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Abstract— A navigation algorithm for mobile robots in un-
known rough terrain has been developed. The algorithm is
solely based on stereo images and suitable for wheeled and
legged robots. The navigation system is able to guide the
robot along a short and safe path to a goal specified by
the operator and given in coordinates relative to the starting
point of the robot. The algorithm uses visual odometry for
localization. The terrain is modeled from stereo images and
its traversability is estimated. A D* Lite planner is used for
efficiently planning a short and safe path by incorporating
terrain traversability in the planning process. The robot actively
explores its environment as it follows the path to the goal. The
algorithm has been tested on a wheel driven mobile robot and
on a six-legged walking robot on rough terrain.

I. INTRODUCTION

Autonomous navigation of mobile robots on rough terrain
has been an important field of research during the last years.
Many applications demand for autonomous agents which can
fulfill special tasks in unknown environments, for example
on planetary surfaces, in caves or in disaster areas.

Walking robots can be beneficial on rough terrain because
their feet do not need continuous paths on the ground but can
step over or on obstacles. However, walking robots suffer
from poor odometry and limited payloads. Fig. 1 shows an
example for a walking robot.

When navigating on rough terrain, a robot is likely to
encounter slip, which causes errors in the robot’s odometry
and poses a challenge to position estimation. Furthermore,
the robot could get stuck in rocky areas or fall off cliffs or
steep slopes. To avoid this, the robot has to estimate the
traversability of the terrain in order to plan a safe path.
While on even ground there is a clear distinction between
untraversable obstacles and free space, on rough terrain the
degree of traversability can vary continuously between “eas-
ily traversable” and “just barely traversable”. Since usually
no a priori maps are available, the robot needs sensors such as
laser scanners or cameras which enable it to model the terrain
surface in order to estimate the terrain difficulty. Building a
model of the environment is an important task because a
map is required for planning a path to the goal point. Since
information is collected as the robot moves towards the goal,
the robot’s knowledge of the environment changes over time.
The path planner must be able to replan the path when new
information is available.

One of the first systems which was able to autonomously
navigate on rough terrain was the Autonomous Land Vehicle
(ALV) developed at the Hughes Artificial Intelligence Center
in 1987 [2]. It used a laser scanner to build a navigation
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Fig. 1. Example for a walking robot: DLR-Crawler

map and marked areas which would cause invalid vehicle
configurations as untraversable.

NASA’s Jet Propulsion Laboratory developed the Rocky
rovers, which were test platforms for mostly sensor based
navigation algorithms [10], [9]. They were prototypes for the
Sojourner mars rover, which arrived on mars in 1997. Using
a camera and a laser striper, it was able to detect and avoid
obstacles along its way [11]. However, these systems only
used a binary representation of the environment consisting
of obstacles and free space.

The RANGER navigation system [7] is able to estimate
the difficulty of traversable areas by computing the con-
figuration a vehicle would have on certain terrain points.
This knowledge is then included into the path planning
process. Based on RANGER the Morphin algorithm [12] was
developed. Using stereo images, it estimates the traversability
of regular sized terrain patches by fitting a plane to the data.
Morphin uses the traversability measures of these patches to
evaluate the safety of possible steering arcs for the rover.
These arcs are further evaluated on their use for reaching
the specified goal point. The arc with the highest total vote
is then commanded to the rover.

Morphin provided a basis for the development of the
navigation system of the mars exploration rovers Spirit and
Opportunity. Their automatic navigation mode uses the local
path planner GESTALT [3]. GESTALT also uses arc votes to
command steering angles to the rover. However, it estimates
the traversability of a grid cell in the terrain by fitting a plane
to the terrain data of a rover-sized patch centered around the
cell. It computes the slope hazard, roughness hazard, step
hazard and border hazard of the center cell from that terrain
patch. The steering arcs are assigned hazard votes computed
from a weighted sum of cells traversed by the arc. Since
GESTALT is a local path planner an additional global Field
D* planner was implemented [1]. This planner calculates the
waypoint votes for each candidate arc by computing the cost



of the shortest path from the end of each possible steering
arc to the goal. Merging hazard and waypoint votes gives a
goodness value. The steering arc with the highest goodness
value is commanded to the rover.

However, commanding steering angles is only advan-
tageous for wheeled robots. Especially on rough terrain,
walking robots can be beneficial. The navigation algorithm
presented in this paper is suitable for wheeled and legged
robots. It uses a stereo camera as the only sensor. Stereo
cameras are light and cheap sensors, which can be used
for building terrain models as well as for motion estimation
by visual odometry. Unlike wheel or leg odometry, visual
odometry is not affected by slip. Thus, it is particularly
suitable for rough terrain and can be used for legged robots,
which have limited payloads and poor odometry. Further-
more, the navigation system uses a D* Lite path planner
for planning global paths considering path length and terrain
traversability.

II. DESCRIPTION OF THE NAVIGATION SYSTEM

The navigation system solves the tasks position estimation,
terrain modeling, traversability estimation, path planning and
motion control, which are presented in detail in the following
sections.

A. Depth Image Computation and Position Estimation

Depth images are computed from rectified stereo images
using a correlation based multiple-window approach [5].
Position estimation is based on visual odometry with 6
degrees of freedom computed from the left stereo image
and the corresponding depth image [6]. A Harris Corner
Detector is used to detect features in consecutive left camera
images. The features C of the current image are compared
with the detected feature points P in the previous image by
robust correlation to find an initial correspondence Ci, Pi.
Next, an outlier detection is applied to discard wrong cor-
respondences. It is based on computing relative distances of
pairs of corresponding corners, reconstructed by using the
associated depth image. The rigid transformation between
the subsequent camera coordinate systems can be described
by a rotation matrix Rr and a translation vector Tr as

Pi = RrCi + Tr + εi, (1)

where εi is the motion error. By minimizing εi, the rotation
Rr and translation Tr can be computed, which gives the
relative motion between the two frames. By summing up all
relative movements, the absolute rigid transformation R, T
between the start camera coordinate system and the current
camera coordinate system can be obtained. R and T are given
in camera coordinates and have to be transformed into the
world coordinate system, which can be rotated and/or shifted
with respect to the camera coordinate system.

Since this method does not use feature tracking and
does not apply any restrictions to the image positions of
corresponding points, it can cope with low frame rates and
large motions between images.

To increase the robustness of the visual odometry, the
relative movements are not only computed from the last
image but from several previous images, which have been
stored. The median of the resulting transformations is used to
estimate the relative motion. This results in higher accuracy
and robustness to blurred images.

Since visual odometry is an incremental position estima-
tion method, errors accumulate over time. To improve the
accuracy, a simultaneous localization and mapping (SLAM)
approach can be used to store absolute landmark positions
for correcting the robot’s position estimate when previously
detected landmarks are revisited. However, such a method
has high computational costs and has not been included in
the present work so far.

B. Terrain Modeling

The terrain is represented as a digital elevation model
(DEM), which consists of a regular 2D grid. Each grid cell
stores a single height value which is the average height value
of all terrain points that are located in that grid cell. Unlike
a full 3D representation of the terrain, a DEM cannot model
multilevel environments. However, a DEM representation has
significantly lower computational costs and is sufficient for
most applications.

The terrain model is created from the depth images com-
puted by the stereo process. A local map is built from a
single stereo image pair by calculating the 3D object points
from the depth image, projecting them into the x-y-plane of
the world coordinate frame and storing the highest value. To
avoid inserting height values into the map which are likely to
be erroneous due to noise, only object points within a certain
distance from the camera are considered. The local map is
attached to the global map using the estimated position of
the stereo camera. Fig. 2 illustrates the mapping process for a
small terrain patch built from 65 local maps. Existing height
values are overwritten by new data.

Fig. 2. DEM of the terrain built from 65 stereo views and examples for
local maps created from a single stereo views (a-e). Grid resolution: 20 mm

Due to the incremental estimation of the robot’s position,
errors in calculating the motion accumulate. This can result
in artifacts in the terrain model, which have to be considered



during traversability estimation. For this reason, the terrain
model not only stores the height value for each grid cell but
also the frame number indicating the “age” of the height
value. This will be used in the traversability estimation
process.

C. Traversability Estimation

Based on the DEM, each cell has to be assigned a danger
value d (d ∈ {[0, 1],∞}) describing the terrain difficulty.
A cell is traversable if the robot is not exposed to critical
terrain hazards irrespective of its orientation given its center
is located in that cell. Thus, the robot can be treated as a point
in further computations. A danger value of d = 0 stands for
completely flat, smooth terrain, which can be traversed by the
robot most easily. Higher danger values are assigned to areas
which are harder to pass. A value of d = 1 describes terrain
which is just barely traversable for the robot. Untraversable
regions are assigned d = ∞. Unknown areas are assumed to
be traversable but are assigned a high danger value of d = 1.

There are three potential hazards: steep slopes, high terrain
roughness and high steps. Each of these criteria must be
estimated from the DEM. If one of the hazard criteria
exceeds the corresponding critical value, the cell is marked
as untraversable. The critical values scrit, rcrit and hcrit are
the maximum slope, roughness and step height which the
robot can traverse without tipping over or getting stuck. For
traversable cells the danger value is computed from the three
types of hazards as

d = α1
s

scrit
+ α2

r

rcrit
+ α3

h

hcrit
, (2)

where α1, α2 and α3 are weight parameters which sum up
to 1.

The slope s of a cell is calculated by fitting a plane in a
circular region around the cell with a diameter corresponding
to the maximum diameter of the robot. The angle between
the plane normal and the z-axis of the global coordinate
frame gives the slope inclination s. The terrain roughness
r is calculated as the standard deviation of the terrain height
values from the computed plane in the circular region around
the cell.

The step height h is computed in two steps. First, local
height differences within a square window of several (e.g.
11× 11) grid cells are computed for all cells in the circular
region. If the maximum height difference between any cell
in that window and the center cell of the window is greater
than the critical step height hcrit and the slope between the
corresponding two terrain points is higher than the critical
slope scrit, the maximum height difference is stored as the
temporary step height of the central cell of the window.
Second, the step height of the central cell of the circular
region is computed as

h = min(hmax, hmax ·
nst

ncrit
), (3)

where hmax is the maximum temporary step height in the
circular region, nst is the number of cells in the circular
region whose temporary step heights are higher than the

(a) DEM (b) Danger Value

(c) Slope (d) Roughness (e) Step Height

Fig. 3. Danger value computation from the criteria slope, roughness and
step height (scrit = 20◦, rcrit = 30 mm, hcrit = 50 mm, α1 = 0.5,
α2 = 0.25, α3 = 0.25)

critical step height and ncrit is the valid number of cells
(e.g. 50) with a temporary step height higher than the critical
step height. This method for calculating the step height also
detects small steep slopes as steps and is robust to missing
terrain information.

Fig. 3 illustrates the computation of the danger value
from the three criteria. It shows that the step height is well
suited for detecting whether a cell is traversable or not,
but it provides little information about the difficulty of the
traversable cells. By contrast, the slope and roughness criteria
can fail to detect untraversable cells but are better suited for
estimating the difficulty of traversable cells.

The terrain traversability is reestimated every time a new
local map is added to the global map. It is not necessary to
recompute danger values for the complete global map. Only
the cells within the area of the new local map surrounded by
a border of the size of the robot have to be reestimated.

As mentioned above, artifacts can be present in the DEM,
which must not be detected as terrain hazards (ref. Fig.
4). For this reason, only height values which were detected
within a certain range ∆f of frame numbers are considered
in the traversability estimation process. When reestimating
the danger of a cell that was detected impassable in the
previous estimation step, height values of a greater frame
range ∆f ′ > ∆f are considered than when reestimating a
previously traversable cell. Practical tests showed that taking
only height values within ∆f into account often causes
untraversable cells to be detected as traversable cells because
nearby hazards are not covered by the images. Thus, also
considering older height values within ∆f ′ for reestimating
the traversability of previously untraversable cells gives more
realistic results.

The traversability of a cell is only computed if a sufficient
number of height values is present in the circular rover-sized
region around the cell. In addition to the danger value, a
certainty value is calculated as the percentage of available
height values in the circular region.

D. Path Planning

Based on the danger map, the robot can plan a path to the
goal point. Since the robot does not have an a priori map



Fig. 4. Traversability estimation of a DEM with artifacts caused by errors in
position estimation: By considering only height values with frame numbers
within ∆f = 20 for passable and ∆f ′ = 200 for impassable cells artifacts
are not detected as hazards.

of the environment, its knowledge about the terrain changes
over time. The path planner must be able to adapt the path to
changes in the map in an efficient way. Thus, a path planner
of the D* family was chosen. D* developed by Stentz [13]
is the dynamic version of the A* graph based path planning
algorithm. These search algorithms find the minimum cost
path to a goal vertex in a graph by first searching those
vertexes which most likely appear to lead to the goal. In
contrast to A* planners, D* is able to modify previous search
results locally and is thus more efficient when dynamic
replanning is required. For the present navigation system a
D* Lite [8] path planner was used, which is simpler and
more efficient than the classic D* algorithms.

To apply the D* Lite planner to the grid map, the map has
to be considered as a graph. The grid cells are the vertexes
of the graph and edges connect vertexes which correspond
to adjacent cells in the grid map. As for the A* algorithm,
a cost function and a heuristic distance function must be
implemented for the D* Lite path planner. However, D* Lite
plans a path in opposite direction from the goal vertex G
to the start vertex S. The cost function c(N,N ′) describes
the cost for moving from vertex N to its neighbor N ′. The
heuristic distance function h(N,S) is an estimate of the costs
remaining to reach the start vertex from the current vertex N .
The formulation of the cost function defines the optimality
of a path. Often, a path is optimal if it is the shortest path
to the goal. In the present work, not only the path length but
also the traversability of the path cells should be taken into
account. Thus, the cost function for going from vertex N to
its neighbor N ′ is

c(N,N ′) =
√

(Nx −N ′
x)2 + (Ny −N ′

y)2 +β ·d(N ′). (4)

The first term describes the distance between the vertexes and
the second term denotes the danger value of the destination
vertex weighted by β > 1. The bigger the value of β is
chosen the longer paths are accepted if they go through safer
cells (ref. Fig. 5). The costs of going to an untraversable cell
are ∞.

The heuristic distance function is important for the effi-
ciency of the planner. For the planner to be optimal it must

(a) β = 3 (b) β = 10

Fig. 5. Paths planned with different values of β.

fulfill the monotony condition

h(N,S) ≤ c(N,N ′) + h(N ′, S). (5)

That implies that h(N,S) must not overestimate the true
costs h∗(N,S) of going from N to S along the shortest
path. Since the minimum danger value of a cell is 0, the
heuristic distance function must be

h(N,S) =
√

(Nx − Sx)2 + (Ny − Sy)2, (6)

which is the direct distance from N to S. Due to triangle
inequality, this function also fulfills the monotony condition.

In the beginning, the robot does not have any information
about its environment. It plans an initial path, which is the
direct path to the goal. As the robot follows this path, it
collects information about the environment. If assumptions
about the traversability of the path cells are proven wrong
by new data, the path is replanned from the robot’s current
cell.

E. Motion Control

Path following is achieved by a simple proportional con-
troller which commands a forward speed and a turn speed
to the robot and is independent from the robot’s kinematics.

Due to the narrow field of view of the stereo camera,
often there is not enough information about the terrain to
calculate a danger value with high certainty. Thus, the robot
has to actively explore the area surrounding the path by
exploration turns. If the certainty value of a path cell which
is in range of the cameras is lower than 1, the surroundings
of the path cell have to be explored by an exploration turn.
During an exploration turn the robot turns over an angular
range of 2ε so that the cameras cover the rover-sized circular
region around the path cell being explored. Since a certainty
value of 1 is hard to reach in practice, a set of rules about
when exploration turns are permitted has been established:
Between two exploration turns

• the distance between the path cell to be explored and
the previously explored path cell must be at least l

and one of the following conditions must hold:
• The robot must have passed a distance of at least l.
• The path cells to be explored in two subsequent explo-

ration turns must be at an angle of at least ε given the
current robot position is the angular point.

• The path must have been replanned.



Fig. 6. Diagram of the navigation algorithm

These rules are necessary to avoid that the robot repeats
exploration turns because the certainty value does not reach
1. For the hardware used in the practical tests the values
were chosen to be ε = π/8 and l = 0.2 m.

The navigation procedure finishes successfully when the
robot reaches the specified goal point due to its estimated
position. Since the robot cannot reach the goal point exactly,
a tolerance area around the goal point must be defined. The
size of the tolerance area depends on the map resolution and
the distance the robot travels within one navigation step. In
the present work, the tolerance area is a circle with a radius
of 40 mm. As soon as the robot’s estimated position is inside
that tolerance circle, the robot stops.

F. Summary of the Navigation Algorithm

Fig. 6 shows a diagram of the navigation algorithm. In the
beginning, the goal coordinates are given to the robot and the
robot plans an initial path to goal. The main loop starts with
capturing a stereo image and estimating the robot’s position
by visual odometry. If the robot’s estimated position is within
the tolerance area around the goal, the robot stops and the
algorithm terminates. Otherwise the danger map is updated
using the robot’s position and the depth image computed
in the position estimation step. If cells of the planned path
are affected by the changes in the danger map, the path
is replanned. When path planning is successful or when
the path does not have to be replanned, the motion control
module is activated. It decides whether the robot can follow
the path or has to explore the environment by an exploration
turn and it commands a forward and turn speed to the robot.
Then a new stereo image is taken. If the path planner cannot
find a path to the goal, the robot stops and the algorithm
terminates with showing an error message to the operator.

III. PRACTICAL TESTS

The navigation algorithm was implemented and tested on
a wheeled and a legged robot. The wheeled platform is a
commercial Pioneer 3-DX robot with two driven wheels
and a caster wheel. The second mobile robot is the DLR-
Crawler [4] – a six-legged walking robot of about 50 cm

Fig. 7. Test environment for the Pioneer robot

Fig. 8. Resulting danger map and traveled paths

in diameter developed at DLR Institute of Robotics and
Mechatronics. It can walk using different gait patterns and
reflexes. Both robots are equipped with equal stereo camera
pairs. To determine the true positions of the robots at any
time, an external tracking system was used. It consists of
three infrared ARTtrack cameras and a reflecting target body,
which was attached to the robots.

A. Test on a wheeled robot

For testing the algorithm on the Pioneer robot, an envi-
ronment with ramps and platforms was created (ref. Fig. 7).
The goal coordinates are given to the robot relative to its
starting position (0.8 m to the left, 2.8 m forward). The only
way for the robot to reach the goal is finding a path over
the ramps and platforms. Since the robot does not have any
information about its environment, the initial path is planned
directly to the goal. The robot starts traversing this path until
it encounters an obstacle which blocks the direct path to the
goal. The path planner replans the path to avoid the obstacle.
Every time the planned path is blocked by a previously
undetected obstacle, the path is replanned. By doing so, the
robot finds the way to the goal and stops when the goal point
is reached with sufficient accuracy.

The robot performed eight successful runs in this envi-
ronment. Fig. 8 shows the DEM with danger values and
the commanded path, the traveled path measured by visual
odometry and the traveled path measured by the external
tracking system for one run. The robot traveled 8.4 m on
average to reach the goal. After successful termination of
the navigation algorithm, the average distance between the
true robot position and the goal position is 120 mm or
1.4% in relation to the path length. The distance between



Fig. 9. Test environment for the DLR-Crawler

Fig. 10. Resulting danger map and traveled paths

the robot’s true position and its estimated position based on
visual odometry is 108 mm or 1.3% in relation to the traveled
distance.

B. Test on a six-legged walking robot

For tests on the DLR-Crawler an uneven environment was
built of gravel (ref. Fig. 9). The small hill in the middle of the
testbed is too steep for the crawler. The goal point is located
1.4 m in front of the robot behind the hill. The robot has to
detect that the hill is untraversable and find a path around
the hill to the goal point. For this test the DLR-Crawler uses
a fixed tripod gait pattern with leg stretch reflexes.

Fig. 10 shows the danger map and the commanded path,
the traveled path measured by visual odometry and the
traveled path measured by the external tracking system. The
distance traveled by the robot in a single run is 2.5 m and
the accuracy of reaching the goal point is 72 mm or 2.9%
in relation to the traveled distance. The distance between
the robot’s true position and its estimated position based on
visual odometry is 29 mm or 1.2%.

The non-optimized implementation of the navigation al-
gorithm runs at an average frame rate of 1 Hz on a standard
2.2 GHz processor.

IV. CONCLUSION

A stereo camera based navigation system for rough terrain
was presented which is suitable for wheeled and legged
robots. The stereo camera is the only sensor and thus used for
position estimation and terrain modeling. The traversability
of the terrain is estimated by computing a danger value
from the criteria slope, roughness and step size. For efficient
replanning a D* Lite path planner was implemented. The ter-
rain traversability is considered in the path planning process
to plan a short and safe path. The robot follows the planned

path and actively explores its environment to improve the
traversability estimation of the terrain.

The practical tests showed that the presented navigation
system works well on wheeled and legged robots. The errors
of reaching the goal points are less than 3% of the traveled
paths on traverses of a few meters length.

In future, the localization error has to be limited by storing
landmarks of the environment or employing an additional
tilt sensor for absolute pitch and roll estimates. Furthermore,
a foothold planner for walking robots has to be developed
which computes footholds locally as the robot moves along
the planned path. The foothold planner can act as a second
layer upon the presented navigation system and will enable
walking robots to take full advantage of their walking
capabilities.
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