
A Generic Simulink Model Template
for Simulation of Small Satellites

Axel Berres (1), Marco Berlin (1), Andreas Kotz (2), Holger Schumann (3),

Thomas Terzibaschian (2), Andreas Gerndt (3)

(1) German Aerospace Center (DLR), Simulation and Software Technology,

Rutherfordstr. 2, 12489 Berlin, Germany

(2) German Aerospace Center (DLR), Institute of Robotics and Mechatronics,
Rutherfordstr. 2, 12489 Berlin, Germany

(3) German Aerospace Center (DLR), Simulation and Software Technology,

Lilienthalplatz 7, 38108 Braunschweig, Germany

ABSTRACT

This paper presents a template architecture for a straightforward specification of small
satellite missions by means of a domain specific language. Furthermore, the process to
transform this model to a platform-dependent, executable simulation is depicted. As a
first prototype environment, Simulink has been selected. The design adaptation during
the developing process is illustrated using the power system of the OOV-TET satellite.

1. INTRODUCTION

Assembling real satellite prototypes is time-consuming and expensive. To avoid high
evaluation costs which come along with such kind of design approach, the functional
design of a satellite and the interdependencies of its subsystems may also be simulated.
This allows the assessment of many design variations to obtain the optimum solution for
a given mission scenario. Moreover, simulations are also applied in education to impart
the knowledge about the functionality of satellite systems.

In the field of small satellite development, however, simulations are seldom used. The
main reason for that is that each small satellite comes with its own unique design.
Creating a simulation framework which merely fits to this special architecture is in
general not feasible. But in recent years, a number of small satellites series has been
developed. As reducing costs becomes the essential issue to be successful on this
growing market, the usage of simulation approaches even in this field becomes more
and more important. Nowadays, many companies and research institutes are working on
generic frameworks which support the reuse of already developed simulation modules.
Engineers do not have to re-develop the core simulations from scratch again and again
but can now concentrate on the actual mission objectives.

In this paper, we describe a domain specific template for the Simulink simulation
environment [1], which can be used to design an arbitrary series of small modular
satellites. Only the content of the components of the template has to be adapted to the
mission in mind.

2. SMALL SATELLITE SERIES

The basis for the development of such a universal Simulink template is the definition of
a common satellite architecture for small satellite series. Therefore, in a first step, we
analyzed a couple of typical examples of small satellites which are classified by their
mass as pico (≤1kg), nano (≤10kg), or micro (≤100kg) satellites.
The amateur satellite czCube [2] served as an example for the first class and complies
with the CubeSat specification [3]. The main objective of this project is to verify the
components needed for such tiny satellites.

magnetometer

electromagnetic
coils

sun sensors

ADCS

C&DH

Communication

Anntennas Transceiver

solar cells

batteries
Power

Power

computation power
and data storage

Payload

solar sail tether camera

Figure 1 czCube architecture [2]

The czCube architecture shown in Figure 1 consists of an Attitude Determination
Control System (ADCS,) a Communication, a Power, and a Command and Data
Handling (C&DH) system. The ADCS system inherits sun sensors, magnetometers, and
electromagnetic coils to determine and control the satellite attitude. To communicate
with ground stations the czCube has two antennas and a transceiver as Communication
System. Necessary power is generated via solar cells, stored in batteries, and distributed
to the consumers by the power subsystem. All satellite components generate
housekeeping data and measured values, which will be stored and send to the ground
stations by the Command and Data Handling system.
However, the purpose of the czCube is to verify components, which therefore serve as
payload. The Cubesat verifies a solar sail and a tether. For this verification a camera is
on board to take pictures of the deployment of tether and solar sail.

Figure 2 HAUSAT-2 architecture [4]

A nano satellite is represented by HAUSAT-2, a Korean education satellite built by
SSRL (Space System Research Laboratory) of the Hankuk Aviation University. Its

mass is 25 kg. Similar to czCube, the Electrical Power System (EPS) shown in Figure 2
uses solar cells and batteries for power supply. The command and data handling
(C&DH) subsystem offers the Telemetry & Command Assembly (TCA) and an On-
Board Computer (OBC) needed to perform tele-commands and on orbit data handling.
The Communication system consists of a transceiver and antennas. A magnetometer, a
pitch momentum wheel, sun sensors, a GPS module, and magnetic torquers establish the
attitude determination control system (ADCS), which stabilizes the satellite in three
axes. The objectives of this satellite “… are to study the scope of activities and ecology
of animals using Animal Tracking System (ATS) and collect space environment data of
mission orbit from Electric Plasma Probe (EPP) …” [4]. Theses two systems and a
Total Ionizing Dose (TIF) meter are declared as payload.

board computers

Payload

magnetic torquers

magnet field
sensors

GPS

IMU’s

sun sensors

reaction wheels

AOCS

solar generator

PCDUs

batteries

Power OBDH

Communication

Anntennas Transceiver

Figure 3 OVV-TET architecture

As a micro satellite proxy, we evaluated the 120 kg OOV-TET platform. The goal of
this project is to design a platform for verification flights for the evaluation of newly
developed techniques and technologies for space missions. All essential system
components which could be identified for the operation of the other small satellite
families can also be found here and are shown in Figure 3. These are for instance a
power, an OBDH, an AOCS, and a communication system. As the payload is an
arbitrary technology which is supposed to be evaluated, only interfaces to the satellite
bus are specified.

3. A SIMULATION TEMPLATE ARCHITECTURE

Based on the experiences with the described satellite systems, we have developed a
simulation template architecture suitable for all kinds of small satellite missions, which
is shown in Figure 4. The design concept is based on a layer pattern. The satellite
system and the environment are modelled on independent layers. The motion of the
satellite has been separated from the satellite itself and is designed as a relation between
satellite and physical environment in the environment layer.

Figure 4 General satellite architecture

The environment layer contains, beside the motion of satellite, the functionality of the
mission and the physical environment. Output parameters of the mission are e.g. the
orbit and the mission time. Time system conversions or coordinate transformations are
some of the helper functions available. During the simulation, the orbit is computed by
the satellite motion. To facilitate the implementation of those methods, external tools
like the satellite toolkit (STK) may be incorporated. The physical environment includes
radiation fluxes from Sun, Earth or other space objects. Additional aspects like
gravitation and atmosphere drag may be implemented according to simulation models
defined for the ESA space environment [5].

The architecture of all previously shown satellites come along with a power, a
communication, an attitude determination (orbit) control, an onboard data handling
system, and the mechanical structure. All these identified subsystems are composed on
the satellite layer shown in Figure 5. The core component is the structure object which
describes the mechanical composition and supplies other systems with mandatory
parameters. The power object offers the functionality needed to specify the power
system for the simulation. The attitude determination control system is extended to an
attitude and orbit control system (AOCS), which includes also orbit maneuvers. Finally,
the telemetry telecommand (TTC) and OBDH provide the functionality for
communication and computation. The payload, however, varies from mission to
mission. Therefore, a specific mission payload is represented by a payload system
template.

Figure 5 satellite architecture

To prove the concept of the general satellite architecture of Figure 5, an OOV-TET
phase A satellite model was used. The Simulink implementation of OOV-TET is shown
in Figure 6. On the left side the mission block provides the orbit for the satellite and the
mission time for the environment. The environment itself calculates the position of the
sun and the satellite, the fluxes coming from the Sun and the Earth, and the orbital

angular velocity of the satellite. The environmental influence on the satellite motion is
not covered during a phase A simulation. In later phases dynamic perturbations due to
environmental factors like the Earth’s atmosphere and the solar pressure are considered.

The satellite motion implementation encapsulates dynamic behavior and kinematics of
the satellite. The calculated attitude and the angular velocity of the satellite will be
forwarded to the satellite.

Figure 6 Small Satellite Architecture implemented in Simulink

In Figure 7 the implemented satellite architecture is shown. Parts of the implementation
are the aocs, thermal, power and payload implementation. The white marked OBDH
and TTC blocks are placeholder for further simulation phases. The interface of aocs
covers all possible operation modes not only to change the attitude also the change of
orbits. The applied example considered three different modes leop, earth and sun
pointing yet. The interfaces of the thermal and the power subsystems permit the
modeling of hierarchical models.

Figure 7 Implemented Satellite Architecture

4. EXECUTABLE SIMULATION GENERATION

A preferred way to specify a simulation is the model driven architecture (MDA)
approach. The engineer uses a graphical editor to design all components of the model,
like done exemplarily in the power system architecture of Figure 8 modeled in
Simulink. At the end, the executable simulation is generated automatically. One of such
general MDA tools is the Open Architecture Ware (oAW) [6], which supports all
required transformation steps. For the modeling of satellite system architectures,
generally SysML [7] is used. Some framework examples based on this description
language is the generic satellite model [8] and the virtual spacecraft design [9].

Figure 8 Sample Power System Architecture

However, a SysML description can not be used to compile an executable simulation
directly but generates source code mainly in C++. Then, this code must be edited to add
required behavior to the model. A disadvantage of this method is that a space engineer
needs enhanced programming skills. To simplify this task, we have developed a domain
specific language (DSL) to describe satellite architecture on a higher level. It enables an
engineer to characterize specific satellites by changing and configuring subsystems. The
error prone and time consuming implementation of simulation models coded in C++ can
be avoided.

After the user has defined the satellite architecture by means of our DSL, the result can
be transformed to a platform-specific model. For this step, based on oAW, we have
developed a generator for Simulink which is used as the simulation runtime
environment. The advantage of this way is that Simulink is well known and popular in
the space engineering domain. As an engineer is already familiar with the developing of
simulation models in Simulink, it is convenient to use this environment for the
remaining step to create an executable simulation. However, it is not mandatory for the
user to model own Simulink blocks. For the template satellite architecture, all
components have been modeled already in advance and are stored in a library. The
DSL-to-Simulink generator now selects appropriate blocks from the library. To depict
the transformation process in more detail, the power system of OVV-TET is chosen as
an example (
Figure 9). The design consists of a solar panel, a power control unit, an accumulator,
and a consumer. Each component including its interfaces can be specified by means of
the DSL.

Figure 9 Power system of OOV-TET

In order to create a model of a specific device,
a selected component has to be configured by
setting component parameters. The com-
ponent interface, however, never changes
which emphasize the template character of our
approach. After the system description is per-
formed, the transformation of the simulation
follows. A generator translates the textual
description into a Matlab script. For each
component, the connection among com-
ponents and component parameter are trans-
lated into Matlab commands to create a
Simulink model. Executing this script builds
the power system with the chosen components
and the specified parameter configurations.
The internal check mechanism of the DSL
editor prevents inconsistencies of the
described system and guarantees an
executable simulation.

System OVV-TET {

 …

 power{
 input sunFlux;

 generator from 3G-28% {
 efficiency = 28 [%];
 area = 1 [m^2];
 }

 consumer from “configuration 1”{
 consumption = 75 [W];
 }

 control from controller {
 }

 accumulator from ”LSE 175” {
 capacity = 183 [Ah];
 voltage = 3.7 [V];
 state = 95[%]:
 }
 }

 …

}

In Figure 10 the simulation results of the power model with two different accumulator
types are shown. The left picture shows the charge state of 183 Ah Li-Ion and the right
picture shows the charge status of a 100 Ah Ni-H2 accumulator. The satellite starts in
the Earth shadow, until it comes after roughly 1800 seconds into the sun and the
accumulator could be charged. The full capacity of the Li-Ion accumulator is reached
after roughly 4000 seconds, whereas the Ni-H2 accumulator needs 4300 seconds to be
fully charged. At 4500 seconds the next eclipse starts.

Figure 10 OOV-TET accumulator states of different accumulator types

5. CONCLUSION

We have presented a template architecture for the specification of small satellite
missions that simplifies the way from a first design to an executable simulation. We
selected Simulink as simulation environment in order to evaluate our approach. On the
basis of OOV-Tet’s power system, we could prove that we offer a seamless framework
for a straightforward, domain specific component modeling. In general, other
environments can be used as well. The DSL would be the same but the platform specific
transformation process must offer the required proprietary simulation blocks. To

support heterogeneous simulation frameworks, the Simulation Model Portability
Version 2 (SMP2) standard has been developed [10]. Right now, this is the most
important simulation exchange format used in European aerospace projects. Therefore,
we are going to focus on the transformation process for such environments.

6. REFERENCES

[1] H. Klee, Simulation of Dynamic Systems with MATLAB and Simulink, CRC Press

(2007)
[2] A. Holub, CzCube: Czech Amateur CubeSat, Proceedings, 2. European CubeSat

Workshop, ESA/ESTEC, Noordwijk, The Netherlands, January 20-22 (2009)
[3] CubeSat Design Specification. Available online at: http://cubesat.atl.calpoly.edu/

media/CDS_rev11.pdf (accessed February 2009)
[4] Y.-K. Chang, S.-J. Kang, B.-Y. Moon, and B.-H. Lee, Low-Cost Responsive

Exploitation of Space by HAUSAT-2 Nano Satellite, Proceedings, 4th Responsive
Space Conference, AIAA, Los Angles, CA, USA, April 24-27 (2006)

[5] ECSS Space Environment Standard (ECSS E-10-04). Available online at:
http://space-env.esa.int/ECSS/ecss_10_04.html (accessed February 2009)

[6] openArchitectureWare User Guide, Version 4.3.1. Available online at: http://
www.openarchitectureware.org/pub/documentation/4.3.1/openArchitectureWare-
4.3.1-Reference.pdf (accessed on February 2009)

[7] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML, Morgan
Kaufmann Publisher, (2008)

[8] B. Kraft, Design of a Generic Satellite Model, Semester Thesis, TU Munich
(2008)

[9] J. Fuchs, Der virtuelle Entwurfsprozess (Virtual Spacecraft Design –VSD).
Available online at: http://www.dlr.de/sc/Portaldata/15/Resources/ dokumente/
WS_120607/Presentation_VSD_070612_Fuchs.pdf (accessed February 2009)

[10] P. Fritzen, Model Re-use through the SMP 2 Standard, Proceedings, RAeS
Simulation of On-board Systems, The Royal Aeronautical Society, London,
November 3-4 (2004)

