation has been well studied in the works of
structure. In contrast to this, the use of robots in part'bubowsky et al. [10], [11], [12]. In [11], a method for esti-

unknown human environments requires a compliant behavig{ating the dynamical parameters of a serial manipulator arm

) ) ) o was presented. Due to the measurement of the base force,
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PD position controller. wherein M (z;, q) € R(6T)x(6+7) denotes the complete

In [13], a base FTS was used in combination with anertia matrix including the base link [18]. The centrifliga
FTS mounted at the wrist for collision detection and idenand Coriolis terms are given via the mat@X s, s, q, q) €
tification in human-robot interaction tasks. Kosuge et alR(+™)x(6+7)  The gravity term is written ag(zs,q) €
[14] integrated a body force sensor on a mobile robot foR(6+™). The joint torquesr € R™ are considered as the
cooperatively handling large objects by multiple robots.  control inputs. The generalized force measured by the base

In contrast to [12], we aim at incorporating the baseéTS is denoted by, € R®. The generalized external forces
force measurement directly into the design of an admittangexcept for the generalized forcd&, exerted at the base at
controller instead of implementing an inner loop torquehe location of the FTS) acting on the robot are summarized
controller. The desired impedance represents a dynanig the vectorr..;. In case that the external torques are due
relation between external forces and the motion of the robab a generalized forc# ., € R® acting at the end-effector,
This impedance will be transformed into a dynamic relatiothey can be written as
between the contact force at the base and the robot's motion.

T
We will highlight some restrictions on the achievable cthse Text = (Tm,b) _ [J;}(mbv Q)} Fou | )
loop dynamics which are due to the dislocation of the force T ext,m Jg (Tb, q)
sensing. A first version of the controller from this paper was I (25.q)

already presented in [15]. In the present paper, the cdaitrol

from [15] is refined by compensating for the steady statwith J(zs,q) € R(6*(E+m) as the Jacobian matrix for the

error of the underlying position controller. This refinerhenserial kinematic chain from the fixed world frand2 to the

if achieved by modifying the outer admittance control loopend-effector. In the following, the external torques arét sp

based on design ideas from [16], [17]. up into the two componentsey,, € R® and 7ext,m € R”

acting on the base link and the joints, respectively.

. i T In (1), the joint coordinateg are augmented by local
_In this section, the general model of a robot witfoints is  ¢qordinates of the base link motian in order to incorporate

discussed, in which an expression of the contact force at thgs contact force?, into the equations of motion. Since the

base is included. In contrast to interaction forces med@satre 55e is attached to the ground via a stiff force/torque senso

_the end-effector, the forces between the robot and its br@se g, nave to augment (1) by an additional constraint, which
internal forces. Therefore, we start with an extended mOdBFevents any motion of the base link:

with a free-floating base (Fig. 1). By adding constraints on
the base motion, we can derive an explicit expression of thewb(t) _ dxy (t) —0= I 0 (mb) —0. @

force and torque measured at the base. ’ dt ~—
D

Il. ROBOT MODEL INCLUDING THE BASE FORCE

From this, one can see that the generalized force at the
baseF, is represented in (1) by the Lagrangian multipliers
related to the constraint matri@ € R6*(6+7) from (3). In
the following, this constraint will be incorporated into)(1In
this way an expression of the generalized base force can be
derived. Therefore, we drop the dependence on the constant
position and orientatior:, = x; of the base link and write

M(x;,q), C(x},0,q,q), andg(zx;, q) in the form
c My(q) M-c(q)
M(zy,q) = [ :
@ha = | MTg) Mig)
~ * . _ Cb(QaQ) Cl ((Lq)
Fig. 1. Model of a robot manipulator mounted on a base FTS. fikee Cl2,0.9.9) = [CQ q,9) Clq,q9) ]|’
base manipulator model is augmented by a free-floating lrdsefdr which
the motion will be constraint. In this way, we can represastreaction force g(w* q) _ gb(q
at the base as the constraint force. b glq) )’

In the following, the position and orientation of the basevhere M (q) € R™"*" is the joint level inertia matrix and
link is specified via local coordinates, € RS. The joint M_.(q) € R(*") represents the inertia coupling matrix
angles of the manipulator are denoted¢goyg R™. Then, the between the manipulator and the base link. Notice that the
model of the robot with an free-floating base link can belassical robot dynamics can be obtained by pre-multiglyin
written as (1) by a matrix spanning the left nullspace ®f :

- T = . e _ . N

M (z,q) ( qb) + C(xp, 1, q, ) ( qb) +9(zp,q) = M(q)qg+C(q,9)q+9(q) =T + Text,m - 4)
0 Fy (1) In order to get an expression for the base force as a
) Lo )t Tex> function of the robot’s motion, we instead pre-multiply (1)



by ® and obtan ~F o= Xl >
.. .y - F Fext |

Fy = Textp — Mc(q)g — Ci(q,9)q — g,(q) - (5) 1

Moreover, substituting; from (4) into (5), leads to —I M

Fb = —Mc(q)Mil(q)[T‘FTcxt,m - C(qvq)q Mb m

- —Ci(q,q9)q — . 6
g(q)] + Textb 1(q Q)q gb(Q) ( ) Fig. 2. Model of single mass, actuated by the fof¢end mounted on a

The last three equations (4)-(6) basically represent thr@ase force sensor.
relations betweelg, =, and F',, which will be relevant for TABLE |
the derivation and analysis of the admittance controller: CORRESPONDENCE BETWEEN THE GENERAL AND THE

A: (4) represents a relatioip = 7 (robot dynamics). ONE-DEGREESOF-FREEDOM CASE

B: (5) represents a relatioR', = q. general casg] one-DOF

C: (6) represents a relatiofi, = 7. Coordinates q T

. . L Actuator force T F

From (5) and (6), it is obvious that the base force, which is External force Fomt Tt
measured by the FTS, depends not only on the robot’s state Textib Foxt
(g,q) and the generalized external forces,, but also on Text,m Fext

the current joint torque-, which is considered as the control
input in our case. It should be mentioned that therefore the

use of this force in the controller is from a theoretical paif and thus the inertia coupling matrixZ.(q) is given by

view not unproblematic. This issue basically arises bezaus,; By evaluating (4)-(6) for this one-DOF case, we obtain
we ignore the force sensor’s elasticity in the model and

treat it as an ideal force sensing element. However, for the (A) Mi = F+ Fey (8)
controller design, one should avoid direct feedback froem th (B) F, = Fuu— Mi, 9)
force sensor measurement to the joint torque output of the C) F = -F (10)

controller as this feedback would not be well-defined.
Due toM .(q)=M, the relation betweef; and the actuator
force F' in (10) has a very simple form, i.e. the measured
In this paper, we focus on an admittance controller desighase force is equal to the reaction force of the actuator.
Therefore, we will use an underlying position controller fo  As a control goal, we assume a desired impedance relation
the robot manipulator and design a compliant impedande form of a second-order mass-spring-damper system
behavior in an outer loop based on the measured forces . .
at the base. For this, in particular the relation between the MaZ + Dat + Ka(x — 20) = Fext (1)
external forces and the measured contact force at the baggn 17, ~ 0, D, > 0, and K; > 0 as the desired inertia,

is of interest. The general relations for thedegrees-of- damping, and stiffness, respectively. The paigte R is the
freedom case are given in (5) and (6). Before discussing th&tual equilibrium position and is assumed constant. The
design of a Cartesian admittance controller in section I¥, Wqesired behavior (11) defines a dynamic relation betwieen
will analyze the simple one-degree-of-freedom case in thig g the external forcé.,.. Since we want to realize this
section in order to clarify the main design issues based ong@navior based on the measurement of the contact force at
simple model. the base, we transform the desired impedance into a relation

Consider the model shown in Fig. 2, in which a singlgyetweens and the base forcé),. This can be done by
mass}M is controlled via an actuator forcg. Compared combining (11) and (9) to obtain

to the general model described in Section Il, we have the

correspondence as shown in Tab. |. The actuator fétde (Mg — M)& + Dai + Kq(z — x0) = Fy . (12)
determined by the output of an inner loop position controlle
for z € R, which gets its set-point; from an outer
admittance controller. In the analysis of this section, vié w
assume that the underlying position controller has the for
of a PD controller with velocity feed-forward term, i.e.

IIl. CONTROLLER DESIGN THE ONE-DOF CASE

From (12), one can see that the target inektiamust always

be larger than\/, otherwise (12) would result in an unstable

rglnynamics. Notice that (12) is independent of the underlying
position controller (7) used for the implementation via ad-
mittance control. For an ideal position controller, theuatt

F = —P(x —xq) — D(i — iq) , (7) positionz would become identical to its reference motion
4. One possible way for implementing (11) with a position
with positive PD controller gaing > 0 and D > 0. controlled robot is then to replacein (12) by z:
It can easily be verified that in this simple one-DOF case
the complete inertia matrix becomes (Mg — M)ig+ Daiq + Ka(xqg — 20) = Fj . (13)
M= [Mb +M M} This design strategy, shown in Fig. 3 so far did not involve
o M M| - the particular form of the underlying position controller.



Fext for which the time derivative along the solutions of (14%)1

is given by
—| M V(x,24,&,2q) = —Dai? — D(d — 4)? + @ Fex; .
F My Q00 From this, the passivity of the system with respect to the
b I input-output pair(i, Fi.) follows immediately.
L zq_| Position Notice that in the controller design so far, the outer loop
13) > Control admittance controller (13) was designed independentlyjef t

inner position controller. For a non-ideal position coling

Fig. 3. Admittance control of the one-DOF model using a FTShat the achieved impedance (as a relation betweemd F)

base. If the admittance controller from (13) is replaced bg),(one can will be slightly distorted according to the properties oéth

take account of the static error resulting from the positontroller. inner |00p position controller. In case of the PD controller
(7), one can see from the steady state equation (17) that

However, for analyzing the stability properties we need téhe achieved steady state behavior corresponds to a stffne

consider a particular controller structure. In the follogjwe Value of K4P/(K4 + P). This stiffness tends to the desired

assume the PD controller (7). Then, the closed loop systeyalue K, for large position controller gaing >> K.

can be obtained from (8) and (13). By using (7) and (10);owever, it is possible to exactly compensate for the steady

we can eliminateF’ and F;, from (8) and (13) to obtain state error of the position controller if the gai of the
position controller is known. Then the stiffness term of the

Mi + D(& — &) + P2 — 2a) = Fext (14) " outer admittance control loop can be modified by adopting
(Mg — M)Zq+ Data + Ka(ra — 20) = the techniques used in [16], [17]. If the stiffness term in
P(z — 2q) + D(d — &q) . (15) (13) is replaced byz“4- (x4 — wo), With K4 < P, the

. _ . desired stiffnessi(; is achieved exactly. However, in this
Let us first analyze the equilibrium points of the SyStem(:ase the position controller qaid poses an upper limit for
Therefore, we assume that a constant external fdige P gam p P

. . . . . tpe achievable stiffnes&; < P. The modified admittance
is acting on the system. Then the unique equilibrium point ' oller is then aiven b
(Z,24) can be obtained from (14)-(15) as g y

Kq4P
1 . .. . . _
24 = zo+ EFext (16) (Mg M),Td + Datq + Pk, (xg —x0) = Fy . (18)
. K;+ P Notice that this modification would not be necessary if
o= Zot K,P Fext - (17)  instead of the underlying PD controller a controller with
Using the new coordinates— z— and#, — z4—#g, the Ntegral action is used.
stability of the equilibrium point in the sense of Lyapunov 1V. CARTESIAN ADMITTANCE CONTROL OF A
can be shown based on the Lyapunov function MULTI-BODY ROBOT
T 13\ [M 0 i In the previous section, the admittance controller design
V(& 24,2, 24) = 2 iy 0 (My—M)| \iy + and its stability analysis have been presented in detaihfor

T B simple model. In this section, the same line of argumenta-
1 (?) { P —P } (?) tion will be followed for designing a Cartesian admittance
2 \Td —P P+ Ka]\Za) " controller of a multi-body robot manipulator.
which is positive definite fol\/; > M. The time deriva-  Let the desired impedance be defined in Cartesian coordi-
tive of this function along the solutions of (14)-(15) iseiv natesz = f(q) € R%, & = J(q)gq, where f(q) represents
by the forward kinematic mapping and(q) € R(6*% the
V(F, 5,4, 54) = —Dad? — D@ — 34)? anqutig Jacobian._](q) = 0f(q)/0q. In the following
derivations, we will consider the non-redundant case and
from which stability of the equilibrium point follows. More  assume that the Jacobian is non-singular (and thus inkertib
over, by invoking La'Salle’s invariance principle [19],sal in the relevant workspace. Extensions to the redundant case
asymptotical stability can be shown. would additionally require to consider the effect of the
In the stability analysis, a constant external force wagylispace dynamics (see, e.g., [21], [22]) on the measuteme
assumed. Regarding interaction with dynamic environmentgf the base FTS.
one can add|t|0na”y show paSSiVity of the closed |00p Wste As a desired impedance, we assume a mass_spring_
with the external forcef.,, as input and the velocity: damper-like system of the form
as output. This can be verified by considering the storage

function Az + Dgz + Ki(x — x0) = Foxt , (19)
V(z,xq,&,2q) = l]\/[iz + E(Md — ]\/[)i% + 1A_ sufficient condition for a system (with input and outputy) to be
2 2 passive [20] is given by the existence of a continuous sefagction .S

9 1 2 which is bounded from below and for which the derivative wiéispect to
§P($ —zq)" + §Kd(xd —z)” , time along the solutions of the system satisfies the ineyuali< y” w.



with the symmetric and positive definite matricAs € can be used and combined with the Cartesian admittance
R6*6 D, € R6*6 and K; € RY*6 representing the by inverse kinematics as shown in Fig. 4. Lef € R" be
desired inertia, damping, and stiffness, respectivelye Ththe desired Cartesian position resulting from the adnigan
virtual equilibrium position is given by, € RS. controller andq,; = f‘l(wd) the corresponding set-point
The main advantage of using the base sensor is thatfdr the position controller, the admittance controller,iefh
allows to measure forces all along the robot’s structuré, namplements (19) based on the measurement of the base force,
only the the end-effector. Still, the above desired impedan can be written as
is defined with respect to Cartesian coordinates describing T .
the end-effector position and orientation. This means that (Ad —J (qd)Ac(qd)) Ta+
for forces exerted in the vicinity of the end-effector, the(Dd _ JET(Qd)M(Qdaqd)) iy +
perceived impedance will be close to (19). If the externa
forces are exerted far away from the end-effector, e.geclos Ki(xa—x0) = J, " (q2)(Fy + g,(q4))- (24)
to the base link, then the perceived impedance behavior will
be different. However, under the assumption that a reliable
contact point estimation is feasible, one could aim at adgpt .
the compliance behavior to the current point of contact. - -
In order to compare the desired impedance with the Rosition
equations of motion (4) and for combining it with (5)-(6),
we rewrite the model (4) in Cartesian coordinates as

Inverse
. N T Kinematics
A(@)E + (g, @)z +p(q) =J (@7 + Fexi ,  (20) R
where A(q) denotes the Cartesian inertia matiq) = (24)

(J(@)M~(q)J" (q))~! and the matriceg:(q, g) and the 7 F,
Cartesian gravity termp(q) are given by u(q,q) =
JT(q)(Cl(q,q)— M (q)J *(q)J(q))J '(q) and =

(q)( (q’ Q) (q) (q) (Q)) (Q) p(Q) Fig. 4. Cartesian admittance control of a manipulator medirin a base

J (Q)g(q?’ respecuvely. . FTS. If the admittance controller from (24) is replaced b§)(2ne can take
The relation between the base force and the acceleratioBgsount of the static error resulting from the underlyingifion controller.

i.e. (5), becomes

o . . Similar to the one-DOF case, a correction of the steady
Fy=Jy (@) Fext — Ac(@)® — p1(0: @)% — 9,(a) . (21)  giate error due to a non-ideal position controller is pdesib

where the inertia coupling matrixA.(g) and pu,(g,g) by modification of the stiffness term in (24). Therefore, it

are given byA.(q) = Mc(q),]_l(q) and p,(q,q) = is required that the steady state properties of the coatroll
(Ci(q,q) — Mc(q)J_l(q)j(q))J_l(q), respectively. are known. If we consider for instance a PD controller with
Finally, equation (6) takes the form gravity compensation
Fy=M (@M (q)[r + JL (q)Fext — p(q, @) (22) T=P(qy—q)+D(q,—q)+9(q), (25)
(@) + I (@) Foxi — 1,(q,q)x — g, (q) . with positive definite gain matrice® € R"*" and D €

R™*" then the steady state error for a constant external force

Similar to the procedure in the one-DOF case, we tran%, depends on the provortional oain matéix In stead
form the desired impedance (19), which represents a ralatig, °** P prop g y

between the Cartesian velocity and the external forces, in?tate' the joint anglq clearly fulfills
an impedance relation between the velocity and the general- +=P(q;—q) = —J"(q)Foxs - (26)

ized base force. Therefore, we utilize (21) to obtain The correction of the admittance control law can be done

(Ad - JET(Q)Ac(Q)) &+ by following the methods proposed in [16], [17]. From (19)
one can see that in the steady state of the desired impedance,
(Dd—Jb_T(q),ul(q,q)) T+ the condition K;(f(q) — ©o) = Fex Should hold. By
combining this equation with (26), we get

Ki(x —x0) = Jy(q) " (Fy +g4(a)). (23) .
Equation (23) presents the main component for the design Plgy—q) = -J (@ Ka(f(q) = o) - (27)
of the controller. We are aiming again at an admittanc&he idea, adopted from [16], [17], is then to solve (27) for
controller with an inner position control loop. Instead ofg and use the resulting functiaj(q,, o) in the implemen-
implementing the underlying position controller based omation of the admittance. In this way, we obtain
the Cartesian dynamics (20), a joint level position coitrol _q .
(Ad —J, (Qd)Ac(Qd)) iq+
2While the assumptions made in this section would formallgvalto _7 . .
represent the system dynamics in termsxof= £~ 1(q) and & only, we (Dd — Jb (qd)ul(qd, qd)) g+

keep the dependence of the dynamic equations on the joif¢saggince R T
this formulation is closer to the actual implementation teé tontrol law. Kq(f(a(gg xo)) —xo) =J, " (q4)(Fp + g4(a,))- (28)



More details on how to solve an equation like (27) &pr the desired inertia, damping, and stiffness. The values of
can be found in [16], [17]. However, this solution requireghe diagonal elements are given in Tab. Ill. The external
that the controller gainP is "larger” than the Cartesian excitation is chosen as a stepwise external force acting on
stiffness K4, i.e. (27) can be solved uniquely only if the end-effector inc-direction (see Fig. 5).

J"(q)K4J(q) < P holds. Thus, the gain of the position |n the first simulation, we use the admittance controller
controller represents an upper bound for the achievabjgym (24) and the parameter set "L” from Tab. II. The initial
stiffness, which is not surprising at all. configuration for the simulation can be seen in Fig. 5. The
resulting step response for a force stepl &f in z-direction

is shown in Fig. 6. The desired step response-uirection

For the verification of the controller from Fig. 4, we according to the parameters in Tab. Ill is shown by the
present a simulation study of a planar three-degrees-ajtack dotted line, while the simulation result is shown bg th
freedom robot as shown in Fig. 5. For the inner loop positio|ack solid line. While the transient behavior is similathe
controller a PD controller with gravity compensation as injesired behavior, one can observe a steady-state errahwhi
(25) is used. The proportional gain matdX is chosen as & results from the non-ideal position controller with a finite
diagonal matrix. The two sets of proportional gains, whickyroportional gainP. This can also be seen by observing
have been used in the simulations, are given in Tab. Hhe motion iny- and ¢-direction, which should remain zero
For the design of the damping gain matdX the "double  according to the desired behavior.
diagonalization design” from [23] with a damping factor of
0.7 is applied resulting in a configuration dependent dampingO
matrix.

V. SIMULATION RESULTS

In the second simulation, we now replace the admittance
ntrol law (24) by (28). In order to solve (27) fgfq,, q,).
a first order approximation is used. The results are shown in
Fig. 7. One can see that the modified stiffness term in the
admittance controller eliminates the steady state errer du
to the position controller. Clearly, for the implementatiof
(28) it must be assumed that the value of the proportional
gain of the underlying position controller is known. In
the transient phase, the quality of the position controller
still influences the accuracy. The deviation of the Cartesia
coordinates iny- and¢-direction from the equilibrium during
the transient phase can be explained by the effects of a non-
ideal underlying joint position controller. This is verifidoy
a third simulation in which the admittance controller (28) i
combined with a joint position controller with higher gajns
R e L e o which are given by the set "H” in Tab. Il. The corresponding
o?fhee Iinké is ?e;;rr]es:r?tged t;)y:singr;?: r?]i%?‘laoncesitlesdsiﬁ thie[:eﬁt'rlgelirnls S|mulat|op result is S_hown 'n_ F'Q- 8. One_ .Can see that
segments. The external force acts in the horizamtdlrection. As Cartesian for the higher proportional gains in the position controlle
coordinates, the end-effector positian, {) and orientationy are used. the desired impedance is realized much better during the
transient phase.

Fe;ct
=

Fig. 5. Simulation model: A planar three-DOF manipulatorumigd on a

TABLE Il
GAINS OF THE JOINT POSITION CONTROLLER 12X 10°
Joint 1 2 3
Prop. Gain "L"[Nm/rad] | 510> 510 103
Prop. Gain "H"[Nm/rad] | 510 5107 10?
TABLE IlI
IMPEDANCE PARAMETERS
Direction x y %)
Inertia 5 Ns?/m 5 Ns?/m 5 Nms?/rad
Stifness 100 N/m 100 N/m 10 Nm/rad -
Damping 31.3 Ns/m 31.3 Ns/m 9.9 Nms/rad 0 1 timlés (5] 2 25 3

Fig. 6. Simulation result with the admittance controlled)2and an

.. . . underlying position controller with the lower proportidngains (set "L”
In this simulation StUdy* we compare the tWQ admlttancg-;, Tab. Il). The desired step responsesiftirection is given by the black
controllers based on (24) and on (28) and we will observe thwtted line. The simulation result for the Cartesian motione-, y-, and

influence of the underlying position controller on the clibse ¢-direction are shown by the black solid line, the blue dasiresiand the
. . . . . red dashed-dotted line, respectively.
loop behavior. In all simulations, the desired impedance

is chosen according to (19) with diagonal matrices for



(1]

(2]

(3]

(4]

0 T —

1 .15 2.5 3

time [s]
Fig. 7.  Simulation result with the admittance controlle8)2and an
underlying position controller with the lower proportidngains (set "L”
in Tab. 1l). The desired step responsedirdirection is given by the black
dotted line. The simulation result for the Cartesian moftionz-, y-, and
¢-direction are shown by the black solid line, the blue dadieand the
red dashed-dotted line, respectively.

(5]

(6]
(7]

x107°

(8]

(9]

[10]
[11]
-2
0 1 timlés[ } 2.5 3
3 [12]
Fig. 8.  Simulation result with the admittance controlle)2and an
underlying position controller with the higher proport@rgains (set "H”
in Tab. 1l). The desired step responseairdirection is given by the black [13]
dotted line. The simulation result for the Cartesian mofion:-, y-, and
¢-direction are shown by the black solid line, the blue dadieland the
red dashed-dotted line, respectively.
[14]

VI. SUMMARY AND OUTLOOK

In this paper, we analyzed the admittance control proble%S]
of a robot manipulator, in which the force/torque sensor is
mounted at the base of the robot. This has the advantagél
that external forces acting all along the robot’s structane
perceived by the sensor. The desired impedance still isgiver7]
in terms of a dynamic relation between external forces at
the tip and the end-effector motion, but the interaction ofg
the robot with its environment is not restricted to the end-
effector. The contribution of this paper is a generalizatd
the controller from [15] by taking the steady state promesrti 120]
of the underlying position controller into account in the
design of the outer admittance control loop. The desigill
idea was exemplified by a detailed analysis of the one-
DOF case. The Cartesian impedance control problem for[ze]
general multi-degrees-of-freedom robot was discussed and
verified by a simulation study. We believe that the analysis
can also be useful for implementing whole body impedandes]
and compliance controllers of legged robotic systems in
which the ground reaction forces of the feet are measured
by force/torque sensors.
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