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Abstract

High quality and dense sampling are two major properties of recent airborne LIDAR data
which are still improving. In this thesis a novel approach for generating 3D building models
from LIDAR data is presented. It consists of four major parts: filtering of non-ground regions,
segmentation and classification, building outline approximation, and 3D modeling.
With filtering non-ground structures are eliminated from the laser data. Image reconstruction
by means of geodesic morphology is at the core of the proposed algorithm. Structures which do
not comply concerning size or shape are suppressed. By interpolating the bald earth produced
by filtering, Digital Terrain Models (DTM) are generated. Image segmentation creates potential
non-ground regions which are subject to rule-based classification. Geometric feature descriptors
based on surface normals, the local height variation, and a vegetation index are employed to
classify data into buildings, trees, and other objects such as power lines and cranes.
After building classification, their outlines are extracted and unnecessary points are eliminated
by two approximation procedures. One fits rectilinear polygons to the building outlines by a
hierarchical adaptation of Minimum Bounding Rectangles (MBR). This works fast and reliably,
but is restricted to rectangular shapes. For non-rectangular polygons, a Random Sample Con-
sensus (RANSAC) based procedure is employed to fit straight lines. Lines are then intersected
or joined.
The automatic generation of 3D building models follows the definitions of the Levels of Detail
(LOD) in the CityGML standard. Three LOD are considered in this thesis. The first LOD
(LOD0) consists of the extracted DTM from the LIDAR data. A prismatic model containing
the major walls of the building forms the LOD1. For it, the building roof is approximated by a
horizontal plane. LOD2 includes the roof structures into the model. A model driven approach
based on the analysis of the 3D points in 2D projection planes is proposed to analyze the roof
structure. Building regions are divided into smaller parts according to the direction and the
number of ridge lines, the latter extracted using geodesic morphology. A 3D model is derived
for each building part. Finally, a complete building model is formed by merging the 3D models
of the building parts and adjusting the nodes after merging.
Results for test data show the potential, but also the shortcomings of the approach also in
comparison to related work.



Zusammenfassung

Hohe Genauigkeit und Punktdichte sind zwei bedeutende Eigenschaften von derzeitigen luft-
gestützten LIDAR-Daten, die immer besser werden. In der vorliegenden Arbeit wird ein neuar-
tiger Ansatz zur Erzeugung von 3D-Gebäudemodellen aus LIDAR-Daten vorgestellt. Er besteht
im Wesentlichen aus vier Teilen: Filterung von Flächen, die nicht auf dem Gelände liegen, Seg-
mentierung und Klassifizierung, Approximation von Gebäudeumrissen und 3D-Modellierung.
Durch Filterung werden nicht auf dem Gelände liegende Strukturen aus den Laserdaten ent-
fernt. Die Bildrekonstruktion mittels der geodätischen Morphologie bildet den Kern des
vorgeschlagenen Algorithmus. Strukturen, die nicht gegebenen Anforderungen bezüglich Größe
oder Form genügen, werden unterdrückt. Durch Interpolation der mittels Filterung bes-
timmten auf dem Gelände liegenden Punkte werden Digitale Geländemodelle (DGM) gener-
iert. Bild-Segmentierung erzeugt potenzielle nicht auf dem Gelände liegenden Punkte, die einer
regelbasierten Klassifizierung unterworfen werden. Deskriptoren für geometrische Merkmale
basierend auf Oberflächennormalen, der lokalen Höhenvariation sowie einem Vegetationsindex
werden verwendet, um die Bildsegmente als Gebäude, Bäume, oder andere Objekte, wie z.B.
Stromleitungen oder Kräne, zu klassifizieren.
Nach der Klassifikation der Gebäude werden ihre Umrisse extrahiert und unnötige Punkte
mit Hilfe zweier Approximationsprozeduren eliminiert. Eine passt mittels einer hierarchischen
Adaption von minimalen umschließenden Rechtecken (MBR) rechtwinklige Polygone an die
Gebäudeumrisse an. Dies funktioniert schnell und zuverlässig, ist jedoch auf rechtwinklige
Grundrisse beschränkt. Für nicht-rechtwinklige Polygone wird eine “Random Sample Consen-
sus” (RANSAC) basierte Prozedur benutzt, um Geradenstücke anzupassen. Diese Geraden-
stücke werden anschließend verschnitten oder verbunden.
Die automatische Erzeugung von 3D-Gebäudemodellen folgt den Definitionen der “Levels of
Detail” (LOD) im CityGML Standard. Drei LOD, also Detaillierungsstufen, werden in dieser
Arbeit verwendet. Der erste LOD (LOD0) besteht aus dem DGM, das aus den LIDAR-
Daten extrahiert wird. Ein prismatisches Modell, welches die wichtigsten Wände des Gebäudes
enthält, bildet den LOD1. Für dieses wird das Gebäudedach durch ein horizontales Ebenen-
stück approximiert. LOD2 nimmt die Dachstruktur in das Modell auf. Es wird ein modell-
getriebener Ansatz zur Analyse der Dachstruktur vorgeschlagen, der auf der Analyse der 3D
Punkte in 2D Projektionsebenen basiert. Gebäuderegionen werden entsprechend Richtung und
Zahl der Firstlinien in kleinere Bereiche unterteilt, wobei die Firstlinien mit Hilfe der geodätis-
chen Morphologie extrahiert werden. Für jedes Gebäudeteil wird ein 3D-Modell abgeleitet.
Schließlich wird ein komplettes Gebäudemodell durch Verschmelzung der 3D-Modelle der einzel-
nen Gebäudeteile und einer anschließenden Ausgleichung der Knoten gebildet.
Ergebnisse für Testdaten zeigen das Potential, aber auch die Schwächen des Ansatzes auch im
Vergleich zu verwandten Arbeiten.
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Chapter 1

Introduction

1.1 Motivation

Recently, three dimensional (3D) digital representations of real world objects become increas-
ingly important. Particularly, 3D city models can be employed for a variety of applications
such as telecommunication, urban planning, environmental simulation, cartography, tourism,
and mobile navigation systems. They consist of geometric 3D models for buildings, roads,
trees, etc. and possibly high resolution aerial or satellite image data. Therefore, researchers in
the fields of geo-informatics, especially in Photogrammetry and Geographic Information Sys-
tems (GIS) are interested in building extraction and 3D reconstruction. Building reconstruction
based on aerial imagery focuses among other issues on generating Digital Surface Models (DSM)
by image matching used to extract the geometric properties of buildings.
Buildings come with a diversity of shapes and details. Depending on the existing data quality,
e.g., point resolution, the 3D model can be produced with different levels of detail (LOD). The
roof of the building is almost the only part of a building which is visible in airborne photogram-
metric and remote sensing data. Therefore, the algorithms for the 3D modeling of buildings
start with the extraction of the roofs’ geometry and then extend them by integrating the walls
to form complete 3D building models.
Since the 1990s LIDAR data are employed for building extraction due to the high quality of the
automatically generated DSM. High accuracy as well as high density of the laser points are the
main reasons why LIDAR data are often preferred to DSM generated by photogrammetry. Due
to the complexity of the structure of many buildings fully automatic building reconstruction
is not feasible yet. Therefore, manual and semi-automated approaches are still used in most
present projects.
Because of the high costs of manual or semi-automatic 3D data capture from aerial images,
maps, or laser data, which is due to the large number of 3D buildings well as their high degree
of complexity, automatic processes appear to be the only viable way to satisfy the needs of the
users (Förstner, 1999). The automatic production of 3D city models is thus one of the major
wishes of many clients of Photogrammetry and GIS.

1.2 Research Focus and Methodology

The objective of this thesis is an automatic approach for the creation of 3D building models from
LIDAR point clouds. As result, 3D vector Computer Aided Design (CAD) models describing
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the structures of building represent the laser points. To achieve this objective, approaches for
filtering and classification of the laser points as well as a concept for the modeling of buildings
based on the analysis in projection planes are proposed. Figure 1.1 summarizes the overall work

Figure 1.1: Work flow of the proposed algorithm for 3D building model generation from LIDAR
point clouds

flow. It starts with pre-processing. The raw laser range data are interpolated after removing
outliers to generate a regular matrix representing the range image. In the second phase, the
normalized DSM (nDSM) is created via a hierarchical approach. At the core is the extraction
of non-ground regions by means of geodesic image reconstruction. Iterative geodesic dilation
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is employed to filter the potential non-ground regions. Regions are confirmed as non-ground
if they show a significant discontinuity on their boundary. The decision is based on feature
descriptors, which can highlight height jumps in the image, such as surface normals or local
range variation (LRV). After separating the non-ground regions, the produced gaps are filled by
interpolation to shape the Digital Terrain Model (DTM). The nDSM is produced by subtracting
the DTM from the original range image.
The third phase consists of segmentation and classification. A threshold-based segmentation is
employed to segment the non-ground regions. The latter are rule-based classified into build-
ings, trees, and other objects such as power lines and cranes. The outlines of buildings are
generated using morphological operations. For building outline approximation two methods
based on Minimum Bounding Rectangle (MBR) and RANdom SAmple Consensus (RANSAC)
are employed for the reduction of the number of points of the building outline. Finally, the
novel approach for the automatic 3D modeling of buildings on three different levels of detail is
explained. The LOD follow the standard definition of the City Geography Markup Language
(CityGML) of (Kolbe et al., 2005). The first LOD (LOD0) corresponds to the DTM. The
LOD1 level consists of a 3D representation of buildings using prismatic models based on the
approximated building outline. An average height level is estimated from the points located
inside the building.
To generate the third level of detail (LOD2), a projection based approach is proposed for
reconstructing building models with roof structures. The core idea is to analyze the laser
data in projection planes. This phase begins with the classification of the roofs based on the
highest points extracted by geodesic dilation, local curvature, LRV, and surface normals. The
classification distinguishes roofs with ridge points and flat roofs. The Hough Transform is
used to separate the ridge lines if they point in different directions. This step divides complex
buildings into building parts with different ridge lines and flat parts. Every individual building
part is analyzed separately for 3D model generation. The points belonging to each part are
projected to a 2D coordinate system with the axes orthogonal to the ridge direction, the latter
calculated in the form of the main orientation of the building part. The points belonging to a
building part are defined by a rectangle around the ridge line.
A model is fitted to the data in 2D space. If the building part contains a ridge line, a poly-
line consisting of five connected lines is used. Two lines represent the vertical walls, another
two the gable part of the building, and one line the floor. Similarly, for flat roofs a model
is used with four lines, two vertical for the walls and two horizontal for roof and floor. After
generating individual models for the building parts, they are merged, and the nodes and corners
are adjusted resulting in the final 3D model of the building.

1.3 Structure of the Thesis

The thesis is structured as follows: In Chapter 2 terms and techniques, which are utilized in
this thesis, are explained. The chapter begins with a brief introduction into laser scanning
systems. The main components of an airborne laser scanner and its properties are reviewed
and the different types of data produced with a laser scanner system are explained. The chapter
continues by describing geometric feature descriptors which can be derived from LIDAR range
images. They are used to characterize different structures in the laser image to improve the
separability in image segmentation and classification. An overview of gray-scale mathematical
morphology as well as a detailed description of geodesic morphology and image reconstruction
based on it is given next, comprising also the unique properties of image reconstruction by
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geodesic morphology. The chapter ends with a short overview over two robust approaches for
fitting geometric models in the form of 2D and 3D straight lines and/or 3D planes to a point
cloud containing outliers.
A brief summary of former work on the processing of imagery and LIDAR data for generation
of 3D building models is given in Chapter 3. In Chapter 4 the proposed algorithm for filtering
LIDAR range images is outlined. The chapter begins with explaining the pre-processing meth-
ods applied to the laser scanning data, particularly the detection and removal of outliers as well
as the interpolation of the raster grid. The description continues by explaining the separation
of non-ground structures from the ground surface. At the core is the generation of normalized
Digital Surface Models (nDSM) by means of a hierarchical approach based on geodesic image
reconstruction.
Chapter 5 consists of two major parts: In the first, the proposed method for the classification
of the laser image into three classes, namely “building”, “vegetation", and “other" is presented
and discussed. After the geometric feature descriptors employed for the distinction of the seg-
mented regions are explained, the rule-based classification, utilizing the geometric descriptors,
is discussed. In the second part, the approximation of the building outlines is described. Two
techniques are discussed for this purpose, namely a hierarchical approach based on the MBR
and a RANSAC-based approach.
Chapter 6 describes a projection-based approach for the 3D modeling of buildings. It begins
with the classification of the roofs into “gable roofs" and “flat roofs". The main orientation of
each building part is determined and according to the roof type, the corresponding 3D model
is fitted in 2D projection space. The building is finalized by merging, refining, and adjusting
the roof segments.
In Chapter 7 the experimental investigations with the Stuttgart test data are presented and
the results are analyzed. Finally, Chapter 8 summarizes the contributions of the thesis and
recommends directions for future research.



Chapter 2

Basic Terms and Techniques

2.1 Airborne Laser Scanning

Airborne laser scanning (ALS), also referred to as airborne LIDAR (Light Detection And Rang-
ing), is a very convenient source of information for extracting Digital Surface Models (DSM).
The ALS is an efficient system which can deliver very dense and accurate point clouds from the
ground surface and the objects which are located on it. Providing high quality height informa-
tion of the landscape by means of LIDAR systems opens up an extensive range of applications
in different subjects in photogrammetry and remote sensing. Moreover, laser scanning data
is useful for an increasing number of mapping and GIS data acquisition purposes, including
the detection and modeling of 3D objects. There are different types of information returned
from the target which provide valuable information of the object and structures around it.
Laser pulses have one important advantage: They partially penetrate the vegetation in gaps
between leaves and thus make available data reflected from points underneath the vegetation.
This property of the laser ray is at the heart of the difference between first- and last-pulse
data: while in first-pulse data the vegetation’s surface is represented well, this is not the case
in last-pulse data.
Besides this, there are other important reasons why ALS systems are used for terrain modeling,
with some of these reasons explained in the following:

• Day and night operation: ALS systems use active sensor systems illuminating the surfaces
with their own energy, i.e., do not depend on reflected sunlight, as opposed to passive
sensors such as cameras.

• Reduced weather dependency: ALS data collection is much less affected by weather con-
ditions compared to aerial photography. Although the laser beam does not penetrate
clouds well, flying at low altitude below the clouds makes it possible to still acquire data.

• Dense data collection: A very high density of height points is another significant char-
acteristic of ALS. Since 1993 when Optech, a Canadian laser scanning system provider
(Optech, 2007), delivered the first commercial laser scanning system to TopScan GmbH
(TopScan, 2007), this young technology has developed significantly. The first system
was able to transmit 2000 pulses per second (2 kHz), while the current system from this
company sends up to 100.000 pulses per second (100 kHz). This increase directly affects
the density of the ground points: the density of range points has improved to up to about
20 points per m2 for a flying height of about 900 meter.
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• High point accuracy: The height precision of an individual ground point is often in the
order of 10− 15cm (Maas, 2003).

• Fast data production and processing: ALS allows for an extremely rapid topographic
data collection. With current commercial systems it is possible to collect one thousand
square kilometers in less than 12 hours, having the geo-referenced DTM data available
in 24 hours. The data collection process is completely digitally and therefore only few
fieldworks are required.

• Operation on aircraft or helicopter

In summary, the rapid collection of highly accurate data, automatic data processing, and
low operation costs compared to traditional surveying are advantages of ALS. To provide a
precise terrain model, additionally to measuring the point heights it is necessary to determine
accurately both the position of the aircraft and the orientation of the laser beam at the moment
the distance is measured. Therefore, the following components have to work simultaneously
for the generation of a precise digital surface model (cf. Figure 2.1(a)):

1. Laser Range Finder (LRF): Measures the distance very accurately. It comprises the laser,
transmission and receiving optics, the signal detector, the amplifier and the time counter.

2. Scanner : Deflects the laser beam across the flight path.

3. Global Positioning System (GPS): Determines the position and path of the aircraft using
differential GPS positioning.

4. Inertial Measurement Unit (IMU): Measures acceleration and attitude changes and inte-
grates them.

(a) Major components of an ALS (b) Multiple return laser measurement
(courtesy of IGI mbH, http://www.igi-
systems.com)

Figure 2.1: Airborne laser scanning

A laser scanner is mounted in an aircraft in a similar way as an aerial camera. It sends an
infrared laser signal towards the ground, which is then reflected back to the instrument. The
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travel time to the ground and back to the instrument is recorded accurately. Pulses reflected
by objects closer to the aircraft return earlier than pulses reflected by objects further away. As
illustrated in Figure 2.2, the control unit of the laser scanning system triggers a pulse, the pulse
is reflected from the surface and a part of the energy is scattered back to the receiver. Different
pulse detection techniques can be used to estimate the time of flight of a pulse (Stilla and
Jutzi, 2008).
Because of the path of the signal to the ground and back to the sensor, the recorded time (t)
is divided by 2 and multiplied by the speed of light (C) to obtain the real distance (R) from
the aircraft to the object.

R = C.t

2 , (2.1)

Most laser scanners utilize an oscillating mirror fixed in front of the laser, which deflects the

Figure 2.2: Principle of the distance measurement between the laser system and the surface.
The time (t) is measured by counting the time intervals (∆T ) between characteristic points of
the transmitted and received pulse. Range (distance) is computed by R = C.t

2 (Schenk, 2007).

beam in a zigzag movement orthogonally to the direction of flight.
The laser signal that is sent towards the ground may hit more than one object (Figure 2.1(b)).
E.g., the first part of the signal may strike the top of vegetation canopy (t1) while the last
strikes the ground (t2). In this case the canopy height (h) is determined by (cf. Figure 2.1(b)):

h = C

2 (t2 − t1), (2.2)

Depending on the system, the sensor records both pulses simultaneously. These two pulses are
generally called First pulse (the portion which hits the foliage) and Last pulse (the portion
which hits the ground).
Besides the range, some systems also measure the amplitude of the reflected signal or the

entire signal over time (Jutzi and Stilla, 2006). From these information an intensity image
is generated. The intensity of the received signal depends on the surface reflectance properties.
If the distances to the first- and the last-pulse are recorded, then the intensities of the first-
and last-pulses can be recorded as well.

2.2 Range Images and Range Features

One of the important and challenging problems in computer vision is the recognition of 3D
objects. ALS systems provide depth values directly and, therefore, the raster image provided
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(a) Side view (b) 3D view

Figure 2.3: First-pulse (top) vs. last-pulse (bottom) range data

from laser point clouds is called “range image”. The gray values in a range image correspond
to depth or height directly rather than to reflected light. Brighter gray values in a range
image show that it is closer to the sensor or viewer. An important issue in any clustering
and classification approach is the decision, what features should be used to distinguish defined
classes. One of the helpful features which can be derived from range image is the surface normal
or orientation in each point of the surface. The 3D laser points and surface normal information
can be used for segmentation of the range image into “surface patches”.
The other candidate features are the original range data (spatial coordinates x, y and depth
value z), image gradients or local change, and curvature measures. Each feature descriptor plays
a role for a better distinction between objects in image segmentation. The x and y features are
important to provide connected segments. The height or depth value z help to detect “jump”
edges, while the normal vector is needed to detect “crease” edges. In range images, jump edges
occur where z values are discontinuous and crease edges correspond to points where surface
normals are discontinuous (Jain and Dubes, 1988).
It has to be mentioned that further features of a reflected pulse like pulse width, shape of the
pulse, number of reflective pulses, etc. can be exploited in case of full waveform recording
(Stilla and Jutzi, 2008).

2.2.1 Gradient Image

For a continuous function z = F (x, y) with two variables x and y the gradient vector is defined
as:

grad(F ) = (Gx, Gy) = (∂F
∂x

,
∂F

∂y
)T

|grad(F )| =
√

(∂F
∂x

)2 + (∂F
∂y

)2

With:
Gx: gradient in horizontal direction
Gy: gradient in vertical direction
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The gradient is a vector and its magnitude characterizes the rate of height change per unit
distance in the direction of the vector (Schenk, 2004). In image processing the gradient image
is usually calculated by convolving the image with a horizontal (or vertical) kernel:

Gx = F (x, y) ∗ 1
2
[
−1 0 1

]
(2.3)

Gy = F (x, y) ∗ 1
2



−1
0
1


 (2.4)

Figure 2.4: Gradient images

The problem with the above gradient computation is, that it is very noise sensitive. Therefore,
in practice Sobel filtering, i.e., convolving image with a binomial filter before computing the
difference is employed. The operator consists of a pair of 3× 3 convolution kernels as shown in
Figure 2.5.

Figure 2.5: Sobel filter kernels

2.2.2 Surface Normals

The surface normal is a vector perpendicular to a surface. The normalized normal vector or
unit normal vector represents the orientation of a surface at a pixel. It can be estimated by
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determining the best fitting plane over a small neighborhood (Jain and Dubes, 1988). A
normal vector can also be computed by means of the cross product of any two non-collinear
vectors that are tangent to the surface at the desired pixel. In each pixel in the image F (u, v)
there is exactly one tangential plane with its unit normal vector provided by:

n = [nx,ny,nz] = Xu ×Xv

‖Xu ×Xv‖ (2.5)

If the embedding of the surface inR3 is given byX =
[
u v F (u, v)

]T
, thenXu =

[
1 0 Fu

]T
,

Xv =
[
0 1 Fv

]T
, and accordingly:

n = [−Fu − Fv 1]√
1 + F 2

u + F 2
v

T

(2.6)

2.2.3 Gaussian and Mean Curvature

Curvature is a useful feature for classifying surfaces. The most important features which charac-
terize the curvature of a surface are the mean and the Gaussian curvatures. Curvature basically
expresses the rate of change of the unit normal vector to a surface with respect to the vectors
in the tangent plane to the surface (Besl, 1988). The Gaussian curvature (K) and the mean
curvature (H) can be expressed as follows:

H = Xuu +Xvv +XuuX
2
v +XvvX

2
u − 2XuXvXuv

2(1 +X2
u +X2

v )3/2 (2.7)

K = XuuXvv −X2
uv

(1 +X2
u +X2

v )2 (2.8)

In these equations, Xu and Xv are the first order partial derivatives and Xuu, Xvv and Xuv are
the second order partial derivatives of the image. Based on the signs of the mean (H) and the
Gaussian curvature (K) the eight basic shapes of the surface can be distinguished. These eight
shapes are displayed in Figure 2.6.

2.3 Morphological Reconstruction Using Geodesic Dila-
tion

2.3.1 Basic Operations of Gray-scale Mathematical Morphology

Mathematical morphology is employed for the analysis of spatial structures. Morphological
operators are used for the selective extraction or suppression of image structures (Jähne et
al., 1999a). The selection is based on shape, size, and orientation. It is achieved by probing
the image with the structuring element (SE), which is a data set describing the given shape.
A morphological operation transforms an image by means of a given structuring element into
a new image, where structures of interest are emphasized.
Figure 2.7 depicts common operations of morphology with their mathematical definitions as
well as examples which show the outcome of each operation on the same area. To compare
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Figure 2.6: Characterization of the local shape of a surface by Gaussian mean and curvature:
(a) peak surface, (b) flat surface, (c) pit surface, (d) minimal surface, (e) ridge surface, (g)
valley surface, (h) saddle surface

the results, a profile is generated for each operation along the column marked by green in the
“operation” column.
Erosion (εB(X)) and Dilation (δB(X)) of X with structuring element B are the basic morpho-
logical operations and almost all other operations are generated based on these two. Erosion is
defined as the location of points x, such that B is included in X when its origin is placed at x.

εB(X) = {x|Bx ⊆ X} (2.9)

Equation 2.9 represents the erosion operation in binary image and X denotes the set of pixels
which have values of 1. The definition can be extended to gray scale images: erosion of an
image f by B is denoted by εB(f) and is defined as the minimum of the translations of f by
the vector -b of B or in other words, the eroded value at a given pixel x is the minimum value
of the image in the window defined by the SE when its origin is at x (Jähne et al., 1999a):

[εB(f)](x) = min
b∈B

f(x+ b) (2.10)

Erosion is usually employed to eliminate unnecessary details and small objects from images.
Accordingly, Dilation is the location of points x such that B hits X when its origin coincides
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Figure 2.7: Common operations of mathematical morphology. The profile to the right stems
from a column marked by a green marker in the “Operation” column.

with x (Jähne et al., 1999a). Therefore, binary and gray scale image dilation can be formulated
respectively as:

δB(X) = {x|Bx ∩X 6= ø} (2.11)

and:
[δB(f)](x) = max

b∈B
f(x+ b) (2.12)

Contrary to Erosion, Dilation is an operation that grows or thickens objects in an image.
The morphological Gradient (ρB) is defined based on Erosion and Dilation. It is produced
by subtracting the Erosion from the Dilation, with both operations using only one elementary
SE. A square shaped SE of size 3 is employed in the example. The morphological gradient
describes the local maximum variation of the gray level intensities in the image. It can be used
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to describe local height jumps in range images (cf. Figure 2.7) highlighting the edges of 3D
objects such as buildings and trees in LIDAR images.
Erosion shrinks objects and removes small ones. With Dilation with transposed SE the size
of the remaining objects is reset to the original size. This forms Opening γ by a structuring
element B and is denoted by γB (cf. Figure 2.7). Opening removes all pixels that are not
covered by the SE when it fits the object pixels. In contrast to Opening, Closing (φB) fills all
background structures that do not contain the SE.
As shown in Figure 2.7, a disk-shaped structuring element with a radius of 30 pixels is used to
filter 3D structures in the image by Opening. The selection of proper SE is essential for the
success of morphological operations. A SE should be selected based on knowledge about the
shape, size, and orientation of the structures which are to be filtered. For the example in Figure
2.7, a SE with smaller radius eliminates small structures such as trees and small buildings. On
the other hand, selecting a big SE may eliminate part of the hills in hilly areas as well as other
large 3D structures. Therefore, an appropriate SE must be selected carefully.
The Top-Hat filtered image is calculated by an arithmetic difference between the image and its
opening (cf. Figure 2.7). The Top-Hat extracts the objects that have not been eliminated by the
opening. Objects larger than the structuring element are removed. Top-Hat is used to extract
components with a large contrast with respect to the background. Typically, it removes slow
trends and thus performs a contrast enhancement. Through the Opening structures smaller
than the SE are removed thus the Top-Hat filtered image highlights those structures and
prepares them for further processing (cf. Figure 2.7). For image with objects brighter than
the background, the Top-Hat transform can be used for reducing the illumination gradient. A
Top-hat with a large SE acts as a high-pass filter. The background trend lies within the low
frequencies of the image and it can be removed by the Top-Hat (Jähne et al., 1999a). This
can be understood by looking at the provided profile.
The main applications of the Top-Hat are:

• The image contains inhomogeneous illumination.

• The image objects all have the same contrast and they are either darker or brighter than
the background. If the object is darker than background, Closing should be employed
instead of Opening.

2.3.2 Gray-scale Reconstruction Based on Geodesic Dilation

This section focuses on another morphological technique based on the geodesic distance. It is
powerful, easy to implement, and suitable for a wide range of applications. All morphological
operators discussed above involve a combination of one input image and an SE. Morphological
operations based on geodesic distance employ two input images, namely mask and marker
image. They allow the isolation of certain features within an image based on the manipulation of
themask and themarker image (Whelan andMolloy, 2001). Morphological reconstruction
is based on the iterative application of erosions or dilations of the marker image until stability
is reached, where propagation or shrinking of the marker image is perpetually limited by the
image mask.
As illustrated in Figure 2.8(a), the geodesic distance between two points x and y within a given
set X (the mask) is the length of the shortest paths joining x and y included in X (Vincent,
1993, 1997). According to this definition geodesic dilation and erosion are specified.
A geodesic morphological operation proceeds as follows: a basic morphological operator such as
dilation or erosion is applied to the first input image, the marker. Then it is forced to remain
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(a) Geodesic Distance
between two points

(b) Binary reconstruction from marker

Figure 2.8: Image reconstruction of binary imagery based on geodesic distance (Vincent,
1997)

either higher or lower than the second image, the mask. There exist two requirements: First,
mask and marker must have the same size, and second, the mask image must have gray values
higher than or equal to the marker image for geodesic reconstruction based on morphological
dilation. In geodesic dilation the marker image is dilated by an elementary isotropic SE and
the resulting image is forced to remain below the mask image. This means that the mask image
acts as a limit for the dilated marker image. This is called geodesic dilation of size one. The
geodesic dilation of size one of the marker image J with respect to mask image I is thus defined
as (Vincent, 1993):

δ
(1)
I (J) = (J

⊕
B)

∧
I, (2.13)

In this equation ∧ stands for the point-wise minimum between the dilated marker image and
the mask image and J⊕B is the dilation of J with the elementary isotropic structuring element
B. This equation indicates that the geodesic dilation of size 1 is generated by first computing
the dilation of J by B and then selecting the minimum between the result and I at every point
(x, y). The geodesic dilation of size n of the marker image J with respect to the mask image
I is obtained by performing n successive geodesic dilations of size one of J with respect to I
(Gonzalez and Woods, 2008):

δ
(n)
I (J) = δ

(1)
I (J) ◦ δ(1)

I (J) ◦ .... ◦ δ(1)
I (J)︸ ︷︷ ︸

n−times

(2.14)

Equation (2.14) also defines the morphological reconstruction by geodesic dilation of the mask
I with respect to the marker J . The desired reconstruction is achieved by carrying out geodesic
dilations until stability is reached. I.e., morphological reconstruction can be thought as repeated
dilations of the marker image while the contour of the marker image fits under the mask
image. By this means, the peaks in the marker image spread out, or dilate. Each successive
dilation is forced to lie underneath the mask. Figure 2.8(b) shows the application of geodesic
image reconstruction to extract the desired binary regions. Some seed regions (dark gray in
Figure 2.8(b)–left) are initially selected and corresponding regions are then extracted by binary
geodesic reconstruction.
Figure 2.9 presents the morphological reconstruction of a 1D signal g from a marker signal f .
The 5-fold geodesic dilation of the marker signal with respect to the mask signal is equivalent to
the reconstruction of g from f since further geodesic dilations do not change the result anymore.
In this figure, (a) presents the original marker signal f and the mask signal g; (b) to (f) show
the results of repeated geodesic dilations of f with respect to g.
Morphological reconstruction based on geodesic dilation has some unique properties compared
to basic morphological operations (Mathworks, 2007):
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Figure 2.9: Morphological reconstruction by geodesic dilation; Geodesic dilation of size 5 of the
marker f with respect to the mask g is equivalent to the reconstruction of g from f, because
further geodesic dilations do no longer change the result (Jähne et al., 1999a)

• Two images are involved in processing, rather than one image and an SE.

• The processing is repeated until stability, i.e., until the image no longer changes.

• The procedure is based on connectivity rather than on an SE.

The method explained above and formulated in Equations (2.13) and (2.14) is the standard
way to perform image reconstruction by geodesic dilation. I.e., combined basic dilation and
point-wise minimum operations are iterated until stability to produce the reconstructed image.
Depending on the size of the image, the number of iterations increases and therefore, the pro-
cedure becomes very time consuming. Vincent (1993) proposed a fast and efficient algorithm
for gray scale image reconstruction by dilation which is termed as “Fast Hybrid Reconstruction
Algorithm”. The algorithm uses three First-In-First-Out (FIFO) operations:

• fifo_ add(p): It places the pointer to pixel p into the queue.

• fifo_ first(): It returns the pointer to the pixel at the beginning of the queue and removes
the pointer from the queue.

• fifo_ empty(): It returns true if the queue is empty and false otherwise.

Accordingly the “Fast Hybrid Reconstruction Algorithm” operates as follows:

• I : mask image

• J : marker image

• Scan J in raster order:

– Let p be the current pixel;
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– J(p) = (max{J(q), q ∈ N+
G (p) ∪ {p}}) ∧ I(p)

• Scan J in anti-raster order:

– Let p be the current pixel;
– J(p) = (max{J(q), q ∈ N−G (p) ∪ {p}}) ∧ I(p)
– If there exists q ∈ N−G (p) such that J(q) < J(p) and J(q) < I(q) then fifo_ add(p)

• Propagation: While (!fifo_ empty)

– p = fifo_ first()
– For every pixel q ∈ NG(p):

∗ If J(q) < J(p) and I(q) 6= J(q) then
J(q) = min{J(p), I(q)}
fifo_ add(q)

NG(p) denotes the neighborhood of p on a grid G, and N+ as well as N− the neighboring pixels
of pixel p for raster and anti-raster scan filtering, respectively (cf. Figure 2.10). ∧ is the point
wise minimum operator (Vincent, 1993) .

Figure 2.10: Neighboring pixels for the filtering of point p in raster (left) and anti-raster (right)
order scanning in the hybrid geodesic dilation algorithm.

This "hybrid" method begins with raster order scanning, i.e., from left to right and from top
to bottom. For each candidate pixel J(p) the maximum value of it and the neighboring pixels
J(q) (cf. Figure 2.10 – left) is determined. The point-wise minimum between this maximum
value and the mask image in point p, i.e., I(p), is used to replace J(p).
The process is repeated in anti-raster order, i.e., from right to left and from bottom to top.
Every pixel p for which its current value could still be propagated, i.e., for which holds:

∃q ∈ N−G (p), J(q) < J(p) and J(q) < I(q),

is added to the queue. The elements of the queue are finally propagated by checking their
neighborhood. For every points q in the neighboring of p it checks if q is lower than p and if
it is necessary to propagate. Therefore, the minimum of the marker in p and the mask in q is
replaced in J(q). The first element is taken away from the queue until it is empty.
Some major applications of the morphological reconstruction for extracting and segmenting the
prominent parts of the image are explained in the following:
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1. Removal of holes in binary or gray scale images: In binary images holes are the connected
components of the background that are not connected to the image border (Jähne et
al., 1999a). Similarly, in gray scale image all minima pixels which are not connected
to the image boundary can be regarded as holes. In ALS data these minima pixels are
often outliers or noise and should be eliminated. Algorithms which are based on basic
morphological operations such as Closing are not efficient and they may even produce new
minima (Jähne et al., 1999b). A geodesic morphological operation is used to eliminate
holes from the image. It can be constructed from geodesic erosion or geodesic dilation.
For geodesic dilation for the mask image I the complement of the original gray scale or
binary images is used and the marker image is generated as follows:

J(i, j) =
{
I(i, j) if point p(i, j) lies on the border of I
min(I) otherwise (2.15)

In geodesic erosion the mask image is equal to the input image and and the marker image
is an image of constant value max(I) having the same border values as the input image
(cf. Figure 2.11).

Figure 2.11: Filling holes on a 1-D signal I using marker J : all inner minima of I are removed
by the morphological reconstruction of I from the marker function J .

2. Regional Extrema Extraction: Extracting regional extrema, i.e., minima or maxima, of
an image is one of the important tasks in image processing. By definition (Jähne et al.,
1999a), a regional minima M of an image I at elevation t is a connected component of
pixels with the value t whose external boundary pixels have a value strictly greater than
t. The regional maxima is the complement of it. It should not be confused with local
maxima which are the pixels p for which holds: Their value I(p) is greater than that of
any pixel in their neighborhood. Both regional and local extrema can be extracted by
means of geodesic morphology.
Local extrema are usually limited to a few pixels in the image and do often represent the
errors or outliers. Therefore, they should be eliminated from the data set before further
processing because most of the image analysis operations are sensitive to noise and errors
and they thus reduce the quality of the result.
We focus on extracting local or regional maxima by geodesic dilation. Extracting local
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or regional minima can be approached by geodesic erosion. The original image is selected
as mask image (I(i, j)) and the marker image is provided by:

J(i, j) = I(i, j)− h
where h denotes an offset value. For the offset h often a small value is chosen, such as 1 in
an 8-bit image. Figure 2.12 shows a practical application for regional maxima extraction

(a) All regional maxima in the area calculated
using an offset h = 10 cm

(b) The points outside the building are elim-
inated based on the segmentation result

Figure 2.12: Application of geodesic morphology for extracting ridge points of a building

by means of geodesic morphology. A building with several gable roofs is located in the
image. The ridge line is represented by the location of the regional maxima in the image.
Figure 2.12(a) displays the location of all regional maxima calculated by employing the
original laser image as mask and a marker image generated by subtracting 10 cm from
the mask. Not only the location of the ridge points, but also all other regions such as
the top of the trees and bushes are extracted. After the classification of the building
the regional maxima points located outside the building can be eliminated. The internal
points are used later for the classification of the ridge points.

3. Extraction of structures connected to the image border: In image processing it is often
necessary to evaluate only structures that are completely located inside the image. There-
fore, objects which are only partly inside the scene should be detected. This is done as
follows: The input image is selected as mask. The marker image is produced in the
form of an image with values equal to zero except for the border pixels which get the
value of the mask image. Subsequently, to remove the pixels connected to the border,
the reconstructed image must be subtracted from the input image. Figure 2.13 shows
results for the elimination of objects connected to the border of a LIDAR image. The
objects connected to the boundary are highlighted by performing image reconstruction as
displayed in Figure 2.13(b). Finally, to eliminate those objects, the reconstructed image
(cf. Figure 2.13(b)) is subtracted from the mask image (cf. Figure 2.13(a)) shown in
Figure 2.13(c).

2.4 Robust Model Fitting
This section discusses the robust models employed in this thesis to fit straight lines and planes
to point clouds. The Hough Transform (Hough, 1962) is one of the most common approaches
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(a) Input image (mask) (b) Image reconstruction result

(c) Elimination of the objects con-
nected to the border

Figure 2.13: Extracting the objects connected to the border of image in LIDAR image

to fit linear features such as straight lines in 2D space. It is applied here to fit straight lines to
binary images. In 3D space RANSAC – RANdom SAmple Consensus (Fischler and Bolles,
1981) is utilized for fitting geometric models, i.e., straight lines and planes, to the data set.

2.4.1 Hough Transform

The Hough Transform is a technique which can be used to robustly extract lines, circles, and
ellipses from images. It defines a mapping from the image points to a parameter space which
is also called “Hough space”. In this thesis the focus is on extracting 2D lines from binary
images.
It is the assumed that the image is already segmented into binary regions including the
linear regions. Consider a point with coordinate (xi, yi) located on a straight line formulated
in slope-intercept equation form as yi = axi + b in the xy plane. To find the all points
on this line, the line equation is reformulated as b = −xia + yi which is the equation of
a single line in the so called “parameter space” in the ab plane. As illustrated in Figure
2.14, two points (xi, yi) and (xj, yj) which are located on the line in point space (left
figure) represent a point (a‘, b‘) in the parameter space (middle figure), where a‘ and b‘

are the slope and the intercept of the line shown in the left figure. As the slope parame-
ter a goes toward infinity for vertical lines, usually the normal representation of the line is used:

x cos θ + y sin θ = ρ

In this case the parameter space is formed by θ and ρ instead of a and b. Sinusoidal curves
represent the location of all lines passing through a particular point (xi, yi) in the ρθ plane (cf.
Figure 2.14 right) (Gonzalez et al., 2004). In an accumulator array the values for θ and ρ
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Figure 2.14: Representation of point and parameter spaces of the Hough Transform

are accumulated. Accordingly, the cell with the maximum value represents the strongest line
in the image.

Figure 2.15: Line Extraction by Hough Transform

Figure 2.15 illustrates how the Hough Transform employed for straight line extraction from
LIDAR image. Here, Canny edge detector is utilized to extract the binary edges of the image.

2.4.2 Random Sample Consensus

RANdom SAmple Consensus (RANSAC) is a method for the robust fitting of a model to a
data set which contains many outliers (Fischler and Bolles, 1981). The basic assumption
of RANSAC is that there are inliers and outliers in the data set. The inliers are the data
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which do fit to the expected model and the outliers are the data which do not fit and come
from incorrect measurements, noise or other sources. Figure 2.16 shows how RANSAC works

Figure 2.16: Robust line fitting with RANSAC

to fit a straight line to a data set. The input is a data set, a parameterized model, which is
to be fitted to the data set, and the following confidence parameters which should be tuned
beforehand (Forsyth and Ponce, 2003):

• Minimum number of points required to fit the model, i.e., sample size (n): This input
data is fixed as soon as selecting parameterized model. E.g., 2 points is the minimum
number of points required to determine the parameters of a straight line in 2D and 3 is
the minimum number for plane fitting in 3D.

• Minimum number of iterations (k): The number of iterations, i.e., the number of samples,
is usually selected large enough, to be sure with a probability of p, that at least one of
the selected random samples is free of outliers. According to (Hartley and Zisserman,
2004), the minimum number of k can be calculated by:

k = log(1− p)/ log(1− (1− ε)n) (2.16)

With:
p: Probability, that at least one sample has no outlier
ε: Probability, that any selected data point is an outlier
n: Sample size

• The threshold used to identify a point that fits well, i.e., an inlier (t): This value defines
the maximum acceptable distance between the point and the fitted model. If the distance
is below the threshold, the point is accepted as an inlier. In general this value can be
defined relatively simply from empirical knowledge or by experiment.

• The size of acceptable consensus set for termination of iteration (d): It is the criterion for
the immediate termination of the iteration. I.e., if in one iteration step the number of d
inliers is obtained, the iterative procedure will be terminated. This value can be derived
for ε and m, the number of points in the data set as (Hartley and Zisserman, 2004):

d = (1− ε)m
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The algorithm for robustly fitting a model to a data set S containing outliers after tuning the
above parameters is summarized follows:

1. Randomly select n data points from S.

2. Generate the mathematical model from the n points.

3. Determine the points Si having a distance to the model smaller than or equal to the
threshold t.

4. If the number of elements of Si, i.e., number of inliers, is greater than d, re-generate the
model using the whole data set Si.

5. If the size of inliers is less than d, select a new random sample and repeat steps 2 and 4.

6. After k iterations of the steps 1 to 5, the largest consensus set of Si is selected and the
model is re-generated using all the points in Si.

Figure 2.16 shows a RANSAC based method for fitting straight line to a sample data set
containing 12 points. Two random points are selected (red points) and the line is fitted to them
(continuous black line). The inliers of the lines are determined as points between two parallel
lines (dashed black lines) defined by a distance threshold to the line. As shown the produced
line in Figure 2.16(b) contains 11 inliers and 1 outlier while, the line in Figure 2.16(c) contains
4 inliers and 8 outliers and thus the former would be selected.

2.5 Building Models

This section outlines the terminology regarding the most commonly used building structures
in the scene. The focus is on the geometric structure of roofs as well as the Levels-Of-Detail
(LOD), which are defined for 3D representations of the building model.

2.5.1 Roof Types and Modeling of Buildings

In general, a building model is formed by combinations of basic building parts which are mostly
characterized by their roof structure as shown in Figure 2.17. The smaller structures on top of
the roof such as dormers and chimneys can be integrated with these basic models.
Figure 2.18 displays a building model which is formed by the combination of a hip roof and
a gable roof. The figure shows the main structures of the building which can be used for
building reconstruction. A brief description of the terms highlighted in the figure is given in
the following:

• Ridge: The highest points of a roof, often in the form of a horizontal line

• Eave: The lower edge of an inclined roof

• Dormer: A vertical structure above the roof usually with a window

• Hip: The convex angle formed by intersecting two inclined roof parts

• Valley: The concave angle formed by intersecting two inclined roof parts
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Figure 2.17: Basic building models - flat roof, pent roof, gable roof (first row) and hip roof,
pavilion roof, hipped-gable roof, and mansard roof (second row) Müller (1998)

• Gable: The vertical triangular part of the roof from the cornice or the eaves to the ridge

• Gutter: The channeled component along the eaves used to collect and carry off rainwater

• Building outline: The outer boundary of a building which contains all structures attached
to it such as house(s), garages and balconies. Attached trees or other vegetation are
excluded. The building outline is also referred to as “footprint”.

Figure 2.18: Structures of a roof

Buildings are available in real world in different shapes and models. Förstner (1999) distin-
guishes two different building models:

• Parametric models: A model is described by a set of parameters. A building with a gable
roof defined by length, width, and two heights is such a parametric model. Other buildings
with flat roof, gable, or hipped roof as well as L-shaped buildings can be represented as
parametric models.

• Generic models: This allows for the variation of the basic building structure. Three main
classes exist:
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– Prismatic models: A Building consists of a polygonal ground plan, vertical walls,
and a horizontal roof.

– Polyhedral models: This is more general but restricted to buildings for which the
surface is formed by planar patches.

– Constructive Solid Geometry (CSG) models: Here, the building is formed by com-
bining simple parts (primitives) using boolean operators such as union and intersec-
tion (Förstner, 1999).

All building models are generated by a combination of the above-mentioned basic models. In
reality, these categorization is closely related to the methods used for modeling. The methods
for building reconstruction are classified into two major classes: model-driven and data-driven.
Generally, model-driven methods are related to parametric models which data-driven methods
are related to generic models. A limited number of building models are predefined in model-
driven approaches. Model-driven implies top-down approaches which begin with a model as
hypothesis and then use data to verify the model. This can be easily implemented, but have a
limited application in practice, because they can only model simple buildings, such as flat-roof
and gable buildings (Ma, 2004). Data-driven means bottom-up modeling, which begins with
the extraction of building primitives, e.g., building faces. After analyzing the surface topology,
the building model is constructed. In practice, this approach can handle more buildings than
the model-driven approach.

Figure 2.19: The Levels-of-Detail defined by CityGML (Kolbe et al., 2005)

2.5.2 Levels of Detail

A building model can be represented in 3D including a different amount of detail information.
Different levels-of-detail (LOD) are defined in CityGML (Kolbe et al., 2005) which categorizes
geometrical, topological, and semantic information into five LODs (cf. Figure 2.19). The
categorization begins with LOD0. It is the coarsest level and it contains a 2.5D Digital Terrain
Model (DTM). In this level an aerial image can be overlaid on the DTM. The LOD1 is a
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building block model not including any roof structure or textures. Roof structures as well as the
building textures are included in LOD2. LOD3 is generated by adding architectural information
with detailed walls and smaller structures of the roofs such as balconies, bay windows, and
projections. Finally in LOD4, interior structures such as rooms, stairs, and even furniture are
added to the LOD3.



Chapter 3

Former Work

Automatic 3D building modeling, in general, comprises two major steps, namely building de-
tection and 3D reconstruction. The procedure for LIDAR data processing consists of DTM
generation or filtering of non-ground regions, building detection, and building reconstruction.
Many studies have been carried out to use airborne laser data as well as other data such as
aerial imagery or satellite images for the generation of 3D building models. In this chapter an
overview over former work on the processing of image and ALS data for the generation of 3D
building models is given.

3.1 3D Building Reconstruction from LIDAR Data

The overview of the former work on the generation of building models from ALS data is divided
into three parts: filtering of the non-ground regions to generate the bare earth, building outline
extraction as well as approximation, and finally 3D building modeling.

3.1.1 Filtering of Non-ground Regions and DTM Generation

ALS has become an accepted data source for the highly automated acquisition of digital surface
models (DSM) as well as for the generation of digital terrain models (DTM). To generate a
high quality DTM from LIDAR or DSM data, 3D non-ground points have to be separated from
the ground points. Various techniques and filtering methods have been proposed to generate
DTM from LIDAR or other DSM data even though one has to note that the research in this
field is still ongoing.
In early work Kilian et al. (1996) presented first ideas on how to generate a DTM from LIDAR
data recorded in wooded areas based on gray-scale morphological opening (cf. Section 2.3.1).
The lowest points within a window of a given size are first detected by opening. Then the
points in this window that fall within a band above the lowest elevation are considered as
ground points and a weighted surface interpolation using these points is applied to compute
the DTM. A conclusion of this work was that the size of the Structuring Element (SE) used for
opening is a critical parameter for which there is no single optimal value. Therefore, the use of
multiple openings with different sizes for the SE was suggested.
Kraus and Pfeifer (1998) introduced another algorithm for DTM generation in wooded
areas based on linear prediction. They also start with an approximation of the ground surface.
The vertical distances from the ground surface to the approximated surface are used to define
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weights which are employed in computing the DTM based on linear prediction. Points that
are above the surface obtain a small weight and those are below the surface get a large weight.
The new surface is then recomputed using linear interpolation function and the corresponding
weights. The procedure is continued until a certain number of iterations have been achieved or
the computed surface does not change considerably comparing to the previous surface.
Axelsson (1999) described a method for DTM generation based on the progressive densifi-
cation of a triangular irregular network (TIN). The idea is to fit a surface from below to the
point cloud. In every iteration the surface is allowed to fluctuate within a certain range and
points from the point cloud are added to the TIN. It is iterated until no further low ground
points can be added. The approach has been implemented in the TerraScan software package
(Terrasolid, 2007).
Vosselman (2000) proposed a slope based filtering method for separating non-ground points
from ground points. A point is classified as a terrain point if there is no other point in its
vicinity to which the height difference is larger than an allowed maximum difference. The
method assumes that the terrain slopes do not exceed a certain threshold and the features
having slopes above this threshold are non-ground objects. The assumption limits the approach
to terrain with gentle slopes. A modified slope based filtering was proposed based on varying
the threshold value according to the terrain slope (Sithole, 2001).
Wack and Wimmer (2002) proposed a hierarchical grid-based approach for the generation of
DTMs from airborne laser data. They start with a coarse grid of 9m width and define the
raster height by selecting the height within the raster element for which 99% of all points are
higher. The Laplacian of Gaussian (LoG) operator in combination with a weight function is
utilized to detect and remove points that are not considered to be ground points.
A progressive morphological filtering method was developed by Zhang et al. (2003) with the
focus to remove the non-ground measurements from LIDAR datasets. The algorithm utilizes
morphological opening and gradually increases the size of the SE. The resulting elevation differ-
ences are used to classify ground and non-ground points by applying a threshold which depends
on the SE size. An unsupervised statistical skewness balancing segmentation algorithm is pro-
posed by Bartels and Wei (2006) to separate non-ground regions from the ground regions.
It is based on the assumption that the naturally measured samples lead to a normal distribu-
tion and non-ground objects disturb this distribution. A recursive point removal based on the
skewness is utilized until a normal distribution is achieved.
Stilla and Jutzi (2008) have been shown that full-waveform analysis enables extraction of
more information compared to classical analogous pulse detection methods. The shape of the
pulse and the entire signal can be considered for determining the range more accurately. Further
improvements on reliability and accuracy can be derived by signal-processing methods based on
the transmitted and the received waveform, e.g., deconvolution. Additionally, attributes of the
surface can be derived from a parametric description of the waveform. The attributes maximum
amplitude and pulse width support the discrimination between volume scatterer (vegetation)
and hard targets (man-made objects) (Kirchhof et al., 2007). For filtering points belonging
to buildings, the introduction and test of hypotheses about the shape of the surface (e.g., plane,
sphere) may efficiently support the analysis of single waveforms. Two different strategies as-
suming a planar shape in the local neighborhood of the surface and introducing this assumption
into the signal analysis should be addressed. Both strategies combine information from top-
down (surface primitives) and bottom-up (signal processing) for an extended analysis of full
waveform laser data. The first strategy (Kirchhof et al., 2007) uses an iterative processing of
waveforms considering a predicted shape of the waveform from the local neighborhood. A pre-
segmentation based on surface attributes is carried out to distinguish between partly penetrable
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objects (e.g., trees, bushes) and impenetrable surfaces (e.g., roof, wall). Derived range values
from presegmentation of the impenetrable surfaces are used to automatically generate surface
primitives (e.g., planes). This allows a refinement of each range value, considering the surface
geometry in a close neighborhood. Furthermore, partly occluded surface areas are extended by
prediction of the expected range values. This prediction is further improved by considering the
surface slope for the estimated received waveform. Expected pulses are simulated and correlated
with the received waveforms. Accepted points that were missed in the first processing step due
to weak signal response are associated to the point cloud. The procedure is repeated several
times until all appropriate range values are considered to estimate the surface. The second
strategy Stilla et al. (2007) uses a slope compensated stacking of waveforms. Weak pulses
with a low SNR are discarded by classic threshold methods and get lost. In signal and image
processing, different stacking techniques are used to improve the SNR. For detection of weak
laser pulses, hypotheses for planes of different slopes (e.g., angle difference 5o) are generated.
According to the slope of the hypothesis, the waveforms in the local neighborhood are shifted in
range. A superimposed signal is calculated from the stack of shifted waveforms. The maxima
of superimposed signals from all hypotheses are compared to verify a hypothesis. Each signal
is assessed by a likelihood value with respect to its contribution to the accepted hypothesis.
Finally, signals are classified according to the likelihood values obtained using two thresholds
and visualized by the traffic-light paradigm. The results contain detected pulses reflected from
objects, which cannot be predicted by the previously detected point cloud.

3.1.2 Building Outline Detection and Approximation

Building detection from LIDAR data has been an intensively studied subject over the past few
years. Almost all algorithms for building reconstruction initially have a need for the location
of the building in order to start the reconstruction. This initial information can be extracted
by digitizing 2D maps or by automatic segmentation and classification. A number of different
techniques have been proposed for segmentation of ALS range or DSM data with the aim of
building extraction. They are based on the assumption that buildings are higher than the
neighboring topographic ground surface.
A simple thresholding with the threshold value t computed by analyzing the histogram of height
values can be used for segmentation in very special cases. In regions with steep terrain, high
vegetation, and vegetation close to buildings this approach is not applicable (Maas, 1999b).
Most existing building extraction methods use last pulse ranges to generate DSM and DTM
in the first stages (cf. Section 3.1.1). The normalized DSM (nDSM) is then produced by
subtracting these two data sets. The non-ground regions, mainly consisting of buildings and
trees, are then extracted using height thresholding.
Weidner and Förstner (1995) proposed DTM generation based on DSM and morphological
processing. A global threshold is applied to the nDSM for the segmentation of 3D regions. For
discriminating buildings from vegetation objects, two features, one based on step edges and the
second using the variance of the surface normals, have been employed.
The analysis of height texture for automatic segmentation and classification of dense ALS data
(more than 5 points per m2) is proposed by Maas (1999b). The original height data and
two height texture features generated from the laser data are used as basis of a maximum
Likelihood classification. The two texture features consist of the Laplacian filtered image and
the maximum slope around each pixel. An overall accuracy of about 98% is reported by Maas
(1999b). Recording first-pulse as well as last-pulse laser data was reported to produce very
useful information for the discrimination of building and vegetation pixels.
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Rieger et al. (1999) used three image bands namely normalized first-pulse, normalized last-
pulse, and vegetation index. The vegetation index image is generated by subtraction of first- and
last-pulse images. A simple height threshold was employed to discriminate between buildings
and vegetation assuming that all pixels having heights less than 1m in the vegetation index
image belong to buildings. This assumption is not always true because (especially high) building
boundaries often lead to high values in the vegetation index image with heights of more than
a few meters. The other way around, in some regions the trees in both the first- and last-pulse
image have almost the same height values resulting into a small value in the vegetation index
image. Thus these trees are eliminated.
The FOM segmentation procedure based on region growing was proposed by Geibel and
Stilla (2000). In each iteration, the two adjacent segments that are most similar to each
other are merged. Similarity is expressed by the distance between two segments. The result
has been evaluated in comparison to the following four segmentation methods:
Burns et al. (1986), Jiang and Bunke (1994) combined with Hoover et al. (1996),
Flynn and Jain (1988) combined with Hoffman and Jain (1987) and Hoover et al. (1996).
According to a quality measure proposed by Geibel and Stilla (2000) the FOM segmenta-
tions are of higher quality than the other segmentations. The quality is measured based on the
amount of over- and under-segmentation.
Multiple thresholding is employed by Zhan et al. (2002) for the segmentation of laser data.
Threshold values are selected from 1 m to a maximum value producing a number of binary
images. The regions generated from each thresholding step are evaluated using two main
criteria namely size and location. The size is calculated as the actual number of pixels of the
segment and the location is measured by the center of mass of the region. If the region has
a little change in size and only a small shift of the center of mass between adjacent layers is
classified as building. Other information sources are used to discriminate between building and
vegetation regions such as spectral information or first pulse minus last pulse data.
In (Rottensteiner and Briese, 2002) DTM and nDSM are generated using the robust
interpolation method proposed in (Kraus and Pfeifer, 1998). The initial building segments
are produced by thresholding pixels higher than 3.5m and connected component labeling. After
morphological refinement texture analysis is employed for separating vegetation from the initial
building segments. For this purpose point features proposed by (Fuchs, 1998) are used. The
first derivative of the DSM is calculated using a 9 × 9 kernel. For each initial building segment
the number of “point-like” pixels is counted. Regions having more than 50% “point-like” pixels
are classified as vegetation. Vegetation connected to buildings cannot be properly classified.
Therefore, those regions are separated using morphological processing and evaluated again.
Vögtle and Steinle (2003) employ fuzzy logic when classifying laser pixels into buildings,
vegetation, and terrain. At the beginning an approach named as “ convex-concave hull” (von
Hansen and Voegtle, 1999) is employed for generation of DTM from laser data. The normal-
ized DSM is generated by subtracting the DTM from laser data which is used for segmentation
of 3D objects. The gradients on the segment border, difference of first- and last-pulse height,
shape, and height textures are the input data for the classification. The gradient values on
the boundary of the segment are used to separate non-ground objects, i.e., buildings and veg-
etation, from the ground pixels. The difference between first- and last-pulse is employed to
discriminate buildings and vegetation. The shape parameter is defined by “parallelism of long
segment contour lines” evaluated by the deviation of line directions assuming that buildings
borders are relatively long and parallel to each other.
The height texture is provided by the Laplace operator, as employed by Maas (1999b), and
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local curvature (Steinle and Vögtle, 2001). The former two criteria, i.e., shape and height
texture, assist the difference of last- and first-pulse for separating buildings and vegetation.
Vosselman et al. (2004) proposed to use surface roughness, segment sizes, as well as shape
and color (if available) in addition to the vegetation index defined by the difference between
first- and last-pulse data for the classification of ALS data. They reported that 85% of the
building points and 78% of the vegetation points were classified correctly.
A hierarchical procedure for the segmentation and classification of buildings and trees has been
proposed by Arefi and Hahn (2005). The starting point for the hierarchical process are
morphological operations with different SE sizes applied to last pulse LIDAR data. The key of
the segmentation process is the analysis of the generated sequence of morphologically filtered
data to extract ground points with high probability. Aggregation to regions and the extraction
of region properties provide the basis for 3D object extraction.
Hebel and Stilla (2008) proposed a method to detect the ground level and to separate
clutter and man made objects in airborne LIDAR data. It is based on filtering the laser
points in each scan line keeping the points that are similar to building parts. Points on the
ground level and points belonging to irregularly shaped objects such as trees and vegetation are
eliminated. RANSAC-based straight line detection is employed to distinguish between clutter
and man-made objects. The straight lines are merged and modeled by polygons. In a related
paper (Hebel and Stilla, 2007) it is shown now gaps due to missing structures of facades in
airborne or terrestrial laser data can be filled by additional data captured by an oblique looking
laser scanner. Multi aspects laser data has been acquired and then registered using an Iterative
Closest Point (ICP) based algorithm (Besl and McKay, 1992).
Finally, some methods use other resources in combination with LIDAR data in order to sep-
arate buildings and vegetation data, for example, 2D GIS data (Stilla and Jurkiewicz,
1999; Brenner, 2000b), aerial images (Ameri, 2000), or multi-spectral imagery (Haala and
Brenner, 1999).

3.1.3 3D Building Models

The determination of building parameters for their 3D reconstruction is a challenging problem
addressed by many researchers. Ever since airborne LIDAR data appeared as a new data source
in remote sensing and photogrammetry attempts have been made to model buildings using
LIDAR data. LIDAR combined with aerial images was, e.g., used for building reconstruction
by (Haala and Anders, 1997; Rottensteiner and Briese, 2002). The LIDAR data is
employed to segment planar faces while the aerial image is used to improve the quality of the
edges of the segments.
The first approach which used only LIDAR data for building reconstruction was presented by
Weidner and Förstner (1995). They used two different 3D models: a simple parametric
model for buildings with rectangle ground plans and a prismatic model for complex buildings.
Another model-driven approach was employed byMaas (1999a). He generated building models
based on the analysis of invariant moments of segmented regions. He assumed that buildings
consist of a limited number of structures such as gable roofs. Using the first and the second
order invariant moment, a number parameters of a building such as position, orientation, length,
width, height, and roof inclination are determined. The moments of all segmented regions are
measured, and the building parameters are derived from these moments.
Building reconstruction integrating maps for the extracting of the outlines was proposed by
Stilla and Jurkiewicz (1999). A prismatic model is generated employing the height values
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inside the polygon. The roof structures are classified by histogram analysis of the points inside
the polygon into flat roof, flat roof with superstructure, gabled roof, and hip roof. The gradient
image is used to separate gabled from flat roofs. Faces are segmented based on the similarity
in gradient values. When intersecting neighboring segments special attention is required to
provide the appropriate common line.
Prismatic buildings are extracted by means of edge detection in (Alharthy and Bethel,
2002). The algorithm is devised only for buildings with rectangular shape.
Segmentation based approaches are proposed by Geibel and Stilla (2000) and Rotten-
steiner and Jansa (2002) to find planar regions which determine a polyhedral model.
Geibel and Stilla (2000) used in their approach only one parameter to control the seg-
mentation and showed a strategy to assess the segmentation results.
Another segmentation based approach using a TIN structure for the data is proposed by
(Gorte, 2002): Segments are created by iteratively merging triangles based on similarity
measures. Finally, the segmented TIN structures is transformed into a VRML model for visu-
alization.
(Rottensteiner, 2006) described a model for the consistent estimation of building parame-
ters which is part of 3D building reconstruction. Geometric regularities were included as soft
constraints in the adjustment of the model. Robust estimation can be used to eliminate false
hypotheses about geometric regularities.
A comparison between data- and model-driven approaches for building reconstruction has been
made by Tarsha Kurdi et al. (2007). It states that the model-driven approach is faster
and does not visually deform the building model. In contrast, the data-driven approach tends
to model each building detail to obtain the nearest polyhedral model, but it usually visually
deforms the real shape of the building. Since the modeling accuracy is strongly related to the
technique used for building modeling, a meaningful comparison about the modeling precision
of these two approaches is not possible.

3.2 3D Building Reconstruction Using Other Data
Sources

In this section building reconstruction employing other data sources with or without integrating
LIDAR data is reviewed. It contains two parts: In the first part algorithms while only use
image data for building detection and reconstruction are summarized which in the second part
methods which integrate LIDAR data with other data sources are explained.

3.2.1 3D Building Reconstruction from Imagery

Photogrammetry is used to collect spatial data such as buildings from aerial photographs
which are available around the world. Stereo pairs are used to extract the 3D objects located in
the overlapping areas of the photographs. Orientation parameters are the information required
to find the mathematical relationship between the photographs and object space. This basic
relationship between image and object coordinate system can be found in all photogrammetric
literature such as (Mikhail et al., 2001) and (McGlone et al., 2004).
Currently, several photogrammetric processes are utilized mostly automatically. These com-
prise for example, aerial triangulation and production of DTM with digital image correlation
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(Baltsavias et al., 2001). In the past few years, the increasing number of applications for 3D
city models, such as, urban planning, environmental analysis, and tourism, led to a continuous
increase of the demand for 3D data. Due to the costly measurement of 3D objects using stereo
photogrammetry, there was a constant development of automated 3D acquisition methods.

The development of cost-effective systems aims at simple hardware and relatively untrained
operators. For automatic 3D object reconstruction it is necessary to derive complete object
structures including the object topology from measured points. Fully automatic acquisition
of 3D buildings is not yet possible and in practice, only semi-automatic systems can be found
(Gülch et al., 2004). Nevertheless, these systems are advantageous compared to a fully manual
measurement.
Building reconstruction from image data comprises two main parts, namely, building detection
and building reconstruction. There is plenty of research using image data, mostly aerial images.
Reviews can be found in (Mayer, 1999; Gülch et al., 2004). Often, stereo images taken
from aerial or satellite photography are used to generate a DSM. From it a normalized DSM
(nDSM) is computed employing morphological operations which is the basis for segmentation
based on thresholding. The produced DSM and nDSM are in most cases of lower quality than
from LIDAR data. Brenner (2000a) compared the quality of a DSM generated by image
correlation using the Match-T software (Ackerman andKrzystek, 1991) with LIDAR DSM.
The comparison of the contour lines produced from the two data sets showed that the quality
of the LIDAR data, especially on building edges, is higher.
Weidner and Förstner (1995) employed the above steps to produce DSM and nDSM. The
non-ground regions are classified into buildings, vegetation, and other classes after segmentation
of the nDSM taking the size and position of the building bounding boxes as criteria. The
minimum size of a segment is related to the expected minimum size of a building. Additionally,
the position of the bounding box is used to filter the segments which are not entirely inside
the image. Parametric models are used for modeling simple and detached buildings using few
parameters, i.e., length, width, and height of the building. Complex buildings and building
blocks are described using prismatic models. For approximation and regularization of the
building outline an MDL based (Minimum Description Length) approach is employed. It fits a
rectangular polygon to the building outline. After estimating an average height, the prismatic
model is formed.
Nevatia et al. (1997) described a method for detecting and constructing rectilinear buildings
with flat roofs from single aerial images. They use geometric and projective constraints to
construct hypotheses for the presence of building roofs from linear features in the image. Shadow
and wall evidence are used to verify and reconstruct 3D buildings. Results from several images
can be integrated into one model.
Baillard et al. (1999) presented an approach for the automatic 3D reconstruction of buildings
from multiple images. Line features are extracted in all images and matched by the method
proposed in (Schmid and Zisserman, 1997). Epipolar geometry is used to provide point to
point correspondences on putatively matched line segments from two images. The similarity
of the lines’ neighborhoods is assessed by cross-correlation at the corresponding points. The
matched lines lead to a piecewise planar reconstruction of the building.
Ameri (2000) segments Region of Interests (ROIs) for individual buildings by the method
proposed in (Brenner, 2000a). By least square estimation, planar regions and roof surfaces
are recognized. The topological relations between the roof elements are defined by means of
Voronoi Diagrams leading to a rough building model.
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Elaksher et al. (2002) employed multi image line matching to extract 3D building wire-
frames. They used multiple images to deal with the occlusion problem often existing in stereo
processing. Homogeneous regions are extracted from each image using the split-and-merge
algorithm. Classification of the regions is carried out based on size, shape, and intensity values
to extract roof regions. The border lines for the building regions are extracted using the
Hough Transform. Next, roof segments are matched pair-wise among multiple images using
the algorithm described by Scott and Longuet-Higgins (1991).
Object extraction based on neuro-fuzzy modeling was proposed by Samadzadegan et al.
(2005). 3D regions are extracted from the DSM using morphological processing and for 2D
regions a fuzzy-based region growing technique is employed. Structural, textural, and spectral
(STS) information is extracted and integrated by fuzzy reasoning. A neural network supports
the fuzzy logic approach for performing automatic image classification.
A processing chain for generating automatic 3D city models from very high resolution (VHR)
stereo satellite images was presented by Kraus et al. (2007). A DSM is produced using image
matching from the stereo IKONOS images. Using an adapted median filter a DTM is computed
from the DSM. After calculating the nDSM from the DSM and the DTM, a high resolution true
orthophoto is generated using the DSM, the Rational Polynomial Coefficient (RPC) parameters,
and pansharpened multispectral stereo images. The true orthophoto, NDVI, and the nDSM are
employed to classify the pixels in stereo images. With a model based technique 3D models of
buildings, trees, and ground regions are reconstructed. For buildings a coarse prismatic model
is generated in the form of a polygon and a flat top with the average height extracted from the
DSM.
Besides the classical photogrammetric approaches to determine object heights indirectly, range
sensors like LIDAR and interferometric SAR (InSAR) play an important role since recent years.
LIDAR and InSAR are both active systems which illuminate the scene with electromagnetic
waves and measure the backscattered signal component. Due to the different wavelengths (e.g.
LIDAR: 1.5 mm, SAR-X: 3cm) special surface properties are sensed, because the reflectance
depends on the surface roughness compared to the wavelength. Stilla et al. (2001) compare
in their contribution segmentations of LIDAR and InSAR data for building reconstruction
using data having the same ground sampling distances (GSD=1m). It was shown that LIDAR
allows a much more detailed reconstruction of geometric building details than InSAR data
with comparable GSD. An inherent drawback of InSAR for building reconstruction is the side-
looking geometry (Stilla et al., 2003). Furthermore, Stilla (2007) shows that SAR specific
effects like layover, shadow, multiple scattering cannot be neglected and are difficult to analyze
for building reconstruction from SAR data of very high resolution (GSD=0.1m)
Mayer (2008) discusses the current state and promising directions of automatic object extrac-
tion in photogrammetric computer vision. He notes that there are only few systems available
in the market which successfully work in practice. A number of issues which are important to
be considered with this respect are mentioned. For practical applications the following reliable
and robust techniques were recommended:

• Scale Invariant Feature Transform (SIFT) operator (Lowe, 2004) for robust scale- and
rotation-invariant point extraction and matching. In addition, they are also robust to
change in illumination, noise, and minor changes in viewpoint (Wikipedia, 2009).

• 5-point algorithm (Nister, 2004) to directly compute approximate values for calibrated
relative orientation.

• RANSAC for robust estimation suitable even for well below 50% correct data.
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3.2.2 3D Building Detection and Reconstruction by Combination of
LIDAR and Other Data Sources

Baltsavias (1999) comprehensively compared airborne laser scanning and photogrammetry.
Advantages and disadvantages of each was explained particularly concerning data quality and
it was concluded that LIDAR and photogrammetric data are complementary to each other.
Haala and Brenner (1999) employed multi-spectral and LIDAR data to classify building and
vegetation regions. They used LIDAR together with building ground plan data to generate 3D
building models.
The ground plan induces strongly the shape of the roof. In contrast to this Stilla and
Jurkiewicz (1999) proposed an approach which use LIDAR data and a ground plan in a
similar way, but allows to reconstruct roof structures and superstructures which could not be
predicted from the outline of the building.
For the combined exploitation of LIDAR data and existing ground plans for building recon-
struction Vosselman and Dijkman (2001) employed two strategies: The first one is based on
the detection of intersection lines and height jump edges between planar faces. In the second
strategy, a coarse 3D model is refined by analyzing the points that do not fit well.
A feature-based fusion of LIDAR data and stereo imagery is presented by Schenk and Csatho
(2002). Features such as straight lines and surface patches are detected in each data set and
correspondences between them are established. After providing a common reference frame,
image fusion of geometric and semantic information leads to an explicit surface description.
McIntosh and Krupnik (2002) tried to improve the quality of the DSM derived from LIDAR
data using information extracted from image data. 3D line segments are derived from stereo
images and then registered with the LIDAR DSM.
Hu et al. (2004) improve the quality of building models generated from LIDAR data by inte-
grating aerial imagery. A “primitive-based” model refinement is employed based on the shape
of the building roofs. The are classified into two groups: linear-fitting primitives and higher-
order surface primitives. After the segmentation of the building roofs a geometric primitive is
fitted to each. Image textures and color information are used to refine the building model.
Rottensteiner et al. (2004a,b) proposed a method using the data fusion theory of (Klein,
1999) based on “Dempster-Shafer” combination of evidence for classification of LIDAR data and
multi-spectral images. Additionally, aerial images and LIDAR data were combined to improve
the results of roof-plane detection and roof shape boundary delineation (Rottensteiner et
al., 2004a).
The gap of missing structures of facades in classical nadir airborne laser data and missing
structures from roofs in terrestrial laser data can be closed by capturing the scene with an
oblique looking laser scanner. Hebel and Stilla (2007) show a multi aspect full waveform
acquisition, registration, and fusion of point clouds for capturing the roofs and all facades of
buildings. Full waveform LIDAR provides an intensity value for each laser point and allows a
direct texturing of the scene. Due to the possibility to model roof and fasade by faces makes it
much more easier to seprate buildings from other structures.
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A Novel Approach for Filtering of
LIDAR Range Data Based on Geodesic
Morphology

In this chapter, the proposed methods for the classification of the LIDAR pixels into ground and
non-ground regions are discussed. A hierarchical segmentation procedure using geodesic image
reconstruction is described following (Arefi and Hahn, 2005) to separate 3D non-ground
points from ground points. The key of the segmentation process is the analysis of a generated
sequence of morphologically filtered data to extract ground points with high probability and
separate them from non-ground points. The procedure continues by the interpolation of the
ground points to generate a Digital Terrain Model (DTM). Finally, the DTM is subtracted
from the original range image resulting in the Normalized Digital Surface Model (nDSM). By
this subtraction pixels corresponding to uneven ground surfaces are suppressed and, therefore,
the non-ground regions can be thought to be located on a horizontal plane with zero height.

4.1 Pre-processing
Before filtering with geodesic morphological reconstruction outlier removal and data rasteriza-
tion are inevitable. The following two sections deal with these two issues.

4.1.1 Outlier Detection and Removal

This section explains the automatic detection and elimination of outliers from the point clouds.
An outlier is an observation not consistent with other observations, particularly in its neigh-
borhood. In the given case, in large datasets outliers are points which are far away from the
sample mean in the local neighborhood. Figure 4.1 illustrates a side view of 3D laser points
around a building block. The dataset contains several outliers which are all below the ground.

According to the ISPRS filtering report (Sithole and Vosselman, 2003), two different types
of outlier often exist in the LIDAR data sets, namely low points and high points

• Low points: They are located lower than other points in a neighborhood area. Low points
do not belong to the topography and usually originate from multi-path reflection errors
and errors in the laser range finder (cf. Figure 4.2).



44 A Novel Approach for Filtering of LIDAR Range Data Based on Geodesic Morphology

Figure 4.1: Laser data with outliers (left) and after outlier removal (right)

Figure 4.2: Glass structure on building results in multi-path reflections (outliers)

• High points: They originate from laser pulses reflected by objects below the aircraft, such
as birds. They are located at an elevation obviously higher than other points in their
neighborhoods.

There are many statistical methods available to distinguish the outliers and eliminate them
from the point clouds. Some methods assume, that the data stems from a normal distribution
and therefore, they identify the observations which are deemed “unlikely” based on mean and
standard deviation (Wikipedia, 2008). Two statistical procedures which are widely used in
practice to detect and remove outliers are:

1. “Grubbs’ Test” (Grubbs, 1969): For a given dataset, the minimum and maximum values
are calculated and the following values are computed:

Gmin = X̄ −Xmin

s
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Gmax = Xmax − X̄
s

where X̄, s, Xmin and Xmax denote sample mean, standard deviation, minimum, and
maximum value, respectively. For the two-sided test, the hypothesis of no outliers is
rejected if:

G >
(N − 1)√

N

√√√√t2(α/(2N),N−2)

N − 2 + t2 (α/(2N),N−2)

where t(α/(2N),N−2) denotes the critical value of the t-distribution with (N − 1) degrees of
freedom and a significance level of α/(2N) (NIST/SEMATECH, 2007).

2. “Inter Quartile Range (IQR)” (Martinez, 2004): It is a measure of statistical dispersion
and it is equal to the difference between the lower q(0.25) and the upper q(0.75) quartile
of the dataset. (The lower quartile is the value for which 25% of the data are less than
or equal.)

IQR = q(0.75)− q(0.25) (4.1)

Two parameters are determined based on the IQR to limit the range of accepted data or
to detect outliers. These two parameters are the “lower limit” LL and the “upper limit”
UL and are determined as follows:

LL = q(0.25)− 1.5× IQR (4.2)
UL = q(0.75) + 1.5× IQR (4.3)

Then observations smaller than LL and larger than UL are defined as outliers with respect
to the bulk of the data.
“Box-and-whisker diagram” or “Box-plots” a way to visualize summary of the statistics.
Figure 4.3 shows an example. The inliers limited by UL and LL are illustrated by the
black range limited by the symbols > and ⊥, respectively. The lower quartile Q1 and
upper quartile Q3 are shown as well Extreme outliers far away from the median with the
Extreme upper limit Q3 + 3 ∗ IQR and the Extreme lower limit Q1− 3 ∗ IQR.

3. Terrasolid (2007) method: In this thesis the routine in the Terrascan software (Ter-
rasolid, 2007) is used to detect and remove low (negative outliers) as well as high points
from the LIDAR data. Two different routines are used to detect these two types of
outliers.

(a) Negative outliers: For each point a neighborhood is considered and the low points
are the points with a height value less than a pre-defined threshold below all other
points within a given xy distance. However, this routine can also search for groups
of low points where the whole group is lower than other points in the vicinity

(b) High points: Points which are higher than a pre-defined value called Limit times
the standard deviation above the median elevation of the surrounding points are
classified. As for the negative outliers, a given search radius is employed.

• Comparison of Outlier Detection Techniques: Three methods have been explained
to detect and eliminate outliers from LIDAR point clouds. The first two are common
statistical algorithms which are widely used to extract outliers from normally distributed
sample data. The assumed normal distribution might be correct in open terrain, but in
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Figure 4.3: An example for data visualization using Box-plot

other regions such as especially urban areas, where many buildings are located, it is not
appropriate (ASPRS, 2004).

Grubbs’ tests require more computations than the IQR based method, but they are more
powerful if the assumption of normal distribution is fulfilled. They can be properly used
for outlier removal from DTM as well as digital elevation models (DEM) with wider point
spacing, e.g., 10m. For the latter, the data set in general, but also smaller window tiles,
e.g., 200m× 200m, follow normal distribution.

In contrary, the Terrasolid method locally evaluates each suspicious point checking
whether the potential outlier point is clearly above or below the other points in its adja-
cency. For this method the data set does not need to follow normal distribution and it is
thus suitable for the data employed in this thesis.

4.1.2 Data Rasterization

Data rasterization is the process of converting vector data to a raster image. Since reconstruc-
tion by means of geodesic dilation is much more easily and efficiently formulated as an image
processing technique applied to gridded data, the generation of an image using spatial inter-
polation methods is a must. On the other hand, interpolating the data to fixed point intervals
enables the use of kernel filtering functions. As result of interpolation, the row and column
position of a given LIDAR point in a DSM matrix corresponds to its longitude and latitude,
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respectively. The value of the cell in the matrix corresponds to the surface elevation at the
interpolated location.

Many techniques are available for spatial interpolation such as kriging, inverse distance weight-
ing (IDW), nearest neighbor (NN), minimum curvature, polynomial regression, and moving
average. Some of these algorithms work properly for some application and fail in others. Most
of the interpolation routines predict the unknown points using the values of the closest neighbors
by fitting a model to them.

Figure 4.4: Comparison of Nearest Neighbor (NN) and Inverse Distance Weighting interpola-
tions by evaluating building edge pixels using a profile along the red arrow

The ultimate goal of filtering the laser data is to separate non-ground pixels from the ground
pixels and generate a DTM or nDSM. A DTM is a topographic model of the “bare earth”
that enables users to infer terrain characteristics that may be hidden in the DSM. It has had
vegetation, buildings, bridges, and other cultural features removed, leaving just the underlying
terrain (INTERMAP Technologies, 2008).
Therefore, for any 3D object such as a building only the lowest part and not the points on
its body, e.g., on the walls of the building are of interest. Thus, an interpolation approach
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which does not smooth points located on the edges of the 3D objects seems to be most suitable.
Nearest neighbor interpolation simply choosing the nearest gray value or height regarding to a
grid cell is such an approach. In this section two interpolation techniques are explained and their
results especially on building edges are discussed. The first method is nearest neighbor (NN),
which simply selects the value of the nearest point, and does not consider the values of other
neighboring points at all. The second interpolation method is IDW, which basically assumes
that closer points to the interpolated point have more effect (weight) than the other points.
This technique creates weights according to the distances between the interpolated location
(x, y) and each of its neighbors. In other words, the weight functions should be largest at zero
distance and decrease as the distance increases. The weight functions or “power functions” are
provided by y = x−P with P > 0 which decrease as x increase. The following steps are involved
in IDW interpolation:

• Selecting points (x1, y1), (x2, y3), ..., (xn, yn) in the neighborhood of (x, y).

• Compute the weight W (i) values for each point (xi, yi) in the neighborhood as:

W (i) = 1
dPi

= [distance[(x, y), (xi, yi)]]−P = [(x− xi)2 + (y − yi)2]−P/2

• Normalize the weights by dividing them by the sum of all the weights and compute the
interpolation value z as:

z =

n∑

i=1

zi
dPi

n∑

i=1

1
dPi

where zi is original value of the point (xi, yi).

Figure 4.4 displays interpolation results of a sample point cloud by means of NN (cf. Figure
4.4(a)) and IDW (cf. Figure 4.4(b)) techniques. A visual interpretation shows that the image
provided by IDW is blurred and it is smoother than NN. A profile generated along a building
verifies this conclusion, as it is illustrated in Figure 4.4(c). The height values along the red arrow
in Figures 4.4(a) and 4.4(b) are collected from both interpolated images and represented in
Figure 4.4(c). The profile proves that the NN interpolation method preserves the height jumps
of the building edges in a more appropriate way than IDW. Therefore, in NN interpolation
all the pixels located at the building edges will almost have same height values with a certain
height jump compared to the pixels next to them on the ground. On the other hand it is fair to
mention that the accuracy of the NN interpolation can be worse than the linear interpolation,
for instance on strongly inclined planar roof faces, if the point density is low.
This property is very important for image reconstruction using geodesic dilation. The profile
belonging to the building part with the gable roof (cf. Figure 4.4(c) middle) shows, that the
building edge is located almost at a height of 320 and the pixel next to the building on the ground
has almost a height of 303. Considering the building top height as 325, a geodesic reconstruction
using a single offset h which is a value between h1 = 325 − 320 = 5 and h2 = 325 − 303 = 22
can properly filter the building part (cf. Section 4.2 and Figure 4.9 bottom). I.e., there is a
high flexibility to select h as a value between 5 and 22 and this is not the case for the IDW
image in which h should be carefully selected, e.g., about h2 = 325− 303 = 22.
Figure 4.5 represents an image generated using NN interpolation. As mentioned before, outliers
occur in the point cloud as single points with high elevation difference compared to their
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adjacent points. In regions where outliers are located in a gap, e.g., inside a water body, the
single outlier points change into a region after NN interpolation and thus gaps might remain in
the image. If the interpolation parameters are properly tuned, big gaps are mainly produced

(a) Effects of outliers on rasterized data - 3D
view

(b) Image data with outliers removed - 3D view

(c) Effects of outliers on rasterized data (d) Image data with outliers removed

Figure 4.5: Image generation by means of Nearest Neighbor interpolation

by very weak reflections, too weak for the receiver, or by mirrored reflections away from the
receiver. The latter occurs for water bodies as well as glass structures such as glass roofs. The
gaps should be filled by appropriate height values before applying geodesic morphology. A
simple method to fill gaps works as following:

1. Pixels belonging to gaps are extracted. These regions usually have NAN values (Not-A-
Number) or any other pre-defined value such as −10000.

2. The regions (gaps) are labeled using connected component analysis.

3. The outer boundary for each region is found by subtracting its binary image from its
dilated image.

4. For each labeled region the height values belonging to its outer boundary are taken from
the original laser image.

5. The median value is calculated and used to fill the gap for each corresponding region.

Figure 4.6(a) shows an ancient church surrounded by a water body. For the largest part of the
water body, the laser beam was mirrored away from the scanner and is thus represented by
black color (NAN value). In Figure 4.6(b) the pixels with NAN values are replaced by gray
values calculated by the above method.
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(a) A Church surrounded by water body -
black color shows pixels without height val-
ues

(b) The water region after replacing the pixels
without height by appropriate values

Figure 4.6: Filling of gaps due to an existing water body based on the median of the gray values
of the pixels located at the outer boundary of a gap region

4.2 Separation of Ground and Non-ground Based on
Morphological Reconstruction

The classification of the LIDAR points is carried out in two steps: In the first step, the non-
ground regions are separated from the ground regions and in the second step, the non-ground
regions are classified into buildings, vegetation, and other classes. In this section the first step
is explained and the proposed method is discussed.
Figure 4.7 illustrates the overall strategy to classify a LIDAR range image into ’ground’ and
’non-ground’. As the flowchart shows, image segmentation is employed to group the poten-
tial non-ground regions. Image reconstruction by geodesic dilation (cf. Section 2.3.2) is the
core operation utilized for image segmentation. The potential regions are then classified into
non-ground and ground. A rule based classification separates regions that show a certain dis-
continuity at their boundary. The criterion or feature descriptor should allow to discriminate
between the ground and other 3D regions which were wrongly grouped in the segmentation.
I.e., it should highlight the boundary pixels of those regions which have a certain difference in
height (jump) to the neighboring ground surface. Therefore, a gradient based feature which
highlights large jumps is used as feature descriptor.
The outcome is, that all 3D objects such as buildings, vegetation, vehicles, trains will be
classified as non-ground. The goal of the segmentation for which the new geodesic image re-
construction is employed is to simplify and/or change the representation of the image into
something that is more meaningful and easier to analyze (Shapiro and Stockman, 2001).
Here, the aim is to partition the laser image into multiple regions which cover the entire image.
The main characteristic of the segmented regions is that they have a significant jump at the
border compared to adjacent pixels.
The first step for segmentation by means of geodesic reconstruction is to provide Mask and
Marker images. According to the definition, the Mask image is the reference image and it is the
limit for propagation of the Marker image. Here, the original range image with its no-height
pixels already replaced by an appropriate height value is chosen as marker image.
As explained in Section 2.3.2, themarker image has a significant effect on the results of geodesic
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Figure 4.7: Separation of ground and non-ground

morphology. Some essential points have to be considered to create marker images which lead
to suitable image segmentations:

• According to the definition, the marker image should have the same size as the mask
image and the gray values should be equal or less than that of themask image. In general,
an appropriate marker image is determined using knowledge about the envisaged result
or the physics of the objects it represents (Jähne et al., 1999a). Most commonly the
marker image is generated by subtracting a constant value from the mask image as
illustrated in Figure 4.8 (according to equation (4.4)). In this equation Mr, Ms, and h
denote marker image, mask image, and offset value.

Mr = Ms− h (4.4)

After choosing the offset value, the next step is to calculate a geodesic dilation of size 1 of
the marker image with respect to the mask image based on Equation (2.13) . According
to Equation (2.14), this process is continued until the pixel values do not change any
more. The result of the successively performed geodesic dilations is the morphologically
reconstructed image (cf. Figure 4.8 top right). An initial normalized DSM(nDSM0)
is obtained by subtracting the reconstructed image from the original image (cf. Figure
4.8 bottom). In this figure the part which is represented by the reconstructed image is
suppressed.
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Figure 4.8: Reconstruction by geodesic dilation of a 1D mask signal I from a marker signal
J . The marker signal is produced by subtraction of a constant offset h from the mask. The
result of grayscale reconstruction using geodesic dilation is shown in the top right part. The
subtraction of the reconstructed signal from the mask signal leads to the result given on the
bottom (Vincent, 1993)

• For the reconstruction, selecting an appropriate offset value h is critical, as it depends
on the objects to be filtered. Figure 4.9 shows how the offset value should be chosen for
filtering of a single building. The top row displays the intermediate result for a marker
image with a small offset from the mask image. The result shows, that the resulting
nDSM0 is not acceptable, because the largest part of the building is filtered out and only
a small part of the roof top remains after subtraction. In contrast to the first row, in the
second row a big offset value is selected. The resulting marker image leads to an nDSM0
which is also not acceptable: Not all pixels belonging to the ground are suppressed and
are thus still in the nDSM0. The third row demonstrates how a suitable selection of
the marker image leads to a proper nDSM0. Here h is chosen as the distance from the
highest point on the roof to half the height of the building body. The produced nDSM0
does not contain pixels belonging to the ground any more. Since the nearest neighbor
interpolation is employed to transform the laser data into grid form avoiding intermediate
heights at the boundaries of the buildings, this nDSM0 is acceptable to extract the above
the ground regions. For an ideal nDSM , the offset value has to be set to h2. In this case
the building will retain its full height. If the goal of filtering is to enable the extraction
of above the ground regions, an appropriate offset value should be between h1 and h2 as
displayed in Figure 4.9 last row, left.
We thus propose to use a sequence of offset values to create a sequence of marker images
avoiding problems caused by an improperly selected offset. Formally, h is decreased from
a maximum to a minimum value:

Mr = Ms− h (4.5)

h = max(h) : −inc : min(h) (4.6)

Beginning of offset value with a bigger h (maximum) has this advantage that the regions
with smaller h are all included in the regions detected with the bigger h. Therefore, e.g.,
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Figure 4.9: Selecting proper offset value to produce marker image

when a larger part of a building is detected and eliminated from the original image, in the
next iterations the smaller parts will not appear any more for further evaluation. This
makes process much more faster than process which begins with smaller h to a bigger
one.
A sequence of marker images is produced by using an increment (inc). The min and
max values are chosen according to the smallest and largest occurring distances from the
top point of an object to the lowest ground point in its adjacency. To determine this
parameter automatically, an image of the local height changes is calculated. This image
is later used for the classification of the segmented regions into non-ground and ground
based on subtracting the maximum from the minimum height change values in 3 × 3
local windows.

• Figure 4.10 represents another example for morphological geodesic dilation for a hilly
terrain area with buildings and trees. The profile of the 3D scene is represented as black
lines while the position of the collected laser points is highlighted by red dots (cf. Figure
4.10(a)). As shown in the left column, a marker image produced by a single offset value
can succeed in filtering all 3D objects. The only weakness of the result is that the hilly
region at the left side is not filtered. To filter regions connected to the boundary of the
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(a) Profile representing the ground (black color) and the location of the laser
points (red dots)

(b) Mask andMarker; Marker =Mask - h (c) Mask and Marker; Marker = Mask -
h except pixels at the boundary of the image
when Marker = Mask

(d) Geodesic image reconstruction of (b) (e) Geodesic image reconstruction of (c)

(f) nDSM0 of (d) (g) nDSM0 of (e)

Figure 4.10: Geodesic image reconstruction by selecting a marker image by subtracting h as
offset value from the mask image (left). In the right column the pixels at the image boundary
are given the same values as the mask.

image, a small modification is proposed in form of not conducting the subtraction from
the mask image at the boundary pixels of an image which thus remain the same as for the
mask image (cf. 4.10(c)). This produces the result given in Figure 4.10(e) and 4.10(g).

• So far a proper image segmentation is obtained by choosing a sequence of marker images
produced by different offset values from a maximum to a minimum value. Yet, since,
for example in hilly residential areas, the height jumps for tall buildings can exceed
one hundred meters, the offset value starting, e.g., at min(h) = 1m should range to
max(h) = 100m making the whole procedure very time consuming.

To speed up the process, image reconstruction begins with a marker image produced by
an image with height values equal to the minimum height value of themask except for the
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image boundary pixels for which the height is left the same as for the mask. Depending
on the surface undulation, a great number of objects will be filtered by selecting this
marker image. Typically, between 60% to 80% of the objects are filtered. Thus, for the
rest of the objects a fewer number of iterations is sufficient in the hierarchical process.

• in summary for the novel approach the following holds:

1. TheMask image is taken to be the original last pulse image after filling gaps caused
by pixels with no height.

2. Marker images are provided by the sequential approach as follows:
– The procedure begins with an initial marker image created by:

Mr(i, j) =
{
min(Ms(:)) for (i 6= 1,m) and (j 6= 1, n)
Ms(i, j) for (i = 1,m) and (j = 1, n)

with size(Ms) = [m,n], in which m is the number of rows and n the number of
columns. I.e., the boundary pixels of the marker image take the values of the
mask image.

– The process continues by selecting sequential marker images produced by:

Mr(i, j) =
{
Ms− h, h = h2 : −inc : h1 for (i 6= 1,m) and (j 6= 1, n) and (h2 > h1)
Ms(i, j) for (i = 1,m) and (j = 1, n)

Since most of the objects are already filtered by the initial marker image, h1
and h2 are determined empirically in terms of percentages of the maximum and
minimum height changes in the image. 10% of the maximum height change is
selected for h2 and 1m for h1. Additionally, an increment value inc of 3m was
determined empirically.

After carrying out the morphological image reconstruction based on the selected mask and
marker images, an initial normalized DSM (nDSM0) is obtained by subtracting the recon-
structed image from the mask image (cf. Figure 4.7). An initial classification of ground and
non-ground points is carried out by binarising the nDSM0. Any point in the nDSM0 above
a threshold (t) is classified as ground or non-ground point. These points, i.e., potential non-
ground regions, are formed as regions by calculating connected components.
Theoretically selecting a zero value as threshold can be used to extract all the foreground
objects but evaluating very low height objects such as small bushes has less importance in
DTM production and make the process very time consuming therefore, in practice a value of,
e.g., 30 cm, is selected to extract all significant above ground objects.
For the further analysis, features are determined for each region. Here, the size of a region and
the local average height difference along the boundary of the region are used. By subtracting
maximum and minimum values in local 3 × 3 windows along the region boundary, the local
range variation (LRV ) is computed. Very small regions including single points are classified as
non-ground points basically due to the outlier behavior of these points. All other regions are
evaluated by the LRV descriptor. Regions having height jumps above a certain threshold on
their boundaries will be evaluated as non-ground regions. The LRV values of each boundary
region are extracted. If the majority, i.e., here 90 percent, of the LRV values are above a
threshold, here 0.5m, the region is classified as non-ground. For the remaining regions the
discontinuity (or slope) along the boundary is supposed to be not significant, and thus they are
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considered to be terrain regions.
The steps from creating the marker image to the classification of the non-ground regions are
repeated for all marker images. The classification takes the result of previous iteration into
account by merging it with the classified non-ground regions of the current iteration. One

Figure 4.11: Different nDSMs based on grayscale reconstruction. From top to bottom: mask
image, nDSM0 with marker = Mr − 2, nDSM0 with marker = Mr − 10, and nDSM0 with
marker = Mr − 30

aspect of the proposed algorithm namely using a sequence of marker images rather than just
one marker image has to be discussed in more detail: The impact of employing different height
offsets when creating marker images is shown in Figure 4.11. With small height offsets only
non-ground regions with a low height are addressed. Figure 4.12 shows that some of these
regions are representing only a part, mostly the top, of larger regions. By increasing the height
offset also high non-ground regions are considered. Not necessarily are the high non-ground
regions also larger. But in contrast to the TopHat filtering approaches (cf. Section 2.3.1),
which filter the data with different kernel sizes to cope with objects of different size, the extent
of an object does not matter for our approach. Using a sequence of marker images provides for
all structures the appropriate height offset level at which each of the non-ground regions has
the maximum height discontinuity along its boundary. In this way non-ground regions with a
variety of different sizes and heights can be extracted.

4.3 Generation of Normalized DSM and DTM
In the previous section a method based on geodesic image reconstruction was employed to
classify the laser data into ground and non-ground regions. The next step is to generate a
normalized DSM or nDSM from the original laser data. For this, the ground data is re-
interpolated and the gaps produced by filtering are filled. Contrary to the interpolation of the
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Figure 4.12: Non-ground regions detected by applying different height offsets (Black color
represents the non-ground regions). Integration of the non-ground regions detected based on
each height offset provides the final result.

raw laser data, here an Inverse Distance Weighting (IDW ) algorithm is used. The result is a
smoothed surface which is basically a Digital Terrain Model (DTM). Afterwards, the DTM is
subtracted from the original LIDAR data to generate the nDSM .

Figures 4.13(a) and 4.13(b) represent first pulse and last pulse range images, respectively, in
a hilly residential area. Small buildings as well as spacious building blocks exist in the area.
A big part of the area is covered by dense vegetation located around the top of a hill. The
difference between the minimum and the maximum height values is about 204m in a region of
about 1km× 1km.
The feature descriptor which highlights the local height changes, i.e., LRV, is represented
in Figure 7.6(b). After detecting all non-ground regions from the LIDAR image, the pixels
belonging to them are eliminated from the image. The gaps are later filled using interpolation
to generate the filled DTM (cf. Figure 4.13(c)). Figure 4.13(d) illustrates the nDSM generated
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(a) First Pulse LIDAR data (b) Last Pulse LIDAR data

(c) DTM generated from LP data (d) Normalized DSM for LP data produced in
final step

Figure 4.13: Airborne LIDAR data and result (area= 1 km2, min height=204.5m, max
height=407.5m)

by subtracting the original image (cf. Figure 4.13(b)) from the DTM (cf. Figure 4.13(c)). The
nDSM is produced from the last pulse image. As shown in this Figure, all the 3D objects are
located on a background with zero height level.
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Figure 4.14: Local Range Variation (LRV ) image which highlights height jumps



Chapter 5

Detection and Approximation of
Building Outlines

In this chapter the proposed approach for the detection and approximation of the building
outlines is discussed. it assumes that an nDSM is given by means of the geodesic image
reconstruction algorithm explained in the previous chapter. The proposed process for the clas-
sification of LIDAR images into buildings and trees is illustrated in Figure 5.1. The algorithm
contains three steps: Segmentation of non-ground regions, extraction of feature descriptors,
and rule-based classification. In the following sections, all three steps are explained in detail.

Figure 5.1: Classification of LIDAR range data into buildings and trees

After the classification the proposed method for approximation of the building outlines is de-
scribed. The goal is to reduce the number of points of the building outline and to produce
a rectangular polygon if possible. For this two different approaches are proposed: One fits a
rectangular (rectilinear) polygon to the building outline by hierarchical rectangle fitting. In
the second approach the building outline is approximated by fitting straight lines and merging
them to generate proper polygons.
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5.1 LIDAR Data Classification

The hierarchical process for the extraction and classification of 3D non-ground regions from LI-
DAR data starts with the normalized DSM (nDSM), the major outcome of applying geodesic
image reconstruction to LIDAR range data (cf. Chapter 4). The nDSM is thresholded to
separate potential non-ground regions. Region segmentation, classification of the regions based
on region properties, and fusion of the regions into one final result are further steps. The clas-
sification of the regions is carried out rule based and uses geometric region properties together
with other feature descriptors. The properties comprise the size of the region, the vegetation
index V I based on first and last-pulse range data, the local height variation defined by the
difference between the maximum and the minimum height in a local window, and the variance
of the surface normal. The proposed process is illustrated in Figure 5.1 .

5.1.1 Extraction of Feature Descriptors

In the following we discuss the computation of feature descriptors including filtering in a pre-
processing step which comprises the following feature descriptors:

1. Calculation of the V I image which is employed for the separation of vegetation points
from non-vegetation points. A main property of the ALS systems is that the laser pulses
partially penetrate the vegetation in gaps between leaves and collect data from points
underneath the vegetation. While in first-pulse (FP) mode data on the vegetation’s
surface is available, this is not the case in last-pulse (LP) mode(cf. Section 2.1). Another
effect of multiple return measurement occurs when measuring an object with a large
height discontinuity, such as building. In such objects if the laser footprint is locates on
discontinuity, e.g., a building edge, the FP measures a point on a higher elevation level
than the LP (cf. Figure 5.2). Therefore, the same building may have larger dimension in
FP data compared to a LP data (cf. Figure 5.2(b)) or a point in FP data located on the
building edge may have a lower height value in the LP data (Steinle and Vögtle, 2000;
Clode et al., 2004). Figure 5.2 sketches the effect of multiple return laser measurements
on the building boundary. The actual building outline is drawn by a continuous black
line in FP (left) and LP (right) data. The small circles represent the laser footprints and
dashed lines show the acquired contour lines in FP and LP data. The images prove that
the building dimension in FP data is larger than the actual one while it is smaller in LP.

(a) Multiple return (b) Changes in building dimension in first- and last-pulse images
(Steinle and Vögtle, 2000)

Figure 5.2: Effects of multiple return measurements on 3D objects
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Figure 5.3(c) displays an image V I0 provided by subtraction of the LP (cf. Figure 5.3(b))
from the FP (cf. Figure 5.3(a)) image. An inspection of the bright pixels shows that the
building edges are often highlighted as well as the vegetation. The behavior is similar for
other objects such as powerlines and cranes. Figure 5.3(d) shows a vegetation index V I
which is provided by subtracting the grayscale dilation of the LP from the FP image. A
grayscale dilation using a small SE, e.g., a disk with a radius of 3, increases the dimension
of the objects in the image. Therefore, the produced V I image does not contain the edges
any more (cf. Figure 5.3(d)). The dilation on the LP image produces some negative
pixel values in the V I image. They are converted to zero because they don’t play any
role for vegetation extraction. Figures 5.3(e) and 5.3(f) visualize the vegetation indexes
provided in Figures 5.3(c) and 5.3(d) as RGB images. In these images the FP, LP, and
vegetation index images are allocated to the blue, green, and red channel. Comparison
of these images shows, the V I image produced by the second method can be a better
representative for vegetation objects than the first method.

Figure 5.3: Generation of Vegetation Index (VI) feature descriptor from first-pulse (FP) and
last-pulse (LP) images

2. Computation of the Local Range Variation LRV image as second textural image. It serves
for separating high elevated objects, e.g., buildings and tress, from the other objects such
as small bushes and ground points from last pulse image. It is assumed that most of
vegetation regions are already recognized by employing previous feature descriptor, e.g.,
V I. Therefore, here the focus is only on last pulse image and detecting high elevated
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buildings and trees by employing a bigger threshold for binarization as shown in Figure
5.1.
The LRV feature consists of the difference between the maximum and the minimum
height value in local 3 × 3 windows in the LP image. LRV is used to evaluate the
boundaries of the segmented regions (cf. Figure 7.6(b)).

3. A third feature descriptor is the variance of the surface normals. This hight texture is a
homogeneity criterion and used as one of the common methods for separating trees and
buildings from DSM (Weidner and Förstner, 1995; Brunn and Weidner, 1997).
Here, it is employed for refinement with the goal to detect remaining vegetation areas
from last pulse image, i.e., those not indicated properly by the V I, and separate them
from building areas. Geometric region properties like size or shape are not sufficient for
separating these two types of regions, because, e.g., large areas with rectangular shape
may indicate vegetation as well as buildings.
As alternative to the variance of the surface normals the other features such as Laplace
filter (Maas, 1999a; Vögtle and Steinle, 2003) or local curvature (Vögtle and
Steinle, 2003) can be used for this purpose.

5.1.2 Segmentation of Non-ground Regions

The nDSM filtered laser data as well as the V I image are binarized by thresholding. For the
nDSM a threshold of, for example, 2m is used to separate objects from the ground. For the
V I a threshold of 30cm is employed to distinguish vegetation from the ground. The thresholds
directly reflect the assumptions about what is considered as a non-ground point. Connected
components are determined and labeled to obtain regions. For each individual region properties
like the size of the region are calculated.

5.1.3 Rule-based Classification

A number of decisions is made according to the following rules:

• Decision 1: Regions are considered to be mostly vegetation regions if the V I values
indicate an average height difference between FP and LP range of more than 30cm (cf.
Section 5.1.2). The threshold takes into account measurement noise and meaningless
small height differences at the object. In reality there is a number of objects which show
almost the same behavior as vegetation in LIDAR data. This means, they are visible in
the FP data and not visible in the LP. Power lines and cranes are such objects.
Figure 5.4(b) shows two cranes as well as vegetation regions highlighted by subtracting
the FP range from the dilated LP data. The cranes are shown in dark red color and
located almost center-left of the image. They are almost 30m and 45m higher than the
neighboring ground pixels. As illustrated, the crane pixels are highlighted very simi-
lar to the vegetation pixels (cf. Figure 5.4(a)). The following strategy is employed to
discriminate the vegetation pixels from the crane pixels:
Contrary to the vegetation, the cranes (here, the higher horizontal part of what is visible
from top) and power lines contain a very large height variation in range image. They
are linear, narrow, and horizontal, i.e., the pixels have almost the same height value.
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(a) Highlighted regions by subtracting the dilation of
the LP data from the FP data. The minus values in
the image are produced by employing image dilation
instead of original LP data
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(b) Two cranes in detail view

(c) Binarized regions by employing a threshold value
of t > 30cm

Figure 5.4: Detected regions by subtracting the dilated last-pulse from the first-pulse data

Therefore, the variation of the heights are greater compared to the vegetation pixels.
To separate those regions from the vegetation regions, the variance of the height values
can be computed and evaluated. For that, the raw Z values, i.e., before interpolation,
corresponding to each region are extracted and the variances evaluated. Figures 5.5(a)
and 5.5(b) represent the result of vegetation extraction before and after evaluation of the
height variances.

To detect the building regions, all the regions considered to be vegetation, cranes or
power lines by this decision are eliminated from the set of regions.
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(a) Detected regions before considering the height variations (red
polygons) superimposed on the original FP data

(b) Refined vegetation regions (blue polygons) after considering the
height variations to separate objects such as cranes and power lines
from the vegetation regions

Figure 5.5: Final vegetation regions extracted by taking into account the vegetation index
V I feature descriptor. The cranes are separated from vegetation regions by evaluation of the
variances of the pixel values (heights) inside each region.
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• Decision 2: The remaining regions are further investigated based on the LRV image.
Only the boundary pixels of each region are taken into account. Regions that have an
average height variation along the boundary of more than, e.g., 2m (cf. Section 5.1.2)
are seen as as non-ground regions. Otherwise, those regions are considered to represent
the ground.

• Decision 3: The remaining regions mostly represent buildings, but still some vegetation
areas are present. The discrimination between vegetation and building regions is based
on the variance of the surface normals calculated for all pixels within the boundary of
each region. Regions with a low value for the average of the variance of the surface normal
are classified as building regions, the remaining ones as vegetation regions (cf. Figure 5.6).

Figure 5.6: Building (blue polygons) and vegetation (red polygons) detection output

Figures 5.7 and 5.6 show building and vegetation classification results by means of the rule-
based approach. For a better visualization, a combination of LP and FP is used to generate
an RGB image. The green pixels highlight FP − LP and are mostly tree pixels. The green
pixels along the building boundaries proves that the building size in FP is often larger than in
LP (cf. Section 5.1.1). A few green pixels are also located at glass roofs where FP −LP is not
zero. Some trees are not highlighted with green pixels, e.g., trees with gray colors inside blue
circles. Those trees contain dense leaves which cause the same reflection in FP and LP images,
i.e., FP − LP = 0.
Figures 5.7(b) and 5.6 represent the final classification result superimposed on the original FP
image. Building and vegetation polygons are displayed as blue and red polygons respectively.
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Figure 5.7: Building and vegetation detection; a) highlights the vegetation regions detected
directly from the vegetation index (VI) image. Blue circles show the areas where the vegetation
is not detected; b) shows the final classification for buildings and vegetation. In this Figure the
vegetation regions detected rule-based are integrated with the vegetation detected from VI.

In this Figure the vegetation regions detected from rule-based method are integrated with the
regions extracted from the V I image.
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5.2 Building Outline Approximation

After extracting the building regions, the outline of the buildings needs to be extracted and
simplified before 3D modeling. The building polygons often contain many unnecessary vertices
which can be reduced without a big effect on the shape of the building.
In general, polygon approximation, also termed polygon simplification, is a process to approx-
imate an input polygon by an output polygon with fewer vertices, while maintaining as much
of the initial morphology as possible.
Buildings are often constructed using relatively simple ground plans consisting of straight lines
and right angles. The inclusion of the original building boundaries derived above into a GIS
would add unnecessary complexity. Furthermore, simple ground plans form a suitable basis for
the 3D modeling of buildings. All this leads to the following goal: Find a polygon as simple
as possible fitting to the original boundary points as good as possible. In spite of the fact
that some building boundaries are not straight, it was decided to approximate all sides of the
boundary polygons with straight line segments. Thus “simple as possible” means “having as
few corner points as possible”. The requirement “fitting to the original boundary points as good
as possible”, however, can be interpreted differently and is stated more precisely below.
As neither the approximate coordinates of the corner points nor their number is known, the
problem stated above is not merely a problem of parameter estimation, but additionally a
problem of finding, refining and testing of model hypotheses. In the following requirements for
fitting a polygon to a building outline are given (Arefi et al., 2007a):

1. Significant parts of the building should be preserved.

2. “Very small” structures or “very short” edges should be eliminated.

3. Inherent symmetries of the building should be preserved.

4. The number of the resulting linear segments should be small. In particular, there should
be no “short” neighboring line segments with an angle of close to 180◦.

5. The distances between the given points and the polygon should be small, e.g., in the sense
of least squares.

6. The normal vector of the resulting polygon segment should coincide as good as possible
with the normal of the given boundary.

7. The size of the areas enclosed by the original points and the polygon should be as similar
as possible.

8. The developed methods should be robust against outliers.

9. It should be possible to control the refinement of the model, or the degree of generalization,
respectively, by means of easily interpretable parameters.

Whereas the requirements 5-7 can be immediately expressed in terms of mathematical formulae,
requirements 1-4 are less well defined. While characteristic features of buildings such as the
size of the area can easily be formalized and thus be preserved, this is not the case for features
like symmetry. Furthermore, the criteria for a good approximation depend very much on the
individual application. For instance, the following additional requirements may exist:

• Angles close to 90◦ (or 270◦) should be set to 90◦ (or 270◦).



5.2 Building Outline Approximation 69

• All angles of the polygon should be set to 90◦ (or 270◦) in case of rectilinear polygons.

In principle, two classes of solutions are possible: Either a simple polygon, for instance a
rectangle, is fitted to the ground plan and then iteratively refined until the requirements are
fulfilled as far as possible, or linear segments are fitted to the boundary points and combined,
e.g., intersected, supplemented by interpolating segments, etc., to form a closed polygon. The
former solution suits for buildings with rectilinear outlines, i.e., right angles in all corners, while
the latter is appropriate for all buildings with straight line edges.
Representatives of the first class which hierarchically fit polygons to the points are:

1. Iterative Construction of Minimum Bounding Rectangles (MBR), i.e., hierarchical fitting
of rectangular polygons (Wikipedia, 2007): This method which is explained in detail in
section 5.2.1 is a top-down, model-based approach that hierarchically optimizes the initial
rectilinear model by fitting MBR to all details of the data set.

2. The Ramer or Douglas-Peucker algorithm (Ramer, 1972; Douglas and Peucker,
1973): It starts with the first and last point A and B. A straight line is constructed
through these points. The original point Q having the largest distance from the straight
line is determined and the straight line is replaced by the two line segments AQ and QB
if the distance is beyond a given threshold. This is repeated recursively until the distance
between the polygon and the given points is below the predefined threshold. For a closed
polygon one selects one point randomly and chooses as second point the point with the
largest distance from it. Contrary to the technique mentioned in point 1 this method
doesn’t produce rectilinear polygons.

In contrast to the methods of the first class which are top-down, in the second class where
the straight line segments are determined first, the techniques are bottom-up. In top-down
methods the initial model, i.e., polygon, is shaped first and then optimized iteratively, while
in bottom-up techniques the details, i.e, line segments, are determined first and then merged
afterwards to form the final model.
The following well-known methods can be applied in order to fit straight lines to point clouds
being members of the second class of solutions:

1. Hough Transform (cf. Section 2.4.1)

2. RANSAC (cf. Section 2.4.2)

Both above cases are supplemented by algorithms integrating the line segments into a closed
polygon.

5.2.1 Boundary Approximation by Hierarchical Fitting of Rectan-
gular Polygons

• Determination of Main Orientation: The method for boundary approximation de-
scribed below assumes that the coordinate system is oriented parallel to the main orien-
tation of the polygon. I.e., most polygon edges are parallel to either the X- or the Y-axis
of the coordinate system. To determine the main orientation, two methods are proposed
and evaluated: one is based on the minimum bounding rectangle, the other on the Hough
transform.
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• Minimum Bounding Rectangle (MBR): The MBR is computed by the classical
Rotating Calipers algorithm (Shamos, 1978). The original polygon is sequentially rotated
in small steps around its center of gravity, e.g., in steps of 0.5 degree. In each step the
bounding box is determined and its area is calculated. The rotation angle which results
in the minimum bounding box defines the main orientation of the polygon.
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Figure 5.8: Main orientation using MBR

In Figure 5.8 the red polygon represents the original building boundary, the blue polygon
the building boundary rotated parallel to the main orientation, and the green rectangle the
MBR of the rotated polygon. Figure 5.8(a) shows that the method properly determined
the main orientation of the polygon, i.e., the edges of the rotated polygon (blue lines)
are parallel to the X- or Y-Axis of the coordinate system. Figure 5.8(b) illustrates the
obtained MBR for another object. It makes clear that the MBR rectangle is not always
parallel to the “main edges” of the building.

• Hough Transform: As the main orientation found by the MBR is not always parallel or
perpendicular to the direction of the edges, another method based on the Hough transform
is devised. In this method the main orientation is determined based on the average of the
orientations of the Hough lines (cf. Section 5.8(a)) weighted according to their lengths.
The Hough transform results in a histogram for the described edges’ angles (X- axis) and
their signed discretized distance from the origin (Y- axis). The angle for which most edges
provides evidence in the form of the sum of contributions over the respective column as
well as of the 90◦ shifted column is assumed to correspond to the main orientation of
polygon.
In practice, the Hough Transform is computed for the edge points and the main Hough
peaks, e.g., the best 10 peaks, are extracted. The corresponding angles for selected peaks
are checked if they are complementary with others. If the difference between two peaks
is a multiple of 90o with an accepted small deviation, only one of them is kept. The angle
which has the maximum support is selected as main orientation. The final list of remaining
angles shows whether there is only one independent angle, i.e., not complementary with
others, as main orientation, or more.

In Figure 5.9(a) the positions of the main peaks are marked by yellow squares in the
Hough transform of the boundary image. Lines corresponding to the detected peaks are
highlighted in Figure 5.9(b). Figure 5.10 shows that the orientation by means of the
Hough Transform is also correct for the example 2 of Figure 5.8(b), where the method
failed based on the MBR.
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Figure 5.9: Main orientation by Hough Transform
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Figure 5.10: Main orientation by Hough Transform for example presented in Figure 5.8(b)

• Hierarchical Fitting of Rectangular Polygon: After determining the main orienta-
tion, the building polygon is rotated to the main orientation, as shown in Figure 5.11(a).
In the next step, the MBR image (cf. Figure 5.11(b)) is subtracted from the rotated
building region (cf. Figure 5.11(c)). The subtraction produces new regions, cf. Figure
5.11(c). For any of those regions a MBR will be calculated (cf. Figure 5.11(d)). They
are again subtracted from their corresponding regions produced in the previous step (cf.
Figure 5.11(e)). As illustrated in Figure 5.11(e), some small regions are created. The
process is repeated by again computing MBR regions and subtracting them from their
corresponding regions. This hierarchical procedure is continued until either no new re-
gions are created any more or the size of the produced regions is less than a predefined
threshold. After convergence, the polygon is rotated back to the original orientation, cf.
Figure 5.12 with the red lines highlighting the rectangular polygons.

The above procedure employed for the outline of each building in the image. For buildings
containing courtyards, the points of the outer and the inner boundaries are individually pro-
cessed and corresponding rectilinear polygons are extracted. The final approximated polygon
is formed by subtracting the courtyard, or inner boundary points, from the outer boundary
points. An example for the approximation of buildings with courtyards is presented in Section
7.3.3.



72 Detection and Approximation of Building Outlines

(a) Rotated building (b) MBR image

(c) Rotated region - MBR region (d) MBR on small regions

(e) New regions produced by sub-
traction of Figures (5.11(c) and
5.11(d))

Figure 5.11: Segmentation based on MBR
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Figure 5.12: Final rectangular polygons superimposed on original LIDAR image

5.2.2 Boundary Approximation Using RANSAC

RANSAC (cf. Section 2.4.2) was originally devised to robustly fit one singlemodel to noisy data.
It turns out, however, that it can also be successfully used in a procedure to fit a beforehand
unknown number of models, as in the case of the ground plan boundaries the number of line
segments is initially unknown. The RANSAC-based approximation method proceeds as follows:
Straight line segments are repeatedly detected after deleting already fitted given points from
the input data until either a) the lines found so far are considered sufficient to construct the
ground plan completely or b) the number of points fitted to the best line segment with respect
to the current iteration step falls below a chosen threshold t (Arefi et al., 2007a). This
threshold already appears in the “original” RANSAC: “The RANSAC paradigm contains three
unspecified parameters: (1) the error tolerance used to determine whether or not a point is
compatible with a model, (2) the number of subsets to try, and (3) the threshold t which is the
number of compatible points used to imply that the correct model has been found” (ibidem).
To adapt RANSAC for the particular problem, a modification is suggested which is reducing
the computational effort: If pairs of points are selected randomly as by the original RANSAC,
for a lot of pairs the two points would belong to different line segments. By making use of
the fact that the points are given in the order they are connected, only one point is selected
randomly and the second point is chosen from a neighborhood of the first defined by a specified
index difference ∆i to the first point. ∆i is a further parameter of the method. If it is chosen
too small, the accuracy of the line segment may be poor. If it is chosen too big, many pairs may
result with the two points belonging to different line segments. Our experiments have shown
that small values of the index difference are acceptable if the parameters of the line segment
are determined iteratively. All points compatible with the line, i.e., the inliers, are used to
compute improved line parameters, which again lead to a new improved set of inliers. This is
repeated until no considerable improvement is obtained any more.
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As the goal are straight line segments rather than lines, also the ends of the segments have
to determined. For this purpose the outermost footpoints of the boundary points on the lines
are computed. Sometimes, straight lines in the ground plan are interrupted, for instance by
protruding parts of the building. Thus a further parameter s is introduced controlling how big
a gap of non-fitting points is allowed to be inside a line segment. The line segment with most
inliers is accepted for the respective iteration step. All boundary points between the first and
the last compatible point are deleted from the input data.
The parameters s and t allow to control the degree of generalization of the model. However,
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(a) t = 15, s = 30

100 150 200 250 300 350 400 450 500

(b) t = 15, s = 7

Figure 5.13: Line segments obtained by RANSAC – boundary pixels in blue, approximating
line segments in red for different parameter settings (t: number of iteration; s: gap length)

large values for s may lead to undesirable results. Figure 5.13(a) shows on the right side two
artificial skew segments, which are obviously supported by far-off points after gaps of still
admissible length. Furthermore, there is a violation of the symmetry requirement: On top of
the figure a small structure is eliminated, while on the bottom the corresponding structure is
preserved. With the smaller value for s in Figure 5.13(b), a lower degree of generalization is
achieved, but the symmetry of the building is reflected in the approximation.
When the iteration stops, because no more line segments with enough inliers are detected any
more, the polygon is assembled from the line segments. The segments are sorted according to
the ordering of their endpoints and the following rules are applied:

1. If neighboring segments are nearly parallel:

(a) If the orthogonal distances of the corresponding straight line to the origin are nearly
equal, the two segments are unified to one segment.

(b) Otherwise, a new linear segment is inserted which is nearly orthogonal to both.

2. Otherwise:

(a) If the distance between corresponding endpoints is small, the segments are inter-
sected.

(b) Otherwise, a new linear segment connecting the two endpoints is inserted.

These rules are obviously based on local information and thus result into local changes of the
segments which have been detected by RANSAC. With a global adjustment exact 90◦-angles
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could be enforced and/or the area preserved. Yet, this would increase the computational effort.
In summary, the following eight parameters have to be set for the described method (in the
last column the values chosen in the present study are given – cf. Table 5.1):

Par. Meaning Chosen Value

RANSAC k Number of random samples 10 + nrp/100
(nrp: number of remaining points)

d Error Tolerance: Acceptable distance between 2 pixel
boundary point and line segment

t Minimum number of fitting points for 15
the acceptance of a segment

Gap Length s Admissible number of successive 7
non-fitting points within a segment

Local Search Length ∆i Index difference between the sample points 15

Assembling of segments p Parallelism criterion: angle between 18◦
to polygon the normal vectors of two neighboring segments

u Unification criterion: difference in 5 pixel
orthogonal distances to the origin between
lines corresponding to two neighboring segments

e Intersection criterion: Maximal distance 15 pixel
between the endpoints of two neighboring segments

Table 5.1: Parameters controlling the boundary approximation using RANSAC

Figure 5.14 shows the polygon obtained using RANSAC. Only the cases “insertion of a line
segment which is nearly orthogonal to both its neighbors” and “intersection of neighboring
segments” occurred. There is an apparent asymmetry in the central part of the building: The
skew segment was detected by the original RANSAC algorithm, the “orthogonal” one was
inserted between its parallel neighbors. Such an asymmetry which already exists in the given
data could only be avoided by either just connecting distant endpoints also for parallel segments,
or adjusting short segments between parallel neighbors so that they become orthogonal.

5.2.3 Comparison of Methods for Building Outline Approximation

Two methods with very different characteristics have been presented for the approximation of
building boundaries by straight lines. The MBR-based method is inherently top-down model-
driven and hierarchical. It therefore can be adapted easily to different generalization levels.
The approximating polygons form due to their orthogonality an excellent basis for the 3D
modeling of building. A further important advantage is the good preservation of symmetries
of buildings. The main drawback of the method is, that it is not suitable for ground plans
with non-orthogonal edges. In this case the algorithm also converges, but only due to the
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Figure 5.14: Approximation of polygon obtained using RANSAC

morphological Closing between the iteration steps. Saw-tooth patterns are generated whose
amplitudes depend on the structuring element used for Closing.
In contrast, the RANSAC-based method forms approximating polygons by determining individ-
ual details, i.e., straight lines, and merging them. Since it does not rely on a main orientation,
it is more flexible compared to the MBR-based method. On the other hand, the intermediate
result, i.e., the set of line segments which are detected in the first step, depends strongly on
the chosen parameters and is not reproducible since the points are selected randomly. For dif-
ferent initializations of the random number generator even the number of segments may vary.
Additionally, an improper choice of the parameters may distort the symmetries of a ground
plan. The rule-based algorithm which is used to combine the segments to a polygon also affects
the result to a certain amount. However, a certain arbitrariness seems to be inherent in the
problem, which becomes already evident from the unsharp requirements stated in Section 5.2.
Therefore, both approaches have benefits and drawbacks. To make a general approach which
is usable for all buildings with straight line boundaries, a combined method is proposed. It is
based on number of main orientations defined by analyzing the Hough space of the building
edges.
The buildings are classified into one main orientation (OMO) and many main orientation
(MMO) buildings. Accordingly, OMO buildings are the buildings with orthogonal sides. In
contrast, if in one building at least two neighboring sides are not perpendicular to each other,
the building is many main orientation (MMO). If the analysis in Hough space indicates that
there is more than one main orientation, i.e., MMO, the RANSAC-based technique is used (cf.
Figure 5.15, right) otherwise the MBR-based method is implemented (cf. Figure 5.15, left).
In Figure 5.15 the left building has a single main orientation, i.e., OMO, represented by the
red lines, and the right building has two main orientations, represented by red and blue lines.
Accordingly, outline polygons are extracted and approximated with the MBR- or the RANSAC-
based method.
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Figure 5.15: Building main orientations; The yellow points represents the building outline and
the red and the blue lines are the lines found by Hough transform.

Figure 5.16 represents the result of the approximation procedure overlaid on the original LP
image. The image contains many buildings with different sizes and orientations. The buildings
displayed with red lines are classified as OMO buildings, i.e., Hough Transform found lines
with orientations “almost” parallel or perpendicular to each other (cf. Figure 5.16(b)). These
polygons are generated by means of the MBR-based technique as rectilinear polygons. When
checking if the lines are perpendicular or parallel, a deviation of about ±5◦ is taken into account,
e.g, angles with an absolute difference of less than or equal to 5◦ are assumed to be parallel.
Contrary to the OMO buildings, the MMO buildings are approximated using the RANSAC-
based method (cf. Figure 5.16(b), green polygons).
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(a) Building outlines superimposed on LP image

(b) Approximated polygons superimposed on original LP image; one main orientation buildings are approxi-
mated by rectilinear polygons (red) and two or more main orientation buildings are approximated using the
RANSAC-based approach (green)

Figure 5.16: Using the MBR-based and the RANSAC-based approach for the approximation
of building outlines



Chapter 6

Projection-Based 3D Building
Modeling

In this Chapter a new method is proposed for generating 3D building models on different levels
of detail (LOD). The proposed work flow is presented in Figure 6.1. The 3D models on differ-
ent LOD follow the standard definition of the City Geography Markup Language (CityGML)
described in (Kolbe et al., 2005). CityGML defines five LOD for multi-scale modeling: LOD0
– Regional model consisting of the 2.5D Digital Terrain Model (DTM), LOD1 – Building block
model without roof structures, LOD2 – Building model including roof structures, LOD3 –
Building model including architectural details, LOD4 – Building model including the interior.
Algorithms for producing the first three levels of the LOD are explained in this chapter. Accord-
ing to the above categorization, the first LOD corresponds to the digital terrain model (DTM).
The non-ground regions are filtered using geodesic reconstruction to produce the DTM from
LIDAR DSM (Arefi and Hahn, 2005; Arefi et al., 2007b). The LOD1 consists of a 3D
representation of buildings using prismatic models, i.e., the building roof is approximated by
a horizontal plane. Two techniques are implemented for the approximation of the detected
building outline: hierarchical fitting of Minimum Bounding Rectangles and RANSAC-based
straight line fitting and merging (Arefi et al., 2007a). For the third level of detail (LOD2), a
projection-based approach is proposed resulting in a building model with roof structures. The
algorithm is fast, because 2D data are analyzed instead of 3D data, i.e., lines are extracted
rather than planes. The algorithm begins with extracting the building ridge lines thought to
represent building parts. According to the location and orientation of each ridge line one para-
metric model is generated. The models of the building parts are merged to form the overall
building model.
The generation of the DTM and the detection and approximation of the building outlines to
form LOD0 and LOD1 have already been discussed in Chapters 4 and 5. Therefore, in this
Chapter the focus lies on the generation of the LOD2 based on the analysis of the 3D points
in 2D projection.

6.1 Automatic DTM Generation – LOD0

A hierarchical approach for separating the non-ground from the ground regions in LIDAR data
has been presented in Chapter 4. The first-pulse (FP) or last-pulse (LP) LIDAR data are the
input to a hierarchical reconstruction procedure based on different height offsets h shown in
Figure 4.10. The reconstruction result is subtracted from the original data to generate the



80 Projection-Based 3D Building Modeling

Figure 6.1: Work flow for automatic 3D building reconstruction

initial normalized Digital Surface Model (nDSM0). Segmentation based on thresholding of the
nDSM0 and connected component analysis is utilized to generate the initial non-ground regions
which are removed from the original data. Interpolation filling the gaps provides the DTM, i.e.,
LOD0. Figure 6.2(a) displays the LP LIDAR data with the contour lines produced from the
height values superimposed. The scene consists of several buildings in a residential area with
an average height difference of about 40m in about 320m × 260m. Figure 6.2(b) represents
the corresponding DTM provided by hierarchically filtering non-ground regions using geodesic
dilation.



6.2 Building Outline Detection and Approximation for Generating 3D Prismatic Models – LOD1 81
 

300

305

310

315

320

325

330

335

340

(a) Last pulse laser data with superimposed con-
tour lines

 

300

305

310

315

320

325

330

335

340

(b) DTM (LOD0) and contour lines

Figure 6.2: Generation of DTM (LOD0) by hierarchical filtering of non-ground objects

6.2 Building Outline Detection and Approximation for
Generating 3D Prismatic Models – LOD1

The nDSM produced by subtracting the DTM from the original data generated in the previous
section contains buildings as well as vegetation. Also other 3D objects might still be present
in the data. Regions are classified rule-based using geometric and other properties of regions.
The size of the regions, a vegetation index based on FP and LP range data, and variance of
the surface normals have all been employed in rule-based classification (cf. Section 5.1). To
model the LOD1, the extracted building outline is simplified to a polygon usually including
only a few significant points, particularly corners. For this purpose, two methods are employed:
fitting a rectilinear polygon by iterative adaptation of minimum bounding rectangles (MBR)
and straight line fitting and merging based on RANSAC (cf. Section 5.2). To generate the 3D
model from 2D polygons, the z-component is extracted from the DSM. A representative height
is found by averaging the heights of the LIDAR points inside the boundary polygon. Next, the
polygons representing the walls and the floor of each building are formed. All 3D polygons are
put on top of the DTM to create the LOD1 representation (cf. Figure 6.4).
Figure 6.3(a) shows the original LP data in a 3D view. Building outlines are approximated by
means of the combined MBR-based and RANSAC-based approach explained in Section 5.2.3.
After estimating the average heights of the buildings, the 3D prismatic model is formed (cf.
Figure 6.3(b)). The prismatic models are superimposed on the original LP data (cf. Figure
6.4(a)) and put on top of the DTM (cf. Figure 6.4(b)), respectively, to form LOD1.
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(a) Range image – 3D
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(b) 3D prismatic model generated using the combined MBR- and RANSAC-based approxima-
tion methods (cf. Section 5.2.3)

Figure 6.3: Approximation of last pulse (LP) data by 3D prismatic buildings

6.3 A Novel Approach for Building Reconstruction Us-
ing Projection Based Analysis of 3D Points – LOD2

Projection-based building reconstruction exploits that geodesic image reconstruction with a
very small height difference h (cf. Figure 4.9(top)) captures ridge points and roof outlines very
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(a) 3D prismatic model superimposed on original LP data

(b) 3D prismatic model put on top of DTM creates the LOD1 representation

Figure 6.4: 3D prismatic model – LOD1

reliably. This allows to deducing the main orientation of buildings or building parts as well as
a corresponding buffer zone (cf. Figure 6.7(a)). Next, a cuboid which covers the building or
building part is extracted. The main orientation is used to define a 3D to 2D projection. All 3D
laser points included in the cuboid are projected onto a 2D projection plane, which is one of the
planes of the cuboid. It results in point accumulations in the 2D projection. The accumulations
often correspond to the main building shape in terms of a profile representing the roof and the
vertical walls. Here, only a limited number of roof models is taken into account, particularly
flat, hipped, and gable roof.
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Figure 6.7(b) shows an example with a gable roof for a building part. Robust line fitting
approximates the profile by straight line segments from which a polygon consisting of the roof
and the vertical walls is derived. This automatically eliminates all details of the shape the
building or building part. By extruding the extracted 2D information to 3D along the normal
to the projection plane, a 3D model of the building or building part is determined. The 3D
model of the whole building is obtained by intersecting the models of its parts. The result is
considered to be the LOD2 representation. A possible refinement to greater detail follows the
same idea, but instead of analyzing all data points inside the cuboid in one projection plane, a
sequence of planes is used to accumulate parts of the points of the cuboid.

6.3.1 Ridge Line Extraction and Main Orientation Determination

The ridge line extraction begins with image reconstruction by geodesic morphology extracting
the pixels of the highest part of the building segment. A small height offset value, e.g., 0.2m is
chosen for this purpose. As outcome all pixels that belong to local peaks and their neighborhood
are detected as shown in Figure 6.5(b). For flat roofs the detected pixels represent the complete
roof region. The region segments obtained by labeling connected components are classified into
flat roof and ridge points using Gaussian and mean curvature and surface normal as features.
As shown in Figure 2.6 the flat surface indicates by H = 0 and K = 0 (cf. Figure (b)) and
ridge type surfaces can be identified by H < 0 and K = 0 (cf. Figure (e)), H < 0 and K > 0
(cf. Figure (a)), H = 0 and K < 0 (cf. Figure (d)) as well as H < 0 and K < 0 (cf. Figure (f)).
Additionally, as mentioned, surface normal criterion is used to refine the surfaces classified by
curvature values.
The number of extracted points in this step depends on the selected offset value and the
inclination of the roof faces. Some other regional maxima are also detected in this step (cf.
Figure 6.5(b)).

(a) Range data (b) Roof top pixels; Differences between original and recon-
structed data are represented by red points.

Figure 6.5: Determination of the roof top

Next, straight line segments are extracted from the ridge points with RANSAC. The orientations
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of the ridge line segments are calculated and verified by comparison to the main orientation of
the building, since in most cases the ridge lines are parallel or perpendicular to the building
edges. If the deviation angle ξ between the ridge line and the main orientation is less than an
empirically determined value of ±5◦, the ridge line is rotated around its center of gravity by
ξ. The orientation for building parts with flat roofs is calculated based on the MBR rectangle
for the roof outline. Figure 6.6 shows the points classified as ridge points and the RANSAC
lines superimposed on the original LIDAR image. Ridge points shown in blue in this figure are
outliers of the RANSAC process or lines which are not approved because not enough inliers
were found.

(a) Overall view (b) Detail

Figure 6.6: Points classified as ridge points (blue) and lines fitted by RANSAC (red) superim-
posed on LIDAR data

6.3.2 Localization of Building Parts

For a rectangle parallel (or perpendicular) to the main orientation, the points located inside
it are extracted using the point-in-polygon algorithm. This step is necessary for buildings
containing more than one part. A rectangle parallel to the main orientation, i.e., parallel to
the ridge line, is created. The rectangle is defined around the ridge line with equal distances
of the edges to the ridge line. The limits of the rectangle are selected in a way that the pixels
belonging to the building part are all included. The orthogonal distance from the ridge to the
rectangle side is calculated based on the length of the ridge (cf. Figure 6.7(a)), i.e., for a long
ridge line a bigger rectangle area is considered.
In Figure 6.7(a), the rectangle is displayed in red and the localized points are shown by green
dots. The direction of the projection, which is equal to the orientation of selected ridge line
(black line), is given by the white arrow.

6.3.3 Projection from 3D into 2D and 2D Model Fit

The localized points from the previous Section are projected on a vertical plane orthogonal
to the projection direction. According to the type of the roof which has been determined by
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classification is Section 6.3.1 above, a 2D model is fitted to the projected points. For flat roofs,
two vertical lines and a horizontal line connected to the top of them is adapted. For roofs with
a ridge line, a model consisting of two vertical lines as well as two sloped lines intersecting at
the ridge are fitted. Figure 6.7(b) shows the projected points in blue and the 2D model fitted
to the data set in black.

(a) Localization of building part (green region in-
side buffer zone – red rectangle)

(b) Fit of 2D model (black lines) to projected
data (blue points)

Figure 6.7: Projection-based modeling

The procedure to extract the 2D model from the projected points works as follows:

• The points located higher than the ridge line are not considered for 2D modeling and
therefore, they are eliminated first. These points (cf. Figure 6.7(b)) usually belong to the
neighboring building parts.

• To detect the two sloped lines, the points located below the ridge points are analyzed.
Two lines are detected on the two sides of the ridge points which have a maximum number
of supporting points. The ridge point is the common intersection point for these two lines.

• Two vertical lines corresponding to the walls on the two sides of the ridge point are
detected next. As for the sloped lines, they should also have a maximum number of
supporting points in their buffer zone. In this thesis the buffer zone is defined by a small
distance of 0.25m on both sides of each tested line. Since at the eaves the quality of the
laser data is possibly strongly affected by the employed interpolation method and the
points are more smoothed, a robust straight line detection such as RANSAC needs to be
parameterized in a way that it only extracts vertical lines.

In this step, the number of sufficient laser points on the wall makes a significant effect on
the quality of extracted wall lines. For the building parts which contains few number of
laser points on their walls the quality of extracted wall in this step is poor.
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• The intersection between the vertical and sloped lines defines the location of the eave
points.

6.3.4 From 2D to 3D – LOD2

The 2D model is converted back to 3D by extruding it orthogonally to the projection plane.
The 3D model consists of four walls plus one to four roof planes: a horizontal plane in case of a
flat roof, two inclined planes in addition to two vertical triangular planes for a gable roof, and
four inclined planes for a hipped roof. In the previous step the 2D model of the building part
which represents the building model from front view, i.e., parallel to the ridge direction has
been detected. In this Section the extension of the building part in the other direction (from
the side view), i.e., orthogonal to ridge orientation is defined. The following steps complete the
3D model of the building part:

• Classify the roofs which contain ridge lines: The procedure first analyzes the points
located in a neighborhood beyond the end points of each ridge line. The height at an
empirical distance of about 1m beyond the ridge ends are used to classify the roofs into
the following types:

1. Gable roof: There exists a big negative height change (jump-down), e.g., δh < −5m.
2. One-sided gable roof: There exists a big negative height change on one side and a

big positive height change (jump-up), e.g., δh > 5m, on the other direction. This
happens when the building part in one side connects is on a lower height level than
a neighboring part.

3. Two-sided gable roof: On both sides the height changes are positive. It happens
when the building part is located between two other parts on a lower height level.

4. Hip roof: The heights change smoothly with negative values, e.g., 0 > δh > −1m.
5. Gable-Hip roof: On both sides the height changes are negative, but on one side with a

large value, i.e., δh < −5m, and on the other side a small value, i.e., 0 > δh > −1m.

• If the building part consists of jump-down or jump-up points, the building model is
extended up to these points. In other words, if the 2D model is generated by analyzing
the points in the XZ plane, the Y elements of the walls on one side (or on both sides in
case of roof types number 1, 2, and 3) get the Y value of the ridge point on that side.

• If according to the classification the building contains a hip on one or both sides, i.e., cases
number 4 and 5. In case of hip roof, a straight line detection method using a fixed point,
i.e., the ridge point and the point in the neighborhood, which produces the line with the
maximum number of supporting points, is employed. This inclined line represents the
hip roof from side view. In this case, the Y element of the wall is defined by the same
procedure as the 2D model. In case of gable roof a vertical line from the ridge point to
the ground is formed as wall in side view.

• The height of the ground is the only remaining unknown value to form the 3D model of
the building part. Here, the minimum height value of the points corresponding to the
building part is defined as ground height.

• Finally, the polygons for the faces, i.e., roof, walls, and floor, are shaped using the coor-
dinates of the nodes and the ground height.
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Figure 6.8: 3D building model for new Stuttgart castle. Colored faces of the model are visible
only if they are above the gray data points.

After reconstructing 3D models for all building parts, they are merged to form the overall
3D model of the building. Figure 6.8 displays a building model produced by merging eight
building parts. The eight ridge lines lead to eight parametric building models with hipped
roofs. After combining the models, an overall 3D model is provided. For nodes of the building
parts which have to be merged because they represent, e.g., the same corner of the building,
the average value is determined.

Figure 6.8 shows one building part which is not modeled directly above the entrance of the
Stuttgart new castle. A proper model for this area would be a dome. Since the model is
complex and is not included in our roof classification it could not be modeled.
As shown in Figure 6.11, intersections might need to be refined for not rectangular building
parts. To refine the two inconsistent nodes, the distances between the original LIDAR data
points and each eave line are calculated. For each eave line closest points, i.e., having a distance
less than a certain threshold, are extracted. Using these supporting points the eave lines are
extended (or shortened) from both sides to the last point. For nodes generated from more than
one vertex the average is used.
2D information about protrusions and indentations of the building boundaries can be extracted
from LOD1. The nodes of the protrusions and indentations are determined from the approxi-
mated polygon and the corresponding planes on the roof (flat or inclined ones) are adapted.
Figure 6.9 displays an approximation result for the new Stuttgart castle superimposed on the
original data as red polygon. The reconstructed building model is given in blue. The figure
shows that the 2D outline of the approximation and the overall 3D outline almost fit together.
One protrusion and two indentations exist which have to be included or excluded from the
model. In this example the protrusion is a low building part with flat roof modeled using
a cuboid. Both protrusion and indentation regions are excluded using information from the
approximated outline, i.e., a prismatic model.
By comparison between the overall boundaries of the 3D building models and the approximation
result for the building block, the corresponding indentation and protrusion regions can be
detected. The overall area of the approximation result for the building block is subtracted from
the corresponding area for the parametric models. This is done by subtraction a binary image
which highlights the internal pixels of the approximation result from the corresponding binary
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Figure 6.9: Approximation of the building outline (red polygon) and the reconstruction result
(blue polygons) superimposed on the original data

image of the parametric models. The positive pixels belong to protrusions and the negative
pixels relate to indentations.
The regions provided by connected components labeling are analyzed and small regions
are eliminated. An MBR is adapted to each remaining region after smoothing the regions
using morphological closing. For protrusion, a cuboid-shaped 3D model is generated and
the average of the heights of the internal points is used as building height. Although, this
does not mean that the protrusion parts have always flat roof, but since their correspond-
ing roof types cannot be distinguished by the proposed algorithm in this thesis, a simple
cuboid shaped model is fitted to the points. The corresponding MBR polygon nodes of
indentation and protrusion regions are included in the overall 3D model. Finally, the incli-
nations of the building roofs are adapted after including the indentation nodes (cf. Figure 6.10).

Figure 6.10: 3D model extended by a protrusion and two indentations (colors cf. Figure 6.8).
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(a) Before adjusting the nodes (b) After adjusting the nodes

Figure 6.11: An example for projection-based building modeling (colors cf. Figure 6.8) with
building parts intersecting at a non-orthogonal angle.



Chapter 7

Experimental Investigations with
Stuttgart Test Data

7.1 Test Data

The algorithms proposed in this thesis were tested and evaluated with data from the city of
Stuttgart, Germany. The company TopScan GmbH (TopScan, 2007), Rheine, Germany
kindly provided LIDAR range and intensity data covering the central part of Stuttgart. The
data are recorded in combined first (FP) and last pulse (LP) mode. Airborne LIDAR data were
acquired in April 2006 by an Airborne Laser Terrain Mapper (ALTM) laser scanner, ALTM
2050, with a measurement density of about 4.8 points per m2 on average. The specification of
the LIDAR data used in this thesis is presented in Table 7.1.

Specification Data
Capture period April 2006
Flight altitude 1100 meter
Pulse frequency 50.000 Hz

Wavelength of the Laser 1064 nm (near infrared)
Measurement density ≈ 4.8 points per m2

Swath width ≈ 600 meter
Instrument ALTM 2050 laser scanner

Table 7.1: Airborne LIDAR data specification

A regularly spaced elevation grid is derived by means of spatial interpolation of the raw 3D
points. A 0.5m lattice spacing is chosen for the elevation grid. A sample of the test data
visualized as color image is represented in Figure 7.1. It represents a 1km2 hilly residential
area with a maximum height difference of about 200m. Both FP and LP data are visualized.
The area contains different 3D objects on top of the undulated terrain such as very dense
vegetation regions as well as spacious buildings.

7.2 Experimental Results

In this Section results of each processing step are given and analyzed. The processing begins
with filtering the LIDAR data based on geodesic dilation to separate non-ground and ground
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(a) First pulse DSM

(b) Last pulse DSM

Figure 7.1: LIDAR DSM on regular grid format with 0.5m grid size
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regions, resulting in DTM and nDSM (cf. Section 7.2.1). Next, rule-based classification leads
to buildings, vegetation, and other classes which are analyzed in Section 7.2.2 together with the
building outlines approximated and regularized based on MBR and RANSAC. 3D modeling of
the ground pixels and reconstruction of the buildings according to the first three levels of detail
(LOD) defined by CityGML is the final processing step. The result for each LOD is presented
and their accuracy is analyzed in Section 7.2.3.

7.2.1 Separation of Non-ground and Ground Regions – Generation
of DTM and nDSM

The separation of ground and non-ground points is based on the LP elevation grid. After
removing all non-ground points from the LIDAR data and filling the gaps using appropriate
interpolation technique, the DTM is obtained.

Figure 7.2: Resulting nDSM

Figure 7.2 illustrates the nDSM generated by the reconstruction method. It is produced by
subtracting the DTM from the original LP data (cf. Section 4.3).
The non-ground regions are iteratively filtered using different sequentially generated mask
and marker images. In each step an initial nDSM (nDSM0) is generated by subtracting the
reconstructed image from the mask image. The detection uses simple thresholding on the
nDSM0. Foreground regions are created and evaluated based on Local Range Variation (LRV)
(cf. Figure 7.6(b)).
Above the terrain regions are detected iteratively with the number of iterations depending on
the maximum value of height change extracted from the LRV image. To increase the processing
speed, geodesic dilation begins with the maximum offset value which is equal to the maximum



94 Experimental Investigations with Stuttgart Test Data

value of the LRV. This is because the smaller non-ground regions are usually included in the
larger regions. I.e., if a big region such as complex building is extracted using a big offset value,
all the internal parts are extracted as well. Consequently, the smaller internal parts do not
need to be extracted and evaluated any more.
The marker image is produced based on the offset value h = max(LRV ) except for boundary
pixels wheremarker = mask. The result after image reconstruction with offset h = max(LRV )
is subtracted from the original range data, i.e., LP, to generate the nDSM0. A threshold value
of about 30cm is used to avoid highlighting very low objects. The potential non-ground regions
are produced and their boundary pixels are analyzed to distinguish 3D non-ground regions.
This procedure repeated for all other offset values and all the non-ground regions in each step
are integrated in one binary image. Figure 7.3(a) represents the result of non-ground regions
extracted from LP data. Subsequently the non-ground regions are eliminated from the original
LP image to make not-filled DTM. Finally the gaps are filled by means of IDW interpolation
(cf. Section 4.3) to generate DTM or filled DTM (cf. Figure 7.3(b)).
Figure 7.3(a) shows that almost all of the above ground objects such as buildings and trees are
correctly extracted. Comparing this Figure and original LP (cf. Figure 7.1(b)) shows that there
are still some 3D objects in particular those are locating on the hill which are not correctly
extracted. Figure 7.4 enlarged one of the buildings that are not appropriately extracted.

(a) None-ground regions (b) DTM generated after eliminating the non-
ground pixels and filling them with IDW inter-
polation

Figure 7.3: Non-ground regions are eliminated from LP and the gaps are interpolated to form
DTM. The produced DTM is not complete and some building parts are still remained.

Geodesic reconstruction filters objects which are higher than their surroundings. I.e., all pixels
on the boundary of an object must have a bigger value than the pixels outside next to the object.
Objects to be filtered (such as buildings and trees) are often higher than their neighborhood.
Yet, in the suburban hilly regions it happens occasionally that spacious buildings are situated
on steep terrain. One such building is presented in Figure 7.4 in the center of the test data (cf.
Figure 7.1(b)).
Here, the road next to the building on the left side has a larger height (327.0m) than a part
of the building on the right side (322.6m). This means that not all parts of the building are
higher than its neighboring pixels. In this case, the morphological reconstruction is not able to



7.2 Experimental Results 95

322.6

327.0

331.4

308.0

Figure 7.4: Special case spacious building block: The height value on the roof on the right side
(322.6m) is less than the height of the road next to it on the left side (327.0m)

filter these objects in the procedure explained above, as can be seen in Figure 7.3(a): Only the
parts of the building block which are higher than the neighboring areas are filtered.
In order to efficiently extract such non-ground objects the algorithm needs to be improved. For
that, after each iteration, the non-ground regions are replaced by a constant value in the mask
image. A big constant value with minus sign acts as below ground outlier and has theoretically
no effect in image reconstruction procedure. The image reconstruction by dilation only modifies
the foreground objects and below ground objects remain intact. The new mask image with
a constant value replaced in the non-ground regions detected from previous step used for the
processing in the next step.
Figure 7.5 represents the processing steps for extracting the spacious building discussed above
(cf. Figure 7.4). The process begins with an offset value of h = 21m which is measured by the
maximum value of LRV . Figure 7.5(a) shows the original image LP regarding to this building.
The non-ground regions extracted in the first step are replaced by −1000m (cf. Figure 7.5(b)).
This image (cf. 7.5(b)) is utilized as new mask image for the next iteration.
After producing the new mask based on the first offset value, a new LRV called LRV 0 is
generated based on the new mask. The maximum value of the LRV 0 is computed and the
iteration values for the offset h are defined as:

h = max(LRV 0) : −inc : 1

A small increment inc is used to make sure that all 3D objects, particularly buildings, which
are situated on different height levels, will be extracted. An increment value of 1m has been
chosen empirically.
The procedure continues until the iteration is finished. Some of intermediate results are shown
in Figure 7.5 (from (c) to (f)). Figure 7.5(f) illustrates that in final result the building is
completely extracted.
Figure 7.6(a) displays all detected non-ground regions which are produced from the complete
scene (cf. Figure 7.1(b)). For the processing of this scene the following offset values are
generated:

• for the first iteration:
h = max(LRV ) = 21m
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Figure 7.5: Processing steps of filtering spacious building block: (a) original LP image, (b)
to (f) extracted non-ground regions (dark blue) by employing: (b) h=21m, (c) h=8.2m, (d)
h=7.2m, (e) h=6.2, (f) h=1.2m as offset value for marker generation

• for the next iterations:

h = max(LRV 0) : −1 : 1 = {8.2m, 7.2m, 6.2m, 5.2m, 4.2m, 3.2m, 2.2m, 1.2m}

The non-ground regions are highlighted in Figure 7.6(c) with dark blue color. A DTM is
generated by removing all non-ground points from the original LP data and then filling the
gaps by interpolation (cf. Figure 7.7).
As can be seen in Figure 7.7 and all other figures related to geodesic morphological processing,
the 3D objects located on the boundary of the image are not filtered. This is due to selecting
there the same values in the marker image the as in the mask image. Therefore, if the pixel
on the boundary belongs to a building roof, the geodesic dilation proceeds from this point and
the building part is not filtered. Geodesic dilation only filters the foreground object if all its
boundary pixels are higher than the neighboring pixels and this is not the case for objects which
are not completely inside the image. Thus, a bigger area than the desired region should be
processed with the size of the processing area large enough so that all 3D objects of interest
are entirely inside the image.
Figure 7.7 shows that almost all obvious non-ground regions have been eliminated. These
regions mainly represent buildings and vegetation areas. None of the buildings not on the
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(a) None-ground regions after final iteration –
in this hilly area the number of iterations is 9

(b) Local Range Variation (LRV ) which high-
lights height jumps

(c) Non-ground regions (dark-blue) eliminated
from original image

Figure 7.6: Non-ground regions segmented using morphological geodesic dilation and evaluated
by LRV feature
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Figure 7.7: DTM after interpolation of gaps

image margin is visible any more and also the vegetation has disappeared. Shape and size of
the objects are obviously irrelevant for our approach. Large buildings as well as small ones,
elongated buildings as well as short ones, and high buildings as well as low ones have been
properly eliminated.
To evaluate the quality of the result in addition to visually evaluating the results, profiles in
the image as well as a comparison of the derived DTM with the original data and ground
truth data are given. The ground truth data is a DTM collected manually by the surveying
agency (Landesvermessungsamt) of the state Baden-Württemberg in Germany in 2002. There
were some changes in the area from 2002 to 2006, but the ground truth still can be used for
evaluation.
Profile No. 1 (cf. Figure 7.8) ranges from the lower-left to the upper-right corner of the image
and profile No. 2 (cf. Figure 7.9) from the lower-left to the lower-right corner. Height values
of the original LP (dashed blue lines), of ground points extracted using the proposed approach
(red points), of the DTM after filling the gaps (black lines), and of the ground truth DTM
(green lines) are compared. For a better evaluation of the quality of the results, the height
values are shown in three different sub-figures. Visual comparison proves that the non-ground
objects are appropriately filtered from the original dataset. Even big buildings located on hilly
terrain are properly separated from the ground points.
Histograms are used to quantitatively evaluate the produced DTM in comparison to ground
truth. One histogram presents the height values of the ground points extracted by the proposed
algorithm (cf. Figure 7.10 left) and another of the ground truth DTM (cf. Figure 7.10 middle).
Additionally, for a better comparison the histogram of the difference between the two datasets
(cf. Figure 7.10 right) is given. Since the proposed approach based on geodesic morphology
only filters objects entirely located inside the image, there are some obvious large differences
between the ground points and the ground truth at the image border. To decrease their effect
on the evaluation, margins of the images are not taken into account for histogram production.
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(a) Ground pixels (red) versus original last-pulse pixels (blue)

(b) Ground pixels (red) versus ground truth DTM (green)

(c) DTM provided by proposed approach (black) after inter-
polation of gaps versus ground truth DTM (green)

Figure 7.8: Profile No.1 – profile ranges from lower-left corner to upper-right corner of the area
without margins
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(a) Ground pixels (red) versus original LP pixels (blue)

(b) Ground pixels (red) versus ground truth DTM (green)

(c) DTM provided by proposed approach (black) after inter-
polation of gaps versus ground truth DTM (green)

Figure 7.9: Profile No.2 – profile ranges from lower-left corner to lower-right corner of the area
without margins
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The evaluation of the generated DTM based on profiles and histograms in comparison to cor-
responding ground truth proves that:

• Almost all 3D objects, i.e., buildings and vegetation, are filtered from the LP image except
objects not completely situated inside the image.

• Objects which are not higher than the neighboring regions cannot be filtered by the given
approach. Buildings that are partly outside the image are as one example. Horizontal
bridges, i.e., bridges that cross another street at a low height are as another example.
These kind of objects have large discontinuities on two sides and almost no discontinuity
at the other sides.

• The histogram in Figure 7.10-right shows that the difference between the produced DTM
and ground truth is in most cases around zero:

– 86% of the pixels have an absolute difference of less than 0.5m
– 92% of the pixels have an absolute difference of less than 1m
– The standard deviation of the differences is about 0.56m

• Spacious building blocks as well as small objects can be filtered at the same time in hilly
areas without adaptation of the size of structuring element. The latter is a problem for
standard filtering approaches based on basic morphological operations.

• The approach is fast and the speed of processing is mainly depends on the hilliness of
the area. In regions with low height variation usually all objects can be filtered in 3− 4
iterations.

Figure 7.10: Histograms for ground pixels, ground truth DTM, and their difference.

The error or difference between the generated DTM and the ground truth seems not to be very
significant if one considers that the computations are based on different observations which are
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acquired at different epochs. The other point is that the DTM generation method is different
and different criteria might be used to classify a region as a 3D object. This might happen
mainly for low objects such as low vegetation. Finally, the interpolation technique to generate
raster DSM and DTM might be different.

7.2.2 Classification of LIDAR Data and Approximation of Building
Outlines

Results of building and vegetation detection as well as for the approximation of building bound-
aries are given and discussed in this Section. The classification of non-ground pixels is tested
with a data set that contains buildings of different sizes as well as bushes, single trees and
groups of trees, the latter summarized under the term vegetation in the following.
The rule-based classification of non-ground LIDAR pixels into building, vegetation, and crane
or power lines has been explained in detail in Section 5.1. While generating feature descriptors
as classification criteria a vegetation index V I feature is defined (cf. Figure 5.3) based on FP
and LP data. The V I is segmented using thresholding. The V I values as well as the original
height values of the points inside each region are analyzed to produce two main classes namely
vegetation and crane (or power line) (cf. Figure 5.4). Not all vegetation pixels are classified in
this step. Since the V I highlights only pixels having a height difference between FP and LP ,
vegetation pixels will (almost) the same height value in FP and LP are not detected in this
step.
Local range variation LRV (cf. Figure 7.6(b)) is the second feature descriptor created from
LP . It helps to separate the objects with large discontinuities, e.g., buildings or trees, from
other objects.
To finally separate the buildings and the rest of the vegetation, i.e., the vegetation which have
the same height in FP and LP , the nDSM (cf. Figure 7.2) is analyzed. The nDSM pixels
are thresholded and initial regions are produced by connected component labeling. The LRV
values of the region boundaries as well as variances of the surface normals of the heights inside
each region are employed to classify the segmented regions into building, vegetation, and other
objects. The vegetation regions classified in this step are combined with the results of the first
step to generate the complete vegetation class.
Figure 7.11 shows the finally classified buildings and vegetation. In this figure the boundaries
of the buildings and vegetation regions are superimposed on the FP data in blue and red color,
respectively.
To quantitatively investigate the quality of the extraction, ground truth data are manually
digitized using the LP (cf. Figure 7.12). The focus is laid on the buildings and the quality
parameters correctness and completeness are determined as defined by Heipke et al. (1997).
To do so, the building extraction result is labeled as true positive (Tp), false negative (Fn), or
false positive (Fp) on a pixel by pixel basis. Then, completeness represents the ratio of correctly
extracted pixels with respect to the total number of pixels of each class from the ground truth
and is defined as:

completeness = Tp

Tp+ Fn

completeness ∈ [0; 1]
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Figure 7.11: Classified building (blue polygons) and vegetation (red polygons) regions are su-
perimposed on the gray scale LIDAR image that the pixels belonging to the vegetation index
are colorized by green.

Correctness indicates the ratio of correctly extracted pixels with respect to the total number of
extracted pixels of each class and is defined as:

correctness = Tp

Tp+ Fp

correctness ∈ [0; 1]
and finally, the Quality parameter is defined as:

quality = Tp

Tp+ Fp+ Fn

quality ∈ [0; 1]
The optimum value for all defined parameters is 1. To calculate the parameters, an image
labeled according to the extracted regions and the ground truth is provided (cf. Figure 7.13).
Accordingly, the following values have been computed:

completeness = 0.93
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(a) Building polygons (red) produced by classi-
fication and study area (cyan) overlaid on FP
data

(b) Manually digitized building ground truth
(blue) and study area (magenta)

Figure 7.12: Extracted building polygons, corresponding ground truth, and limit of the study
area guaranteeing that all buildings are entirely situated inside the image

 

 

Figure 7.13: Comparison of extracted buildings and corresponding ground truth regions – True
positive (Tp - yellow), False positive (Fp - dark blue), and False negative (Fn - red)
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correctness = 0.92
quality = 0.86

The above mentioned evaluation parameters measured based on difference between the classifi-
cation regions and the ground truth which are shown as red and dark blue colors in Figure 7.13.
Some of the red buildings in particular, those are locating in lower right corner are classified
as building but not digitized in ground truth image (cf. Figure 7.12(b)). Two of them are
correctly classified (middle and right) but are not digitized because they are not completely
inside study area and the left one is part of a large building that is connected to the image
border. The small part of this building which is higher than the rest and located inside the
image is classified.
Dark blue regions are either not classified or the inner yard of the buildings which are not
excluded from the buildings. The not-classified buildings are the low height buildings which
are hardly distinguishable even visually as individual buildings.
The next step toward building reconstruction using the approach proposed in this thesis is the
extraction of building outlines and their approximation. After classification of the data, the
focus is on only the building regions to generate 3D models. The building outlines are extracted
from the binary image using morphological erosion. For that, the binary image which con-
tains building pixels (BW ) is eroded and the result (erosionBW ) is subtracted from the (BW ):

Outlines = BW - erosionBW
Figure 7.14 shows a result for building outline detection superimposed on the LP image. The
scene contains six buildings with six outer boundaries and one inner boundary. For each
boundary first the main orientation(s) are extracted using Hough Transform as follows:

• The Hough Transform is computed for the building edges and the main Hough peaks are
extracted. The coordinates of the best 10 peaks are extracted if available.

• It is checked if the corresponding angles for the peaks are complementary: If the difference
between two peaks is a multiple of 90o with a possibly small deviation, only one of them
is kept.

After determining the main orientations of the buildings, there are two different ways to
proceed: If the analysis in Hough space indicates, that there is more than one main orientation,
i.e., many main orientations – MMO, the RANSAC-based technique is used (cf. Figure 5.15,
right), otherwise the MBR-based method is employed (cf. Figure 5.15, left). Accordingly,
outline polygons are extracted and approximated with the RANSAC- or the MBR-based
techniques (cf. Sections 5.2.1 and 5.2.2).

Figure 7.15 shows the approximation results for the building boundaries presented in Figure
7.14. They indicate that not only the outer boundaries, but also the inner boundaries can be
properly approximated by this method.
After estimating an average height for each building, 3D prismatic models can be formed. If
the building contains an inner boundary, its interior will be excluded from the 3D model (cf.
Figure 7.16). In Figure 7.17 the 3D prismatic models are combined with the original surface
model. Since the average of the height inside each building is used, some (small) parts of the
building are not covered by the prismatic model.
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Figure 7.14: Building outlines superimposed on LP

Figure 7.15: Building outline approximation result (red polygons) as well as the original ex-
tracted building boundaries (blue polygons) superimposed on LP image
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Figure 7.16: 3D prismatic models with average building height

Figure 7.17: 3D prismatic models combined with surface model

7.2.3 3D Building Modeling on LOD2
This section focuses on the evaluation of 3D building models possibly with tilted roofs. They
are generated with the novel approach introduced in Section 6.3.4 based on the analysis of the
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3D point cloud in projection planes.
Ridge lines are extracted based on geodesic morphological reconstruction. To extract local
maxima, the original LP data is chosen as mask, and mask minus a small offset h such as
h = 0.5m is used as marker. The geodesic dilation suppresses the higher parts of the building
and other local maxima. After subtracting the reconstructed image from the given image,
only the initial local maxima containing the ridge lines remain. By thresholding all pixels
corresponding to initial local maxima and the ridge lines are obtained.
Experiments for an L-shaped building with gable roofs on three different height levels are
reported and corresponding models are presented and discussed (cf. Figure 7.18).
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Figure 7.18: L-shaped building in two 3D views — Ridge lines exist on three different height
levels.

Points of the initial local maxima extracted by geodesic dilation are presented in Figure 7.19.
Their curvatures as well as their 3D surface normal directions are analyzed. Only points with
an almost vertical surface normal direction, i.e., for the z component of the normalized surface
normal holds Nz > 0.98, are retained. Additionally, their corresponding Gaussian and mean
curvatures should indicate flat or ridge− shaped surfaces (cf. Section 2.2.3).

(a) 2D view
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(b) 3D view

Figure 7.19: Extracted initial ridge points indicating different height levels superimposed on
LP data

To differentiate between ridge lines and flat surfaces, connected components are labeled. A
simple roundness criterion is used to separate elongated regions from rectangular or circular
regions:
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roundness = 4 ∗ π ∗ area
perimeter2

roundness ∈ [0, 1]

roundness = 1 indicates a circular shape and roundness = 0 a line.

Regions having a small number of pixels are excluded from this evaluation and they are assumed
to be part of ridge lines.

From the ridge points straight line segments having a maximum number of points associated
with them are iteratively determined with RANSAC. A threshold of one meter defines the
buffer zone around each tested line to find the Consensus set of points associated with the line.

It was found empirically, that it is advantageous to classify ridge points based on the histogram
of the height values (cf. Figure 7.20(a)) before straight line determination. This is due to, that
if the ridge lines are situated on very close height levels, RANSAC has difficulties to detect the
individual lines. For the given example two of the ridge lines have a height difference of only
70cm. This difference is visible in Figure 7.20(a), where the two big peaks on the right side of
the histogram correspond to the red and black points in Figure 7.20(b) with a height of 327.8m
and 328.5m, respectively.

For each ridge line the orientation is calculated and verified by comparing it to the orientation
of the boundary lines or the main orientation. If it deviates by less than 5o from the main ori-
entation or its complement values, the line direction is corrected based on the main orientation
(cf. Section 6.3.1).

(a) Histogram of height values (b) Histogram based classification
of the ridge points on three height
levels

(c) Extracted ridge lines using
RANSAC

Figure 7.20: Ridge extraction – Analysis of height values using a histogram (top) and RANSAC-
based ridge line extraction (bottom)
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Each ridge line specifies an individual building part and it and its neighboring pixels are ana-
lyzed. According to the length of the ridge line, a rectangle with equal distances to both sides
of the ridge line is defined in the localization step (cf. Section 6.3). All points included in a
cuboid based on the defined rectangle which covers the building part are projected onto a 2D
projection plane, being one of the planes of the cuboid. Figure 7.21 represents the 3D model
generation for the building part corresponding to the left ridge line in Figure 7.20(c).
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(b) 2D model of the building part
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(d) 3D model – top view

Figure 7.21: 3D model generation of the building part for the left ridge line in Figure 7.20(c)

In the 2D projection the location and orientation of the ridge lines are optimized. It is assumed
that a correct ridge line produces the maximum density of the point distribution in the 2D
view. I.e., the number of cells containing points in the 2D projection (cf. Figure 7.21(b)) is
minimum if the direction of the ridge line is exactly parallel to the orientation of the building
part. To obtain a high accuracy for the orientation, the localized points are rotated in small
steps, e.g., 0.005 rad (ca. 0.3o), and the number of cells, e.g., with 1m size, which contain
points in the 2D view is counted. The local orientation with the minimum number of cells is
added to the orientation of the ridge line, resulting into an accurate orientation of the building
part. Using the correct orientation, the location of the ridge line is refined by moving left and
right locating the position with the maximum number of support points.
The localized points are further analyzed to determine the direction of the tilted roofs and the
left and right wall. The 3D model of the building part is generated by extending the 2D model
to 3D and extracting the front and back walls as well as the direction and location of the tilted
roofs (cf. Figures 7.21(c) and 7.21(d)).
Figure 7.24 shows the final 3D model of the L-shaped building after merging the 3D models of
the individual building parts. To aid visual comparison, the merged model is superimposed on
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Figure 7.22: Correction of the main orientation by iterative rotation of the localized points,
computing the number of cells containing points in the 2D projection (bottom row)
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(a) Points (red) corresponding to
Figure 7.22(f) and position of ridge
line (blue circle)
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(b) Ridge line moved to the correct
location

Figure 7.23: Correction of the ridge line location by iteratively shifting the line left and right
to find the position with the maximum number of support points

the original laser data. Gray pixels indicate that the model in that region is below the surface.

If a building part contains a flat or mansard shaped roof, automatically another technique for
modeling is used: As described above, local maxima are classified into ridge points and flat roofs
using a roundness criterion. The points at the boundary of the flat roof segment are analyzed
if the building part has a flat or a mansard shaped roof. The orientation of the building is
defined by the MBR fitted to the building part. If the building has a flat roof, the model is the
same as for the LOD1. If the roof is mansard shaped, another rectangle inside and parallel to
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(a) Model superimposed on LP data – top
view

(b) Model superimposed on LP data –
perspective view

(c) 3D model in perspective view

Figure 7.24: Final merged 3D model for L-shaped building
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the MBR is fitted to the flat part and the 3D model is formed.

Figure 7.25 represents an area containing eight buildings with different roof shapes: three L-
shaped, two mansard shaped, and three hipped roof buildings. Figures 7.25(c) and 7.25(d) show
at the lower left corner of the scene a small L-shaped building which is not properly modeled.
The ridge points are extracted appropriately using geodesic method. As the two ridge lines
contain only few pixels, RANSAC based straight line detection only detected one inclined line
instead of two perpendicular lines.

(a) LP image (b) LP data – perspective view

(c) 3D model superimposed on LP data (d) 3D model – perspective view

Figure 7.25: 3D building models generated in an area containing eight buildings
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7.3 Discussion of Results

In this thesis automatic methods for the production of building models according to the first
three LOD of the CityGML standard are explained. Results have been shown in detail in the
previous Sections 7.2.1, 7.2.2, and 7.2.3. In this section the results and their strengths and
weaknesses are discussed for each LOD:

7.3.1 Generation of LOD0

The assessment of the quality of the procedure for generating the first LOD can be divided
into two parts, namely before and after interpolation of gaps, and, therefore, they are discussed
separately:

1. Separation of non-ground and ground regions: This part is at the heart of the DTM
generation, i.e., LOD0. Iterative geodesic dilation is used to separate above ground objects
from the LIDAR data. The provided results show:

• Figure 7.6(c) indicates that almost all non-ground objects regardless of their size are
eliminated.

• The iterative approach gives good results in hilly as well as smooth residential areas.
• Profiles 7.8(a), 7.8(b), 7.9(a), and 7.9(b) prove that all objects with large jumps on

their boundaries are appropriately eliminated. As shown in Profiles 7.9(a) and 7.9(b)
only objects located at the boundary and not-entirely situated inside the image are
not deleted.

• Histogram 7.10 as well as the statistics show that most of the DTM pixels, i.e., 92%,
have height differences of less than 1m compared to manually derived ground truth.

2. DTM after gap interpolation: The Inverse Distance Weighting (IDW) algorithm is used to
fill the gaps. In particular in big gaps located at hills some incorrect values are computed.
Even if only few outliers, i.e., non-ground pixels, remain after filtering, interpolation may
extend those pixels and severely change the shape of the ground in that area.

7.3.2 Generation of LOD1

Two main parts are included in the generation of the second LOD presented in Section 7.2.2,
namely building detection and prismatic model generation:

1. Classification: Rule-based classification is used to classify the 3D objects generated by
segmenting the nDSM provided in Section 7.2.1. Feature descriptors such as local range
variation (LRV) and variance of the surface normals are used as classification criteria. A
new vegetation index (VI) decreases the effects of different object boundary pixels, e.g.,
of buildings in first- (FP) and last-pulse (LP) LIDAR data. It has been used to extract
most of the vegetation regions, i.e., with different height values in the FP and LP data,
as well as 3D objects like cranes and power lines. Power lines will only be detected if they
are measured by the LIDAR system, which is often not the case in city areas due to their
small width. The quality of the classification is assessed as follows:
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• Visual interpretation indicates that most of the objects in the study area are correctly
classified.

• A statistical evaluation of the classified buildings in comparison to manually acquired
ground truth gives a completeness of 93%, a correctness of 92%, and an overall quality
of 86% showing that most buildings are appropriately detected.

• Very small as well as elongated buildings with a very small width are the two main
building types which cannot be separated from vegetation if corresponding vegetation
pixels remain in the LP data. Elongated buildings with a width of a small number
of pixels almost show the same values as narrow tree rows in the feature descriptors.

2. Prismatic model generation: A flexible approach for the approximation of rectilinear and
non-rectilinear buildings is the basis for the generation of 3D prismatic models. MBR-
or RANSAC-based approximation is selected based on the number of main orientations
of the building outline. The results shown in Figures 5.16 and 7.15 indicate, that the
quality of the approximation is at least acceptable.
The average height of the pixels inside to a building is used to construct a 3D prismatic
model from the approximation result. Figure 7.17 shows that the average height is not
a proper representative for the overall building as it is in many cases below or above the
height of the building eave.

7.3.3 Generation of LOD2

In this Section the quality of the parametric building models generated by means of projection
based 3D modeling (cf. Section 7.2.3) is discussed for each step:

1. The points are projected into the 2D plane based on the direction of the ridge line.
Therefore, the quality of the model is directly related to that of the detected ridge line.
In LIDAR raster data ridge lines are more pronounced and can thus be more accurately
and reliably determined than building edges. Since there exist almost no discontinuities
for the pixels around ridge lines, the ridge lines and their neighboring pixels are not
negatively affected by interpolation. Additionally, contrary to the building edges where
the locations of the pixels are slightly different in FP and LP data, the pixels around
the ridge line have the same height values in FP and LP data. The initial ridge points
are detected using geodesic dilation and are evaluated based on surface normal direction
and curvature values. As shown in Figures 6.5, 6.6, and 7.20(b), the quality of the points
classified as ridge is appropriate and they are located at the correct positions. Yet, Figures
6.5 and 6.6 also gives some points detected by geodesic dilation as local maxima which
belong to small structures above the roof.

2. RANSAC-based ridge line detection is a sensitive process to extract the straight line
representing the ridge line of the building in the correct orientation. The parameters of
RANSAC, particularly the threshold for the distance to accept points as inliers, have to be
carefully tuned. On one hand, it should be large enough to extract not too many straight
lines, but on the other hand, it should be small enough to separate ridge lines situated
at a small height difference, as can be seen in Figure 7.20(c). Thus, to avoid having to
deal with ridge lines located very close to each other, they are classified in advance using
histogram analysis (cf. Figure 7.20(a)). This step solved the problem of ridge lines with
small differences in their heights. Yet, as can be seen for the small L-shaped building in
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the lower left corner in Figure 7.25, if the ridge lines are small, close to each other, and
have the same height, RANSAC cannot separate the lines. In this case, only one diagonal
line instead of two perpendicular lines is extracted.

3. The orientation of the building part could be optimized by iteratively rotating the points
thought to belong to the building and counting the number of cells containing points in
the 2D projection (cf. Figure 7.22).

4. The locations of the ridge lines could also be optimized by moving them left and right
and counting the number of supporting points (cf. Figure 7.23).

5. A mansard shaped building has been modeled after classifying the roof top pixels as
partially flat and partially inclined (cf. Section 7.2.3). Two parallel MBR define the roof
faces.



Chapter 8

Conclusions and Recommendations

8.1 Summary and Conclusions

In this thesis a comprehensive workflow to generate 3D building models from LIDAR point
clouds is proposed. The point clouds acquired by airborne laser scanning systems are analyzed
to produce 3D models according to the definitions of the CityGML standard. Geodesic mor-
phological processing is at the core of the algorithms, e.g., for filtering of non-ground regions
and ridge point extraction.
The automated 3D building reconstruction from irregular LIDAR point clouds begins with pre-
processing consisting of the elimination of outliers, data rasterization, and the removal of gaps.
The resulting raster LIDAR data is analyzed to separate the non-ground from the ground
regions. Geodesic dilation is employed to hierarchically filter the non-ground regions. By
interpolating of the gaps, digital terrain models (DTM) are generated. The 3D representation
of the ground regions as DTM forms the first level of detail, i.e., LOD0.
The normalized digital surface model (nDSM) provided by the comparison between the DTM
and the LIDAR DSM is used as basis for the segmentation and classification of 3D objects. A
single threshold and connected component labeling produce initial 3D regions which are evalu-
ated based on feature descriptors to extract and recognize building and vegetation areas. The
procedure is employed on last pulse (LP) height data and, therefore, the vegetation areas only
comprise dense vegetation regions still available in LP. Because most of the vegetation regions
are visible only in first pulse (FP) data, a vegetation index (VI) is computed by comparing FP
and LP and employing morphological dilation. This feature descriptor highlights most vegeta-
tion regions, but also cranes, thick power lines, and all other objects which contain small holes
or parts thinner than the diameter of the laser footprint.
The outlines of building regions are approximated (if possible) by rectilinear polygons which are
the basis for the second LOD or LOD1 by an MBR- and a RANSAC-based method. The former
is model-driven, hierarchically fitting minimum bounding rectangles (MBR) to the building
outline. In contrary, the RANSAC-based method is data-driven, attempting to extract straight
lines from the building outline and merging them to form a closed polygon. The approximation
automatically decides which of the methods should be used based on the main orientation of
the building extracted by Hough Transform. If a building has one main orientation (OMO), the
MBR-based method, and if there exist many main orientations (MMO), the RANSAC-based
technique is employed. For the approximated outlines an average height value is calculated
based on the internal points of each building leading to a prismatic building model forming the
LOD1.
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To form the third LOD or LOD2, a projection based approach is proposed reconstructing a
building model with roof structures. The reconstruction to extract the building ridge lines
employs a small value to generate the marker image used to determine the local maxima of the
image. Thresholding leads to hypotheses for ridge points evaluated by values for the surface
normal as well as mean and Gaussian curvature. Connected component analysis provides initial
regions which are classified into flat roofs and ridge lines based on roundness.
The 3D points of the ridge lines are analyzed by RANSAC to extract straight lines. For each
ridge line one parametric model is generated. The models of the building parts are merged
finally.
The different steps of the proposed methodology for the automatic 3D reconstruction of build-
ings from LIDAR point clouds can be characterized as follows:

1. Filtering of the laser data using geodesic reconstruction:

(a) The result is independent of the size of the objects. Thus spacious as well as small
buildings can be efficiently filtered using this approach.

(b) Contrary to standard morphological processing, the definition of proper structuring
elements is not necessary. In geodesic dilation the marker image is dilated by an
elementary isotropic structuring element.

(c) As geodesic reconstruction does not affect ground pixels, the normalized DSM can
simply be segmented using a threshold of zero.

(d) Filtering based on geodesic dilation is relatively fast. In many cases even in hilly
regions only a single marker image is needed representing the minimum height value
of the mask image except for pixels at the boundary where marker = mask is used.

(e) Outliers, either below or above the terrain, do not have a negative effect on the
filtering, as for basic gray-scale dilation or erosion.

(f) A drawback is, that objects, which are not entirely located inside the image, cannot
be filtered.

2. Classification of objects and approximation of building outlines:

(a) The vegetation Index (VI) proposed in this thesis can largely eliminate negative
effects at the building edges and it can thus improve the quality of the extracted
regions.

(b) Vegetation regions can be separated from high linear objects such as cranes and
power lines by evaluating the height variations of the original laser points of each
region.

(c) A disadvantage of the vegetation extraction method is, that vegetation regions which
have almost the same FP and LP value cannot always be extracted. It can also
happen that they have the same height variation as buildings.

(d) The method to be used for approximation can be automatically determined by an-
alyzing the main orientations of the building.

(e) The MBR-based method is inherently model-driven and hierarchical. It can thus be
adapted easily to different generalization levels. The approximated polygons form
due to their orthogonality an excellent basis for 3D building modeling.
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(f) A further advantage of the MBR-based method is the good preservation of symme-
tries.

(g) The RANSAC-based method is flexible and can be used for most of the building
outlines which are not rectangular.

3. Projection-based 3D reconstruction of buildings:

(a) Parametric building reconstruction is model-driven and begins with extracting ridge
lines used to reconstruct gable roofs.

(b) For big buildings even dormers with ridge lines can be modeled. It is also possible
for smaller buildings in point clouds with a higher density.

(c) By extracting the ridge lines and projecting the corresponding points for each build-
ing part into the horizontal 2D plane, the model can be appropriately fitted.

(d) Strengths of the projection-based approach are its robustness and, that it is quite
fast, as projection into 2D space reduces the algorithmic complexity significantly.

8.2 Recommendations

1. In this study a LIDAR data set with a density of about 4.8 points per m2 has been
used as basis for the analysis of the proposed approaches for the classification of surface
pixels and the 3D modeling of buildings. Even though this point density is sufficient for
separating non-ground and ground points, a higher density might improve the recognition
and 3D modeling of buildings. In Section 7.3.2 it was shown that small and elongated
buildings with small widths cannot be appropriately discriminated from vegetation. For
such buildings the feature descriptors namely the variances of the surface normals of the
pixels inside a region show the same values as for single trees or rows of trees. A higher
point density might improve the quality of the feature descriptors for the evaluation of
the internal pixels.

2. Although a higher point density might improve the classification, geometrical information
alone might in many cases still not be sufficient for a highly reliable classification. Thus,
other data sources such as color aerial photos or multi-spectral data should be considered.

3. For the prismatic model for buildings the average height of the internal pixels might not
be a proper representative particularly for building blocks with parts on different height
levels. For this case it should be better to first (iteratively) segment using different offsets
h all building parts on the same height level and then find walls between them.

4. The generation of parametric building models based on the extraction of ridge lines or
roof top pixels is novel and has many advantages compared to 3D reconstruction methods
detecting and merging planar faces. The first and arguably biggest benefit is that the
building can easily be divided into building parts based on the assumption that “every
ridge line represents one building part”. The second advantage is the reduction of the
complexity by projection from 3D into 2D space using the location and orientation of the
ridge line, i.e., lines can be analyzed instead of planes.
Though only building parts with tilted and mansard shaped roofs have been extracted in
this thesis, the approach can be extended to other roof types. The approach is simple,
straightforward, and fast. It should be possible to implement it for most of the buildings
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in suburban areas with not too complex structures. Yet, the result depends on the quality
of the extracted ridge lines and flat roof pixels. Only robust techniques which extract
ridges with high quality can guarantee the quality of the building parts. In this thesis
the ridges are in most cases appropriately extracted, but as shown, e.g., in Figure 7.25, if
the ridge is small and consists of more than one line, the approach can fail to detect the
correct lines.

5. The objective of this thesis was to present the potential of ridge and projection based
analysis of LIDAR data for 3D building model generation. Though the experiments have
basically verified this objective, refinements and adjustments are required to make the
approach more flexible and powerful enough to deal with larger amounts of more general
data on a quality level sufficient for practical applications.
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