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Abstract—
Stereo correspondence methods rely on matching costs for

computing the similarity of image locations. We evaluate the
insensitivity of different costs for passive binocular stereo meth-
ods with respect to radiometric variations of the input images.
We consider both pixel-based and window-based variants like the
absolute difference, the sampling-insensitive absolute difference,
and normalized cross correlation, as well as their zero-mean
versions. We also consider filters like LoG, mean, and bilateral
background subtraction (BilSub) and non-parametric measures
like Rank, SoftRank, Census, and Ordinal. Finally, hierarchical
mutual information (HMI) is considered as pixelwise cost. Us-
ing stereo datasets with ground-truth disparities taken under
controlled changes of exposure and lighting, we evaluate the
costs with a local, a semi-global, and a global stereo method.
We measure the performance of all costs in the presence of
simulated and real radiometric differences, including exposure
differences, vignetting, varying lighting and noise. Overall, the
ranking of methods across all datasets and experiments appears
to be consistent. Among the best costs are BilSub, which performs
consistently very well for low radiometric differences; HMI,
which is slightly better as pixel-wise matching cost in some cases
and for strong image noise; and Census, which showed the best
and most robust overall performance.

Index Terms— stereo, matching cost, performance evaluation,
radiometric differences

I. INTRODUCTION

All passive stereo correspondence algorithms have a way of

measuring the similarity of image locations. Typically, a matching

cost is computed at each pixel for all disparities under consider-

ation. The simplest matching costs assume constant intensities at

matching image locations, but more robust costs can compensate

for certain radiometric differences and noise.

Radiometric differences can be caused by the camera(s) due

to slightly different settings, vignetting, image noise, etc. Radio-

metric pre-calibration can only compensate for some of these dif-

ferences, and is not possible in all situations. Further differences

may be due to non-Lambertian surfaces, for which the amount

of reflected light depends on the viewing angle. While such

differences can be reduced by making the stereo baseline smaller,

this also reduces the geometric accuracy of the reconstruction. An

example of real-world stereo data exhibiting many of the effects

described above is given by Daimler AG’s sequences taken by a

calibrated stereo camera in a driving car [1].

Another source of radiometric differences is that the strength

or positions of the light sources may change when images of

a static scene are acquired at different times. For larger scenes,
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image acquisition will take some time and it may not be possible

to control the light source (e.g., outdoors). Similar situations arise

when matching aerial or satellite images.

Due to all of the above reasons, it is safe to say that any

real-world stereo application requires radiometric robustness. This

includes existing commercial systems, which employ different

techniques, many of which are discussed in this paper. For

example, Point Grey’s Triclops stereo library [2] uses a band-

pass filter, Videre’s Small Vision System [3] uses a Laplacian

of Gaussian filter, and Tyzx’s Deep Sea system uses the census

transform. Similarly, state-of-the-art multi-view stereo methods

[4]–[6] use methods such as normalized cross correlation and

mutual information for handling severe radiometric differences.

II. RELATED WORK

Common pixel-based matching costs include absolute differ-

ences, squared differences, sampling-insensitive absolute differ-

ences [7], or truncated versions, both on gray and color images.

Common window-based matching costs include the sum of abso-

lute or squared differences (SAD / SSD) and normalized cross-

correlation (NCC). In contrast to SAD and SSD, NCC accounts

for gain differences (a multiplicative change) in the matching

windows due to normalization. A constant offset (bias) of pixel

values is often compensated by the zero-mean versions ZSAD,

ZSSD and ZNCC. Alternatively, an offset change can also be

reduced by filtering the images before matching using a mean

filter, computing a gradient magnitude image (i.e. first derivative)

[8] or Laplacian of Gaussian (i.e. smoothed second derivative) [9],

[10]. Unfortunately, all of these filters result in a blurred disparity

image. Ansar et al. [11] proposed background subtraction using

a bilateral filter [12] for compensating radiometric differences

without blurring.

Non-parametric matching costs were introduced for being ro-

bust against outliers that occur in window-based methods near

object boundaries [13]–[15]. However, since non-parametric costs

rely only on the relative ordering of pixel values, they are also

invariant under all radiometric changes that preserve this order.

The Rank and Census methods [13] can be implemented as a

filter followed by a comparison using the absolute difference

or Hamming distance. Ordinal measures [14], [16] compute the

distance of rank permutations of corresponding windows.

Another category of methods tries to explicitly model the

complex radiometric relationships between images. Mutual in-

formation (MI) has been introduced in computer vision by Viola

and Wells [17]. MI has been first used for stereo matching by

Chrastek and Jan [18], but with disappointing results. Later work

on MI in window-based stereo methods [19]–[21] demonstrated

its power to model complex radiometric relationships. Others used
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approximations of MI [22] for a segment-wise stereo matching. It

has been found [20], [21] that large windows are needed for col-

lecting enough data for the required joint probability distribution,

but large windows again result in blurring at object boundaries.

Therefore, Fookes et al. [20] proposed a hierarchical method for

estimating probability priors over the whole image at a lower

resolution. These priors are fused with values collected from

smaller matching windows, which results in a reliable probability

distribution. Kim et al. [23] used MI pixel-based without matching

windows in the global graph-cuts stereo method. The probability

distribution is iteratively calculated over the whole image using a

prior disparity, which is random at the beginning. Finally, it has

been shown [24] that a hierarchical calculation of pixel-wise MI

is as accurate as an iterative calculation, and just 15-20% slower

than a direct calculation using absolute differences.

Zhang et al. [25] compute simultaneously the disparity image

and an illumination ratio map in a BP framework for handling

complex local intensity variations. We attempted to include the

authors’ implementation of this method in our comparison, but

we were unable to find parameter settings to yield competitive

performance across our test datasets.

In the multi-view case, the same techniques (e.g., NCC or MI)

can be used for handling radiometric differences [6]. However,

multiple images can also be used for explicitly modeling non-

Lambertian scenes [26]–[28] or reflections [29]. Furthermore,

special imaging setups, like multiple images with one light source

that moves away [30], or “Helmholtz stereo” where camera and

light source are interchanged [31], can be used for handling non-

Lambertian scenes successfully. In this paper, however, we focus

only on passive methods that work on a single stereo pair with

unknown radiometric distortions and unknown light sources.

Recent stereo surveys [32], [33] and the Middlebury online

evaluation [34] compare state-of-the-art stereo methods on test

data with complex geometries and varied texture. Other evalua-

tions focus on certain aspects like aggregation methods for real-

time matching [35]. However, the insensitivity of matching costs

is in these papers not evaluated since the stereo test sets are

typically pairs of radiometrically very similar images.

Gautama et al. [36] compare ZNCC and Census for car-seat

occupancy detection using window-based real-time stereo vision.

The performance in the presence of radiometric differences was

not explicitly tested. For their application, Census performed

faster and more accurately than ZNCC. Banks and Corke [37]

compared SAD, SSD, NCC, their zero mean variants, Rank

and Census for window-based stereo matching. The evaluation

includes visual inspection and the count of pixels that passed

the left/right consistency check on images with real radiometric

differences and synthetic images without differences. Rank and

Census performed better than the classical matching costs. Fookes

et al. [38] compared SAD, ZSAD, NCC, ZNCC, Rank and

MI for window-based stereo matching. Their evaluation also

measures the number of pixels that passes the validity check.

They concluded that ZNCC and Rank performs best on images

without radiometric changes, while the performance of MI is

best on images with artificially changed radiometry. Sarkar and

Bansal [21] compared MI and SSD for window-based matching

on images with ground truth and artificial radiometric changes.

They found that MI handles radiometric differences well, but its

performance depends heavily on the window size.

The scope of this paper is the evaluation and comparison of

parametric and non-parametric matching costs as well as MI on

images with several common radiometric differences. In contrast

to previous studies [21], [36]–[38], we test all costs not only for

window-based matching, but (where applicable) also for pixel-

based matching with a semi-global method (SGM) and graph

cuts (GC) as a strong global method. Furthermore, in addition

to simulated global and local radiometric changes, we perform

experiments on stereo pairs with real radiometric differences.

All tests on simulated variations and real changes are evaluated

against ground-truth disparities.

The focus of this paper is on matching costs that explicitly

or implicitly handle radiometric differences. This excludes pop-

ular methods like the correlation-based weighting according to

proximity and color similarity [39], since this is an aggregation

approach rather than a new matching cost. As mentioned earlier,

we also exclude methods that require more than two views or

calibrated light sources, and restrict our evaluation to passive

methods that work on a single stereo pair with unknown radio-

metric distortions.

III. MATCHING COSTS

It is important to distinguish between matching costs and

methods that use these costs. In this paper we compare all possible

combinations of 15 costs and 3 stereo methods. The costs are

grouped into parametric costs, non-parametric costs, and mutual

information. All parametric costs use the magnitude of pixel

values and can be subdivided in methods that require identity,

allow different offsets or scalings or both. Non-parametric costs

use only the local ordering of intensities and can therefore handle

all monotonic mappings. Mutual information can model even

more complex relationships between images.

We initially define all matching costs on intensity (luminance)

instead of color, which we store as 8-bit unsigned integers. See

Fig. 1(a) for an example. Note that all costs can simply be

extended to color by computing the costs for each color channel

separately and then summing the costs over all channels; for

some costs or filters there are more natural definitions, which we

describe below. In our experiments below we focus mainly on the

intensity versions of the costs, but we investigate the potential of

color matching in Section V-F.

A. Parametric Matching Costs

Our first parametric cost function is the commonly-used ab-

solute difference (AD), which assumes brightness constancy (i.e.

identity) for corresponding pixels, and which serves as a baseline

performance measure of our evaluation. In global methods, the

differences are used pixel-wise. Local stereo methods use the

sum of the absolute differences (SAD) over all pixels q of a

certain neighborhood Np, typically a square window. We use

the notation d = [d 0]T for the disparity. We assume rectified

stereo pairs throughout. Thus, for a pixel p in the left image, the

corresponding pixel in the right image is p−d.

CAD(p,d) = |IL(p)− IR(p−d)| (1)

CSAD(p,d) = ∑
q∈Np

|IL(q)− IR(q−d)| (2)

Additionally, we also test the sampling-insensitive absolute

difference of Birchfield and Tomasi (BT) [7]. It computes the

absolute distance between the extrema of linear interpolations of
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(a) Intensity image (b) Mean filter (c) LOG filter (d) BilSub filter (e) Rank filter (f) SoftRank filter

Fig. 1. Different filters on a part of the Teddy image. The contrast of (b)–(d) has been increased for better visualization.

the corresponding pixels of interest with their neighbors. This

method is often used for pixel-wise global methods, but can

also be used for window-based matching. (Other window-based

sampling-insensitive costs exist [40] but are not evaluated here.)

CBT (p,d) = min(A,B) (3)

A = max(0, IL(p)− Imax
R (p−d), Imin

R (p−d)− IL(p))

B = max(0, IR(p−d)− Imax
L (p), Imin

L (p)− IR(p−d))

Imin(p) = min(I−(p), I(p), I+(p))

Imax(p) = max(I−(p), I(p), I+(p))

I−(p) =
(

I
(

p− [1 0]T
)

+ I(p)
)

/2

I+(p) =
(

I
(

p+[1 0]T
)

+ I(p)
)

/2

Our next three cost functions are actually filters that change the

input images separately before matching via absolute difference.

The mean filter simply subtracts from each pixel the mean

intensities within a neighborhood of 15×15 pixels centered at

the pixel of interest. A constant offset of 128 is added to avoid

negative numbers when storing the result back into an 8-bit image

(Fig. 1(b)). Thus, the mean filter performs background subtraction

for removing a local intensity offset.

Imean(p) = I(p)−
1

|Np|
∑

q∈Np

I(q)+128 (4)

The Laplacian of Gaussian (LoG) is a bandpass filter, which

performs smoothing for removing noise and removes an offset in

intensities. The filter is often used in local real-time methods [9],

[10]. Here we use a LoG filter with a standard deviation of σ = 1

pixel, which is applied by convolution with a 5×5 LoG kernel

(Fig. 1(c)).

ILoG = I⊗KLoG, KLoG(x,y) = −
1

πσ4

(

1−
x2 + y2

2σ2

)

e
− x2+y2

2σ2 (5)

Furthermore, we consider background subtraction by bilateral

filtering (BilSub) [11]. The bilateral filter [12] sums neighboring

values weighted according to proximity and color similarity.

It smoothes without blurring high contrast texture. Background

subtraction is implemented by subtracting from each value the

corresponding value of the bilateral filtered image. This effec-

tively removes a local offset without blurring high contrast texture

differences that may correspond to depth discontinuities. We use

a kernel of 15×15 pixels, a spatial distance (which defines the

amount of smoothing) of σs = 3, and a radiometric distance

(which prevents smoothing over high-contrast texture differences)

of σr = 20. On intensity images, the radiometric distance is

computed as the absolute difference of intensities as defined in (6).

Fig. 1(d) shows the result. On color images, we use the distance

in CIELab space, as originally suggested [12].

IBilSub(p) = I(p)−
∑q∈Np

I(p)eser

∑q∈Np
eser

(6)

s = −
(q−p)2

2σ2
s

r = −
(I(q)− I(p))2

2σ2
r

For window-based stereo methods, there are further common

costs for removing an offset in intensities. The zero-mean sum of

absolute differences (ZSAD) subtracts the mean intensity of the

window from each intensity inside the window before computing

the sum of absolute differences. Note that the subtracted mean is

the same for each pixel in the correlation window, in contrast

to the mean filter where each pixel has its own window for

computing the mean.

CZSAD(p,d) = ∑
q∈Np

|IL(q)− ĪL(p)− IR(q−d)+ ĪR(p−d)| (7)

Ī(p) =
1

Np
∑

q∈Np

I(q)

Normalized cross-correlation (NCC) is another window-based

matching technique that is commonly used. NCC compensates

gain changes and is statistically the optimal method for dealing

with Gaussian noise. However, NCC tends to blur depth discon-

tinuities more than many other matching costs, because outliers

lead to high errors within the NCC calculation [10].

CNCC(p,d) =
∑q∈Np

IL(q)IR(q−d)
√

∑q∈Np
IL(q)2 ∑q∈Np

IR(q−d)2
(8)

MNCC, due to Moravec [41], is a commonly-used variant of

NCC. It is an approximation of NCC and can be computed faster.

We selected the standard NCC as MNCC gave slightly inferior

results in our experiments.

In addition to NCC, we separately consider the zero-mean

variant ZNCC in our evaluation. ZNCC is the only parametric

cost that can compensate for differences in both gain and offset

within the correlation window.

CZNCC(p,d) =

∑q∈Np
(IL(q)− ĪL(p))(IR(q−d)− ĪR(p−d))

√

∑q∈Np
(IL(q)− ĪL(p))2 ∑q∈Np

(IR(q−d)− ĪR(p−d))2

(9)

B. Non-Parametric Matching Costs

Non-parametric matching costs are based on the local order

of intensities. Some of these costs can be again implemented as

filters that change the input images individually. The Rank filter

replaces the intensity of a pixel with its rank among all pixels

within a certain neighborhood. It was originally proposed [13] to

increase robustness of window-based methods to outliers within
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the neighborhood, which typically occur near depth discontinu-

ities and leads to blurred object borders. Since all non-parametric

costs only depend on the ordering of intensities and not the

magnitude of intensities, they tolerate all radiometric distortions

that preserve this ordering. Here we use a Rank filter with a square

window of 15×15 pixels centered at the pixel of interest.

IRank(p) = ∑
q∈Np

T [I(q) < I(p)] (10)

The function T[] is defined to return 1 if its argument is true and 0

otherwise. The transformed images are matched with the absolute

difference.

The Rank filter is known to be susceptible to noise in texture-

less areas as can be seen in the area to the right of the teddy

in Fig. 1(e). The Soft Rank filter was proposed by Zitnick [42]

to reduce this problem by defining a linear, soft transition zone

between 0 and 1 for values that are close together.

ISoftRank(p) = ∑
q∈Np

min

(

1,max

(

0,
I(p)− I(q)

2t
+

1

2

))

(11)

We used the threshold t = 8. The result in Fig. 1(f) is clearly less

noisy in textureless areas.

We also consider the Census filter [13]. It defines a bit

string where each bit corresponds to a certain pixel in the local

neighborhood around a pixel of interest. A bit is set if the

corresponding pixel has a lower intensity than the pixel of interest.

Thus, Census not only stores the intensity ordering like Rank,

but also the spatial structure of the local neighborhood. We

use a window of 9×7 pixels and store the bit string in a 64-

bit integer. The transformed images are matched by computing

the Hamming distance between corresponding bit strings. The

performance of Census is reported [13] to be superior to Rank,

but the computation on standard CPU’s is more time consuming

due to the calculation of the Hamming distance.

The final non-parametric cost we consider is the ordinal mea-

sure proposed by Bhat et al. [43], which is based on the distance

of rank permutations of corresponding matching windows. It

cannot be implemented as a filter and requires window-based

matching. Its potential advantage over Rank and Census filters is

that it avoids the dependency on the value of the pixel of interest.

C. Mutual Information

Our last matching cost is based on mutual information (MI).

MI enables registering of images with complex radiometric rela-

tionships [17]. The MI of two images is calculated by summing

the entropy of the probability distributions (HI1
and HI2

) of the

overlapping parts of each image and subtracting the entropy of the

joint probability distribution (HI1,I2
) of pixel-wise correspondences

of both images. The probability distributions are derived from the

histograms of the corresponding image parts. The MI value di-

rectly expresses how well images are registered. This follows from

the observation that the joint histogram of well-registered images

has just a few high peaks in contrast to poorly registered images

where the joint histogram is rather flat. Thus, for well-registered

images, the entropy of the joint probability distribution HI1,I2
is

low, while the entropy of the individual probability distributions

HI1
and HI2

is nearly constant as long as the overlapping image

parts are roughly the same.

It is straightforward to use MI for calculating how well two

image regions correspond. However, typical windows of 9×9 or

11×11 pixel do not contain enough pixels for deriving meaningful

probability distributions [20], [21]. Larger windows would be

needed, but larger windows are known to increase blurring of

discontinuities [10]. Therefore, we use a computation of MI that

is based on the whole image and allows pixel-wise matching [23],

[24]. It works by using an initial disparity image that defines

corresponding pixels of both images for computing the required

probability distributions. Since this computation considers the

whole image, the probability distributions become very reliable.

A Taylor expansion of MI allows the derivation of a cost matrix

that defines the matching cost for each combination of intensities

[23]. This lookup table can be used by any window or pixel-based

stereo matching method. The required initial disparity image can

be set to random values in the beginning and iteratively refined.

Each iteration uses the previous disparity image for computing

a new matching cost lookup table. It has been found [23] that 3

iterations result already in a nearly stable, final disparity image.

In this paper we use the efficient Hierarchical MI (HMI)

method [24], which starts with images that are downscaled by

factor 16 and random disparities. The cost matrix is calculated for

matching, which leads to the first calculated disparity image by

any stereo method. The disparity image is used for recalculating

the cost matrix. The process is iterated a few times before the

disparity is upscaled for serving as initial guess for matching at
1
8
th of the full resolution. Upscaling and matching is repeated

until the full resolution is reached. It should be noted that the

disparity image of the lower-resolution level is used only for

calculating the matching costs of the higher-resolution level,

but not for restricting the disparity range, as this could easily

lead to missing small objects. It has been found [24] that the

hierarchical calculation performs as well as the iterative one.

However, its theoretical runtime overhead is compared to a non-

iterative algorithm (i.e. with another matching cost like BT) just

14%, if the runtime of the stereo method depends linearly on the

number of pixels and disparities.

D. Summary

In the experiments below, we evaluate the parametric costs AD,

BT, Mean/BT, LoG/BT, BilSub/BT, NCC, ZSAD, and ZNCC;

the nonparametric costs Rank/AD, Rank/BT, SoftRank/AD, Soft-

Rank/BT, Census, and Ordinal; and HMI. Of these, NCC, ZSAD,

ZNCC, and Ordinal can only be used in window-based matching.

While we have tested all possible combinations of filters and

AD/BT, here we include only those combinations that give

significant differences.

IV. STEREO ALGORITHMS

The performance of a matching cost can depend on the algo-

rithm that uses the cost. We thus consider three different stereo

algorithms: a local, window-based method (Window), the semi-

global method of [24] (SGM), and a global method using graph

cuts [44] (GC). We implemented each of the matching costs for

each stereo method, except for NCC, ZSAD, ZNCC and Ordinal

which can only be used with the local method.

Our local stereo method (Window) is a simple window-based

approach [9], [10], [33]. We use a square window of 9×9 pixels.

After aggregating the matching cost over the window, the disparity

with the lowest aggregated cost is selected (winner-takes-all).

Subpixel interpolation is performed by fitting a parabola to
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the winning cost value and its neighbors. This is followed by

a left-right consistency check for invalidating occlusions and

mismatches, and invalidation of disparity segments smaller than

160 pixels [45]. Invalid disparity areas are filled by propagating

neighboring small (i.e., background) disparity values. The reason

we perform these post-processing steps is to reduce the overall

errors. One might argue that comparing the “raw” results would

provide a more direct assessment of the different costs. We

have found, however, that the resulting large errors impede a

fair comparison of the costs, while the post-processing greatly

improves the discrimination between the costs.

Our second stereo algorithm is the semi-global matching

(SGM) method [24]. We selected it as an approach in-between

local and global matching. There are other approaches in this

category, e.g., dynamic programming (DP) [33], [46], [47], but

SGM outperforms DP and yields no streaking artefacts. SGM

aims to minimize a global 2D energy function E(D) by solving a

large number of 1D minimization problems. Following [24], the

actual energy used is

E(D) = ∑
p

(

C(p,Dp)+ ∑
q∈Np

P1 T[|Dp −Dq| = 1]

+ ∑
q∈Np

P2 T[|Dp −Dq| > 1]
)

.
(12)

The first term of (12) calculates the sum of a pixel-wise matching

cost C(p,Dp) (as defined in Section III) for all pixels p at their

disparities Dp. The second term penalizes small disparity differ-

ences of neighboring pixels Np of p with the cost P1. Similarly,

the third term penalizes larger disparity steps (i.e., discontinuities)

with a higher penalty P2. The value of P2 is adapted to the local

intensity gradient by P2 = P′
2

|Ibp−Ibq|
for the neighboring pixels p

and q. This results in sharper depth discontinuities as they mostly

coincide with intensity variations.

SGM calculates E(D) along 1D paths from 8 directions towards

each pixel of interest using dynamic programming. The costs of

all paths are summed for each pixel and disparity. The disparity

is then determined by winner-takes-all. Subpixel interpolation is

performed as well as a left-right consistency check. Disparity

segments below the size of 20 pixels are invalidated for getting

rid of small patches of outliers. Invalid disparities are again

interpolated.

Finally, we use a graph-cuts (GC) stereo algorithm as a repre-

sentative of a global method [44], [48], [49]. Our implementation

is based on the MRF library provided by [50]. We tried to use

the same energy function E(D) as for SGM. However, we found

that for GC it gives better results to adapt the cost P2 not linearly

with the intensity gradient, but rather to double the value of P2

for gradients below a given threshold, as proposed in [44]. Like

SGM, GC only approximates the global minimum of E(D), but

it utilizes the full 2D connectivity for the smoothness term in

contrast to SGM, which optimizes separately along 1D paths. Our

GC implementation, unlike Window and SGM, neither includes

subpixel interpolation nor accounts for occlusions.

We manually tuned the smoothness parameters of SGM and

GC individually for each cost for the best performance on the

radiometrically unchanged Tsukuba, Venus, Teddy and Cones

images of the Middlebury test [34]. After the tuning phase, all

parameters were kept constant for all images and experiments.

This approach allows to concentrate on the performance of the

matching cost rather than the stereo method.

V. EVALUATION

In this section, we test all possible combinations of matching

costs with the local, semi-global, and global stereo algorithms

on standard test images without radiometric changes (Section V-

A), on images with simulated radiometric changes (Section V-

B), and on images with real radiometric changes (Section V-

C). Subsequently we investigate and discuss scene dependence

(Section V-D) and cost discriminability (Section V-E). In all of

these experiments, we focus on intensity images. We then explore

the benefit of color matching (Section V-F), and finally compare

the runtime of the different costs (Section V-G).

A. Results on Images without Radiometric Changes

As a baseline for our subsequent experiments, we use the

standard Middlebury stereo datasets Tsukuba, Venus, Teddy, and

Cones [33], [51]. Fig. 2 shows the left images of each set. Since

these images were taken in a laboratory with the same camera

settings and under the same lighting conditions, radiometric

changes are expected to be very small. We use a disparity range

of 16 pixels for Tsukuba, 32 pixels for Venus, and 64 pixels for

Teddy and Cones.

Additionally, we have created new stereo datasets with ground

truth using the structured lighting technique of [51], which are

available at http://vision.middlebury.edu/stereo/data/. In

this paper we use the six datasets shown in Fig. 3: Art, Books,

Dolls, Laundry, Moebius, and Reindeer. Each dataset consists of

7 rectified views taken from equidistant points along a line, as

well as ground-truth disparity maps for viewpoint 2 and 6. In this

paper we only consider binocular methods, so we use images 2

and 6 as left and right input images. Also, we downsample the

original images to one third of their size, resulting in images of

roughly 460×370 pixels with a disparity range of 80 pixels.

We systematically tuned the smoothness parameters of SGM

and GC individually for each cost for the best performance on the

Tsukuba, Venus, Teddy and Cones images. After the tuning phase,

all parameters were kept constant for all images and experiments.

Thus, the radiometrically unchanged Tsukuba, Venus, Teddy and

Cones set forms the training set, while radiometrically changed

versions of them as well as the new data sets are the test sets.

In all experiments, we evaluate the calculated disparity image

by counting the number of pixels with disparities that differ by

more than 1 from the ground truth. In our statistics we ignore

occluded areas, because disparities at occlusions can by definition

not be determined by matching of two images, but rather by

extrapolation, which is not the focus of this paper. Also, our GC

implementation does not consider occlusions, unlike Window and

SGM. For the correlation results we also ignore an area of 4 pixels

(i.e., the radius of the correlation window) at the image border.

Our final error measure is the mean error percentage of all non-

occluded pixels over the used datasets.

Fig. 4 shows, for all costs and stereo methods, the errors in

all non-occluded areas without post-filtering, with post-filtering,

and only near discontinuities of the Tsukuba, Venus, Teddy and

Cones image set. Filtering is not done for GC, since its strong

continuity model prevents small outlier regions. Clearly, for all

costs the errors at discontinuities contribute most to the total error.

Not surprisingly, the errors of the Window method are higher than

that of SGM and GC.

Since many researchers use the BT cost for global methods,

it is a bit surprising that in our test BT performs at the same



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 2. The left images of the Tsukuba, Venus, Teddy, and Cones stereo pairs, which are used as training set.

Fig. 3. The new Art, Books, Dolls, Laundry, Moebius, and Reindeer stereo pairs, which are used as test set.
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(b) SGM

 0

 2

 4

 6

 8

 10

 12

 14

H
M

I

C
e
n
s
u
s

S
o
ft
R

a
n
k
/B

T

S
o
ft
R

a
n
k
/A

D

R
a
n
k
/B

T

R
a
n
k
/A

D

B
ilS

u
b
/B

T

L
o
G

/B
T

M
e
a
n
/B

T

B
T

A
DE

rr
o
rs

 o
f 
n
o
n
-o

c
lu

d
e
d
 p

ix
e
l 
[%

]

non-occl.
disc.

(c) GC

Fig. 4. Mean errors over the Tsukuba, Venus, Teddy, and Cones training image pairs. Shown are the errors before and after post-filtering in all non-occluded
areas as well as the fraction of these errors occurring near depth discontinuities.

level as AD for most tested stereo methods. It turns out that

when evaluating the “raw” matching results of the SGM stereo

method, AD yields in fact more errors than BT in regions with

high-frequency texture. However, most such errors are detected

by the consistency check (before post-filtering), and the missing

disparities are mostly isolated pixels or very small areas that are

easily recovered by interpolation. The Window method supports a

decision by using the neighborhood, which contains many pixels

that can be well matched by AD. Similarly, GC uses a strong 2D

smoothness constraint that helps finding the correct disparities

from the neighborhood as well. Thus, BT performs as expected,

but the assumed disadvantage of AD is easily compensated

by consistency checking and interpolation or strong smoothing

constraints. An exception are Rank filtered images when using

SGM. Here, AD is much less stable than BT.

The mean filter increases the errors near discontinuities and in

case of SGM and GC the overall error. The LoG filter also blurs

discontinuities, but reduces errors at other places, compared to AD

or BT. In contrast, the BilSub filter reduces both errors and is one

of the best cost for all three stereo methods. Although the ZSAD,

NCC and ZNCC costs reduce the overall error compared to SAD

and BT, they have the highest errors near discontinuities. NCC and

ZNCC amplify the effect of outliers in the correlation window,

which appear near discontinuities, due to the multiplication of

intensities.

The performance of Rank and SoftRank is different for the

three stereo methods. In the Window based method, SoftRank

is slightly worse than Rank, while it is better when SGM is

used. The performance is equal for GC. In the case of SGM,

the combination with BT produces much lower errors than with

AD. This may be explained by the property of BT to reduce

the dissimilarity in high frequency regions. This appears to be

more important for SGM, because SGM relies more on the

matching cost as the smoothness constraint is applied along 1D

paths, as opposed to Window and GC, which utilize the full

2D connectivity. As reported in the literature [13], [37], Census

performs better than Rank and is among the best matching costs

for all methods. The ordinal measure, however, performs slightly
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(a) SAD (b) BT (c) Mean/BT (d) LoG/BT (e) BilSub/BT (f) ZSAD

(g) NCC (h) ZNCC (i) Rank/SAD (j) Rank/BT (k) SoftRank/SAD (l) SoftRank/BT

(m) Census (n) Ordinal (o) HMI (p) GroundTruth

Fig. 5. Computed disparity images of the Teddy pair without radiometric transformations using the Window stereo method.

(a) AD (b) BT (c) Mean/BT (d) LoG/BT (e) BilSub/BT (f) Rank/AD

(g) Rank/BT (h) SoftRank/AD (i) SoftRank/BT (j) Census (k) HMI (l) GroundTruth

Fig. 6. Computed disparity images of the Teddy pair without radiometric transformations using the SGM stereo method.

(a) AD (b) BT (c) Mean/BT (d) LoG/BT (e) BilSub/BT (f) Rank/AD

(g) Rank/BT (h) SoftRank/AD (i) SoftRank/BT (j) Census (k) HMI (l) GroundTruth

Fig. 7. Computed disparity images of the Teddy pair without radiometric transformations using the GC stereo method.
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(b) SGM
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(c) GC

Fig. 8. Mean errors over the Art, Books, Dolls, Laundry, Reindeer, and Moebius test image pairs before and after post-filtering in all non-occluded areas,
as well as the fraction of these errors occurring near depth discontinuities.

worse than Rank and Census. Finally, HMI appears not very

successful in combination with the window-based method, but

it performs very well with SGM and GC. The same observations

can be made from the disparity images that are shown in Figs. 5–

7 for the Teddy images. Recall that the GC implementation does

not include a treatment for occlusions; thus, errors left to object

borders should be ignored.

The same experiment has been done with the new Art, Books,

Dolls, Laundry, Reindeer and Moebius image pairs. The result

is shown in Fig. 8. It should be noted that our new images are

more challenging than the standard test sets used in the previous

sections, due to the increased disparity range, lack of texture,

and the more complicated scene geometry. This is reflected in

the higher matching errors: the best methods now have errors of

about 8%, as opposed to about 3% before. However, the ordering

of all costs is the same as the ordering in Fig. 4, except for BT,

AD and HMI in combination with SGM and GC, which perform

worse. We temporarily tried tuning the smoothness parameters

for the new images, but this did not reduced errors visibly. Visual

inspection of the computed disparity images revealed that objects

in front of low textured background tend to be connected together

with BT, AD and HMI in contrast to the best performing costs

BilSub and Census. This makes sense, as the latter concentrate

on small, high frequency texture variations, which are even there

in low textured image parts. Thus, the worse performance is due

to the more challenging scene content.

It may be surprising that many of the costs perform better than

AD and BT on these input images without radiometric differences.

It would rather appear logical that taking the absolute difference

is best if corresponding points have exactly the same value. How-

ever, even though the images have been taken under controlled

conditions, some radiometric differences are inherent, surfaces

are not Lambertian, and the brightness constancy assumption is

still violated. BilSub, Census, and HMI can compensate for these

small differences.

To summarize, the performance of the matching costs can

depend on the stereo method used. Nevertheless, BilSub and

Census are among the best performers with all three stereo

methods. HMI works equally well for the semi-global method

and is best for the global method on some data sets.

B. Simulated Radiometric Changes

In the next experiments, we explore the behavior of the

matching costs on the Tsukuba, Venus, Teddy and Cones training

image set (Fig. 2) with additional radiometric changes. Thus, we

use the radiometrically changed versions of the training set as

test set. First, the global brightness of the right stereo image is

changed linearly (i.e., gain change) and nonlinearly (e.g., gamma

change). The left stereo images remain unchanged. Furthermore,

we apply a local brightness change that mimics a vignetting effect,

i.e., the brightness decreases proportionally with the distance to

the image center. This transformation is performed on both stereo

images. Finally, we contaminate both stereo images with varying

levels of Gaussian noise.

Since there are too many cost variants to show in one plot, we

compare parametric and non-parametric costs separately (Figs. 9

and 10), and then compare the winners with HMI (Fig. 11).

Figs. 9(a)–9(c) shows the behavior of all parametric matching

costs and filters on images with a gain change. The errors of

AD and BT increase very quickly with decreasing brightness.

This can be expected, because the absolute difference is based

on the assumption that corresponding pixels have the same

values, which is violated. The mean and LoG filters as well as

ZSAD can compensate some of the differences, but they also

degrade with higher differences. All three costs are designed for

compensating an offset, but not a gain (i.e., scale) change. The

bilateral background subtraction filter performs best for all stereo

methods. It is only outperformed for s<0.5 by NCC and ZNCC,

which show a very constant performance. The reason for the

decreasing performance of BilSub with increasing differences is

that BilSub, like LoG, mean and ZSAD only compensates for a

constant offset, not for a gain change. NCC and ZNCC are the

only parametric costs that explicitly account for a gain change.

The reason for the sudden increase in errors below s = 0.1 is

that that the transformed images are stored into 8 bits. Thus, low

values of s also cause an information loss.

The same observations can be made for the case of global

gamma changes as shown in Figs. 9(d)–9(f). The only exception

is NCC, which performed in contrast to ZNCC much worse with

increasing gamma values. It seems as if the nonlinear intensity

change can be well compensated by the zero-mean calculation of

ZNCC. In the case of the artificial vignetting effect (Figs. 9(g)–

9(i)), AD and BT again degrade quickly, while all other costs

can maintain their error level. BilSub is the best performing cost

in all cases. The results for additive Gaussian noise with varying

signal-to-noise ratios (SNR) are shown in Figs. 9(j)–9(l)). Higher

SNR numbers mean lower noise. For the Window method the

different costs perform quite similar, probably since summing

over a fixed window acts like averaging, which reduces the effect

of Gaussian noise for all costs. The situation is different for SGM
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Fig. 9. Parametric matching costs on the Tsukuba, Venus, Teddy, and Cones datasets with simulated radiometric changes. All curves show the mean error
in unoccluded areas over the four datasets using stereo methods with post-filtering. The columns correspond to the three stereo methods, while each row
examines a different type of intensity change or noise.
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(d) Global gamma change (Window)
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(g) Vignetting (Window)
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Fig. 10. Non-parametric matching costs on the Tsukuba, Venus, Teddy, and Cones datasets with simulated radiometric changes.
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(d) Global gamma change (Window)
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(e) Global gamma change (SGM)
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(f) Global gamma change (GC)
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(g) Vignetting (Window)
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(h) Vignetting (SGM)
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(i) Vignetting (GC)
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(j) Adding Gaussian noise (Window)
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(k) Adding Gaussian noise (SGM)
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Fig. 11. The best non-parametric and parametric matching costs as well as HMI on the Tsukuba, Venus, Teddy, and Cones sets with simulated radiometric
changes.
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and GC, where LoG and BilSub perform worst at a certain noise

level. Thus, the best parametric matching cost was the BilSub

filter, except for large gain or gamma changes, since it does not

explicitly handle gain changes. It has also problems with high

noise levels. ZNCC has a higher initial error, but its performance

is fairly constant, even with high radiometric changes.

Fig. 10 shows the same experiments with non-parametric

matching costs. It can be seen that all non-parametric costs

compensate the simulated changes quite well. Census is here the

clear winner in all cases with all stereo methods.

In accordance with our findings, we selected BilSub and ZNCC

as the best parametric costs and Census as the best non-parametric

cost. These three costs are shown together with HMI in Fig. 11.

In the direct comparison, Census performed as well as BilSub in

the best case (i.e., without any changes), but the performance

of Census is more constant, even if changes are higher. In

comparison to ZNCC, Census has in all cases a lower error.

The performance of HMI on images with global gain or gamma

changes (Figs. 11(a)–11(f)) is similar to ZNCC in case of Window

and similar to Census in case of SGM and GC. The likely reason

is that Census also reduces the effect of outliers near depth

discontinuities. This is important for a window-based method, but

less so for pixel-based methods like SGM and GC. On images

with the simulated vignetting effect (Figs. 11(g)–11(i)), the error

of HMI increases much faster than that of all other method. The

reason for the rather bad performance of HMI is that its cost

is explicitly based on the assumption of a complex, but global

radiometric transformation. The vignetting effect locally changes

the brightness. BilSub and ZNCC can also only compensate

global changes, but only related to their rather small windows.

Furthermore, Census only requires an unchanged order, which

is maintained. The situation is inverted on images with noise

(Figs. 11(j)–11(l)), where HMI performs best for SGM and GC

and at high noise levels also for Window. One reason for this

is that HMI, unlike any of the other costs, implicitly models the

noise distribution since the matching costs are derived from from

the histograms, which are collected over the whole image.

We have also examined to what extent our results so far might

be influenced by the scene structure, calibration errors, or the

inherent radiometric distortions of the test images. To explore this

issue, we created four new stereo pairs with constant disparities

by simply shifting the left images of the Tsukuba, Venus, Teddy

and Cones pairs (Fig. 2) by half of the disparity range used for

each of the four original pairs. Thus, the resulting stereo pairs

represent a scene with a perfectly fronto-parallel plane onto which

real images are projected as texture. There is no calibration error

and corresponding pixel are radiometrically exactly the same.

We ran our entire set of experiments on these new images, and

found that the behavior of the matching costs in the presence

of different radiometric changes is essentially the same for the

perfectly controlled case with planar images and the standard test

images.

In summary, Census appears overall to be the most robust cost

and it is in many cases the best. HMI can perform equally or

slightly better on the pixel-wise matching methods SGM and GC

and it is more stable in the presence of image noise. On the other

hand, HMI performs worse on images with local changes like

strong vignetting.

C. Real Exposure and Light Source Changes

As noted in the introduction, existing stereo test datasets

are unusually radiometrically “clean” and do not require ro-

bust matching costs necessary for real-world stereo applications

(unless, as in the previous sections, changes are introduced

synthetically). To remedy this situation the six new stereo datasets

(Fig. 3) additionally contain images of all scenes and viewpoints

taken with three different exposures and under three different

configurations of the light sources. We thus have 9 different

images from each viewpoint that exhibit significant radiometric

differences. Fig. 12 shows both exposure and lighting variations

of the left image of the Art dataset.

We tested all combinations of costs and methods over all 3×3

combinations of either exposure or light changes. We found again

that BilSub and ZNCC performed best among the parametric costs

and that Census was the winner among the non-parametric costs.

Here we thus only compare the winning costs, and we also include

BT as “baseline” cost. The total matching error is calculated as

before as the mean percentage of outliers (disparity error > 1)

over all six datasets. The resulting curves are shown in Fig. 13.

Figs. 13(a)–13(c) show the result on pictures with different

exposure settings. The change of exposure is supposed to be

a global transformation, which should be similar to a global

change of brightness, i.e., gain change. The behavior of BilSub,

Census and ZNCC is as expected. Census and ZNCC can almost

fully compensate the differences, while BilSub has problems with

higher differences. We have already observed in Section V-A

that HMI has more problems on this complex data set than the

other costs. Of course, this does not change when introducing

radiometric changes and HMI performs consistently much worse

than Census.

Changing the position and type of the light sources results in

many local radiometric differences. The curves in Figs. 13(d)–

13(f) show that matching images taken under different lighting

conditions increases the error much more than before. However,

the order of performance of all costs remains the same for all

stereo methods. The rather bad performance of HMI can be

expected in this experiment due to the many local radiometric

differences.

Thus, the findings are essentially the same as for the images

with simulated changes. Census performs best with all stereo

methods on images with exposure and light changes. Next is

BilSub, which only has more problems with very large changes.

HMI has more problems even in the case of radiometrically

similar images, which is due to the more complex scene structure.

Also, HMI’s inability to handle local radiometric changes can be

observed again.

D. Variation of Results over Different Scenes

In our experiments so far, we show the mean error over the

training or test set, which measures the average performance over

images of different content and complexity. Additionally, it is an

important question to what degree the performance of a certain

cost depends on the scene content. This is statistically measured

by the variance. However, simply reporting the variance of errors

over all image pairs is not helpful since the variances are always

large due to the widely varying complexity of the scenes. For

instance, on the Venus image pair most costs yield errors of about

one percent, while on the Art images the errors are about ten

percent.
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Exposure 1 Exposure 2 Exposure 3 Lighting 1 Lighting 2 Lighting 3

Fig. 12. The left image of the Art dataset with three different exposures and under three different light conditions. The right images have been captured
under the same conditions, such that 3×3 combinations of matching are possible, separately for different exposures and light conditions.
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(c) Different exposure (GC)
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(d) Different lighting (Window)
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(e) Different lighting (SGM)
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Fig. 13. Results with different combinations of exposure or lighting conditions. The notation i/k indicates the combination of (exposure or lighting) settings,
i.e., that the left image with setting i is matched with the right image with setting k. Thus, 1/1, 2/2 and 3/3 mean that the same settings are used for both
images, which is the radiometrically unchanged case. For each cost we plot the mean error over all six stereo pairs.

To obtain a meaningful comparison of errors across scenes with

different complexity we normalize for each scene by the mean

error over all costs. This is done for each stereo method and

image pair separately. Thus, each error is divided by the mean

error over all costs for the used stereo method and image pair,

causing the normalized error to vary around the mean of 1.0.

Fig. 14 shows that the performance of BilSub is mostly better

than the mean and the performance of Census is always better

than the mean. It also shows that the variation of errors is rather

small for BilSub and Census, regardless of training or test images.

In contrast, the performance of AD, BT and also HMI is rather

wide-spread. They are pretty good for the training images and

rather bad for the more complex test images. This has already

been observed in the previous section.

To summarize, the performance for most matching costs is

fairly independent of the scene. BilSub and Census perform

particularly well on all scenes. However, the performance of some

matching costs are scene dependent, in particular AD, BT and

HMI.

E. Discriminability of Costs

Another interesting issue is the discriminative power of match-

ing costs. From a theoretical point of view, a cost like pixelwise

Census with a 9×7 neighborhood can distinguish at most 62 dif-

ferent combinations. In contrast, the pixelwise absolute difference

can distinguish up to 255 cases in 8-bit intensity images. However,

the 62 different combinations of Census encode valuable high

frequency variations of the local neighborhood. In contrast, it is

probably not important to distinguish between highly differing

intensities as in case of AD.

For an experimental evaluation of discriminability, we use all

ten stereo images with a large disparity range of 256 and count

the number of different responses of each matching cost along

the disparity range. We ignore the left 255 pixels of each image

in order to be able to utilize the full disparity range. Fig. 15

shows the average number of responses for all matching costs.

The highest differences are visible when using the matching costs

pixelwise (Fig. 15(a)). BilSub has the lowest discriminability,

since the filter only leaves small high frequency variations. Census

is second lowest and about half the value as AD. All Rank variants

are highest, because they use a much larger neighborhood of
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Fig. 14. Visualization of variation of normalized errors over the four training and six test image pairs.
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(b) 3x3 Window
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(c) 9x9 Window

Fig. 15. Mean number of different cost values over a disparity range of 256 on ten stereo pairs.

15×15 pixels. The reason that HMI has a higher discriminability

than AD is that HMI distinguishes between pairings of type (i,k)
and (k, i), in contrast to AD.

Fig. 15(b) shows the mean number of different values using a

small 3×3 neighborhood. Costs like BilSub and Census benefit

most from this aggregation and reduce the distance to other costs.

The result of HMI is already saturated due to the used disparity

range of 256. The results of using the full correlation window size

are shown in Fig. 15(c). Almost all costs give different responses

along the whole disparity range. This figure also includes costs

that can only be used with a correlation window.

The Ordinal cost has a surprisingly low discriminative power. In

theory, only 40 values can be distinguished with a 9×9 window. In

practice, it appears to be about half. It would appear logical that

a matching cost with such a low discriminability causes much

more errors for increased disparity ranges. We have compared

the Window method with the Ordinal cost on all data sets for

the standard and the extended disparity ranges, and we found

that the error is only marginally higher in case of using the

extended disparity range of 256. The solution to this apparent

contradiction is that the Ordinal cost compresses a wide range

of mismatches to the same value. Thus, it discriminates only

significant information. This is a good example that discriminative

power is not necessarily correlated with performance.

To summarize, this test shows that the discriminability of the

best-performing costs BilSub and Census is actually lowest. How-

ever, these costs benefit more from aggregation than other costs,

which compensates the apparent drawback. Furthermore, the test

shows that discriminative power is not necessarily correlated with

performance.

F. Benefit of Color Matching

In all experiments up to now, we focused on one radiometric

channel, i.e., intensity. In many applications, however, color

images are available, and one might expect that utilizing color

should increase matching performance. We therefore implemented

the most promising costs for color, by applying them separately

on the red, green and blue components. The final cost for a

pixel is computed by summing the pixelwise costs over the

color components. For BilSub we use the original definition [12]

and compute the radiometric distance in CIELab color space.

Figure 16 shows the comparison of intensity and color matching,

separately for the training and test sets.

Surprisingly, it can be seen that using color results is little

overall benefit. While there is a consistent (but small) improve-

ment for the test images, color actually makes things worse for the

training set in almost all cases. It appears that some of the training

images, in particular Venus and Teddy, have non-uniform color

variations that negatively affect the matching. The intensity-based

costs in contrast seem to be robust to these color variations that

are likely caused by color preprocessing done automatically by

many consumer-grade cameras. Even on the (new) test images

where such color distortions do not appear to be present, the

performance gain for color is rather small. However, note that

a dramatic benefit from using color could only be expected if

locally disambiguating texture was lost when converting from

color to intensity (grey) values. This appears quite unlikely in the

real world, as most color changes also yield intensity changes.

Thus, the benefit one would intuitively expect from using colors

appears small in practice. In addition, note that (unless a multi-
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Fig. 16. Comparison of intensity and color matching on the training and test sets.

sensor camera is employed) each of the color channels has a lower

effective resolution since it is interpolated from the Bayer pattern

on the color sensor.

In summary, the potential benefit from using color information

appears to be limited, and color might be less robust and more

easily affected by the camera than intensity information. A deeper

investigation into utilizing color for matching is beyond the scope

of this paper, but is clearly an important topic for future research.

G. Comparison of Runtime

In addition to the qualitative and quantitative performance of

different matching costs, the runtime can also be an important

issue for different applications. We implemented all methods our-

selves in C. We tried to make them efficient, but without putting

too much effort into optimization. The runtime is measured on

a 2.6 GHz Xeon CPU using the Teddy image pair, which has a

size of 450×375 pixel and a disparity range of 64 pixels. The

runtime includes reading the images and storing the costs in an

array for all pixels and all disparities.

Table I lists all filters and matching costs that are suitable for

pixelwise matching. The table shows the runtime for preprocess-

ing both intensity input images, which depends on the number

of pixels N, and for matching, which additionally depends on

the disparity range D. The most simple and therefore fastest cost

is AD. BT is much slower than AD, because it requires many

comparisons in the innermost loop. The majority of the runtime

for AD is actually used for storing the matching cost in the cost

array, because it has a size of 450×375×64 integer values and is

too large for the CPU cache. The creation of this array is required

for global algorithms. Therefore, local, window based algorithms

could be much faster. However, since the overhead is included in

all measurements, we consider including it to be fair.

TABLE I

RUNTIME OF FILTERS AND PIXELWISE COSTS ON A 2.6GHZ XEON CPU

FOR THE INTENSITY TEDDY IMAGE PAIR.

Method Filter size Preprocessing O(N) Matching O(ND)
C MMX

AD - - - 57 ms
BT - - - 155 ms
Mean 15×15 150 ms AD/BT
LoG 5×5 14 ms 10 ms AD/BT
BilSub 15×15 281 ms AD/BT
Rank 15×15 155 ms 29 ms AD/BT
SoftRank 15×15 271 ms AD/BT
Census 9×7 58 ms 110 ms
MI - 10 ms 66 ms

The runtime of the alternate MMX implementations of the

LoG and Rank filter shows that significant speedup is possi-

ble. However, it also shows that the performance gain depends

heavily on the individual method. The same applies to hardware

implementations. Real-time, hardware implementations have been

reported for Rank and Census [52], [53], but it is unclear if

other methods would benefit in the same way from a hardware

implementation.

The runtime of all filters directly depends on the neighborhood

size. A probably significant speed-up could be possible by re-

cursive or separable implementations that update individual pixel

or combine a horizontal and a vertical pass with 1-pixel wide

windows. However, not all filters can be implemented in this way,

e.g., the separable implementation of BilSub is only approximate,

but real-time performance has been reported [11].

Computation of the Hamming distance for Census has been

done by summing the results of 8-bit table lookups for the

64-bit values. MI appears very fast, because it has only to be

computed once for each image pair. After the preparation, only

a table lookup is required for getting the pixelwise matching

cost. However, HMI needs to be computed hierarchically, which

additionally increases the total runtime in case of Window and

SGM by about 14%. The overhead of GC is lower, since its

internal complexity is higher. Therefore, there is more benefit in

the hierarchical processing, but the method itself is much slower.

Table II shows the time for computing the window based

matching costs using a 9×9 window. The runtime can be sig-

nificantly reduced and made independent of the window size W

by using a recursive implementation, as reported in the literature

[9], [10], [54], but we did not do that. For the ordinal measure,

we tried an efficient implementation that sorts the intensities of

both windows using quicksort, but maintains a linking between

the original and sorted pixels for fast computation of the cost. A

further significant speed-up is expected by a recursive implemen-

tation using a heap-tree as data structure [14].

TABLE II

RUNTIME OF WINDOW-BASED COST COMPUTATIONS ON A 2.6GHZ XEON

CPU FOR THE INTENSITY TEDDY IMAGE PAIR.

Method Matching O(NDW )
SAD 1.9 s
ZSAD 4.1 s
NCC 2.6 s
ZNCC 4.8 s
Ordinal 130.4 s

We give the runtimes of our implementations for showing the
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differences in computation time of all matching costs. The actual

runtimes should be taken with a grain of salt, since running the

same code on different CPU architectures will not only scale all

timings, but may change their relative sizes as well. Furthermore,

some implementation tricks may increase the speed significantly.

Nevertheless, the runtimes serve as upper bounds, and we feel that

the order of the given runtimes reflects the expected computational

burden of the individual methods.

VI. CONCLUSION

We have compared 15 different cost functions for stereo match-

ing on images with simulated and real radiometric differences, and

also on radiometrically “clean” images. Most costs were evaluated

with three different stereo algorithms: a local correlation method,

a semi-global matching method, and a global method using graph

cuts. We found that the performance of matching cost functions

can depend on the stereo method that uses it.

We identified four methods of particular interest. First, fil-

tering with bilateral background subtraction (BilSub) followed

by the sampling insensitive absolute difference performed in all

experiments with all stereo algorithms as one of the best costs if

radiometric changes are not too severe. While it only compensates

for a local change of offset, it does not blur discontinuities as most

other filters and costs do.

Second, for window-based matching, we found ZNCC to be

better than BilSub in the case of strong radiometric changes,

because ZNCC compensates for local gain and offset changes.

However, it had the highest error of all costs at discontinuities,

which makes BilSub to be more attractive if radiometric differ-

ences are expected to be moderate.

Third, Census performed very well throughout all experiments

with simulated and real radiometric differences, except in the

presence of strong image noise. Like all non-parametric matching

costs, Census tolerates all radiometric distortions that do not

change the local ordering of intensities. It was consistently better

than ZNCC and in almost all cases better than BilSub.

Finally, we tested pixel-wise matching using Mutual Informa-

tion, which was calculated hierarchically over the whole image

(HMI). It compensates for complex global radiometric relations

between the input images. It performed slightly better than Census

in case of low radiometric changes and pixel-wise matching using

the semi-global or global stereo method. It also performed best

in case of strong image noise. However, HMI showed problems

with large local radiometric differences, caused for example by

the vignetting effect and by non-Lambertian surfaces and lighting

changes. Promising directions for future research include creating

local variants of MI that can handle such local changes.

We observed that costs that can compensate for strong radio-

metric changes do also well on images with little or no appar-

ent radiometric changes. Thus, radiometrically tolerant matching

costs are also useful in applications where large radiometric

differences are not expected.

We also performed experiments to evaluate the variance of

results and the importance of cost discriminability, and found that

the cost performances are fairly independent of the scene and are

not necessarily correlated with discriminative power.

We also investigated the potential benefit of using color infor-

mation, which appears to be rather small, and in some cases color

is even detrimental. This is clearly an important topic for future

research.

In summary we found that BilSub performs consistently very

well for low radiometric differences; HMI is slightly better as

pixel-wise matching cost in some special cases and for strong

image noise; and Census gives the best and most robust overall

performance on all test sets with all stereo algorithms.
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