

Überblick über die Degradationsmechanismen in PEFC

M. Schulze, K.A. Friedrich, A. Haug

Folie 1 28th September 2009

Degradation of PEFC

- Degradation limits the life time of fuel cells
- Understanding of degradation processes insufficient
- Knowledge about the influence of the degradation processes insufficient

Motivation for using diagnostic tools

- Understanding of the degradation processes in fuel cells in detail
- Inhibition of degradation processes
- Influence of the operation conditions on the conditions inside the fuel cell

PEFC long term experiment

- The electrochemical performance decreases at constant load
- After shut-down and drying the initial performance can be achieved but decrease of performance is accelerated

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Cell voltage at 500 mA/cm²

in der Helmholtz-Gemeinschaft

28th September 2009

Diagnostic tools at DLR, examples:

Physical methods (ex-situ diagnostics)

- Scanning Electron Microscopy (SEM/EDX)
- X-Ray Photoelectron Spectroscopy (XPS)
- X-Ray Diffraction (XRD)
- Porosimetry with mercury intrusion & nitrogen adsorption
- Temperature Programmed Desorption / Reduction / Oxidation (TPD / TPR / TPO)

Electrochemical methods (in-situ diagnostics)

- ➤ V-i characteristics
- Electrochemical Impedance Spectroscopy (EIS)
- Locally-resolved measurements (e.g. current density distribution)

Diagnostic tools at DLR

Problems with various diagnostic methods

Ex-situ methods:

- Destructive methods
- Measurements can only be performed after operation
- Correlation of electrochemical behavior and analytical data is often unclear

In-situ methods

- Interpretation of the data needs models, which cannot be derived from the measurement data
- > The influence of various parameters cannot be distinguished in each case

\Rightarrow Combination of ex-situ and in-situ methods

Failure modes, degradation processes and stressors Catalysts / Reactive Layers

Degradation process	Qualitative effect on the fuel cell	Assumed mechanisms	Stressor
Structure change of catalyst: Agglomeration of catalyst particles	Loss of the dispersive dis-tribution / loss of specific surface catalyst area-→ loss of electrochemical performance	Ostwald ripening, dissolution and re- deposition	Potential and liquid water
Oxidation of the carbon support of the catalysts	Thinning of electrodes / influence on performance not clear	Local electrochemical ele-ments with corrosion potential	critical states: open potential, fuel starvation
Alteration of the com- position of platinum alloy catalysts	Change of the reaction mechanism → loss of electrochemical performance	Potential depending dissolution of alloy materials	Potential depending dissolution of alloy materials

Failure modes, degradation processes and stressors Catalysts / Reactive Layers

Degradation process	Qualitative effect on the fuel cell	Assumed mechanisms	Stressor
Poisoning of catalysts by dissolved species from other components	Loss of catalytic activity → loss of electrochemical performance	Change of the surface properties and composition	Potential, liquid water phase
Poisoning of the catalyst by fuel/air components	Loss of catalytic activity → loss of electrochemical performance (irreversible/ reversible depending on the poisoning component)	Change of the sur- face properties and composition \rightarrow blocking of active sides	Impurities
Movement of the catalyst material in the electrical field/loss of electro- chemical performance	→ loss of electrochemical performance	Dissolution and re- deposition of the catalyst and diffu- sion of ions	Potential, liquid water, electrical field
Thinning of the reactive layer	Deterioration of mass transport properties	Carbon corrosion by local undersupply	

Failure modes, degradation processes and stressors Catalysts / Reactive Layers

Degradation process	Qualitative effect on the fuel cell	Assumed mechanisms	Stressor
Loss of particles in reaction layer	Not clear, maybe loss of ac- tive surface area/decrease of the Pt utilization / loss of electrochemical performance	Mechanical Erosion	High flow rates High content of water (water droplets)
Partially decomposition of the PTFE in the reactive layer	Loss of hydrophobicity / altered water balance		Liquid water, Elec- trochemical reaction
Delamination from the membrane	Increase of contact resistance / loss of electrochemical performance	Changes of membrane dimension	wet/dry cycles mechanical stress
Delamination from the GDL	Increase of the contact resistance / loss of electro-chemical performance	Mechanical stress	Maybe induced by formation of liquid water at the inter- face

Failure modes, degradation processes and stressors Gas diffusion layer

Degradation process	Qualitative effect on the fuel cell	Assumed mechanisms	Stressor
Loss of particles from the micro porous layers	Change of the structure→ alteration of the transport properties in the GDL	Mechanical erosion	Mechanical stress
Partially decomposition of the PTFE	Loss of hydrophobicity / alternated water balance	Decomposi- tion of PTFE	Liquid water

Degradation in PEFC

X-ray photoelectron spectroscopy

für Luft- und Raumfahrt e.V.

in der Helmholtz-Gemeinschaft

Degradation of the platinum catalyst

reaction layers in MEAs, prepared by the DLR dry spraying technique, normal operated

Pt - particle on the backside of the cathode gas diffusion layer after operation

Gas diffusion layer and flow fields were partially flooded by the reaction water during operation

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

nearly unchanged

agglomeration of Pt

Using of electrochemical impedance spectroscopy

- Determination of the individual polarisations for the
 - anode reaction
 - cathode reaction,
 - membrane resistance

More detailed information about the time dependence and quantification of the individual contributions to the total polarization

Change of cell voltage during constant load at 500 mA cm⁻²

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

States Contract Harris

Degradation in PEFC

Quantification of voltage losses during degradation by EIS

Degradation processes

- The main irreversible loss of electrochemical performance is on the cathode, e.g. induced by the alteration of the catalyst
- Both electrodes have a reversible loss of the electrochemical performance, more significant on the anode
- The reversible loss is the consequence of changed transport processes, e.g. induced by the alteration of PTFE
- The degradation processes influence not only the performance but also the fuel cell behavior
- The influence of the operating conditions must be determined and understood

Folie 16 28th September 2009

Acknowledgement of the Financial Support by EU Project DECODE

Thank you for your Attention

Folie 17 28th September 2009

DECODE

PEFC long term experiment

Nafion 1135 Pt 0.2 mg/cm² each electrode T = 70 °C p_{H2} = 2 bar, dead end p_{air} = 2 bar, λ_{air} = 2 i = 300 mA/cm²

- Feuchte hat sehr signifikanten Einfluss auf die Degradation
 - höhere Feuchte beschleunigte Degradation
 - PTFE Degradation beschleunigt
 - Katalysator Aglommeration beschleunigt
- Bei intermetierenden Betrieb ist die Degradationsrate geringer
- Veränderung der Hydrophobizität auch im Intermetierenden Betrieb → Veränderung der Kennliníe (Hysterese)

XP spectra of a new and an used DMFC anode

x4 x4 used electrode new electrode Ru3d_{5/2} C1s_{Carbon} Ion etching time 0 s C1s_{Carbon} Ru3d_{3/2} 60 s Ru3d_{3/2} 300 s 3600 s C1s_{Satellite} Ru3d_{5/2} Intensity $\text{C1s}_{\text{Satellite}}$ Intensity $C1s_{\text{PTFE}}$ $C1s_{_{PTFE}}$ 300 290 280 270 300 295 290 285 280 275 270 Binding energy / eV Binding energy / eV

reduction of the Ru concentration on the surface

> decomposition of PTFE

TPR-measurements of DMFC-MEA

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

- TPR-spectrum of the MEA is determined by the PtRu-catalyst
- The spectrum is changed after the electrochemical stressing
- ➤ The TPR-spektrum of the used DMFC-MEA indicates an enrichment of Pt on the surface

Veränderungen von DMFC-Anoden

- Veränderung des Katalysators
 - Ruthenium wird aus der Anode gelöst und wandert durch die Membran zur Kathodenoberfläche
 - Die chemischen Eigenschaften des PtRu verändern sich in Richtung derer eines Pt-Katalysators
- PTFE wird auch in den DMFC-Anoden teilweise zersetzt

SEM /EDX investigation of the silicon deposition in the membrane-electrode-assembly

Folie 23 28th September 2009 SEM /EDX investigation of the silicon deposition in the membrane-electrode-assembly

Folie 24 28th September 2009

XPS investigation of the silicon deposition on the anode

DLR

Folie 25 28th September 2009

Conclusions

- The diagnostic and analytic tools can use in order to support the development of components
- The diagnostic tools allow to investigate the conditions inside the cell
- The combination of various diagnostic and analytic methods yields a better understanding of the fuel cell processes
- Diagnostic tools can used for controlling fuel cells in order to optimize the performance as well as to avoid negative operation conditions

Degradation of the platinum catalyst

reaction layers in MEAs, prepared by the DLR dry spraying technique

on top: new electrode

middle: **anode** reaction layer of an used MEA, normal operation

bottom: **cathode** reaction layer of an used MEA, normal operation

left side: 20000 fold magnification right side: 100000 fold magnification

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Folie 27 28th September 2009

Pt - particle on the backside of the cathode gas diffusion layer after operation

Gas diffusion layer and flow fields were partially flooded by the reaction water during operation

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Pt - particle on the backside of the cathode gas diffusion layer after operation

Gas diffusion layer and flow fields were partially flooded by the reaction water during operation

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Investigation of Degradation Processes

XPS-Analysis

- PTFE degrades
- Hydrophobicity decreases
- Water ballance changes
- Pore system will be flooded

Degradation processes

- PTFE changes induced by the electrochemical stressing in the start-up procedure as well as during long term operation
 - Consequently, the hydrophobicity alterates
 - The alteration of the PTFE and of the hydrophobicity is more significant at the anode
- The platinum catalyst alterates during fuel cell operation
 - A diffusion of platinum can be observed
 - On the cathode the platinum catalyst agglomerates
 - Flooding of the electrodes by water enhances the agglomeration of the platinum catalysts

Bode Plot of EIS measured during PEFC operation at 500 mAcm⁻²

Variation of R_c during PEFC operation at 500 mA cm⁻²

Variation of R_A during PEFC operation at 500 mA cm⁻²

