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Abstract— Mobile platforms equipped with several steering
wheels are known to be omnidirectional, i.e., able to indepen-
dently translate and rotate on the plane. As an improvement
to this design, the Justin mobile platform also possesses the
ability to vary its footprint over time by extending/retracting
the wheel legs during motion. In this paper, we discuss the
kinematic modeling and control issues for such a platform.
The goal is to obtain a tracking controller able to realize an
arbitrary linear/angular platform motion while, at the same
time, independently expanding/retracting each leg. Experimen-
tal results support the proposed approach.

I. INTRODUCTION

Wheeled mobile platforms constitute nowadays one of the
most common solutions for providing mobility to a robot
over reasonable smooth surfaces. Many designs have been
proposed in the past years, mostly differing in the number
and kind of wheels, see [1], [2] for a thorough overview.
Among these, kinematic structures such as differential drives
(unicycles) and car-like robots are widespread because of
their cheap and simple design. While these solutions are
suitable choices in most scenarios, they suffer from lack
of maneuverability due to the well-known impossibility of
moving sideways without preliminary maneuvering (non-
holonomy). This fact may represent a relevant limiting factor
when motion in tight or cluttered environments is required
as, for instance, in a crowded place. To cope with this
problem, the possibility to build omnidirectional platforms,
i.e., platforms able to independently translate and rotate, has
been intensively addressed in the past decades.

In this respect, two main concepts have been developed:
equip the platform with nonconventional wheels, such as
swedish wheels [3], orthogonal wheels [4] or universal
wheels [5], or adopt a set of conventional (centered or
off-centered) steering wheels. The former solution achieves
omnidirectionality thanks to a special wheel mechanism
which partially relaxes the usual constraint of zero velocity
for the contact point between wheel and ground. For this
reason, such wheels are sometimes referred to as holonomic.
However, several practical drawbacks (lower load capacity,
higher manufacturing costs, fragility of the design [6]) limit
their use in many applications. Conventional steering wheels,
on the other hand, do not suffer from these disadvantages
but, being nonholonomic, require active coordination of their
orientations in order to guarantee the needed mobility [7],
(81, [9].

One example that falls into this latter class is the mobile
platform shown in Figs. 1-2 and developed for the two-arm
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Fig. 1: Overview of the Justin mobile platform system.
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Fig. 2: The Justin mobile platform in two different leg
configurations: full extended (left) and full retracted (right).

humanoid robot Justin [10]. Purpose of this platform is to
provide full planar mobility to the robot so as to allow the
execution of complex dual handed manipulation tasks with
increased (possibly infinite) workspace capabilities. To this
end, the platform is equipped with four independent centered
steering wheels that ensure, through suitable coordination,
the possibility to realize arbitrary linear/angular velocities
(omnidirectionality). In addition, the ‘legs’ connecting each
wheel to the central body are free to extend/retract in the
horizontal direction without affecting the platform height, see
Fig. 2. No special motor is dedicated to the leg actuation:
each wheel, by rolling on the ground, is responsible for
producing the force needed to extend the leg along its
sliding direction, and to move the platform at the same
time. In this way, the platform footprint can actively vary
depending on the particular situation. Full extension can be
imposed to guarantee static and dynamic stability during
fast manipulation tasks or sudden accelerations/breaks. A
compact configuration can instead be exploited when passing
through narrow passages such as doorways.

Aim and contribution of this paper is to obtain a suitable
kinematic model and control algorithm that can fully exploit
the features offered by Justin platform design. Indeed, the
special platform kinematics constitutes a novel extension
w.r.t. the standard case of fixed-leg omnidirectional wheeled
robots, and therefore it deserves a dedicated analysis. In
addition, we are also interested in obtaining a controller able



Fig. 3: Details of the parallel mechanism allowing the leg
extension.

to track an arbitrary linear/angular planar trajectory without
mobility restrictions while, at the same time, imposing an
independent and decoupled behavior to each leg. In fact,
solution of this problem represents a necessary step for
addressing all the higher-level tasks envisaged for the Justin
robot, such as, for instance, fast manipulation with high load
and high dynamics, or fetch and delivery tasks in crowded
places.

The paper is structured as follows: after a brief description
of the platform mechanics in Sect. II, we analyze the
derivation of a platform kinematic model in Sect. III. This
is done in two stages: first, Sect. III-A presents a general
methodology for modeling a platform equipped with an
arbitrary number of steering wheels and fixed legs. This
problem has been already studied in the past years. Here, we
review the proposed modeling approaches and also provide
some additional insights. Then, in Sect. I1I-B, we extend the
treatment to the novel case of movable legs in order to obtain
a model suited for our platform. This model is then exploited
in Sect. IV where a state feedback control able to track an
arbitrary platform/leg trajectory is designed and discussed.
Finally, Sect. V presents experimental results that validate
the overall modeling and control design.

II. PLATFORM DESCRIPTION

The platform considered in this paper, shown in Fig. 2,
is made of a central frame to which four independent
vertical wheels are connected through a special parallel
mechanism, hereafter called leg, detailed in Fig. 3. Each
wheel is equipped with two brushless-DC motors providing
the torque needed to roll on the ground and to rotate in
place. Maximum values for the torques are 30 Nm and 28
Nm, respectively. Low-level onboard controllers are able to
realize a given rolling and steering velocity for each wheel
at a fast rate, so that these velocity signals can be considered
as actual inputs. Moreover, the leg mechanism enables the
wheels to move inwards and outwards in the horizontal
direction without changing the platform height, see Figs. 2—
3. In this way, the platform footprint can range from a
minimum area of 685 [mm] x 515 [mm] to a maximum of
985 [mm] x 815 [mm]. Asbolute encoders allow to measure
the steering angles, the rolling velocity of the wheels, and
the leg extension at a frequency of 250 Hz. Further details on
the platform mechanical structure and its onboard electronics
can be found in [11].
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Fig. 4: Schematic plot of a mobile platform equipped with
ns steering wheels.

III. THE PLATFORM KINEMATIC MODEL

In this section, we will consider the kinematic modeling of
a platform equipped with several centered steering wheels.
The problem will be first addressed for the standard case
of fixed legs by borrowing from some of the concepts
introduced in [2], [7] and references therein. Goal of this
preliminary step is to present and discuss a general method-
ology for kinematic modeling of fixed-leg platforms. Then,
the analysis will be extended to the novel case of movable
legs. The developments are kept at the kinematic level by
assuming, as usually done, that momentum/inertia of the
platform is limited so that dynamics can be neglected, and
the actuator velocities can be considered as control inputs.
When needed, extensions to dynamic modeling/control are
also possible [12], [13].

Hereafter, centered steering wheels (wheels from now
on) are modeled as vertical discs able to roll around their
horizontal axles, and to rotate around a vertical axis passing
through their center (from which the name centered) — see
Fig. 3. We also assume that wheels are nondeformable rigid
bodies, and that the vertical rods connecting them to the
robot chassis are perfectly rigid. Each wheel is supposed to
satisfy the perfect rolling constraint, i.e., no longitudinal or
lateral slipping during motion. Finally, the platform chassis is
also modeled as a perfect rigid body moving on a horizontal
plane.

A. Case of fixed legs

1) Preliminaries: with reference to Fig. 4, let Fy
{O; Xy, Yy} be a fixed inertial frame, and Fp
{Op; XpB, Yp} a moving frame rigidly attached to the
platform body. We will denote posture of the platform in
Fo the vector ¢ = [z y 0]T € R3, where (, y) are the
coordinates of Op in Fy, and 6§ the angle between axes Xp
and Xj.

Assume that the platform is equipped with n, independent
steering wheels W;, located at positions P; in Fp, and
parameterized by angles ¢, representing the orientations of
the wheel planes w.r.t. X 5. Each wheel is also characterized
by two independent velocity inputs taken as control inputs:
the linear velocity vy, and the steering velocity vy, = ¢;.
The configuration of the complete system can be described
by the vector ¢ = [¢T ¢y ... ¢, )7 = [€T ¢T]T € R3*T7e,
where ¢ € R"s collects all the ng steering angles. Similarly,



we will also adopt the notation vy = [vy, . ..
and vy = [¢1 ... ¢, |7 € R™.

Due to the assumption of rolling without slipping, each
wheel contributes with a Pfaffian first-order constraint in the
form [2]

VW, ]T € R"s

—sin(0 + ¢;)&; + cos(6 + ¢;)y; =0, (1)
where
Z; o x :
{ " } = [ y ] + R(0) P, (2)

is the location of wheel W; in Fy, and R(6) is the 2 x 2
planar rotation matrix. It can be shown that these constraints
are not integrable, i.e., they cannot be reduced to equivalent
holonomic constraints and, thus, are denoted as nonholo-
nomic [14].

By combining (2) with (1), we can rearrange the ng
nonholonomic constraints in matrix form

T
—sin(@+ ¢1) cos(@+¢1) Ay 0---0 Y
—sin(0 + ¢2) cos(@+¢2) As 0---0 0
: : : : | =
—sin(0 + én.) cos(0+ pn.) An, 0---0 ;
Pn.

3

with A; = Py, cos(¢;) + Py, sin(¢;), Ap(g) € R™*3
and A(q) € Rm=*(3+n:) Equation (3) fully captures the
motion restrictions due to the presence of constraints (1). In
particular, it follows that a given ¢ is feasible (it satisfies (3))
iff it belongs to the null space of A(q), hereafter denoted as
N(q) = N(A(q)). By exploiting the special structure of
A(g), and by noting that » = rank A,(g) < 3, one choice

for N(q) is N
N(q) = |: pO(Q) ]SS ]

where N,(q) = N(A,(q)) € R3*B=7) and I,, stands for
the identity matrix of dimension n. We will then call

[]mare[ 50 2 (2] o

the platform kinematic model, where v, € R3~" and vy €
R™s are suitable (pseudo)-velocity inputs that independently
affect the platform posture and the steering angles, re-
spectively'. By construction, this model represents all the
possible platform motions ¢ compatible with constraints (3).

Obviously, one is particularly interested in the submodel

é = Np(‘])vp (5)

which characterizes the planar mobility of the platform, i.e.,
the possibility to realize an arbitrary linear/angular velocity
&. Let us then call (5) the posture kinematic model, and
focus on the structure of N,(gq). Assume ns > 3 wheels
are present in a nondegenerate configuration, i.e., with their

Here, the physical meaning of vp depends on the particular choice for
Np, while vy coincides with ¢.

centers not all aligned on a same line. Then, in general,
rank Ap(gq) = 3 and N,(gq) = O (the trivial null space),
implying that no platform motion £ is possible while satis-
fying constraints (3). This fact has a well-known geometric
explanation (see, e.g., [7]) in terms of the existence of a
unique instantaneous center of rotation (ICR) for all wheels.
Indeed, validity of Descartes’ principle of motion for rigid
bodies implies that all wheel axles must instantaneously meet
at a same point on the plane (possibly at infinity) called
ICR. Existence of a unique ICR can be seen as a particular
geometric (holonomic) constraint requiring the coordination
of all wheel orientations. When the ns; wheels are in a general
configuration, i.e., rank A,(q) = 3, the ICR constraint is not
satisfied and no motion ¢ is possible.

In order to gain mobility for the platform, we must thus
have rank Ap,(¢) < 3 (existence of a ICR). This implies
that at most 2 rows of A,(g) can be linear independent,
say w.l.o.g. the first two associated to wheels W; and Ws.
It can be shown that imposing linear dependency of the
remaining ns — 2 rows is equivalent to the following: define
the current ICR as the intersection of W; and W5 axles, and
coordinate the remaining ns — 2 wheels such that their axles
meet at this ICR [8]. In other words, orientations (¢1, ¢2) of
wheels W, and W5 are taken as independent variables, and
a set of ny, — 2 holonomic constraints ¢; = h;(¢1, ¢2), i =
3...ns, hereafter called coordinating functions, is imposed
to coordinate the remaining wheels. Hence (3) becomes

T
—sin(@ + ¢1) cos(@+¢1) A 0 O g -0
—sin(f + ¢2) cos(@+¢p2) Az 0 O 1 -
2
(0)

where now A,(qg) € R?*3, and one obtains a reduced
platform kinematic model

o= Rz o
¢i = hi(p1, #2), 1=3...n, (8)

where only a subset of the original state ¢ appears on
the Lh.s. of (7). Here, Np(q) = g(q) € R® spans the
monodimensional null-space of Ap(q) (supposed of rank 2).
Note that we assumed vy, = ¢; as available inputs for
the wheel steering, while the coordinating functions yield
the quantity ¢;. However, the i-th steering velocity can be
formally recovered by letting
oh; - oh; -
—6¢1¢1+a¢2¢2~ 9
As for the i-th linear velocity vyy,, it can be expressed as a
function of v, and the geometry of the platform by simply
plugging (7) into (&;, ¥;), the time derivative of (2) — see
also [7], [8].

Model (7-8) is a valid choice in most situations, but it has
two main drawbacks (singularities):

Vg, = ¢z = hi

A) a coordinating function h; is not defined when the ICR
lies exactly on wheel W;. Indeed, in this situation,
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Fig. 5: A robot with 2 steering wheels in a nonsingular
configuration (left), and in a singular configuration of type
B (right).

any orientation of wheel W, is compatible with the
nonholonomic constraints (the robot is pivoting around
W),

B) a coordinating function h; is not defined when ¢; =
¢ = arctan(P,, — P1,)/(P1, — P,), i.e., when the
axles of W and W5 are superimposed. In this case, no
univocal ICR can be obtained from their intersection.

Singularities of type A are, in some sense, ‘structural’. When
wheel W, is at rest, any orientation meets the perfect rolling
constraint, so that no ¢; can be univocally defined. Moreover,
from a practical point of view, if the ICR moves arbitrarily
close to W;, the steering velocity ¢; grows unbounded, and
one should always keeps away from this situation [7].
Therefore, we now focus on the characterization of sin-
gularities of type B. For the sake of illustration, we will
consider a robot with only 2 steering wheels, and highlight
any consideration that does not automatically extend to the
general case. Figure 5 depicts such a robot. When singularity
B is met (Fig. 5(b)), the ICR can lie everywhere on the
common axle of W; and Wa, i.e., it is not univocally defined.
If the robot had more than 2 wheels (not all aligned), one
could keep selecting different pairs of wheels not in singu-
larity, and use them to define the ICR [8]. Such a switching
strategy can solve the problem of defining functions h; in
the general case, but clearly it does not apply to a robot
with only 2 wheels. Furthermore, rank of A,(g) in (6)
discontinuously drops to 1 when in singularity B — the two
rows of A,(g) become linear dependent. In particular, it is
¢2 = ¢1 = const, and (6) reduces to
T

[ —sin(@+¢1) cos(@+¢1) A]| Y ] =0. (10)
0

The platform kinematic model collapses on the posture
kinematic model

E=1 g0 9200 v (11)

where now two vectors g1(q), g2(q) € R span the null space
of the (monodimensional) A,. Note the structural difference
between (11) and (7). Obviously, having a kinematic model
with a discontinuous structure is not desirable for control
design purposes.

2) A general kinematic model: with this in mind, we now
propose a general modeling approach that can overcome the
difficulties posed by singularities B for a robot equipped with

ng > 2 wheels, as well as for the special case ny, = 2. All
the subsequent developments will be based on this step. The
idea is to look at the problem form a different point of view,
that is, letting the ICR be defined by the geometric path £(t)
followed by the platform rather than by the intersection of
the axles of any wheel pair (IW;, W), so that singularities B
can be structurally avoided. Consider again the situation in
Fig. 5(b) and suppose that a ICR, lying anywhere on the
common axle, is given as a function of £(t). Consistent
orientation of the two wheels can still be defined without
ambiguities, e.g., ¢1 = ¢o = /2 in the reported example.
A difficulty could only appear with a ICR lying exactly on
one wheel, but this would be again a singularity of type A
which, as discussed before, should be avoided.

In order to implement this idea, take the i-th constraint
in (3) al (q)¢ = 0, and solve it for ¢;, obtaining

—sin 0 + cos 0 + P;_ 0 :
= p(e 6. (12
cos O + sinfy — P; 0 fi& 9. 12

¢; = arctan

It can be easily shown that numerator (denominator) of (12)
is the y; (£;) component of wheel W; absolute velocity in
Fp when the platform is moving along a trajectory £(¢).
Equation (12) is not defined iff (&;, ¢;) = (0, 0), i.e., only
if wheel W; is at rest (singularity A). Now, by using (12),
it is possible to ‘eliminate’ the last ny, — 1 constraints in (3)
and obtain an equivalent formulation

i@

[ —sin(@+¢1) cos(@+¢1) A1 0] z =0 (13)
b1

¢ = fi(6,€), i=2...n, (14)

where now Ap has constant rank 1. Then, from (13), one can
derive by inspection a reduced platform kinematic model

cos(f + ¢1)  Pi,sinf + Py, cosf 0

.é _ sin(6 + ¢1) —Pi, cosf + Py, sinf 0 le
o1 0 1 0
0 0 1LY
(15)

where input w represents the angular velocity of the platform.
It is worth noting that model (14-15) is affected only by
singularities A for any value of ng, included the special case
n, = 2. Indeed, no rank loss is possible for A, in (13) (the
rank is always 1), and functions (14) are always defined as
long as the ICR does not lie on a wheel’>. A geometrical
interpretation is the following: angle ¢; defines the line
where the ICR lies (the axle of W), and the ratio vy, /w
fixes the distance of the ICR from W along this line. The
other wheels are coordinated, via (16), such that their axles
pass through the ICR.

Note that w is not a ‘physical’ input in the sense of
(vw,, vg,). However, by plugging (15) into (12), and by

2 Alternative formulations structurally similar to (7) are also discussed
in [7], [8] for a fixed-leg platform. In our case, the main difference is
that, acccording to the notation introduced in [2], we reduce the platform
kinematics to (15) which is a model of type (2, 1), whereas (7) is of type
(1, 2). This manipulation allows to rule out singularities B from the model
design.



exploiting (2), one can obtain the equivalent expression

vw, sin ¢1 + W(Pu B Pl‘L)

16
Uy, COS (bl + W(Ply - Piy) ( )

¢; = arctan

that shows how to actually realize a given w by suitably
orienting the steering wheels. Here, again, the numera-
tor/denominator are the components of velocity of W;.
Hence, we can adopt model (15), together with func-
tions (16), as the kinematic model describing a mobile
platform equipped with ny > 2 steering wheels, and being af-
fected by the sole singularities of type A. As a final consider-
ation, note also that system (15) is completely nonholonomic
and, being driftless, also completely controllable. Indeed, by
rewriting (15) as [§7 61]" = g1(q)ow, +g2(q)w+g3(q)ve,,
one can check that the accessibility rank condition [15]

rank (g1 g2 g3 [91, g2]) = 4

is always satisfied, being 4 the dimension of vector [£7 ¢1]T.

B. Case of movable legs

Having established a general methodology for modeling
a fixed leg platform, we now focus on the case of movable
legs which represents the main objective of the paper. As
explained in Sect. II, the mechanical structure of our target
platform allows the possibility to extend/rectract the legs
along a fixed planar direction (the leg direction) without
changing the platform height. Therefore, for modeling pur-
poses, we can consider these legs like planar linear ‘joints’
connecting wheels W; to the platform chassis.

With the aim of obtaining a suitable model, it would seem
that the dynamical properties of the platform may now play
a significant role. Each wheel exerts a force on its own leg
and, through the coupling of the platform body, on all the
other legs. This results in a completely coupled and second
order system where forces of the wheels are partitioned
among all legs depending on the particular configuration.
However, it turns out that in our case we can still accept the
approximation of a simpler kinematic modeling discussed at
the beginning of the Section. Indeed, the high mass of the
whole platform (about 150 Kg), compared to the very low
friction of the leg extension mechanism, allows discarding
any dynamical coupling. Basically, the platform behaves as
if each leg is an independent linear joint actuated by its own
wheel. It is then possible to exploit the kinematic modeling
framework so far presented.

Let us consider again a generic platform as the one
shown in Fig. 4. In order to not overburden the analysis,
we will assume that the moving direction of each leg
coincides with vectors P;, the extension to the general case
is immediate. It is useful to express P; in polar coordinates
P; = [Nicos(a;) A;sin(a;)]T, with \; being the i-th leg
extension, and «; = const the fixed leg direction. Since we
assume a time-varying \;(t), it is natural to consider it as
a new state of the system. Thus, the complete state vector
becomes g. = [¢1 AT ¢T]T € R3T27s, where A\ € R":
collects all the \;. Obviously, all wheels still obey the perfect
rolling assumption, i.e., the nonholonomic constraints (1)

must hold. Therefore, by using (2), we can rearrange the
ng constraints in the compact matrix form

—sin(0@ + ¢1) cos(@+¢1) Ay I'y --- 0 0---0 [f]

: : Co A
—8in(0 + ¢n,) c08(0+ bn.) An, 0 - Tn 00 |1 &
£
[ Ap(ge) Ax(qe) 0] [ b ] = A(ge)de = 0,
é

amn

where T'; = sin(a; —¢;), and Ay (q.) = diag(T;) € R™=*"s,
Note that submatrix [A,(qg.) Ax(qc)], of size ns x (3+ns),
always admits a null-space of at least dimension 3 whatever
the number of wheels n;. Therefore, there always exists an
infinity of motions (£, A\) meeting constraints (17) regardless
of the platform configuration. For instance, when the square
matrix Ax(q.) is nonsingular (a; # ¢;), choice A =
nglApf satisfies (17) for any posture motion &, and in any
wheel configuration ¢. In other words, the ICR constraint,
introduced in the previous Section, and imposing a rank
condition on A,, does not extend to the case of movable
legs. The reason is that Descartes’ principle of rigid motion
is no longer valid since, strictly speaking, the platform cannot
be considered as a rigid body because of the leg extension
mechanism. Nevertheless, the modeling approach previously
presented can be seamlessly extended to this case.
To this end, consider the ¢-th constraint in (17), and solve
it for ¢; to obtain
¢: = arctan —sin 0% + cos 0y + )\26 -+ sin ai.)'\i _ li(é, A, )\)
cos 0% + sin 0y — A0 4 cos a; \;
(18)
Here, again, numerator and denominator of (18) are the com-
ponents of wheel W; velocity in Fp, so that the expression
is valid as long as W; is not at rest. Proceeding as before,
we can eliminate ny, — 1 constraints in (17), and get
[ ¢
[—sin(@ +¢1) cos(@+¢1) Ay Ti---0 0] X
1
from which by inspection we may derive a reduced platform
kinematic model

}—0, 19)

cos(0+¢1) Aisin(@+a1) —cos(@+ai) 0---0
sin(0 + ¢1) —Ai1cos(0+a1) —sin(@+a1) 0---0
é 0 1 0 00 [ow,
Sl 0 0 1 0---0f w
o 0 0 0 N
$1 : : : Vg,
: In.
0 0 0
(20)
bi =L NN, i=2...ns @n

with vy € R"* being the (pseudo)-velocity input associated
to the leg velocity A, and ¢, = [¢ AT ¢1]T € R, n, =
4 + ng the reduced state dimension.

By plugging (20) into (18), one can again obtain an
expression for ¢; analogous to (16)

d)i == l_i(QTa VR, W, U)\) (22)

that shows how to actually realize the ‘virtual’ inputs (w, v))
by a proper orientation of the last ny — 1 wheels. Finally,

I



system (20), like (15), can be easily proven to be completely
nonholonomic by checking the global validity of the admis-
sible rank condition.

IV. DESIGN OF A KINEMATIC CONTROL LAW

Goal of the control algorithm is to have the platform,
represented by model (20), asymptotically track a desired
posture trajectory £*(¢) and, at the same time, a desired
leg trajectory A*(t). Many approaches for trajectory tracking
control of mobile robots have been proposed in the past
years, ranging from local feedbacks based on system lin-
earization to global results exploiting Lyapunov techniques.
One interesting possibility is to rely on the so-called dy-
namic feedback linearization [16], [17], [18]. The idea is
to select a suitable output function upon which a dynamic
compensator, able to fully linearize the input-state-output
dynamics, is designed. When this is possible, the closed-
loop system becomes equivalent to a set of decoupled chains
of integrators. Note that full static linearization would be
impossible because of the nonholonomy of (20) [17].

In our case, the chosen output function is vector z(g,) =
€T AT)T € R™, m = 3 + n,. In order to design a dynamic
feedback compensator, one has to iteratively differentiate
output z until any input appears. During this process it may
be necessary to extend the state of the system by adding
integrators on those inputs appearing too early during the
differentiation process. Such integrators will constitute the
internal state of the dynamic compensator. If, at some point,
the extended state dimension equals the total number of
output differentiations, full input-state-output linearization
can be obtained.

For our goals, it turns out that by differentiating twice
2(q+), and by adding p = 2 + n, integrators 7 to inputs
(vw,, w, vx) in (20), we obtain an extended state ¢, =
[l nT]T of dimension n, + p = 6 + 2n, against 2m =
6 4 2n, total differentiations. Hence, the original model (20)
can be dynamically linearized. In particular, it is®

£=H(qe)u+M(ge), H(ge) €R™ ™, M(q)€R™, (23)

where u = [177 vy, ] € R™ is the new input vector made of
the steering velocity v, of wheel Wy, and of p ‘acceleration’
signals driving the p integrators 7 introduced in the dynamic
extension step. Now, by choosing

u(ge) = H(ge) ™ (v — M(qe)),

we can transform (23) into an equivalent (linear and decou-
pled) chain of 2m integrators

veR™ (24)

Z=wv

that can be easily stabilized through input v. Exponential
regulation of the trajectory tracking error e(t) = z*(t) — z(t)
can be achieved by simply taking

’U:;Z.*+KDé+KP€, Kp, Kp >0, (25)

where z*(t) is assumed to be twice differentiable. By
choosing diagonal gain matrices, one finally obtains a linear

3We omit explicit expressions for lack of space. The computation is,
however, straightforward.

and decoupled closed-loop behavior for e(t) with arbitrary
convergence rate. It is also worth noting that feedback (24—
25) is implementable, i.e., it only depends on measurable
quantities. Indeed, n is an internal state, Z is obtained
through (20), and vector ¢, is known — (\, ¢1) are measured
and ¢ is reconstructed online form wheel encoder readings
(dead reckoning).

It should be noted that the decoupling matrix H(g.) is
singular at vy, = 0. This difficulty is structural for mobile
robots [17], and is conceptually equivalent to the singularities
of type A discussed in the previous Section. In practice,
feedback (24-25) can only track a persistent trajectory, i.e.,
such that vy, () # 0, V¢t > 0. Assuming z*(¢) meets this
requirement, the only difficulty may happen during an initial
transient phase. Therefore, we relied on the simple strategy
of having a perfect matching condition for the platform at the
beginning of the motion, so as to avoid intentional transient
phases. To this end

1) the reference trajectory z*(t) is always designed such
that z*(tg) = 2(to) and 2*(tg) = Z(tp). The latter
condition is enforced by properly initializing the com-
pensator states 7)(to) with the initial reference values
n*(to) associated to z*(t);

2) similarly to [7], an initial open-loop phase steers each
wheel to the value given by (18) computed on z*(t)
(i.e., all wheels are initialized with correct and consis-
tent orientations).

Hence, the robot starts exactly on the reference trajectory
z*(t) and occurrence of transient phases is limited to the
presence of external disturbances or unmodeled robot dy-
namics.

As a final remark, note that relations (22) must be derived
w.r.L. time in order to obtain the actual steering velocities vy,
as done in (9). Clearly, this results in a function of ¢. and
1. As discussed before, the former quantity is measured (n
is the internal state of the compensator), while the latter is
the output of feedback (24-25).

V. EXPERIMENTAL RESULTS

In this Section we present the results of an experiment run
on the Justin platform described in Sect. II meant to show
both the validity of the proposed modeling approach, and the
performance of feedbak (24-25). The experiment involves
a combined translation/rotation and, at the same time, an
extension for the ngy = 4 legs. Due to limited space, and
also to the difficulty of reporting complex platform motions
on a static plot, we omit here results collected on different
complex trajectories. A number of these can be appreciated
in the video clip attached to the paper.

In this simple experiment, the platform starts at
&(tp) = [0 0 0]7 with the leg configuration A(tg) =
A Am Am Am]T, and must reach (ty) = [4.5 4.5 2n]7
and )\(tf) = [)\M >\M )\]y[ )\M]T, where >\m = 0.37
[m] and Ap; = 0.56 [m] are the minimum/maximum leg
extensions. The chosen reference trajectory z*(t) interpo-
lates component-wise z*(to) with z*(ts) according to quasi
trapezoidal velocity profiles. As a representative case, Fig. 6
depicts the behavior of 0*(¢) and its derivatives. Note that
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Fig. 6: Behavior of 0°(t) (iop), 6°(t) (middic) and §(¢)
(bottom) over time. Note the continuity of 8*(¢) as required
by feedback (24-25).
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Fig. 7: Stroboscopic view of the platform motion during the
experiment. Note that the ICR (the small black circle) always
lies outside the platform boundaries, and, when the rotation
phase is over, goes to infinity.

smooth parabolic arcs replace the constant (but discontin-
uous) acceleration phases typical for standard trapezoidal
profiles, so as to ensure continuity of 2*(t) as required
by feedback (24-25). We chose (0.18,0.1) [m/s, m/s’]
as maximum velocny/acceleration for both (z*(t), y*(¢)),
(0.31, 0172 [rad/s, rad/s’] for 6*(¢), and (0.02, 0.01)
[m/s, m/s”] for all A7 (¢). With these settings, we obtained
an overall linear translation lasting {7 = 30.8 [s] combined
with a rotation ending after tr = 23 [s] and a leg motion
ending after ¢{;, = 15 [s]. Figure 7 shows the stroboscopic
motion of the platform, reconstructed from experimental
data, where the different phases are highlighted.

Note that maximum velocity/acceleration values for £*(t)
were chosen so that

3
W+ 0 _p R =082 ],
|6+(2)]

with R being the instantaneous radius of curvature viewed

from the platform center Op and associated to the posture

motion £*(¢). In particular, it is Rpin < R < oo for

t < tp and R = oo for tg < t < tp (during the last

phase the platform translates without rotating). Since R also

(26)

represents the distance between Op and the ICR associated
to the posture motion £*(t) (see also [7]), we can conclude
that trajectory £*(t) is free from singularities of type A in
the fixed leg case, being R, > Aps. This fact can also
be appreciated in Fig. 7 that shows how the ICR (the small
black circle) keeps always outside the platform boundaries.

We note, however, that designing £*(¢) free of singular-
ities is in general not sufficient to ensure definiteness of
functions (18) when a leg motion is also present. Indeed,
even if the ICR associated to £*(¢) is ‘properly placed’,
a concurrent leg extension/retraction may still result a null
linear velocity for some wheels. For instance, if the platform
is translating along direction ¢; of leg ¢+ (ICR at infinity), and
leg i is expanding with the same velocity but on the opposite
direction of motion, wheel W; must stay exactly at rest and
angle ¢; becomes undefined as in singularities A. Being able
to plan in a systematic way a generic trajectory (£*(t), A*(t))
free of singularities seems an hard but challenging problem
which is, however, beyond the scopes of the present paper.
As a first reasonable approximation, we chose to impose very
small leg velocities (0.02 [m/s]) so that a quasi-static regime
for the platform can be assumed. In this way, the usual ICR
constraint can be thought as still valid, and one can simply
rely on the planning of £*(¢) and ‘discard’ the presence of
A*(t). In any case, to fully show the possibilities of our
approach, the experiments presented in the attached video
have been run by also imposing quite higher leg velocities
(up to 0.25 [m/s]) and by validating in simulation that no
singularity was encountered.

Coming back to the design of £*(t), condition (26) copes
with the presence of singularities of type A. In order to also
meet the persistency requirement discussed in the previous
Section, we chose to initialize the interpolator with the values
|£*(to)| = €, [9*(to)] = €, and |0*(to)| = €/Rmin, With
€ > 0 being a small threshold tuned experimentally to 0.01
[m/s]. This guarantees that vy, (to) # 0, and the correct
placement of the ICR during the rest of the motion ensures
that vy, () # 0 Vg <t < tr. At the end of the trajectory,
when t — t7 and vy, (t) — 0, matrix H(q.) in (24) be-
comes ill-conditioned and the tracking performance starts to
deteriorate. Therefore, we implemented a simple termination
condition to stop robot motion as soon as |vyy, (t)] < &,
resulting in a small (but practically negligible) final error
e(tr). This can be verified in Fig. 8 where we show the
behavior of e(t) = z*(t) — z(¢). One can check that, despite
noise, unmodeled dynamics and typical disturbances present
in any experiment, feedback (24-25) is fully able to achieve
a good tracking (note the scales of the plots) for both the
platform posture £(¢) and the leg configuration A(t). The
control gains chosen for this experiment are Kp = 317 and
Kp =2I;.

In addition, Fig. 9 depicts the behavior of the commanded
linear and steering velocities (vw (t), vg(t)). During an
initial phase of about 1 [s], the platform stands still (v = 0)
and the wheels are steered to the nominal values computed
from z*(to) and its derivatives. This corresponds to the open-
loop strategy discussed in point 2 of the previous Section,
and meant to correctly initialize the wheel configuration. An
horizontal dashed line in the plot marks the end of this
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Fig. 8: Behavior of e¢(t) = £*(t) — £(t) (top) and ey (t) =
A*(t) — A(t) (bottom) over time. Note the scales of the plots.
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Fig. 9: The commanded linear (top) and steering (bottom)
velocities to the 4 wheels. The left horizontal dashed line
marks the end of the preliminary open-loop phase needed
to initialize all wheel orientations, while the right line
represents the end of the platform rotation.

preliminary phase and the beginning of the main motion.
Note how the velocity commands (in particular vg4(t)) always
keep bounded over time, by confirming that no singularity
was encountered while executing the motion task.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we discussed the kinematic modeling and
control problem for a mobile platform equipped with steering
wheels and movable legs: the Justin mobile platform. To
this end, we first developed a general modeling framework
able to fully capture the peculiarities of this system, that is,
variable footprint and omnidirectional capabilities. This was
achieved by extending the results obtained for the standard
case of a platform with fixed-legs. Then, upon this model,
we built a tracking controller capable of realizing arbi-
trary linear/angular platform motions and independent leg
expansion/retraction. The theoretical claims were validated
by experimental results that showed good performance of
the proposed modeling and feedback approach, and control
robustness was also confirmed during the one week operation
at the Automatica 2008 fair in Munich. Additional experi-
mental results can be found in the video clip attached to the

paper.

In the future, we plan to exploit the features of this
platform in the complex tasks envisaged for the Justin robot,
namely mobile and dexterous two-handed manipulation. In
this respect, the proposed controller can be seen as a building
block for implementing higher-level modes of operation,
such as navigation/exploration or active stabilization during
fast motions.
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