How many Floating Car Data (FCD) are needed for Traffic Management?

Peter Wagner
Institute of Transportation Systems
German Aerospace Center, Berlin

4th International Symposium Networks for Mobility
What to expect – content

- Introduction: FCD for traffic management
- A short stroll through elementary statistics: the story of the standard error
- A few traffic management applications – and what FCD can do for them (and what not)
- Summary
Introduction – thesis‘

Traffic management applications cover a wide range of temporal domains:
- Long-term (days…weeks),
- Mid-term (hours…days),
- Short-term (seconds…hours).

Current FCD fleets can deliver better data for the first two levels:
- Estimating the queue-length at an intersection,
- Optimizing a program-based traffic signal control,
- Less on hard online control.

The following considerations apply to V2X, too.
Introduction FC Data

- FCD data are being used very successfully for...
 - Traffic surveillance,
 - Navigation & Routing

- Works, because traffic patterns are usually well “reproducible“
 - average travel times can be estimated with ease

- Need to answer: which traffic management applications need which amount of FCD data?
Introduction – is it possible at all?

Pre-condition: traffic management needs a certain information from the data – but what is the appropriate one from FCD?
Well: FCD data are travel times; do they react on demand at all?
Two possible answers (of course!): yes and no!
 Yes: more vehicles need more time e.g. to clear an intersection,
 No: if the traffic signals are optimally adapted to the demand, no change in travel times could be noticed.
 (in theory, that is one reason why they are there)
(Believe it our not: we have seen a clear tendency towards the latter effect in microscopic traffic simulations!)
Introduction – Yes, it works!

The plots below demonstrate:

- Travel times are proportional to demand (may be with a certain delay)
- Larger demand increases the number of standing vehicles
- FCD travel speeds contain important and useable information for traffic management and traffic control.
Introduction – Benefits and drawbacks of FC Data

- Advantage: it’s simple to get an area-wide traffic state (e.g. Nürnberg: 918 links with < 15 min update time with 500 probes)
- Drawback: strong speed scatter anything between 0 and max speed
- Statistics is simple (standard error)
- Run Monte Carlo simulations; estimate error as function of
 - Aggregation time,
 - Update time T,
 - Equipment rate η.

- submitted to TRB 2009
Statistics of FCD data
Statistics of FCD data

- Assume a stationary situation with a true average travel speed V generated by N vehicles
- For a sample $n = \eta N$ of data from this situation, the mean can be computed:
 \[
 \bar{V} = \frac{1}{n} \sum_{i=1}^{n} V_i
 \]
- repeated drawing yields the blue crosses
- difference between sample mean and true mean is:
 \[
 e = \bar{V} - V = \frac{\sigma_V}{\sqrt{n}}
 \]
- …the standard error!
Analyzing a real fleet with microscopic simulation

- Simulation of Nürnberg’s VLS area: detailed infrastructure, time-dependent demand, a very well fitted simulation which is close to reality
- A fleet of FCD vehicles, which send any T seconds their current position to a server
- We can vary the equipment rate η to any desired value
- For any pair of (η, T) the simulation samples at least 10 different values to estimate the difference between the true and the processed travel speed / travel time
- Results depend on the aggregation time, i.e. how long the data are sampled from a stationary situation
- Yields a picture like the following ones
A short “theory”

What happens here?

Again, the standard error is the relevant quantity: \(e = \bar{V} - V = \frac{\sigma_v}{\sqrt{n}} \)

But \(n \) is known, it depends on \(\eta \) and \(T \): \(n = \frac{\eta N}{T} \)

Therefore, the figs above should be described by a simple formula:

\[
e = \frac{\sigma_v}{\sqrt{\eta N / T}} = C \sqrt[4]{\frac{T}{\eta}}
\]

Let’s see whether this is true or not:
Comparison to simple theory

Plotting the relative deviation: \(d(\eta, T) = \frac{e_{\text{sim}}(\eta, T) - e_{\text{stat}}(\eta, T)}{e_{\text{stat}}(\eta, T)} \)

It fits well, except for small \(T \)

but this is understandable: the correlations in the speed effectively decrease \(n \) \(\Rightarrow\) \(e_{\text{stat}} \) is small, but \(e_{\text{sim}} \) is not

Traffic management applications
Three levels of traffic management

- Traffic/transport planning (e.g. estimation of average queue-lengths),
- Program controled: computing better program timings (i.e. which program to use at which traffic situation)
 - offline
 - online
- True online applications in traffic management and control – a few remarks.
Statistical determination of queue lengths

- idea: vehicles have to stop at intersections
- position data are sampled more frequently near the intersection
- density profile contains important information, even with scarce data...
- E.g. about the average queue length (related to the delays)
- Can be used to improve the surveillance of signal programs
Statistical estimation of queue-lengths – quality?

- Daily courses look reasonable
- Comparison with real data not simple (here with video)
- Currently tested in practice
- Filed for patent (May 2008)
Analysing daily courses

- Simple optimization methods need the daily courses of traffic flow to recognize “patterns“ (morning, afternoon, night pattern to trigger the respective program)
- Big question: is it possible to use the travel time daily courses?
- Yes, but…
- FCD data are a true challenge:
 - They are very noisy,
 - Data are not equi-distant in time (asynchronous)
 - Interpolation is needed to any time stamp
- usual methods do not work!
- We have investigated a couple of different methods…
Analysis of daily speed series – how to (1)
Analysis of daily speed series – how to (2)

- Local smoothing methods:
 - Symmetric (two-sided) exponential smoothing
 - Local polynomial function fit (SVD fit)
 - Smoothing spline functions

- Global smoothing methods:
 - Lomb periodogramm – which is a Fourier transformation (not fast) for arbitrary data: yields significance levels
 - Radial basis functions (RBF)
Performance of the methods – offline

- Global methods use the hidden information most effectively
- The best method so far: fit with RBF (radial basis functions)

\[V(t) = V_0 + \sum_{k=1}^{K} V_k \Phi(t - t_k) \]

- Error as function of the number of data-points (mean sampled over 40 independent repetitions) is close to the theoretic optimum (standard error)
Final goal: online application
(this relates to V2X, too!)

- Online methods work with single traffic signals
 (actuated control, micro-BALANCE, OPAC,…)
- Or with groups of signals (MOTION, SCATS, SCOOTS,…)
- They need up-to-date information about headways, flows, speeds, delays
- It is not known how these methods will work with spotty data:
- Actuated control needs the time headway which is not available with 10% equipment rate,
- But: if the vehicles simply communicate their experienced delay, even less than 10% equipped vehicles might suffice (this works)
- Put differently: the result depends strongly on the method

- There is a strong need for R&D here; which is exactly the topic of V2X!
Summary, outlook, and future prospects

- We have shown, that the statistics of FCD is basically the standard error
- Even a small amount of data (equipment rates well below 1%) can be used for planning and for offline traffic management
- Simple online approaches seem to be within reach with 1% equipment rate – still some tweaking is needed
- True online traffic management and control need equipment rates well above 5% – and other, more appropriate methods
- FCD progress in practice is slow; not only because of this difficult data source, in addition people are careful in accepting it
- However, there are already ideas around to base at least the quality assessment of traffic management on the distribution of “lateness” – this is already used in public transport, why not in individual traffic and in traffic management?
Thank You for listening! Any questions?

Thanks to my colleagues Elmar Brockfeld, Rüdiger Ebendt, Sascha Krieg, Thorsten Neumann, Sten Ruppe, Alexander Sohr, and Louis Touko for making this possible.
Summary and outlook

- progress has been made in the appliance of FC Data for traffic management:
 - 500 probe vehicles provide sufficient data density and quality for doing statistical queue-length estimation → surveillance of the signals may become easier
 - Several methods to estimate stable and reproducible daily courses are in stock and almost ready for practitioners
 - Statistics o.k.: these applications need an equipment rate of 1% (or, better, 100 data / day); true online applications need a fleet which is 5 to 10 times bigger
 - But: using travel times instead of traffic flows in practice is a slow process
 - But: the lateness, which is used for measuring the public transit’s quality might a good measure of quality for both modes *)

*) proposal by Markus Friedrich
Summary and outlook (2)

- The methods described here still need improvement:
- Queue-length estimation has difficulty with instationary data
- Interpretation of the data for use in practice have to be detailed (what does this result mean?)
- Online methods: have to improve the prediction methods
- Still a lot of work to be done to come to grips with online control: a highly interesting research topic!
Statistische Rückstaulängenschätzung – Ergebnisse

B4 / Nordering

Juni 2007

Mittlere Rückstaulänge [m]
Montag Dienstag Mittwoch Donnerstag Freitag Samstag Sonntag

0 10 20 30 40 50 60

Wochentag
Statistische Rückstaulängenschätzung – wie?

- Vergleiche das empirische Profil mit einem simulierten Suchvorgang.
- Related Density Profile (Saturdays, June 2007)
Performance of the methods – online

- So far: analysis was offline; need to make it online to recognize the prevailing traffic pattern and react to it. Two difficulties:
 - FC Data have an inherent delay of a couple of minutes,
 - In addition, a short-term forecast is needed
- Work in progress*, here are preliminary results

* Alexander Sohr, Dissertation (2009)