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ABSTRACT:  

As more and more information extraction techniques emerge, there is a growing demand on 
addressing the reliability of the produced results. The prominent examples for initiatives addressing 
this issue are the CEOS CalVal activities, where calibration and validation of satellite imagery and 
related products is conducted by international space agencies. In the field of airborne hyperspectral 
remote sensing, the JRA2 initiative within the FP7 EUFAR project focuses on development and 
harmonization of quality indicators for pre-processed data and selected thematic products. 
In this paper, examples are presented on how to address the reliability of a Multiple Endmember 
Spectral Mixture Analysis (MESMA) approach. 
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1. INTRODUCTION  

 
Linear spectral unmixing provides highly 
accurate results if all end-members (EM) are 
known, and if the spectral variability of the 
EMs is included in the mixture model (e.g., 
GARCIA-HARO et al., 1999).  
 
But in real life, not all EM are known, and, 
when using image-derived EMs, some EMs 
are already mixtures themselves. When 
applying recent EM derivation approaches like 
Sequential Maximum Angle Convex Cone 
(SMACC, see GRUNINGER et al., 2004) on 
synthetic test scenes, about ~70% of all EMs 
can be automatically retrieved, but also 1 in 10 
EM is a mixed spectrum, or an erroneous pixel 
(e.g., saturated or affected by noise) 
(BACHMANN, 2007). Similar to supervised 
classification techniques, errors in the training 
data (i.e., the EMs) result in a significantly 
reduced accuracy of the final product. 
Also some combinations of EMs result in an 
ill-conditioned mixing model.  

A further general limitation arises from low 
local view angles (BACHMANN et al., 
2007b).  
 
As a result, the overall accuracy of spectral 
unmixing approaches is reduced, and the 
accuracy does vary over the scene. Thus to 
fulfill the requirements of CEOS as well as 
EUFAR JRA2, a general reliability measure as 
well as per-pixel quality indicators are 
valuable for the end-user. 
 
 

2. THE µMESMA APPROACH 

 

An improvement to a standard spectral 
unmixing are Multiple Endmember Spectral 
Mixture Analysis (MESMA) approaches. Since 
a large number of EMs and thus the spectral 
variability of materials can be included in the 
mixing model, the retrieved abundances are 
usually more accurate (see e.g., GARCIA-
HARO et al., 2005, LOBELL et al., 2001, 
ROBERTS et al., 1998). 



The µMESMA approach is an automated 
MESMA which was developed for the retrieval 
of subpixel ground cover fractions in semi-arid 
regions. Quantitative cover estimates are 
derived for photosynthetic active vegetation 
(PV), non-photosynthetic active vegetation 
(NPV) and bare soil. In the following, selected 
features of this approach which increase the 
reliability and address the quality of the data 
product are described. A full description of 
µMESMA is given in BACHMANN (2007). 
 
2.1 Addressing numerical problems 

 
The well-known basic equation of the linear 
mixture model can be formulated as  

Ax = b 
where A is the m*n EM-matrix, x is the 
abundance vector for n EMs, and b the 
measured spectrum in m bands. 
 
For hyperspectral data where m >> n, solving 
for x is an overdetermined problem. This is 
usually solved in a least-squares approximation. 
E.g., as a simple case, by using the pseudo-
inverse 

x = A+b   with   A+ = (ATA)-1 AT 
 
Since this and other solving algorithms include 
matrix inversion, linear dependencies between 
spectrally similar classes often result in 
numerical problems, i.e. an ill-conditioned 
problem (e.g., BOARDMAN & GOETZ, 1991). 
This problem is even more prominent when 
increasing the number of EMs, since there is a 
higher probability of such cases with linear 
dependencies. Thus µMESMA includes a first 
check of the condition number κ of the EM-
Matrix A: 

κ = ||A|| ||A-1|| 
where || denotes the Euclidean L2-norn. 
Consequently all EM combinations which 
would result in an ill-conditioned problem are 
excluded, ensuring that the mathematical 
requirements for meaningful results are met.  
 
 
 
 
 

2.2 Selecting reasonable mixture models 

 
While other MESMA approaches select the EM-
model with the lowest unmixing RMS error, the 
µMESMA approach uses a combined model 
selection criteria (see BACHMANN et al. 
(2004) for a more detailed description).  
The approach includes a residual analysis 
(GILLESPIE et al., 1990) where spectral 
features in the residual spectra are automatically 
detected and identified using a knowledge-based 
approach. When diagnostic spectral features are 
still present in the residual, then a part of the 
signal can not be modelled with the current 
EMs. As consequences, the retrieved 
abundances are likely to be incorrect, and 
another EM model should be applied for 
unmixing. 
Second, information from the spatial 
neighbourhood is also included in the unmixing 
process. Since the soil type –and thus the soil 
EM– is rather unlikely to change between 
adjacent pixels, a second unmixing iteration is 
conducted where the dominant soil EM within a 
spatial neighbourhood is used. If the unmixing 
error is not significantly increased, the mixing 
model with the dominant soil EM is used. 
 
When using this methodology including 
information form the spatial neighbourhood, as 
well as a taking advantage of hyperspectral data 
for the identification of materials in the residual, 
the stability of unmixing results is significantly 
increased. This was found to be of high 
importance, especially when incorrect EMs are 
included in the EM model (BACHMANN, 
2007). 
 
2.3 Addressing view angle effects as general 

limitations 

 
An often neglected source of uncertainty on 
estimated cover percentage is caused by local 
view angle effects, where parts of bare soil 
patches are not visible due to vegetation 
blocking the sensor line-of-sight (see Fig. 1). 
When estimating the fractional cover of pixels 
far off-nadir or at slopes pointing away from the 
sensor, plant cover can be overestimated by 
more than 50%, seriously decreasing the 



accuracy. This problem is inherent when using 
wide field of view (FOV) sensors, or satellite 
sensors tilted off-nadir. This issue is addressed 
in more detail in BACHMANN et al. (2007b). 

 
Figure 1: Schematic illustration of line-of-sight 

blocking. α denotes local incidence angle, β the 

slope, δ the instantaneous field of view of the sensor. 

 
2.3 Reliability score and quality indicators 

 
The first step required for estimating the 
reliability is the identification of error-prone 
pixels. The Linear spectral unmixing approach 
already offers a simple measure for “goodness 
of fit”, i.e. the model RMSE. Since the RMSE is 
not always linked to the error in abundances 
(e.g., Garcia-Haro et al., 2005), an improved 
detection of pixels which are likely to be error-
prone is included in µMESMA, which is 
formulated as a combined error score. This 
includes a residual analysis as described in 
section 3.2, as well as a weighted model RMSE. 
 
Also the level of agreement between the 
unmixing-derived abundances and abundance 
values derived by empirical regression models is 
included. The baseline for this approach (similar 
to LOBELL et al., 2001) are band indices which 
parameterize diagnostic absorption features 
(e.g., clay absorption at 2.2 µm for soils, or 
holo-cellulose at 2.09 µm for dry and dead 
vegetation). Although the accuracy of these 
regression models is lower than spectral 
unmixing (R2 values ranging from 0.5 for dry 
vegetation coverage to 0.7 for soil coverage for 
regression models), large discrepancies between 
both approaches indicate a lower confidence in 
the results.  

In addition, critical local incidence angles are 
included in the score, as well as the per-pixel 
quality flags from the pre-processing (see 
BACHMANN et al., 2007a). 
Equally important as the calculation of the 
quality indicators is the communication of a 
combined quality indicator in a user-friendly 
form. For this purpose, an additional data layer 
with a per-pixel quality flag is produced within 
µMESMA. An example is shown in Fig. 3. 
 
 

3. RESULTS 

 
In order to provide a “typical accuracy”, a large 
number of simulations were calculated based on 
the field spectral libraries (e.g., PREISSLER et 
al., 1998, ELVIDGE, 1990, and various 
measurements by DLR in Spain and Namibia). 
Depending on the scenarios used, the mean error 
of µMESMA was found to be in the range of 
5% - 10% abundance absolute, with R2 between 
0.65 and 0.85 (significance p < 0.0005). 
It is worth noting that similar to other MESMA 
approaches, about 50% of simulated models 
could be unmixed with an error of less then 3% 
abundance absolute, while single errors could 
range up to 60% abundance absolute. This 
variability emphasizes the need for a per-pixel 
reliability score. 
 
For the real-world test case Capo de Gata (see 
BACHMANN et al., 2004), the mean error on 
ground cover estimates was 9.6% abundance 
absolute, with R2 values between 0.76 and 0.86 
(significance p < 0.005), and again with single 
errors up to 20% abundance absolute. Examples 
for abundance maps are shown in Fig. 2a, b & c. 
 

 
Figure 2a: Quantitative cover for PV [%].  



 
Figure 2b: Quantitative cover for NPV [%]. 

 

 
Figure 2c: Quantitative cover for soil [%]. 

 
 

 
Figure 3: Reliability score image.  
 
 
When investigating the influencing factors 
leading to these results, the most important was 
the usage of MESMA instead of simple linear 
unmixing. Thereby the mean error could be 
reduced by ~4% abundance absolute (30% - 
50% relative). Also highly important are the 
appropriate selection of EMs (~4% abundance 
absolute, 20% - 40% relative, with significant 
larger values when wrong EMs are included), 
and the model selection criterion (~3% 
abundance absolute, 20% - 25% relative). The 
model selection criterion is of increased 

importance when not all EM were found. 
Additional factors are the choice of the solving 
algorithm, an empirical correction of local view 
angle effects, and improved approaches for 
including a shade component. 
 
 

4. CONCLUSIONS 

 
Summarizing, there is a need for quality 
indicators in pre-processing chains (as 
addressed in the EUFAR JRA2 task 2), as well 
as in thematic products (as in EUFAR JRA2 
task 4 and CEOS CalVal). In order to fulfill 
such a demand, it is necessary to identify and –if 
possible– eliminate errors and sources of 
uncertainty. The remaining errors need to be 
quantified by providing typical accuracies. 
These errors and limitations have to be 
communicated to the end-user.  
Within the µMESMA approach, effort was put 
in increasing the general unmixing accuracy, on 
providing typical accuracies for a wide range of 
scenarios, and on explicitly addressing the 
quality for each pixel by including a reliability 
score image. Thus the end user of the thematic 
abundance maps has a better insight in the 
quality   
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