

CFRP Status of Application in Airframe Structures and Future Development Process

Martin Wiedemann

24th June 2009

Evolution of CFRP Application

CFRP Potential in Airframe Structures

CO2-Reduction New Short Range Aircraft

Airframe Development Process

CFRP Production Process Chain

Examples of Dependencies in CFRP Structure Development

Design appropriate for CFRP

in der Helmholtz-Gemeinschaft

Fiber Strength and Strain Length compared to Metal Alloys

Design appropriate for CFRP

Laminate Strength and Strain Length compared to Metal Alloys

Design appropriate for CFRP

Isotropic Laminate Strength and Strain Length compared to Metal Alloys

Design appropriate to CFRP e.g. Semimonocoque-Panel with Double Curved Stringer

in der Helmholtz-Gemeinschaft

Examples of Dependencies in CFRP Structure Development

e.g. "Spring-In" in LC frame – Requirements for Production

Actual process conditions lead to cost distribution of about 2/3 for frame production and 1/3 for frame assembly.

Typical cost drivers in production

- → High failure rate due to unacceptable contour mismatch
- → High failure rate due to production problems (voids, laminate misalignment)
- → Material cost
- → Manual process, few automation

Typical cost driver in assembly

→ Fitting effort due to tolerance mismatch (Shim)

Main problem:

Proper consideration of "Spring-In" effect in tolerance management

e.g. "Spring-In" in LC frame – Challenge

Differences "as-designed" versus "as-build":

- Change of radius in angles flange to web $(\Delta\alpha_1, \Delta\alpha_2)$
 - → Bending load in flanges caused by assembly

- 2) Change of global frame radius (r₃)
 - → Contour gaps which cannot be compensated without shim
 - → No reference points for assembly possible

Global "Spring-In" Effect

 r_3

As-Designed according

to tool measurement

$$\alpha_{Soll1} = 90^{\circ}$$

$$\alpha_{\text{Soll2}} = 90^{\circ}$$

$$r_{Soll3} = 1975 mm$$

As-Built (average) according to measurement final frame (COFU I2)

$$\alpha_1 = 88,75^{\circ} \quad (\Delta \alpha_1 = 1,25^{\circ})$$

$$\alpha_2 = 89,67^{\circ} \quad (\Delta \alpha_2 = 0,325^{\circ})$$

$$r_3 = 1963,5mm \quad (\Delta r_3 = 11,5mm)$$

e.g. "Spring-In" in LC frame - Theory

Analysis of "Spring-In" deformation in the corner radii frame to web after introduction of the modified thermal expansion coefficients:

"As-Designed" in frame outer flange α_{Soll1} =90°, measured "As-Built" α_{1} =88,75°

	V2 T _{gel} =180°C	V7 T _{gel} =110°C	α_1 α_2 α_2 α_2
2D + 3D simulation of the radii	α _{1s} =88,75°	α _{1s} =89,39°	

Examples of Dependencies in CFRP Structure Development

Sizing appropriate to Quality Control Techniques

e.g. consideration of undetectable imperfections in sizing

Old Squirter-Tool 4 Channels

Examples of Dependencies in CFRP Structure Development

Sizing appropriate for Production Tooling

e.g. mechanism to produce manufacturing driven imperfections

Examples of Dependencies in CFRP Structure Development

Producible Design

e.g. surround structure for fuselage cutout

- 1) Selected Design Concept: Cutout Frame as Ladder Structure
- 2) Manufacturing Concept Target: Lower manuf. cost

+ Lighter Easier to assemble Better for repair

High manufacturing cost

Simplified

demonstrator to validate the concept

Producible Design Examples for Improvement

Small Frame-Track mould New forming and aircast concept Silicone Core with constant thickness Massive mould for inner flange of

in der Helmholtz-Gemeinschaft

frames and intercostals

Results

- **★Reduction in preforming >50%**
- **⊀** Reliable filling concept integrated in the tooling
- **⊀Cheaper Tools**
 - → Plug and Play kernels
 - → Number of kernels reduced
 - Demoulding simplified
 - → Reusable kernels
 - → Rework minimized

⊀ Reduction in Assembly

- Shimless concept (shape to adjacent) parts given by the female tooling)
- → Spring-in pre-calculated and anticipated in tooling
- > Number of single parts and attachments significantly reduced

Develop New Aircraft (DNA) Process

and contributing disciplines...

Concepts of concurrent development process today

Definition Developmt. Production Assembly **Feasibility Series** Concept

> Too many people working concurrent on one major subcomponent not efficient

> > **Sub-structuring required**

Substructuring by Parts? Small team with all relevant disciplines responsible for one part.

Preferred Manufacturing Solution

Substructuring by Disciplines? Earlier involvement of relevant disciplines and regular DPMs.

Preferred Engineering Solution

Substructuring by Components? Component build teams for fully equipped sections for assembly.

Preferred FAL and Programs Solution

Proposed CFPR Development Process: Iterative

Feasibility Definition Developmt. Production Assembly Concept **Series** One CFK Core Team with design responsibility and budget (Materials&Process, Stress, Design, Cabin, System Installation, Manufact. Engineering, Quality, Design to Cost, Automation,... Assembly eve/o/ time Definition eve/o/ Assemb/ Definition Definition Concept

We take care for full process chain in CFRP structures

Production Technologies for High Performance Structures

NDT

DLR Center for Lightweight Production Technologies

MUNCHEN

"In light of the fact that humanity is not able to learn from past mistakeswe can not afford to make mistakes in the future."

Ernst Ferstl

