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Abstract— Time-of-Flight cameras constitute a smart and fast
technology for 3D perception but lack in measurement precien
and robustness. We present a comprehensive approach for 3D
environment mapping based on this technology. Imprecisiomf
depth measurements are properly handled by calibration and
application of several filters. Robust registration is perbrmed
by a novel extension to the Iterative Closest Point algoritm.
Remaining registration errors are reduced by global relaxaion
after loop-closure and surface smoothing. A laboratory grond
truth evaluation is provided as well as 3D mapping experimets
in a larger indoor environment.

Fig. 1. a) Scenario used for mapping. b) 3D point cloud reggst with data
I. INTRODUCTION taken from a Swissranger SR-3k device (false color codéeeldistance to

. . origin of coordinate system).
The mapping task poses a subset of the well-knsinmul- 9 ystem)

taneous localization and mapping (SLA)oblem. Thrun

et. al. declare mapping as to be one of the “core compet_enciﬁa/e to be considered in ToF camera mapping. In order
of truly autonomous robots” [19]. The purpose of SLAMiS 10, mqtivate further investigations in 3D mapping with ToF

locate the robot, targets and obstacles, which is funda&he”&ameras, the underlying data is provided by the authors.

T‘o:]_psth plagnmg”metrll)?ds. ﬁir;]er?tlngt_map? ;ﬁ a S(l;'ct‘rjl."edThe approach comprises: Depth correction by employing
chicken-and-egg: probiem. € location of n€ robot Is,, improved calibration, filtering of remaining inaccues;i
known, mapping is a solvable task. In reverse, localizaiion

iahtf d if f . iable. B bini registration w.r.t. to a common coordinate system by a novel
straightiorward, it a periect map is available. But comb@ii o angion 1o the Iterative Closest Point (ICP) algorithrd an

both trns out to be a chaII_engmg probI(_am _referred to as ﬂ}ﬁap refinement including global relaxation - all combined
SLAM or concurrent mapping and localization problem. (yielding a precise and consistent 3D map
fi .

Because of their high measurement range and precisian, : . . : )
'(I;he remainder of this paper is organized as follows: Sec-
laser scanners and stereo camera systems are mostly use

for SLAM so far. But there are some restrictions: StereoOn Il elaborates 3D mapping approaches and applications

- . : . . related to ToF cameras. Section Il describes ToF camera
vision requires the matching of corresponding points from . .
rors, caused by external interfering factors, and the em-

t.WO IMages, and laser scanners only measure sequentlaq(gyed depth correction method. In Section IV our mapping
line by line. In contrast, ToF cameras can bridge the g

- . . . . Ja, proach including 3D pose estimation, error handling and
by providing 2%D images irrespective of textures or illumi- pproach 9 dp : il n%
nation. ToF cameras also allow for higher frame rates anrgapplng Is represented. Section .V lustrates exper epta
' . . . . : |results that support our accentuation of employing reaéti
thus enable the consideration of motion. With their small able ToF sensors to pose estimation and mapping tasks
manufactured size and little maintenance requirements T P b pping '

. : . . Finally, section VI concludes with an outlook on future work
cameras are serious competitors with laser scanners in the
area of 3D mapping.

Anyhow, up to now ToF cameras did not really find
their way into 3D mapping especially due to their complex A 3D mapping approach tackling large environments was
error characteristics and high measurement noise. Depgndpresented by Nuchter et al. [13] using a 3D laser scanner
on external interfering factors (e.g., sunlight) and scenmounted on a mobile robot. Imprecision of inertial sensors
configurations, i.e., distances, orientations and refligets, was handled by an ICP approach, both for registering con-
the same scene entails large fluctuations in distance neeaswgecutive scans and fatosing the loopHere, 3D scans were
ments from different perspectives. acquired in a stop-scan-go manner by a mobile robot, yield-

This paper presents a 3D mapping approach that handieg locally consistent 3D point clouds. Other approaches in
these problems by calibration and appropriate filtering. localization and mapping, based on 3D data acquired during
relies only on ToF camera data. No additional sensory infomovement, use either multiple 2D laser range finders facing
mation about the sensor's motion is needed. The approadiiferent orientations, e.g., [18], or a single continugus
shows promising results and highlights essential imp&ets t rotating laser scanner [3], [21].

II. RELATED WORK



Matching two complete point clouds is often trappedhe measurements from the background objects, which for
in a local minimum, especially if the sensor’'s apex angl¢hat appear closer. The latter two effects are unpredietabl
is small, such as for ToF cameras (compared with laséecause the topology of the observed scene is unknown a
scanners). The registration result lacks in precision.dé&2 priori.

Ohno et al. used a ToF camera for estimating a robot’s

trajectory and reconstructing the surface of the enviraitmeB: SYSTEMATIC ERRORS

[14]. The registration procedure for 3D captures was simila Furthermore, there are three systematic errors. Firste the
to the scan registration approach used by Niichter et ak. Tfs a distance-relatederror. The measurement principle is
calculated trajectory was compared with precise referent@sed on the assumption that the emitted light is sinusoidal
data in order to demonstrate the algorithm’s precision. Thehich is only approximately the case. Second, a so-called
estimation error for the robot pose was up to 15 percemmplitude-relatederror is caused by non-linearities of the
in translation and up to 17 percent in rotation, respegtivel pixel's electronic components. As a result, the measured
Also in 2006, Sheh et al. presented an application of To#istance varies with object reflectivity. Third, there if>aed
cameras in rescue robotics [17]. Their mapping approagfattern phase noisesince the pixels on the sensor chip are
was assisted by a human operator. In 2007 Prusak et annected in series, the triggering of each pixel depends on
presented a joint approach for robot navigation with cioilis the position on chip. The farther the pixel is located with
avoidance, pose estimation and map building employingspect to a signal generator, the higher is its measurement
a ToF camera combined with a high-resolution sphericalffset. These three errors are managable by calibration. In
camera. Structure from motion was used to estimate anlinitigo] and [6] Fuchs et al. described an appropriate calibnatio
guess for the pose change [16]. By the use of the trimmedethod, which estimates above mentioned errors. It is ap-
ICP (TrICP) approach, pose changes were finally determineglied for the mapping experiments in this paper.

The TrICP approach extends the ICP algorithm by employing

the estimated degree of overlap, which was available fram th IV. 3D MAPPING
initial guess. Since ToF cameras also provide amplitude,dat The here presented approach acquires a metric map in
2D image processing algorithms are usable. Thus, the poifarm of a 3D point cloud, whereby the sensor is simulta-
feature mapping in monochromatic images can be improvewously localized relative to this point cloud without any
by the associated depth data obtaining a 3D feature trackiegternal positioning system. The 3D mapping is a four-stage
as performed in [16]. process. First, invalid data points are discarded by filgeri

Results of above mentioned approaches are difficult t8econd, the map is generated by registering consecutive 3D
compare due to different underlying data sets. In contrasaptures. Third, accumulated errors are relaxed among all
to the availability of Computer Vision benchmarks, stamidarcaptures. Finally, the map is enhanced with refinementdilter
data sets for ToF camera based registrations are not establ) Filtering: Errors caused by low illumination or occlu-
lished since yet. We provide the data sets of our experimergi®n are treated by filtering. A high confidence is related to a
in order to motivate benchmarking of registration methodbigh amplitude (to be precise: this statement is only a com-
for the ToF camera technology. promise to what the camera provides; see [7] for a descriptio

of error influences). Thresholding the amplitude discards

lll. DESCRIPTION OF TOF CAMERA ERRORS primarily data resulting from objects with lower infrared

The performance of distance measurements with Toteflectivity, higher distance or from objects which are lech
cameras is limited by a number of errors. Some of therat the peripheral area of the measurement volume (due to
are inherent in the measurement principle and cannot fighomogeneous scene illumination). Mismeasurements also
corrected. Remaining other errors are predictable and carecur on jump edges, i.e., when the transition from one to
rectable by calibration due to their systematic occurrencanother shape appears disconnected due to occlusions. The
The following explanations relate to them iasn-systematic true distance changes suddenly for the transition from one

errors and systematic errorsrespectively. shape to the other whereas ToF cameras measure a smooth
transition. In order to remove these invalid points, jumped
A. NON-SYSTEMATIC ERRORS filtering has been applied [5]. It is important to mentionttha

There are three significant non-systematic errors. First,the proposed filter is sensitive to noise, i.e., besides jump
bad signal-taaoiseratio distorts the measurement and cannatdges, valid points are removed, if noise reduction filters
be suppressed. A solution is either carefully increasirgy thare not being applied first. The subsequent application of
exposure time and amplifying the illumination or intelige median and jump edge filtering achieved the best results in
amplitude filtering. Second, due to interreflections in theur experiments.
scene the remitted near infrared (NIR) signal is a superposi 2) Map Generation: Pose changes are assumed to be
tion of NIR light that has travelled different distances.ih small due to the high frame rate. For that, no additional
so-calledmultiple ways reflectiortets hollows and corners sensory data as initial guess is needed (e.g., inertial sen-
appear rounded off and occluding shapes with a smoosiors). The estimation is performed relying completely on
transition. Third, light scattering occurs in the lenses of the registration of 3D data by the use of the well-known
the ToF camera. Thus, near bright objects may superpokeP algorithm [1]. It aims at finding a rigid transformation
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performing an iterative least square minimization scheme.
In each iteration step corresponding closest points are de-
termined. Denoting corresponding point pairs as a set of
N tuples{(m;,d;)|i = 1...N} and the transformation as

c

Left clipping plz Far clipping plane

Right clipping plane

b
composition of a rotation matrix and a translation vector
(R, t) the error function reads: D
Focal poiméf clipping plane
N
. 2
E(R, t) = Z ||m1 - (Rdi + t)” : (1) Fig. 2. Definition of frustum clipping planes.
i=1

The solution can be determined by several closed—forﬁ?%ucﬁd data set. Cof.rlltrar()j/, we em;()jloy no pose esrflmatmn
algorithms. A detailed description and evaluation of thes@"d thus cannot pre-filter data in order to remove the non-
algorithms is summarized in [11]. overlapping area. Frustum culling is therefore embedded in

The original formulation of the ICP approach assumeg1e |'terat|.on process by emp"’y'”9 the pose estimate of the
that the scene point set is completely covered by the mo jevious |ter§\t|on step. Sgene po_mts o_uts_lde of the model
point set [1]. If the scene includes points which are not pa {ustum_are filtered by .testlng agalns:t clipping planes teefo
of the model, wrong correspondences are assigned Whigﬁrformlng nearest neighbor searching.

skew the result [4]. The simplest solution to discard scene Letf = 0 be the focal point anda, b, ¢, d} vectors from

points from a non-overlapping area is the employment Ot‘f.to .the four edge points of a far clipping plgne. Lateral
a distance threshold. Corresponding tupels are rejedted,clIpplng planes are spanned by each two of adjacent vectors

their Euclidean distance exceeds this value. Severabgtest (- Fig. 2). The normal vectora = (s 1y, m2)" of the
are possible to determine suitable thresholds, e.g., augtad U 1ateral clipping planes are then used to check if a point
decreasing threshold with respect to the iteration stegem X = (¢, 2) " is inside the frustum by

eral, these thresholds increase the registration perfucena
significantly on only partially overlapping point cloudsor-
convenience, the original formulation of the ICP approacky the left and right clipping planes and

including a distance threshold is callgdnilla ICP approach

in the following. yny +z2n, <0 3)

A plain threshold has limitations with respect to robustnes
and accuracy. Several approaches have been proposed to fig-the upper and lower clipping planes. The approach is
prove registration results for an unknown degree of overlapon-parametric and removes iteratively scene points from
Fusiello et al. employed the X84 rejection rule, which use§on-overlapping areas by evaluating their visibility frahe
robust estimates for location and scale of a corrupted Gauodel's viewpoint. During the iteration process scene {soin
sian distribution [4]. It estimates a suitable rejectioreshold ~ are clipped as soon as they leave the visibility frustumgivhi
Concerning the distance distribution between Corresp[g']di addresses exaCtIy the prOblem formulation. This extenision
points. Niemann et al. proposed a rejection rule that censid called Frustum ICPapproach in the following.
multiple point assignment@Picky ICP algorithm)[12] . If 3) Error relaxation: Errors sum up due to the limited
more than one point from the scene point set is assigné@nsor precision and accumulation of registration errors f
to a corresponding model point, only the point with thepairwise ICP matching of consecutive frames. However,
nearest distance is accepted. Pajdla and Van Gool proposien the field of view is overlapping with an earlier one, a
the inclusion of a reciprocal rejection ru{tterative Closest loop can be closed. This enables SLAM algorithms to bound
Reciprocal Point algorithm - ICRFL5]. For a corresponding the error and to compute a consistent map.
point pair(m;, d;), which has been determined by searching We use a GraphSLAM approach [20], [19] that extends
the nearest neighbor of; in M, the search is reversed Eq. (1). The graph contains links of all overlapping 3D scans
subsequently, i.e., foim; the nearest neighbor ith is and therefore the loop closing. Instead of minimizing the
determined. This needs not to be the same scene point andEisclidean distance between two point pairs, the Euclidean
denoted withd’;. The point correspondence is rejectedljf distance between 3D point clouds connected by a graph edge
andd’; have a distance being larger than a certain thresholg}i, k) is minimized:

The method proposed here to overcome an unknown N
degree of overlap addresses the problem formulation mor . 2
precisely and intuitively. It stems from 3D computer grashi %(R’ t)= Z Z [1(Rpji + ) = (Repws + te)l[” (4)
and is calledfrustum culling[8]. A frustum defines the
volume that has been in the range of vision while acquiringo solve the equation above, we have to fix the first acquired
the model point set (cf. Fig. 2). Luck et al. used frustun8D point cloud, i.e.,, setR; = I andt; = (0,0,0).
culling for pre-filtering based on an initial pose estima@g [ Unfortunately Eq. (4) cannot be solved in closed form. Using
The iterative registration process was then performed en tithe small angle assumption the linearizatidnz ~ « and

xng +zn, <0 2

j—k i=1



V. EXPERIMENTS AND RESULTS

The following experiments demonstrate the accuracy and
robustness of the proposed 3D mapping approach. Therefore,
a SR-3k ToF camera with a resolution b6 x 144 pixels is
used. The standard deviation of this camera varies from 20
mm to 50 mm, the horizontal and vertical apex angles are
45° and 35 ° respectively. At first, laboratory experiments

@ () demonstrate the reachable accuracy and influences of the
Fig. 3. a) 3D map before refinement (bird’s view of scene in Ejgb) 30 light scattering effect. For this purpose, a ground truth
map after refinement. Sparse points are removed and sudegesnoothed. evaluation is provided by an industrial robot arm (KUKA KR
16) to which the ToF camera has been attached. The robot’s
positioning system has an accuracy lahm and0.1°. At

cosz ~ 1 yields an approximation of a rotation matrix:  second, the robustness of the 3D mapping approach is shown
1 _9 0 in a larger environment.
z y
R=1| 0,0.+0. 1-6,0.0. —0,|. (5) A. EVALUATION MEASURES

—Oy +0u0. 0,0 + 0, 1 The quality of an 3D mapping approach can be rated

Furthermore, we assume that the multiplication of smaﬁ’ither by comparing the estimated path (ego motion) of the

values results in even smaller values which thus can GENSO" W'th a ground truth or by comparing the (_:reated
omitted. The rotation matriR. then simplifies to 3D map with a ground truth. The absolute comparison of

poses against this ground truth measure provides only a

1 -6, 6, weak objectivity since registration errors can be compteaksa
R=| 0. 1 -6, (6) by other registration errors. Therefore, incremental mess
—6, 0, 1 are more suitable in terms of validity, i.e., an integration

of angular and translational error increments induced by

Using these approximations, Eq. (4) is transformed into gygisration of subsequent frames. The translationalrerro
quadratic form and solved. Note: This approximationisdiali easure is defined by

if we apply the centroid trick, i.e., subtracting the cerdér
mass calculated from corresponding points in Eq. (1) and (4) Cinc.at = O |[Atineill, (10)
;h:js Its .(I:o?gwo.nlytgsed ]fotL.SOIV;ng tlhe I|CP (Errorffunctllon [1]dwhereAtmc,l- is the translational registration error of frame
el at|_e ;ert|t\1/a ion Olt' IS globa r? axa 'OEI ormula and; 1, grder to make rotational errors comparable, the ratatio
;5:1?](_)1[; ion of the resulting minimization problem is given_,.c 1<t be considered:
4) Refinement:The refinement of a 3D map comprises Cine.no = | 180, ]ar; — [Abe ilacill,  (11)

filtering of sparse points and approximation of plain patche r
to the neighborhood of each point. Removing the set a/}/hereAem is the ground truth angle around the ground truth

) . - . rotation axisa, ; of framei:, whereasAd.; anda.; con-
sparse pointsS is done by determining the mean distance . - ' e

. . Stitute the estimated counterparts of ICP registratiores€h
of k-nearest neighbors as a density measure,

definitions provide an uniform measure for the accumulation

1< of translational and rotational errors, Eq. (11) is similar
d(p:) =7 > _ll(@i = pin)ll; (") Eq. (10).
n=1 Accurate ego motion does not inevitably result in a perfect
S={pieP|dp;)<dnl 8) 3D map. Even with the exact sensor localization, inaccuracy

can be induced by corrupted depth measurements. Even if

whered,;, is a constant threshold. The set of point candidatebe sensor is localized exactly, corrupted depth data will

Q@ for the resulting 3D map includes all remaining pointgesult in an inaccurate map. On this account, the second
after filtering: measure is constituted by thisometry of the resulting

Q=P\(JUS). (9) map. Characteristic opposing walls within the scene were

) ) measured with a tape (cf. Fig. 4).
Compared with laser scanners, the noise level of ToF

cameras is much higher. Smooth surfaces appear withBa CALIBRATION AND LIGHT SCATTERING

certain thickness of some centimeters. This effect can beFirst, the achievable accuracy in ego motion estimation
seen in Fig. 3(a). For the refinement of a composed 3D pointas investigated in applying two different trajectoriesy.F
cloud a principle component analysis (PCA) is performed t&6 and Fig. 6 depict scenes and performed paths. In the
detect surface normals. Related pixels are shifted aloaggth first scene $|, cf. Fig. 5) the camera moves around a basic
vectors towards the detected surfaces. The resulting 3D mgpometric Styrofoam object. Contrary, the object was moved
after applying the proposed refinement is contrasted in Figround the camera in the second sceBig €f. Fig. 6). Data
3(b). takes for both trajectories were performed twice: Primary,



H hor. dist. | vert. dist. ‘

/ mm / mm ‘ H trans. error‘ rot. er. ‘
Ground truth / mm !
(meas. tape) 1715 1405 Ap 12.8 1.2
Default Ar 9.9 1.3
Calibration 1800 1570 B 35.4 2.1
Improved C 36.0 2.1
Calibration 1750 1425 D 42.1 1.8

Fig. 4. Isometry of resulting 3D map of the laboratory sce@Hl). The . . . o .
distances of opposing walls were manually measured andnaskto be the Fig. 6. Experimental setugs(l) for identifying the accuracy and the impact

ground truth. The improved calibration reduces deviatisom the ground ~ Of light scattering. The camera is stepwise movisg im) and rotating
truth and provide a more accurate mapping result. (22deg) from Cp to C;. Initially the scene consists of two Styrofoam

cuboids standing on top of each other (case A). The improadibration

(A1) shows to reduce the translational error frdéth8 mm t0 9.9 mm. Then

(cases B, C, D), an additionally Styrofoam cuboid was pui thie scene.
600 mm ‘ H trans. error‘ rot. err. ‘ The ego motion estimation results degrade20l mm. The rotational error

[ mm /° nearly stays constant.
Default
- Calibration 39.7 4.8
—— Improved
~ | Calibration 28.2 2.4

C, C,

Fig. 5. Experimental setu() for identifying the accuracy and demon-
strating the impact of calibration. The camera is rotatedbyeg around
an object in a distance @00 mm while keeping it in the center of the field
of view. Thus, a distance &0 mm is covered. Both, the translational error
and the rotational error decrease due to the proper cadibrat

the scenes were captured with the default (manufactureris)y. 7. a) Laboratory environment used for ground truth @stion. The

calibration. This calibration considers fixed pattern ghas'oF camera is mounted on an industrial robot arm (KUKA KR 1i).
Bird's view of the 3D map created in this environment. The emnwas

nOi_Se- Then, the scenes were (_:aptured with an improve pwise moved on a circular path with a diameter of 300 mmefytine).
calibration. The camera was calibrated according to Fuchs

et. al. [6] in order to additionally consider distance-teth

errors. This approach employs a spline for estimating apix&aken. In order to reduce the measurement noise, the camera’
wise depth measurement correction value. Fig. 8 depicts thgtomatic integration time controller was activated, whic
computed correction spline. _ adjusted the integration time betwe&600 us and 12000 s.

In both scenes the calibration reduces the error in €90 pgain, two test series with the default and improved
motion estimation by= 25 %. But, compared to the length of ¢5jinration were performed. Here, the improved calibratio
both trajectories, the translational errorStﬂ_ is significantly  aquces the pose-estimation error only slightly. We assume
larger @0 %) compared to the error resulting fro81 (3%).  he jight scattering effect completely adumbrates theltesu
We conclude that the type of movement is crucial for thgyq yever, the major benefit concerns the isometry of the
result. Especially inSll, the observed object is moving at resulting map. The deviation from the ground truth (mea-

the margin of the field of view where the low resolution andsuring tape) reduces fror85mm for the horizontal and
small apex angle handicap the ego motion estimation. ;= "t "the vertical distance measure & mm and
In addition, the light scattering has to be considered, ag, ., (cf. Fig. 4).

the second investigation shows. Here, we induced scaiterin
effects by adding an Styrofoam object f®ll at several
distances. Fig. 6 demonstrates the results. The nearer the
disturbing object moves to the camera the more the ego 50 ' Correction Spline——— —|
motion estimation results degrade. Obviously, the liglat-sc 25 Measurement Error =
tering affects only the translation. Strong influences are i
noticable when high reflective objects come into the field
of view or when distances to objects in the scene are
heterogeneous. Hence, we considered this fact in designing
the next experiment.

C. 3D MAPPING OF LABORATORY SCENE

Second, the laboratory scene was enlarged. The Styro-
foam objects were assembled in a square, which measuregl 8. Distance calibration result: The identified distanelated error
approximately1800 mm. This scene (Cf. Fig. 7) was cir- is plotted by subtracting the measured distance from thiedistance. An
. . . overall sinusoidal curve of the distance-related erropjza@ent. Altogether,
Cumferen“a”y Captured by moving the camera on a C'rcw"’lﬁe camera measures a greater distance. Thus a splineddrfitiethe error
path with a diameter 0300 mm. In total, 180 captures were for correction of distance measurements.

error / mm

1000 2000 3000 4000 5000

measured distance / mm
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Fig. 9. a,b) 3D Map reconstruction: The estimated trajéesoare drawn in green color. a) Frustum ICP approach. b)tru$CP approach with error
relaxation. Remaining trajectory distortions are causgtdn-systematic errors. ¢,d) Ground truth comparison & (€gistration. The proposed Frustum
ICP extension is benchmarked against the Vanilla ICP appro@lobal relaxation further improves the accuracy. cydmental angular error measure.
Please note the large error induced for the Vanilla ICP apgrdoetween frame 160 and 170 in (c), which were caused byeggence to wrong local
minima. The Frustum ICP approach provided more robustrihstcremental translational error measure.

Furthermore, we compared the performances of Vanilla— s—stog AT /3mDO|FA9 A /6IEO|FM o
ICP, Frustum ICP and Frustum ICP with error relaxation —5zmor 027 6 10 T3 3158
applying them to the calibrated data. In Fig. 9(a) and 9(b) Tmproved 0.30 0.81 1.74 9.03
the resulting maps are illustrated. The green line reptesen
the estimated ego motion of the camera. Both paths only TABLE |

COMPARISON OF POSE ESTIMATION EMPLOYING DIFFERENT
CALIBRATION METHODS.

partially agree with the circle in Fig. 7. An experiment

employing the ground truth poses as initial guess for the
ICP registration provided convergence to nearly the same
minima. Thus, errors in ego motion estimation primarilsari
from unsystematic errors, i.e., light scattering and mpidt

ways-reflection. The effect is more noticeable for the sdcon
half of the circle, where near objects appeared in the fiel
of view. Those influences are dependent on the scene a
thus difficult to model or compensate. Fig. 9(c) and 9(d)
contrasts the performance of the employed ICP approachefg
The Frustum ICP approach provided more robustness an
higher accuracy as the Vanilla ICP approach. The registrati
error could be additionally reduced by error relaxation.

D. 3D MAPPING OF LARGER ENVIRONMENTS

In a further experiment the robustness of the proposed
mapping approach was tested in a larger environment, thg
robotic pavilion at the Fraunhofer Institute 1AIS (cf. Fit).
It sizes19.4m in the longest distance. In total, 325 captures*
_have bee_n te_‘k?n on a closed trajectory. Since the unamjmguﬁg. 10. 3D map of the whole robotic pavilion (perspectivewiof scene
interval is limited to 7.5m, measurements appear Closein Fig. 1). The trajectory (estimated poses of each framdyasn in green.
(modulo 7.5m) than they are, if this value is exceeded.

Mostly, the amplitude value can be used to discard those

measurements, but not in all cases. These mismeasurements

occur especially when surfaces with specular reflectiviey a precision in reconstruction is specified with the distance
present, e.g., mirrors, window panes and metallic surfacdsetween two opposing walls and the pose estimation error
Some objects have been covered or removed from the sceafter closing the loop. The start-to-end frame registratio
before the exploration was started. Future technologiéls wbefore relaxation provided an accumulated translatiomal e
address this problem on the sensor level, e.g., by the emplayf ||At|| = 1.74m and an accumulated rotational error of
ment of multiple frequencies or binary coded sequences. ||Af|| = 9.03°, which is small enough to perform loop-

The scene features more dynamic range compared to tblesure. The calculated distance of two opposing walls from
laboratory scene, i.e., a larger working range and variabithe 3D map compared with the distance determined with a
ity of infrared reflectivity. The automatic integration #m measuring tape deviatést m (Measuring tape vs. 3D cloud:
controller adjusted the exposure time betweef00 us and 10.8m / 11.2m; cf. Fig. 10). Influences of the improved
65000 ps. calibration approach were more noticeable in this expartme

Ground truth data, in terms of an external positioningcf. Table ). A video showing the performance of map
system, was not available. Therefore, the evaluation @feation in this environment can be found in [10].

Ref:10.8 m



VI. CONCLUSIONS AND FUTURE WORK

This paper presented a method for precise 3D environment
mapping. It employed only a 3D time-of-flight (ToF) camerg14]
and no additional sensors. The achieved precision for a 3D
map composed of 180 single captures was calculated against
ground truth data provided by an industrial robot. Severais)
measures were necessary for achieving the presentedsresult
in 3D map creation. First, a calibration method has beegg
applied to reduce distance measurement errors. Second, the
removement of mismeasurements has been achieved by the
development of suitable filters. Third, robust pose estonat |,
was achieved by an improved ICP algorithm. Finally, the
consistency of a 3D map has been enhanced in a refinement
step, relaxing accumulated errors and smoothing surfac
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ference on Computer Vision (ICC\Wp. 390-395, 1995.

] A. Prusak, O. Melnychuk, H. Roth, I. Schiller and R. KotRose Esti-

mation and Map Building with a PMD-Camera for Robot Navigati
Proceedings of the Dynamic 3D Imaging Workshop in Conjoncti
with DAGM (Dyn3D) vol. |, 2007.

1 R. Sheh, M. W. Kadous and C. Sammut. “On building 3D magiag!

a Range camera: Applications to Rescue Robotics”, TechRieport
UNSW-CSE-TR-0609, School of Computer Science and Engimger
The University of New South Wales, Sydney, Australia, 2006.

] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Ard.

The robustness of the entire approach has been demonstrated Diebel, et al., “Stanley: The Robot that Won the DARPA Grand

while registering 325 single captures obtained from a large
indoor environment. By providing the underlying data set o{lg]
the laboratory scene on our webéjteve want to motivate
further investigations in 3D mapping based on ToF camefd’l

data and enable comparable results and benchmarks.

Future work will concentrate on the improvement ofi21]
calibration, e.g., the consideration of fluctuation in dept
measurements caused by exposure time control, on the
improvement of 3D map creation, e.g., by enhancing the
semantic information, and on fusing ToF camera data with
additional sensory information, e.g., with inertial measu

ment units.
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