
Technische Universität Braunschweig

Institute of Operating Systems and
Computer Networks

Diploma Thesis

Development of a new Middleware for
Real Time Image Processing in

Remote Sensing

by

Oliver Meynberg

Supervisors:

Prof. Dr.-Ing. L. Wolf
Dr.-Ing. U. Thomas

Dipl. Wirt.-Inf. M. Doering

Braunschweig, February 5, 2009

2

DIPLOMA THESIS - OLIVER MEYNBERG

i

Erklärung

Ich versichere, die vorliegende Arbeit selbstständig und nur unter Benutzung der
angegebenen Hilfsmittel angefertigt zu haben.

Assertion

I hereby declare that I wrote this thesis myself without sources other than those
indicated herein. All parts taken from published scripts are indicated as such.

Braunschweig, February 5, 2009
Signature

DIPLOMA THESIS - OLIVER MEYNBERG

ii

Kurzfassung

Zur Zeit wird am Deutschen Zentrum für Luft- und Raumfahrt (DLR) an einem Pro-
jekt zur Verkehrsüberwachung und zur Katastrophenhilfe gearbeitet, welches in nahezu
Echtzeit vorverarbeitete Bilder der Erdoberfläche von einem Flugzeug an eine Boden-
station übermitteln soll. An Bord des Flugzeugs befindet sich ein Computernetzwerk,
welches die in kurzen Abständen aufgenommenen, hochaufgelösten Bilder verarbeiten
soll. Diese rechenintensive Verarbeitung findet nach modernsten Methoden zur Bild-
verarbeitung statt und ist auf mehrere Module, die auf verschiedenen Rechnern laufen,
verteilt. Der Verarbeitungsablauf dieser hochkorrelierten Module erfordert einen ständi-
gen Austausch von kleinen und gros̈en Datenmengen verschiedensten Typs. In diesem
Zusammenhang ist der Einsatz einer Middleware erforderlich, die eine einfache, effiziente
Kommunikation zwischen den Modulen gewährleistet und gleichzeitig deren räumliche
Verteilung vor ihnen verbirgt.

In dieser Arbeit wird nun zuerst untersucht in wieweit bereits existierende Middle-
wares Verfahren zum Austausch von gros̈en und kleinen Datenmengen unterstützen. An-
schlies̈end wird die in dieser Arbeit entwickelte neue Middleware DANAOS vorgestellt,
die im Vergleich zu anderen Middlewares, sowohl die effiziente Kommunikation zwischen
den Modulen mittels Message Passing gewährleistet, als auch den schnellen Austausch
gros̈er Bilddatenmengen mittels eines Distributed Shared Memory unterstützt. Dazu wird
dem Modul-Programmierer eine Programmierschnittstelle angeboten, die aus̈erdem weit-
ere Dienste zur Gruppenkommunikation (Publish/Subscribe-Konzept) und einen Namens-
dienst bereit hält.

Abstract

At the German Aerospace Center (DLR) a new project aiming at the efficient control of
traffic and at providing help in cases of natural disaster is being developed which is sup-
posed to transmit pre-processed images of high resolution from a plane to a station on
the ground. Aboard the aircraft a computer network is installed which is to process these
images shot at short intervals. This intensive computational work is done with the lat-
est methods of image processing and is allocated to several modules running on different
computers. The process of this computationally intensive work on highly correlated mod-
ules requires a permanent exchange of small and big amounts of data of totally different
data types. Here a middleware is needed, which guarantees easy and efficient communi-
cation between the modules and simultaneously hides their spatial distribution from them.

The first part of this thesis analyses to what extent the process of exchange of small and
big amounts of data is supported by existing middlewares. Then the new middleware
DANAOS, which is developed in this thesis, is presented, a middleware which compared
with other middlewares not only guarantees an efficient communication between the mod-
ules using message passing but also supports the exchange of big amounts of image data
using a distributed shared memory. For this purpose the module programmer is offered an
application programming interface, which - in addition to this - provides further services
for group communication and name service.

DIPLOMA THESIS - OLIVER MEYNBERG

[Hier wird später die Aufgabenstellung eingefügt.]

iv

DIPLOMA THESIS - OLIVER MEYNBERG

Contents

Assertion i

1 Introduction 1

1.1 Motivation . 4

1.2 Purpose . 5

1.3 Scheme of this Thesis . 7

2 Distributed Systems - A Middleware Approach 9

2.1 Definition and Characteristics . 9

2.2 General Design Goals . 11

2.2.1 Connecting Users and Resources 11

2.2.2 Transparency . 11

2.2.3 Openness . 12

2.2.4 Scalability . 13

2.2.4.1 The Effects of Scale 13

2.2.4.2 Scaling Techniques 14

2.3 Design Principles . 15

2.3.1 Communication Mechanisms 15

2.3.1.1 Forms of Communication 17

2.3.1.2 Hiding Communication 18

2.3.2 Client-Server Model . 20

2.4 Middleware in Distributed Systems . 20

2.5 Examining Existing Middlewares . 22

v

Contents vi

2.5.1 CORBA . 23

2.5.1.1 Communication . 24

2.5.1.2 Sharing Data through Replication and Caching 25

2.5.1.3 Name Service and Group Communication 25

2.5.1.4 Timing . 25

2.5.2 TAO . 26

2.5.3 Ice . 26

2.5.4 DCOM . 27

2.5.5 Jini . 27

2.5.6 Conclusion of Examination . 29

3 DANAOS - A New Middleware 31

3.1 Components of DANAOS . 31

3.2 Services Offered by DANAOS . 32

3.2.1 Name Service . 33

3.2.2 Synchronous and Asynchronous Communication Service 34

3.2.3 Publish/Subscribe Service . 36

3.2.4 Service to Share Data . 38

3.3 DANAOS Inside Out . 39

3.3.1 Interprocess Communication . 40

3.3.1.1 Windows Sockets . 41

3.3.1.2 Identification of Modules 42

3.3.2 Perfomance Issues and IO Completion Ports 42

3.3.3 Broker’s State Machine . 44

3.3.4 Internal Message Handling . 45

3.3.5 Routing . 47

3.3.6 The DANAOS Message . 48

3.3.6.1 The Message Object 50

3.3.7 Distributed Shared Memory . 51

3.3.7.1 Windows File Mapping 51

3.3.7.2 Implementation of the Distributed Shared Memory . . . 52

DIPLOMA THESIS - OLIVER MEYNBERG

vii Contents

4 Evaluation 53

4.1 General Test Set-Up . 53

4.1.1 Configuration of DANAOS . 54

4.2 Measuring the Average Message Round Trip Time 55

4.2.1 Comparison of MRTT and RTT 55

4.2.1.1 Execution of the Test 56

4.2.1.2 Evaluation of the Test 58

4.2.2 Influence of Background Traffic on the MRTT 59

4.2.2.1 Execution of the Test 59

4.2.2.2 Evaluation of the Test 60

4.3 Increasing Complexity and Size of DANAOS Messages 60

4.3.1 Execution of the Test . 61

4.3.2 Evaluation of the Test . 61

5 Conclusion and Outlook 63

5.1 Conclusion . 63

5.2 Outlook . 64

List of Abbreviations 69

A Class Documentation 75

A.1 Danaos::DanaosInterface Class Reference 75

A.1.1 Detailed Description . 77

A.1.2 Member Function Documentation 77

A.1.2.1 DSMWriteRequest 77

A.2 Danaos::Message Class Reference . 78

A.2.1 Detailed Description . 82

A.2.2 Member Function Documentation 82

A.2.2.1 SetPriority . 82

A.2.2.2 GetPriority . 82

A.2.2.3 AddBrokerUpdate . 82

A.2.2.4 GetType . 83

DIPLOMA THESIS - OLIVER MEYNBERG

Contents viii

A.2.2.5 GetServiceName . 83

A.2.2.6 GetDestinationLabel 83

A.2.2.7 GetSourceLabel . 83

A.2.2.8 GetPayloadLength . 84

A.2.2.9 GetMObject . 84

A.2.2.10 Serialize . 84

A.2.2.11 Parse . 84

A.2.3 Member Data Documentation 85

A.2.3.1 service_name . 85

DIPLOMA THESIS - OLIVER MEYNBERG

Contents 0

DIPLOMA THESIS - OLIVER MEYNBERG

Chapter 1

Introduction

During mass events or natural disasters security authorities and emergency services are de-
pendent on valuable and precise information about the operational area. It can be gained
from various sources including maps and digital surface models (DSM), which provide
digital information about the earth surface including buildings, vegetation and roads. If
these DSMs are both accurate and up-to-date they can be an essential source for command
centers of mass events or disasters. Preprocessed images of the current traffic situation
during mass events like Oktoberfest or of affected areas during river floodings are exam-
ples of such DSMs.

Their availability in near real time is subject of several research projects at the German
Aerospace Center (DLR). One of it - Project ARGOS1 - is an airborne monitoring and
processing system (Fig 1.1(a)). Images which are taken from the affected area are pro-
cessed in near real time on-board and are sent to a ground control station via S-Band
microlink.

The 3K-Camera system (Kurz et al. (2007)) consists of three off-the-shelf cameras (Canon
EOS 1Ds Mark II), each capturing pictures with a size of 16 MPixel and at a rate of 3Hz.
Moreover the camera system is connected to a GPS/IMU unit to allocate GPS coordinates
and motion data to each image. As shown in Fig 1.1 the covered area and consequently
the pixel size increase with a higher flight altitude.

Huge amounts of data need to be processed and require a high performance on-board
imaging and processing unit. But before its hardware design is described in more detail,
a short look at some of the (image processing) steps must be taken to get a basic idea
of the computational effort which has to be made to realize near real time image pro-
cessing during a flight campaign. To georeference all captured images, the position and
orientation of the airplane must be permanently measured by a GPS/IMU navigation sys-
tem. Also the interior orientation parameters of the camera system must be known. Then
pre-orientation of the images can take place. An important stage of the processing flow

1airborne wide area high altitude monitoring system (ARGOS)

1

2

Ground
station

(a) An airborne monitoring and processing
system.

8.5 km

2.8 km

0.43 m

0.14 m

coverage pixel size

Coverage

Flight
height

@ 3000 m

@ 1000 m

(b) The looking directions of the three air-
borne cameras.

Figure 1.1: Project ARGOS. Figures from Kurz et al. (2008)

is the orthorectification procedure. Figure 1.1 illustrates the direction in which each of
the cameras looks during a flight campaign: While one camera looks in nadir direction
(i.e. vertically to the ground), two cameras look in oblique direction and produce high-
resolution images. Before the next processing step, these images need to be geometrically
corrected, or othorectified. That means after orthorectification the distances on the image
are an accurate representation of the real earth’s surface. The earth, however, is not flat at
all and a Digital Elavation Model (DEM) of the photographed region must be taken into
account in order to achieve an orthophoto. To increase the overall performance, the GPU
of the PC’s graphics card can take over this time consuming task (Thomas et al. (2008a)).
Another aspect in the processing flow is the surface point matching where every point of
the captured image is matched with a point in an already aquired orthophoto. This part of
the DSM generation takes about 92% of the total processing time (Kurz et al. (2008)).

The major advantage of Project ARGOS is the provision of the above described digital
surface models of the current situation, which broadens the spectrum of different applica-
tions e.g. the operation during natural disasters to support rescue and emergency services.
To test the on-board systems in situations like these a flight campaign was accomplished
in Voralberg, Austria, where a DSM of a test area with a torn down slope was created to
compare the accuracy of this DSM caluclated by ARGOS with reference DSMs from the
Austrian cartographic office of the same area. The resulting vertical variation was 40 cm
and the resulting horizontal variation was 14 cm, which is absolutely sufficient for this
test area (Kurz et al. (2008)).

Other possible applications are the determination of building heights in urban areas after
earthquakes or automatic traffic monitoring. Traffic monitoring is surely not only useful
during disasters but also for traffic planning i.e. the daily commuter can benefit from
ARGOS as well. Existent measurement systems like terrestrial cameras have the disad-

DIPLOMA THESIS - OLIVER MEYNBERG

3 Chapter 1. Introduction

vantage of their low spatial resolution and do not give a good overview of the actual traffic
situation in contrast to the highly resolved images from ARGOS. Moreover its captured
images are processed in a way that roads and vehicles are detected automatically and ad-
ditionally these detected vehicles are tracked during their drive (Thomas et al. (2008b)).
This information gives the traffic planner useful information other sources cannot pro-
vide. The traffic monitoring module is a part of the image processing system on-board
and works basically as follows: Firstly prior information of a road database is used and
compared with the captured image. So the road detection algorithm is applied only on
areas marked with the information from the road database. Then the roads are extracted
by putting a buffer zone around the roads and with the aid of edge detection algorithms
the white road marking lines can be detected (Rosenbaum et al. (2008)). As a further step
the vehicle detection algorithm is applied on these already detected roads. Special atten-
tion must be given to white cars as they can be mistaken for the white mid line marking
on the road. Finally tracking of the already detected cars becomes possible by creating a
search window in the following images of the sequence based on the cars’ position in the
first image (Thomas et al. (2008b)). All the implemented programs, of which a few were
mentioned above, are called modules throughout this thesis.

On the one hand ARGOS has obviously a very good spatial resolution due to its instal-
lation on an airplane but on the other hand the temporal resolution firstly depends on
the flight frequency in general and secondly on the image acquisition rate in particular
(Thomas et al. (2008b)). The latter point puts high demands on the camera system and
the image processing system. Live traffic monitoring requires an image acquisition rate
of 3Hz, so cameras with frame sensors (as built in in Canon’s EOS 1Ds Mark II) are
necessary.

Three cameras taking high-resolution pictures three times a second produce a lot of data.
If we assume an image size of 4992 ·3328 pixels and a color depth of 24 bits the overall
output data rate of the camera system is

Number o f Cameras · Image Resolution ·Color Depth ·Acquisition Rate

= 3.5 GBit/s≈ 428 MByte/s.

With JPEG compression within the cameras this data rate can be reduced to 90 MByte/s
assuming a data size of about 10 MByte per image.

This high input data rate on the one hand and the processing intensive modules on the other
hand put high demands on the on-board image processing hardware, which consequently
leads to a multi-host solution with five PCs in total (Fig 1.2). Due to lack of space more
than five PCs would not fit into the aircraft. Each camera produces an output data rate
of 30 MByte/s and is connected via Firewire IEEE 1394a to a dedicated host computer
with DSM-processes running on it. These processes deal with image acquisition and time
stamping with GPS/IMU data, orthorectification of images and street segmentation as
described above. Therefore the PCs are equipped with up-to-date hardware, esspecially a
high-end graphics card for the GPU-based orthorectification was chosen. The fourth and
the fifth PC are dedicated to traffic mapping and microlink communication respectively.

DIPLOMA THESIS - OLIVER MEYNBERG

1.1. Motivation 4

PC1

PC2

PC3

PC4

PC5

Firewire
(IEEE 1394a)

Gigabit Ethernet
IEEE 802.3ab

Proprietary S-band
downlink

Data rate: ~10Mbit/s

Technical Data of ARGOS
machines

CPU: Intel Core 2 Duo 3GHz
or
Core 2 Quad 2.6 GHz
RAM: 2 Gbyte
Graphics card: NVIDIA
GeForce 9800 GTX

Figure 1.2: Topology of the on-board network.

S-Band microwave communication is used to send the processed data from the airplane to
the ground. Currently this is done with a proprietary antenna system consisting of a 2.0m
wide dish on the ground for receiving and a 28 cm wide dish in the plane for sending.
This simplex downlink achieves data rates of up to 10 MBit/s within a distance of 100 km
(line-of-sight).

1.1 Motivation

If ARGOS is equipped with a middleware this offers several advantages. Interprocess
communication between modules becomes possible regardless of how these modules are
distributed across the network. This fact makes the user’s work easier while program-
ming his image processing module. He need not concentrate on how he transfers data
from module A to B any more because he can simply call the appropriate function of the
middleware.

As described above several computers are needed to process the large amounts of data in
an acceptable processing time. To achieve this the different image processing modules
running on each machine are highly correlated and need to interchange information and
image data with each other frequently. A common scenario is that one module has finished

DIPLOMA THESIS - OLIVER MEYNBERG

5 Chapter 1. Introduction

its work on an image and one or more other modules need the resulting output, i.e. its
availability must be announced. This announcement must be distributed to all machines
where interested modules are running on it. One module may only need the information
that it can start its own task now, another module may need the whole image to start its
processing on it. So the amount of data which must be moved either within a host or also
between different hosts can vary greatly depending on the transferred information.

In particular several message types for regularly distributed information are needed. In
some cases module A sends something to module B and has to wait (i.e. it blocks) for the
result from B. In other cases A just wants to inform B about information X but it doesn’t
care about B’s answer and continues its work immediately.

Also the number of recipients for a specific processing result can vary. So the approriate
sending module needs a method to announce or publish the data to every interested module
without spamming other modules which are not interested in its announcements. Here
a way must be developed to subscribe and unsubscribe to certain services. Of course
broadcasting a message to all modules must be possible as well.

The programmer of a module might also be interested in a comfortable way to address
other modules like typing a name in his browser’s address field rather than typing the
exact IP address. For this reason a name service could support the programmer and the
user of ARGOS when every running module in the whole system has a unique identifying
name.

1.2 Purpose

For the foregoing reasons we suggest to establish the on-board network as a distributed
system to ensure an effective inter-module-communication without dragging down the
overall performance. This thesis describes the development of the middleware Distributed
Middleware for a Near Real Time Monitoring System (DANAOS)2. DANAOS is placed
as an additional software layer between the operating system and the image processing
modules to handle incoming and outgoing data transfers between the modules, i.e. mod-
ules are always indirectly connected via an instance of the DANAOS middleware (Fig
1.3).

Here the question arises if it makes sense at all to install an additional software layer and to
deal with the subsequent overhead. Are the benefits greater than the drawbacks? Of course
many middleware supported distributed systems already exist, so before we concentrate
on implementation issues we will look in this thesis at some of the main concepts of
distributed systems. It will be discussed what a distributed system is, how a middleware
can transform a network of loosely coupled computers into one transparent system and
what we can gain from already existing middleware solutions for the development of

2Danaos was a Greek mythological character and king of Argos in the Peloponnese.

DIPLOMA THESIS - OLIVER MEYNBERG

1.2. Purpose 6

Operating
System

DANAOS
Broker

OS API

DANAOS Interface

Image Processing
Module

Network

Operating
System

DANAOS
Broker

OS API

DANAOS Interface

Image Processing
Module

Host A Host B

Figure 1.3: Software stack of the ARGOS machines with the additional DANAOS middleware
layer

DANAOS.

The program consists of two parts and uses two main concepts for transferring data. One
concept is message passing and is used for the exchange of administrative messages,
which usually occur frequently but its size is usually small. Distributed shared mem-
ory (DSM) is the other concept and is required by the modules to transfer their large
images across the network.

These two transfer strategies are supported by DANAOS consisting of two parts: The first
part is called DANAOS Interface (DI). As you can see in Fig 1.3 communication with other
modules either on the same host or on a different host at first requires a communication
with the DANAOS instance running on the same host. Therefore we design an applica-
tion programming interface with several functions for administrative communication and
data transfer. Exactly one DI is dedicated to one image processing module. It provides
functions for asynchronous and synchronous communication between modules as well as
functions for publishing service messages and subscribing to these services. The mod-
ule programmer decides by choosing one function of DI how a certain amount of data is
transferred. So the degree of transparency is an issue and must be taken into account by
the programmer of the module who is in turn the user of DI. If he uses the publish/sub-
scribe concept for example he has chosen an efficient way for addressing more than one
reciptient. DANAOS uses it in different scenarios as for example the announcement of
a newly available data block at location X in the shared memory which several modules
might need.

DIPLOMA THESIS - OLIVER MEYNBERG

7 Chapter 1. Introduction

The second part of DANAOS is the middleware itself or one instance running on each
participating host. It is called Broker. The Broker coordinates the delivery of messages
and the administration of the distributed shared memory. We can now imagine if a large
number of modules engage services of DANAOS simultaneously, an efficient processing
concept is obviously needed to minimize the processing time of each query.

During and after the implementation of the designs and concepts the performance of
DANAOS must be tested. Several metrics illustrate the behaviour of the system in differ-
ent scenarious where special interest is given to the overall processing rate of the system.
Therefore we measure, in addition to the input acquisition rate, the output processing rate.
It will be checked if this rate of 3 Hz, which is necessary for traffic monitoring, is kept
throughout the processing chain or if there is some kind of shortage in the system.

1.3 Scheme of this Thesis

After this short introduction of Project ARGOS, chapter 2 gives an overview of distributed
systems and middlewares. Several concepts and existing middleware solutions are com-
pared, thereby focusing on real time capabilities and the support of distributed shared
memory. Chapter 3 covers the two main transfer strategies, namely message passing
and distributed shared memory. Chapter 4 deals with several performance meassurement
strategies used on DANAOS and chapter 5 firstly summarizes the results of this work and
secondly gives an outlook on design issues which could be implemented in the future to
improve both performance and usability of DANAOS.

DIPLOMA THESIS - OLIVER MEYNBERG

1.3. Scheme of this Thesis 8

DIPLOMA THESIS - OLIVER MEYNBERG

Chapter 2

Distributed Systems -
A Middleware Approach

This chapter gives an overview of distributed systems and the usage of middlewares. The
characteristics of a distributed system are described as well as the goals which must be
achieved to call a system a distributed system. Its realization can be done in several
ways, one of it is implementing a middleware. The usage of a middleware has several
advantages, e.g. it is independent of the used hardware because it can be implemented
and run in the user space of the machines’ operating system. Several existing middleware
solutions are discussed, their advantages and disadvantages will be compared and we
finally propose the implementation of DANAOS at the end of the chapter.

2.1 Definition and Characteristics

The extremely wide range of existing services and applications, that are based on a dis-
tributed system, makes it hard to give only one single, universally valid definition of a
distributed system. The internet is one example of a distributed system, it has roughly 600
million permanently online hosts, another is the computer network ARGOS, which has 5
hosts. Different hardware configurations, coming along with different operating systems,
do not simplify a defintion. All standard works, dealing each with the basic concepts of
distributed systems, give a different definition. I have chosen the one of Tanenbaum and
van Steen (2002) because it concentrates on the main aspect:

“A distributed system is a collection of independent computers that ap-
pears to its users as a single coherent system.”

If it actually appears as one coherent system in all possible scenarios, depends on the
degree of transparency of the system. Other authors like (Coulouris et al. (2005)) and

9

2.1. Definition and Characteristics 10

(Schill and Springer (2007)) call a computer network a distributed system if all hosts
communicate only via passing messages.

So, in any case, a distributed system is always a computer network, but not the other way
around. There are three main characteristics, described in the following, which you must
take into account while designing a distributed system: concurrency, lack of a global
clock signal and independent failures (Coulouris et al. (2005)).

In a computer network many users work simultaneously with programs on different hosts;
concurrent program execution is the norm. If we imagine ourselves as some co-workers in
a company’s intranet where we want to print documents, backup today’s work or stream
audio/video content, it is not practical and almost impossible that each of us has his own
printer, backup server, file server and multimedia server. To reduce costs and maintenance
effort we share these devices, or more abstractly, we share resources. Resource sharing is
indeed very abstract because the term must comprehend several kinds of resources, and it
supports the conclusion that many cases must be taken into account during implementa-
tion. It is one of the main problems when you deal with the design of distributed systems.
In contrast to a computer network the handling of resources is mostly concealed from its
users. On the one hand the usage of network resources becomes more comfortable, but
on the other hand more effort must be put in the design of a distributed system in the first
place.

Synchronization of processes is another important issue. Normally if two processes A and
B have finished writing to two files, each makes a system call and the kernel can respond
with the exact system time. Now the system knows when the two files were last modified
and a process C, which is only interested in the newer one, knows which one to take. If
we now imagine that processes A and B haven’t run on the same host but on two different
hosts, it is not clear which one of the two files is newer and process C could mistakenly
read from the older file. This is caused by the fact that on user level as well as on kernel
level, there is no way of absolute synchronization in a network because according to
Coulouris et al. (2005) every inter-host communication relies solely on passing messages
over a network and is therefore limited to its accuracy. On one host one global clock
signal exists, but such a signal is impossible to implement in a network due to its latency
and jitters. There are, however, different solutions for these timing problems.

Distributed systems conceal the network from the user. As we mentioned above this
can significantly improve the usability - but only as long as no failure occurs. Because
the location and cause of a failure is also concealed automatically. For example your
mounted home directory becomes suddendly unavailable during your day-to-day work.
You may possibly know that it has been mounted over the network but you do not know
if it is unavailable because of a network fault or a fault of that computer where your home
directory is located. So we basically deal with two different types of failures. Network
failures cause the isolation of certain hosts, but the hosts might be still up and running.
A host’s program crash can affect only parts of its, the own system or can cause other
processes, maybe on different hosts, to terminate.

DIPLOMA THESIS - OLIVER MEYNBERG

11 Chapter 2. Distributed Systems - A Middleware Approach

2.2 General Design Goals

The foregoing characteristics of a distributed system must be considered during its design.
For that reason several goals should be defined in advance to avoid commonly known pit-
falls and to improve the usability and performance of a loosely coupled computer network.
Tanenbaum and van Steen (2002) defined the following design goals:

• Connecting Users and Resources

• Transparency

• Openess

• Scalability

2.2.1 Connecting Users and Resources

Of course the main goal is connecting users and resources these users can commonly
work with. Without this goal the attempt of designing a distributed system would make
no sense at all and that is why it was mentioned as a characteristic at the beginning of
the chapter. But in addition this primary goal comprehends two other interesting aspects
which some authors (e.g. Coulouris et al. (2005)) consider as additional, separate goals:
handling heterogeneity and security.

The internet itself illustrates best how different hardware, different communication proto-
cols, different operating systems and different applications written in different program-
ming languages work with each other seemingly seamlessly. Each of these components
has a share in achieving that. Communication protocols for example hide the differences
in networks, whereas an operating system could deal with applications.

Security issues must be taken into account as soon as the distributed system expands
to another possibly insecure domain. If it transfers confidential data like bank account
details or personal medical data, the used communication channels must be secure or the
data itself must be encrypted. Moreover not only the message must be protected but also
the peer’s identity must be validated. Otherwise we, as the receiver of the secure data,
don’t know who has actually sent it.

2.2.2 Transparency

Ideally the normal user should not know that his application is running on a distributed
system. So if the system makes the user think that he is working on only one system,
you can call the system transparent. Transparency is a comprehensive term, a system
can be transparent in several ways and to a certain degree. The Reference Model of

DIPLOMA THESIS - OLIVER MEYNBERG

2.2. General Design Goals 12

Open Distributed processing (RM-ODP), see ISO (1998), defines eight different kinds of
distribution transparency:

Access transparency hides different data representations and formats (e.g. little endian
and big endian), which can occur when different operating systems and program-
ming languages are used. It must be considered when using heterogeneous com-
puter architectures.

Location transparency is given if the user can access a resource without knowing the
logical or physical location. A good example is the Network File System (NFS)
where a client computer can access files over a network as easily as if they were on
his local computer.

Migration transparency is a subset of location transparency. A system is additionally
migration transparent if the user does not know if a resource has recently moved to
a new location. NFS is also migration transparent.

Relocation transparency is again a subset of migration transparency. The user can con-
tinue working seamlessly while the resource moves to another location. An ex-
ample scenario is making a call with a GSM mobile phone during driving a car
from one network cell to its adjacent cell. The network hands the call over without
interrupting it.

Replication transparency exists when if the user does not know how many copies of a
resource exist. Distributed shared memory algorithms usually provide it.

Concurrency transparency allows several users to access a resource concurrently and
without interfering each other. To achieve that locking mechanisms can be provided
which guarantee that after each access the resource is left in a consistent state. This
is again an important issue in the design of distributed shared memory.

Failure transparency masks computer crashes or network failures. The user may only
be partly affected and can complete his task while the distributed system recovers
from that failure.

Persistence transparency hides allocation and deallocation of resources from the user.
Moreover it provides that these resources can be shared. A typical example is a
machine which on a read request copies a data block from disk to RAM and makes
it available to the users. After reading the data block can be written back to disk.

2.2.3 Openness

The openness of a distributed system depends on its extensibility. Primarily that means
how easy new resources can be integrated and become available for the users. Extensi-
bility always requires a certain set of open standards and protocols, so that newly written

DIPLOMA THESIS - OLIVER MEYNBERG

13 Chapter 2. Distributed Systems - A Middleware Approach

programs of other developers can faultlessly interact with the system. This approach is
commonly known in computer science, examples are the Request for Commons (RFC),
where all major network protocols are standardized, or the C++ Standard Library which
provides useful generic containers and functions for every day tasks in programming.
There are of course more means of publishing standards, the widely known CORBA
middleware is published through a series of technical documents including a complete
interface specification. This is also known as the interface definition language (IDL) of
CORBA (Cha. 2.5.1). An IDL specifies the services which are made available more pre-
cisely, it defines all functions and exceptions the programmer needs to either extend or
rebuild the distributed system. Ideally two completely different implementations of the
distributed system’s interface can interact without errors and behave in exactly the same
way.

To summarize, an open distributed system has public interfaces, which standardize com-
munication between resources, and these resources’ hardware and software could also be
provided by different vendors.

2.2.4 Scalability

Scalability of a distributed system becomes an important factor as soon as it grows. Ac-
cording to Neuman (1994) it can grow in three different dimensions, namely numerically,
geographically and administratively.

Numerical scale deals with the number of nodes, users and services in the system.

Geographical scale deals with the distance between the participants.

Administrative scale deals with the number of authorities which are responsible for
parts of the network.

So, in general, a system is said to be scalable if it remains stable and effective when
it grows in one or more of these dimensions. At this point things can get complicated,
therefore firstly a look must be taken at how a network is affected if it scales and secondly
what techniques exist to keep the system up and running.

2.2.4.1 The Effects of Scale

Scale affects basically three different aspects of a distributed system: system load, admin-
istration and reliability.

If the number of nodes in the system increases, the number of not working hosts will
probably increase as well. The same applies to geographical expansion. The longer the
distances between the network nodes are, the more likely a connection will abort. So
briefly speaking, the reliability of the distributed system can be affected. To avoid this

DIPLOMA THESIS - OLIVER MEYNBERG

2.2. General Design Goals 14

a system can be subdivided into autonomous regions or one can create several copies of
resources in the system.

The average system load of a distributed system must be taken into account, as soon as
the system grows beyond a certain point. If a database of all registered users exists on
each single node, it might be possible to keep it up to date. But that means that as soon
as the account of one user changes, all databases on all nodes need to be updated, which
produces a lot of traffic. If the system scales up a centralized approach in storing the user
data has advantages as well as disadvantages. Only one database has to be updated and
additionally the system is less vulnerable to attacks if sensitive user data is only stored on
one secured server. But if the system grows further, neither all nodes nor one node can
hold all user information. The central server would become a bottleneck.

Moreover the system could expand across administrative boundaries and some authori-
tives might want to have control over their own domain. This administrative effect of
scale could also be handled by distribution and replication.

2.2.4.2 Scaling Techniques

If the system scales up, the distributed system should operate in an effective and stable
way or it should at least pretend this state to its users as long as possible. Therefore several
scaling techniques exist, we present three of them, namely distribution, replication and
caching.

Distribution: Distribution is a technique to spread the information maintained by the
system across several servers. This has some advantages. As the number of server re-
quests climbs up, each server - instead of only one - can handle a certain part of the re-
quests. The most famous example is probably the Domain Name System of the Internet.
There are way too many domains to store and query them on only one server, moreover
the global dimensions would let make a user in New Zealand wait for several seconds,
let alone the (political) quarrel about the administration of this one and only server. So
we need a large number of DNS Servers, but where should they be placed and how does
a user find the right DNS Server? Distributed systems exhibit locality, users of the TU
Braunschweig are more likely to access websites of the TU-BS.DE domain than users from
another instution in a remote country. So the university’s DNS server should be located
somewhere near the campus. The right DNS server can be found through a hierachical
name space which is also a nucleus part of DNS. If another user from New Zealand tries
to connect to a host WWW in the CS.TU-BS.DE domain for instance, his DNS server does
not know anything about a strange DE domain and would ask one of the 13 global root
servers1 where this can be found. The server responsible for the DE domain in turn knows
who is responsible for TU-BS, and so on. So the major advantages are that firstly the
locality of the servers conceal the internet’s global scale to the user and secondly due to

1In fact there are 167 today, see http://root-servers.org

DIPLOMA THESIS - OLIVER MEYNBERG

15 Chapter 2. Distributed Systems - A Middleware Approach

the hierarchical naming root servers are only bothered by top-level-domain DNS servers
- at least theoretically. Concerning this, Wessels and Fomenkov (2003) published a very
interesting paper about the discrepancy between the theory of DNS and how it is put into
practice.

Replication: Replication is not less important than distribution. Distribution means
that several resources share information but one entry never exists twice at the same time.
Applying replication means that several copies of a resource exist, where each additional
copy takes away workload from the existing ones. Maintaining multiple copies lead again
to the question where these copies are placed best in the system. Furthermore it is crucial
to keep all copies consistent, which can be a challenging task, see Cha. 3.3.7 for an
example.

Caching: Caching, like replication, results in making copies of resources and it is a
special form of it. Again the placement and the consistency of a cache are important fac-
tors to consider. The difference to replication is, however, that a cache is only a temporary
replica of the original. If we use pure replication, there is no original, or better there are
only originals but no copies. Using caching the data is copied, but if the original is up-
dated the cached data must not necessarily be updated as well. So the maintenance of a
cache resides with the client of a resource and not with the server.

2.3 Design Principles

Until now we have a general idea of what a distributed system is and what goals we should
keep in mind while designing it. In this section we take a closer look on the design princi-
ples. Many software concepts for distributed systems exist like multicomputer operating
systems but we will concentrate on distributed systems, which basically consist of an ar-
bitrary number of loosely coupled computers with their own set of CPUs, main memory
and operating systems. The middleware running on each host gives the network the addi-
tional features of a distributed system. In this context we focus on questions like: How do
different processes communicate with each other? How are services actually distributed
and which part of the system deals with their reception? How can we keep several replicas
consistent? These are some of the questions we are going to answer in this section.

2.3.1 Communication Mechanisms

A distributed system is a network of loosely coupled computers and should appear to
the user as a coherent system, i.e. in terms of communication two conditions must be
fulfilled: Firstly the participating machines must be able to communicate and exchange
data and secondly the network must be able to conceal that fact to the user. So before

DIPLOMA THESIS - OLIVER MEYNBERG

2.3. Design Principles 16

implementing the actual distributed system we should have at least a brief understanding
of the underlying communication layers. In ITU (1994) seven layers of abstraction are
defined. Each layer provides a service via a service access point (SAP) to its adjacent
layer. Due to the wide range of different physical media and communication protocols
these layers need to guarantee compatibility between different systems. In literature a
five-layer model is often used. It consists of the physical layer, the data link layer, the
network layer, the transport layer and the application layer. This model is perfectly sound
as long as we only consider a computer network. A distributed system needs an additional
layer between the transport layer and the application layer to provide its services to the
user. Consequently we will use a modified model with six layers in this thesis, which is
illustrated in Fig. 2.1 below. These layers are described in the following:

Physical

Layers

Middleware

Application

Transport

Network

Data link

Service access point

Sender Receiver

Peer entity

Figure 2.1: Modified protocol stack of network layers

Physical layer The basic layer of all networks is the physical layer. It translates incoming
electronic or optical signals into a raw bitstream for the data link layer. It includes
mechanical and electrical specifications, as well as frequency allocation, signal
strength, modulation and bandwith. It is probably the most complex layer, therefore
it is hard to name one source which covers the whole subject.

Data link layer The data link layer manages the data transfer between adjacent stations.
It transforms the raw bit stream offered by the physical layer into a stream of frames
for the network layer. Besides framing, methods for error detection, error correc-
tion and flow control are provided. Media access control is another important task

DIPLOMA THESIS - OLIVER MEYNBERG

17 Chapter 2. Distributed Systems - A Middleware Approach

of this layer. It handles multiple concurrent accesses to the medium and thereby
occuring collisions.

Network layer The network layer ensures data delivery from source to destination, no
matter how many intermediate systems the data may pass. To accomplish this
task it puts data into packets and provides a route to the destination to each of it.
The most wide-spread network protocol is IP. Additional tasks of this layer are
congestion control and quality of service.

Transport layer The hosts a packet may pass during its journey are identified by their
network address. To map the incoming packet to its destination application within
the host the tranport layer is necessary. It provides a transport service access point
(TSAP) to the application. If TCP or UDP is used, it is called a socket and consists
of the host’s IP address and of the 16-bit number local to that host, called a port.

Middleware layer These sockets mentioned above act as the TSAP to the middleware
layer. It processes the received data and passes it to the applications. This addi-
tional layer provides a wide range of services which can basically be divided into
two categories. For one thing there are internal services and for another thing there
are services for high-level communication. The internal services implement for
example synchronization like mutual exclusion algorithms or server functionality
to handle multiple threads. High-level communication represents the service ac-
cess point to the specific applications using the distributed system. An application
may call a function which actually runs on a different machine and returns to the
application after completion without the user’s notice.

Application layer This layer is the top of the protocol stack. In general both applications
and application-specific protocols as the hypertext transfer protocol (HTTP) are
located here. In the case of project ARGOS the image processing modules are
applications which communicate via the DANAOS Interface with the underlying
middleware layer.

2.3.1.1 Forms of Communication

Several forms of communication exist. If an application wants to exchange data with
another application possibly running on a different host, the middleware guarantees the
data to be sent to its destination, but it can not guarantee its successful delivery in all
cases. This depends on the implemented form of communication. Tanenbaum and van
Steen (2002) distinguish between six different forms shown in Fig. 2.2 below.

Communication can be persistent or transient. Persistent communication between process
A and B means that the receiver B does not actually need to run when A sends a message.
It is up to the middleware to deliver the message as soon as process B starts. In con-
trast to that, transient communication does not offer this service. The message is simply
forwarded to the destination, but if B is not running, the message will be discarded.

DIPLOMA THESIS - OLIVER MEYNBERG

2.3. Design Principles 18

communication

persistent transient

asynchronous synchronous asynchronous synchronous

receipt-based delivery-based response-based

Figure 2.2: Forms of communication

Moreover communication can be asynchronous or synchronous. Using asynchronous
communication process A can continue immediately with a different task after sending
a message to B. But this also means that A will never get to know if B really received A’s
message, which is no problem at all, if A does not care anyway. On the contrary, if using
synchronous communication A is blocked until the system sends back a reply. This reply
either can be sent by the receiver itself or by some intermediate system.

So these two characteristics - persistence and synchronicity - can be combined as shown
in Fig. 2.2. The IMAP protocol for email services can be regarded as a persistent asyn-
chronous communication protocol because the receiver does not need to be online while
the composer is sending the message and in addition the composer does not get an ac-
knowledgement by default.

There are three extra forms of transient synchronous communication. These forms dif-
ferentiate in the point of time when a receiver sends back its acknowledgement. Receipt-
based transient communication means the acknowledgement is sent as soon as the mes-
sage arrives at the receiving process B. B may currently have some other work to do. If
process B sents back the acknowledgement as soon as it processes the sender’s request,
it is called delivery-based. And finally response-based means, that B waits with sending
the acknowledgement until it has finished processing the request.

2.3.1.2 Hiding Communication

Until now nothing has been said about hiding communication from the user. The user
should be unaware of the fact where his invoked procedures are actually processed when
he uses a distributed system. Therefore an additional level of abstraction implemented in
the middleware is needed. We will discuss briefly three mechanisms, each of which can
provide this extra degree of transparency: remote procedure calls (RPC), remote method
invocation (RMI) and message oriented middleware (MOM).

DIPLOMA THESIS - OLIVER MEYNBERG

19 Chapter 2. Distributed Systems - A Middleware Approach

The idea of using RPC stems from programming on one host. If you implement some-
thing on a single machine it goes without saying that you use a procedure to compute
something and wait for it to return. A RPC seizes this idea and extends it to multiple
hosts. So your program calls a procedure, the procedure itself manages communication
with another host where the actual computing takes place and waits for the reply. The
reply will be forwarded to the caller of the procedure as a normal return value. This form
of interprocess communication (IPC) is shown in Fig. 2.3. Two machines, one client and
one server, exchange data via an RPC. You can break it down into ten subsequent steps.
The client thinks it calls a “normal” local function, but instead it calls a so called client
stub(1) which in turn creates a message and calls some network routines (2) to send it to
its destination (3). The server stub on the destination machine gets the message from its
network routines (e.g. berkeley sockets)(4) and calls the server procedure for processing
the requested data (5). The return value of this procedure is passed to the client procedure
via the same way as the request came to the server (6) - (10). The process of transforming
the memory representation of an object to a data format suitable for transmission is called
marshalling. The reverse process is called unmarshalling. (Tay and Ananda (1990)) as
well as (Birrell and Nelson (1984)) give a good survey of RPCs.

Client
kernel

Client application

Client
routines

Client
stub

Network
routines

RPC run time

2

1 10

9
Server
kernel

Server application

Server
routines

Server
stub

Network
routines

RPC run time

7

6 5

4

3

8

Figure 2.3: Client and server communicating via remote procedure calls.

The idea behind RPCs is both simple and powerful as it gives the client procedure the
possibility calling a function located on a remote host as simple as calling a local function.
But life is of course not that easy and there are some serious drawbacks which limit
the scope of possible applications. The first one is that function parameters in the C

DIPLOMA THESIS - OLIVER MEYNBERG

2.4. Middleware in Distributed Systems 20

programming language can be call-by-value or call-by-reference. In the first case the
parameters are simply copied on the stack and it also works out perfectly well with RPCs.
But in the latter case a reference would be sent to the destination machine and of course the
reference is not valid for the destination’s address space. To fix that, there is a special form
of RPC called remote method invocation. RMI can handle references whereby the scope
of possible applications is broadened to the entire object oriented programming languages.
The basic idea is that local methods invoke a local dummy object, called a proxy, which
in turn communicates with the real remote object. Several existing middlewares like Java
RMI2 or Jini (Cha. 2.5.5) use this form of communication.

However, RPC and RMI require transient communication. As we described earlier that
means that the receiving site must be online in order to communicate with it. Not all
applications could fulfil this precondition, e.g. email services cannot assume that their
users always have turned on their machines. Message-oriented systems can close this
gap. First of all message-oriented communication can be both persistent and transient.

Transient message-oriented communication can be in fact the base of RPCs. But it has
the additional advantage that messages can be stored more easily in the intermediate com-
munication system e.g. via message queues. How long messages stay in these queues
depends on the length of the queue and on its processing time but theoretically there is
no upper bound and they will stay there until the recipient goes online and queries its
messages. These message-queing system are generally referred to as message-oriented
middlewares.

2.3.2 Client-Server Model

The client-server model describes a widely used way to distribute computing power in a
network. Users are interacting with clients, which are in turn connected with each other
via one or more centralized servers. The crucial aspect is balancing the functionality of
network applications. In former times the clients were designed as terminals. Then more
functionality migrated to the client’s site, particularly the user interface code. Since a
decade ago many companies have bucked this trend and move towards a “thin client/fat
server” solution. In this latter scenario the client machine supports only a graphical user
interface while most computing takes place on the server.

2.4 Middleware in Distributed Systems

Having discussed both the design goals and the design principles we need to have a closer
look at the implementation of a distributed system. As we stated earlier we want to focus
on the usage of middlewares as an additional layer in the software and the protocol stack.

2http://java.sun.com/docs/books/tutorial/rmi/index.html

DIPLOMA THESIS - OLIVER MEYNBERG

21 Chapter 2. Distributed Systems - A Middleware Approach

We have already discussed the middleware layer and have positioned it between the trans-
port layer and the application layer. Of course other options are in existence to enable
support of distributed applications. From support at the hardware level all the way to ex-
tensions of applications a variety of different architectures provides distributed services.
For example a distributed operating system distinguishes itself by managing the hardware
of tightly coupled computer systems. This kind of system runs either on one multipro-
cessor host or on homogeneous multicomputers. Another approach would be the use of a
network operating system where on each host an independent operating system runs and
supports communication over the network.

Neither of these two solutions is satisfactory. Distributed operating systems do not consist
of independent loosely coupled computers. On the contrary network operating systems
do not conceal the underlying network so the system does not appear to the user as one
coherent system. So the definition we stated at the beginning of the chapter asks for
another solution - the middleware. The middleware runs on top of a network operating
system of independent machines as an additional software layer and hides by means of
this layer the physical distribution of resources.

Horizontal
interface

V
er

tic
al

in
te

rfa
ce

Figure 2.4: Horizontal and vertical interfaces to provide portability and interoperability.

This middleware model uses two types of interfaces. Firstly the middleware must com-
municate with the underlying operating system and accesses the provided application
programming interface (API) like berkeley sockets for communication or functions for
mapping shared memory. This type can be refered to as the horizontal interface shown in
Fig. 2.4. The second type of interfaces is the vertical interface type and is placed between
the hosts and defines the message structures being sent. These messages are also defined
as protocol data units (PDU) and are defined in each of the first four layers of the OSI
model.

A proper definition of the horizontal interface allows an easy migration to other hosts
and results in the portability of applications and middlewares. The definition of a vertical
interface results in interoperability between heterogeneous hosts.

DIPLOMA THESIS - OLIVER MEYNBERG

2.5. Examining Existing Middlewares 22

Of course you lose these advantages as soon as an application skips the middleware layer
and communicates directly with the underlying services. In that case severe data incon-
sistencies can occur because the application does not know how the middleware handles
internal services and the other way arround. So the adherence to the layers and interfaces
is crucial.

2.5 Examining Existing Middlewares

In this section we examine several existing middlewares for the support of all necessary
features required by project ARGOS. These features are described in the following:

Sharing data by replication The middleware must support a fast way of exchanging
large amounts of data between processes. The distributed shared memory model
introduced by Li and Hudak (1989) shall provide this feature. Because replication
of data objects is an integral part of distributed shared memory, existing solutions
are primarily checked for replication mechanisms. Several ARGOS modules need
to exchange captured or orthorectified images. The main advantage of a distributed
shared memory is that the I/O data consumed/produced by the modules resides in
main memory the whole time. It should be one of two supported ways of interpro-
cess communication.

Synchronous/asynchronous communication The other interprocess communication
mechanism must support synchronous and asynchronous communication between
modules. The modules need to exchange information at high rate, so the designated
IPC mechanism must perform accurately for small, frequently sent messages.

Group communication More than one module might be interested in a published ser-
vice. To reduce the amount of sent messages in the system group communication
must be supported to reach several receivers with one sent message.

Name service To address modules in a more convenient way a name service should be
implemented. Each module should have a unique name it can be identified with.

Timing There are certain real time criteria to be met. Images should be made available
to other modules at a rate of 3Hz. Because of the size of the images of about 20
MByte the transfer rate of large amounts of data plays a decisive role here.

The most important criteria are firstly easy communication between the modules and sec-
ondly the exchange of large amounts of data. Consequently we must give special attention
to these two points while examining existing middlewares.

DIPLOMA THESIS - OLIVER MEYNBERG

23 Chapter 2. Distributed Systems - A Middleware Approach

2.5.1 CORBA

The Common Object Request Broker Architecture (CORBA) is a widely known middle-
ware developed by the Object Management Group (OMB)3. CORBA is a freely available
specification which is implemented by various vendors both as proprietary and as open
solutions. So CORBA is not a middleware itself, but it defines a specification to allow
different implementations of the same architectural component irrespective of the used
programming language. In Cha. 2.2.3 we asked for openness and CORBA is the an-
swer. Due to the CORBA interface description language the developer can specify data
structures without sticking to one programming language syntax. So it is another layer of
abstraction in the software development process (Fig. 2.5). That means the specification

IDL Compiler

C++ compiler
Java compiler

and
Java interpreter

CORBA ORBCORBA ORB
GIOP(IIOP)

IDL
Code

Client
Java-code

Client stub
Java-code

Server
skeleton

C++ code

Server
C++ code

Server
machine code

Client
machine code

ORB
library

Figure 2.5: Exemplary overview of applications compiled for the use with CORBA. The par-
ticipating entities can be written in any of the CORBA-supported programming languages. In
this example the client is written in Java and the server in C++.

is written in an IDL, which an IDL compiler translates into source code of the chosen pro-
gramming language, e.g. C++ or Java. These pieces of code comply with the client stub
and the server stub or skeleton respectively. We have already mentioned this construct
in Cha. 2.3.1.2. The stubs and the code with the actual program are compiled together
with an ORB library to form the machine code which runs on the ORB. This Object Re-

3http://www.omg.org/

DIPLOMA THESIS - OLIVER MEYNBERG

2.5. Examining Existing Middlewares 24

quest Broker (ORB) is the core of every CORBA running host. It enables communication
between processes while concealing all issues dealing with distribution and heterogeneity.

2.5.1.1 Communication

In CORBA all communication between hosts takes place by invoking an object on a re-
mote host. Fig. 2.6 shows an overview of this process. The client application calls a
stub which is responsible for initiating the communication towards the server skeleton.
It wraps client object functionality and translates the calls from the caller object so that
they can be marshalled and transfered over the underlying network. One of the tasks of
the ORB is sending and receiving messages conform to a standardized protocol, named
the General Inter-ORB Protocol (GIOP). The Internet Inter-ORB Protocol (IIOP) is the
most commonly used version of it and runs atop the TCP transport protocol. This pro-
tocol enables communication between clients and object servers from different vendors.
On the server site the skeleton translates the incoming data from the client stub to the
correct up-calls to server objects. It is responsible for unmarshalling the parameters and
passing them on to the server object. Moreover the return values from the called server
objects needs to be marshalled again and sent back to the client stub. There are in fact
two kinds of invocations in CORBA: static and dynamic. Static invocation is used when
the remote interface for the remote object is known at compile time. However, if it is not
known at compile time, a dynamic invocation must be used. In this case the client calls
the Dynamic Interface Invocation (DII) instead of the client stub. On the server site the
Dynamic Skeleton Interface (DSI) is used instead of the static skeleton.

Local OS

DII

ORB Core

Client
application

Stubs

Local OS

DSI

ORB Core

Server
application

Skeletons

POA
IIOP

request/ reply

Figure 2.6: Remote object invocation: a client application invokes a server-object without
being aware of its location.

As we stated earlier remote object invocation is a transient form of communication and
this model is an inherent part of CORBA. To support persistent communication as well,
two additional models of communication have been introduced to the CORBA standard
which nvertheless are based on remote object invocation. One is the callback model and
the other is the polling model. Both support persistent communication by using a form of

DIPLOMA THESIS - OLIVER MEYNBERG

25 Chapter 2. Distributed Systems - A Middleware Approach

asynchronous commmunication. See Tanenbaum and van Steen (2002) for details.

2.5.1.2 Sharing Data through Replication and Caching

Unfortunately CORBA does not offer generic support for caching and replication. There
is an extension called CASCADE, see Chockler et al. (2000), which offers transparent
caching. However, it is designed for wide area networks with a dynamically changing
number of participants. These features might be very useful in a different scenario but are
not appropriate for the usage in project ARGOS.

Another approach is made by Fleisch and Hyde (1998). They want to combine the advan-
tages of distributed object systems like CORBA with the advantages of distributed shared
memory. The idea is to place the distributed objects into the virtual address space created
by the DSM. Introducing a virtual distributed object (VDO), as it is called by the authors,
is promising, but it requires at first the implementation of both a DSM system and a dis-
tributed objects supporting middleware. Interaction between these initially independent
systems might be a challenging task.

2.5.1.3 Name Service and Group Communication

Due to the extensive usage of CORBA in a wide variety of different applications our
previously defined criteria name service and group communication are well supported
by CORBA. Object references in CORBA can be identified by using an (id,string)-pair,
where both the id and the string are character-based names.

Group communication can be implemented using the CORBA event service. Comsumers
and suppliers are connected via a logical event channel. Consumers are either notified of
an incoming event or actively ask the suppliers for new events.

2.5.1.4 Timing

As mentioned above the image processing modules need to load/store large data blocks at
a specific rate. However, CORBA is not able to fulfil predefined timing constraints. The
original CORBA standard does not support real-time applications. So it is not possible to
make a point about how long a remote object invocation actually last. Moreover the client
does not have the possibility to express timing constraints on its request to the server. To
improve CORBA in this respect the CORBA standard has been extended with support
for real-time applications by the Real-Time Special Interest Group (RT SIG), which was
founded within the OMG in 1995. Today several implementations of Real-time CORBA
exist, e.g. TAO which is introduced in Sec. 2.5.2.

DIPLOMA THESIS - OLIVER MEYNBERG

2.5. Examining Existing Middlewares 26

2.5.2 TAO

The ACE ORB (TAO) is a high-performance middleware specification. It is compliant to
the real-time CORBA standard and targets for applications with deterministic and statis-
tical QoS requirements. It extends the conventional CORBA standard by the following
improvements:

Real-time Interface Definition Language In contrast to the conventional CORBA IDL,
TAO’s IDL enables applications to meet timing requirements which are enforced
from end-system to end-system.

High-perfomance Object Adapter The Object Adapter is the interface between the ac-
tual server application and the ORB. It also demultiplexes incoming client requests.
The time to dispatch server operations of CORBA’s Object Adapter increases with
a growing number of client requests. In contrast to that this time remains constant
with TAO’s Object Adapter. It dispatches servant operations in constant O(1) time,
regardless of the number of active connections.

Real-time scheduling TAO’s ORB core supports both static and dynamic real-time
scheduling strategies. The deadline miss ratio can be minimized through static
preemptive scheduling strategies.

Priority-driven I/O-Subsystem TAO’s I/O subsystem assigns priorities to the OS’s real-
time threads. So TAO has a strong influence on the schedulability of its applications
in the operating system.

Because TAO is based on the CORBA standard the previously specified criteria about
communication, synchronicity and name service are met. The compliants to CORBA’s
real-time extension provides functions for timing constraints which could retrieve infor-
mation about how long it takes to access image data. However, the most prominent crite-
rion, the support of a distributed shared memory, is not supported. So we may be able to
determine memory access times with TAO but it would certainly be not so fast as it would
be with a distributed shared memory system.

2.5.3 Ice

The Internet Communications Engine (Ice) is an object-oriented middleware implementa-
tion developed by ZeroC. ZeroC is a company from the United States employing several
developers who formerly worked at the development of CORBA. Consequently Ice inher-
its several features and components from CORBA but more notably it also avoids several
pitfalls and dead-ends which have been noticed during CORBA’s development process.
Ice supports language mappings for C++ and Java among others and is available under
the terms of GNU General Public License (GPL) as long as it is not used in closed-source
software. In the following some of Ice’s key features are presented and compared to

DIPLOMA THESIS - OLIVER MEYNBERG

27 Chapter 2. Distributed Systems - A Middleware Approach

CORBA in order to show its advantages. The Specification Language for Ice (Slice) is a
file format which can be seen as Ice’s IDL. According to Ices’ developers (ZeroC (2008a))
it has fewer constructs than CORBA’s IDL but offers a greater flexibility.

Because CORBA wants to support as many different systems as possible, many CORBA
implementations suffer from this fact in terms of performance. A good example is
CORBA’s IIOP in which the object reference encoding prevents an efficient marshaling.
ZeroC (2008a) states that the Ice protocol is designed in a simpler and more efficient way.
To evaluate performance of Ice, its devlopers compared it to TAO which is known as one
of the most performant CORBA-based middlewares (ZeroC (2008b)). The results show
that Ice can compete easily with TAO in latency, throughput and event distribution tests,
as well in networks with slow connections. But as we said earlier these tests have been
run by developers of ZeroC and we did not recheck them.

According to Laukien (2005) there is and will be no support of shared memory in current
or future releases of Ice. The reason for that is that the performance gain would not com-
pensate the development effort. In particular the support of shared memory would require
a fundamental change for the whole system, e.g. additional protocols and skeletons would
have to be defined. These extensions don’t make sense if real-time criteria like latency
play the decisive role.

But for project ARGOS this is not the case. Latency does not play a decisive role here, but
copying large data chunks does. And there is certainly a performance gain by using shared
memory because it is often not necessary that data must leave the fast main memory.

2.5.4 DCOM

Microsoft’s Distributed Component Object Model (DCOM) is the most widely used mid-
dleware because of the native support of Windows-PCs. DCOM is a closed standard and is
developed by a relatively small number of programmers, whereas CORBA is “designed-
by-committee”. It can be compared to CORBA in terms of complexity and functionality
and is therefore for the same reasons, namely replication, timing and complexity, not
appropriate for our application.

2.5.5 Jini

After discussing three CORBA-based middlewares (CORBA itself, TAO and Ice) and Mi-
crosoft’s DCOM middleware, let us have a brief look at a different kind of architecture for
distributed systems - named Jini. Jini has been originally developed by SUN Microsys-
tems and is solely based on Java. The approach Jini takes to design distributed systems
is different from other middlewares. The developers intend to make the network itself the
central part of a distributed system and not the single nodes it consists of. To make this
clearer Jini’s architecture is described here in more detail.

DIPLOMA THESIS - OLIVER MEYNBERG

2.5. Examining Existing Middlewares 28

Lookup
service

Jini service

Service
proxy object

Service registration

Discovery request

Discovery response

Jini client

Service
proxy object

Jini service

Lookup
service

Jini client

Service
proxy object

Lookup response

Discovery request

Discovery response

Lookup request

(a) Registration of a Jini service.

Lookup
service

Jini service

Service
proxy object

Service registration

Discovery request

Discovery response

Jini client

Service
proxy object

Jini service

Lookup
service

Jini client

Service
proxy object

Lookup response

Discovery request

Discovery response

Lookup request

(b) After receiving a proxy the client can
make service requests.

Lookup
service

Jini service

Service
proxy object

Service registration

Discovery request

Discovery response

Jini client

Service
proxy object

Jini service

Lookup
service

Jini client

Service
proxy object

Lookup response

Discovery request

Discovery response

Lookup request

(c) Direct communication between Jini ser-
vice and Jini client.

Figure 2.7: Scenario of a client-server communication with Jini. Figures from Waldo (1999).

Jini runs ontop of the Java Remote Method Invocation using, as the name says, RMI for
communication (Cha. 2.3.1.2). Jini extends the Java platform by two components: the
discovery protocol, which lets an entity peer find a lookup service, and the lookup service
itself, where services can register and clients can look up services.

Fig. 2.7 shows the initialization of a client-server communication. Three parts participate
in this process: the Jini client, the Jini service and the lookup service. In Fig. 2.7(a) the
Jini service starts a discovery request to find the lookup service. The lookup service replies
with a discovery response, which includes a service proxy object. This object is filled with
some information about the service, e.g. its ID. Then it is used to register the Jini service
in the lookup service. If the Jini client wants to use a service it sends a discovery request
to the lookup service to ask if the desired service is available. The lookup service can
then respond with a service proxy object which allows the client to communicate with the
service directly (Fig. 2.7(b)). So basically the only reason to bother a lookup service is
to get information about the Jini service’s interface, i.e. the service proxy object. Due to
the fact that the client now knows the interface of the service it is able to communicate
directly with it (Fig. 2.7(c)). This interface-based communication enables both client and
service to communicate by way of whatever protocol they need.

Moreover the service can actually move code into the client’s address space because the
client communicates to the service only via its interface. The internal communication
between service proxy and service can change, as well as their implementation, as long
as the interface to the client remains the same. This approach makes it possible to move
object-oriented programming techniques out of the process’ address space onto the net-
work. This feature distinguishes Jini from other systems like CORBA or DCOM.

DIPLOMA THESIS - OLIVER MEYNBERG

29 Chapter 2. Distributed Systems - A Middleware Approach

The portability of code during runtime in a network with different operating systems be-
comes possible because of the usage of the Java programming language. Java allows the
byte code the Java source code is compiled into to be moved from one machine to the
other. Therefore it is possible to dynamically load and unload object code during runtime.

With the architecture provided by Jini asynchronous and synchronous communication,
name service and group communication become possible. In addition JavaSpaces4 allows
the implementation of a distributed shared memory. It uses ObjectSpaces to write and take
objects out of an ObjectSpace. While an entity is taking an object out of an ObjectSpace it
owns it until it is pushed back into the ObjectSpace. Due to this process mutual exclusion
is naturally inherited.

Waldo (1999) introduced Jini as a catalyzer for a new architecture of computing systems.
The old disk-centric architecture with its close bound between main memory and virtual
memory is supposed to be out-of-date and a new network-centric architecture should be
introduced not at least with the help of Jini. One decade later virtual memories are still
dominant and Jini is used in some applications but it has not stirred up a revolution in
computer architecture.

Moreover Java hides the memory management from the programmer. Deallocation of
objects and memory is done automatically by the garbage collection process running in
the background. On the one hand programming becomes easier because the developer
does not need to worry about memory management but on the other hand the automated
garbage collection might not be as efficient as a manual garbage collection, which is
necessary when programming in C++.

Due to the fact that during runtime image data and the number of concurrently running
modules already use a lot of memory, we have come to the conclusion that direct influence
on memory allocation is more important than comfortable programming and therefore we
have chosen C++ instead of Java.

2.5.6 Conclusion of Examination

Fig. 2.8 summarizes the results we get from the examination. Despite the large variety of
implementations of CORBA there does not seem to be an appropriate variant for project
ARGOS. One reason is certainly its complexity and lack of real-time capabilities but the
decisive point is that there is no built-in support for replication and distributed shared
memory concepts.

TAO and Ice are heavily influenced by CORBA but do a far better job in real-time-enabled
systems especially because of their light-weight implementations. However, the support
of hard-edged real-time is not necessary for DANAOS to that extent and TAO and Ice do
not support shared memory concepts. For our purpose DCOM can be put in the same
category as CORBA.

4http://www.jini.org/wiki/JavaSpaces_Specification

DIPLOMA THESIS - OLIVER MEYNBERG

2.5. Examining Existing Middlewares 30

 CORBA TAO Ice DCOM Jini

Sharing data /

replication
No support of replication or shared memory. JavaSpaces

Timing poor good poor poor

Communication

sync./async.
supported

Group

communication
weakly supported

well

supported

weakly

supported
supported

Name service supported

Figure 2.8: List of exisiting middleware solutions. Each middleware has been tested for the
necessary features Project ARGOS requires.

Jini chooses a different interesting approach to the implementation of distributed systems
by using the platform-independence of Java and by supporting interface-based communi-
cation. JavaSpaces is an integral part of Jini and implements a distributed shared memory
concept using ObjectSpaces. Nevertheless trading off rapid programming (Java) against
less memory consumption (C++) kept me off from using Jini.

Because of the foregoing reasons we decided to implement a new middleware from
scratch. There was no appropriate solution which both supports a light-weight, high-
performance message passing system and a distributed shared memory system for the
exchange of large amounts of data.

DIPLOMA THESIS - OLIVER MEYNBERG

Chapter 3

DANAOS - A New Middleware

In this chapter DANAOS is introduced, a new middleware specialized for the use in
Project ARGOS. At first an overview of DANAOS’ components is given by explaining
features and tasks of the DANAOS Interface and the Broker. The succeeding section de-
scribes the services being supported by DANAOS in order to fulfil the criteria stated in
Chapter 2. The internal mechanisms and data structures, which are necessary to offer
those services, are explained in the last section of this chapter.

All components are written in C++ and run on Windows XP machines. This combination
has been chosen because C++ is a comprehensive, mature and widely-used object-oriented
programming language. Windows XP supports it very well because it is firstly written in
C++ itself and secondly its constituent Visual Studio is a good Integrated Development
Environment (IDE). Of course, a POSIX-compliant operating system could have been
used instead, but the camera drivers are only available for Windows systems, so the whole
system is kept homogeneous by using solely Windows-operated machines.

3.1 Components of DANAOS

As described in Cha. 1 the machines of the on-board network of Project ARGOS host a
set of programs for several image processing tasks (Fig. 1.2). In order to focus on the
relevant internal parts of each host an excerpt of this network is displayed in Fig. 3.1.
The communication messages between the programs - or modules - are always forwarded
by the components of DANAOS, so there is never a direct communication between the
modules. This concept ensures the compliance to the layered model we described in Cha.
1.2. In Fig. 3.1 Module a.x on Host x can communicate with Module i.x on the same
host by sending a message with its DANAOS Interface to the Broker, then the Broker
processes this message and forwards it to Module i.x. Is the message destined for Module
a.z on Host z instead, the message is forwarded from Broker x to Broker z, which in turn

31

3.2. Services Offered by DANAOS 32

Host z

Host x

Broker x

Module a.x DI

Host y

Broker y

Broker z

ID Data

Module i.x DI

Module a.z DI

ID Data

Shared
Memory

Shared
Memory

S
M

Figure 3.1: Block diagram of DANAOS. Image processing modules use their DANAOS Inter-
face to communicate with each other via one or more Brokers.

forwards it to Module a.z.

The DANAOS Interface consists of some header files and a library. It basically offers the
user functions to address modules, send messages, communicate in groups and share data.
Exactly one interface is dedicated to one module.

The broker simultaneously processes requests of all modules and all brokers directly con-
nected to it. Therefore a number of worker-threads perform several tasks like marshalling
of messages, maintaining global tables (e.g. the name-service table) and controlling ac-
cess to the distributed shared memory. Exactly one broker exists per host. Each of them
includes several state machines running all the time in parallel and serving all connected
modules. The number of these state machines depends on the concurrency value (Cha.
3.3.2).

3.2 Services Offered by DANAOS

In this section the services offered by DANAOS are introduced. DANAOS is designed
to meet the needs of a middleware for Project ARGOS, so each or a combination of
DANAOS’s services fullfils one of the required criteria. In the following some function
signatures of class DanaosInterface are mentioned to clarify the usage of DANAOS.

DIPLOMA THESIS - OLIVER MEYNBERG

33 Chapter 3. DANAOS - A New Middleware

Listing 3.1: Excerpt of the header file of the DANAOS Interface showing the most important
functions, which can be used to invoke DANAOS’s services.

1 class DanaosInterface
2 {
3 ...
4 Danaos::CSocketHandler *cs_handler;
5 Danaos::MessageQueue *di_msg_queue;
6 char label[LABEL_LENGTH];
7 char domain_name[LABEL_LENGTH];
8 SOCKADDR_IN my_id;
9 ...

10

11 public:
12 int Initialize(void);
13 int RegModule(char *label);
14 int DeregModule(void);
15 ...
16

17 //functions to send and receive messages
18 bool AsynchronousSend(Message *msg_send);
19 bool AsynchronousSend(char *raw_bytes);
20 int SynchronousSend(Message *msg_send, Message **msg_recv);
21 void CheckMessageQueue(void);
22 char GetNextMessage(void);
23 ...
24

25 void Subscribe(char *service_name);
26 void Unsubscribe(char*);
27 void Publish(char*,char*);
28 void Broadcast(Message *msg_bcast);
29 ...
30 //functions to access distributed shared memory
31 int DSMWriteRequest(...);
32 int DSMReadRequest(...);
33 int DSMWrite(...);
34 int DSMRead(...);
35

36 };

3.2.1 Name Service

In a TCP/IP network applications are usually defined by the combination of the host IP
address the application is running on and the local port number. If the application acts as
a client, its port number will be randomly chosen by default, so a possible combination
might be 10.0.0.5:1210. As long as the connection is kept up, the application can be
uniquely identified throughout the network.

DIPLOMA THESIS - OLIVER MEYNBERG

3.2. Services Offered by DANAOS 34

Nevertheless the user of DANAOS longs for a more convenient way to identify his mod-
ules in the network without memorizing complicated (IP,Port) combinations, which might
change as well if the connection needs to be re-established at some point. Therefore the
user can give a name to each of his modules before he lets it communicate with other
modules in the network. From now on we define the name of a module as a label in order
not to mistake it for a service name used for the publish/subscribe service. The user can
assign an arbitrarily chosen character string of at least three characters, which does not
already exist on the same host. For communication DANAOS appends the host’s Fully
Qualified Domain Name (FQDN) to this local label. So if the user chooses the local la-
bel IGI for instance for a module running on host KIRK.AF.OP.DLR.DE, which is unique
throughout the whole network, the label IGI.KIRK.AF.OP.DLR.DE will be assigned. This
label will be called a global module label from now on.

Before a module can communicate with other modules and can use all network services it
must be registered with DANAOS. Therefore the DI offers the following function to the
user:

int RegModule(char *label);

Calling this function invokes several steps in the middleware as shown in Fig. 3.2. The
function RegModule() is called with the parameter IGI as the label of the module.
The DI, which is a static library and runs with the module itself as one process in the
system, creates a message and sends it to the broker running as another process on the
same host. There is always exactly one broker per host and a new module always makes
a connection attempt to the broker running on the same host. This broker checks in
one of its tables, if the name IGI1 is already used. If not, the new global module label
IGI.KIRK.AF.OP.DLR.DE is stored in the table and an acknowledgement message is sent
back to the DI. Moreover the broker sends an update to all other brokers in the network
to announce the successful registration of a new module. The DI parses the message and
RegModule() returns with an error code. From the perspective of an ARGOS module
the call of RegModule() is like an RPC. But in addition it is handled in a very efficient
way in the broker as described in Cha. 3.3.2.

If a module does no longer need to communicate to other modules it can call the func-
tion DeregModule() to make the broker remove all entries about this module from
the tables of all brokers in the system. This procedure corresponds to the procedure of
registering a module.

3.2.2 Synchronous and Asynchronous Communication Service

DANAOS provides an easy-to-use set of functions for sending and receiving messages.
Two different functions for an asynchronous-send command are available:

1IGI stands for the name of the company “Ingenieur-Gesellschaft fuer Interfaces mbH” - a
manufacturer for GPS/IMU systems.

DIPLOMA THESIS - OLIVER MEYNBERG

35 Chapter 3. DANAOS - A New Middleware

Module DanaosInterface

Initialize()

Broker

Initialize(sub)

RegModule(label)

Broker

Initialize(sub)

ACK/NAK

module igi on
kirk.af.op.dlr.de

broker on
kirk.af.op.dlr.de

broker on
scotty.af.op.dlr.de

Create
message

Parse
message

Register
module

Create
reply

Broadcast new module label

Register module

ACK/NAK msg

Update
module
map

Figure 3.2: Registering a new module: This figure shows three processes, which are sepa-
rated by a vertical dashed line. Process B on host X registers with DANAOS. With the help
of its DI it sends a message (“Register module”) to the broker on the same host. The broker
registers the module, acknowledges it (“ACK/NAK message”) and broadcasts a message to
all other brokers (“Broadcast new module label”).

bool AsynchronousSend(char *raw_bytes);
bool AsynchronousSend(Danaos::Message *msg_send);

The first one takes a buffer of raw bytes. These bytes must contain a message already
encoded, which includes destination address and payload, i.e. DANAOS assumes that
the user knows what he is doing when using this function. It is dedicated for sending
messages without creating a message object. Of course a more convenient way is the
second function. It takes a pointer to a Message Object, which represents a message with
all the header elements and transmitted data types in the payload. Class Message is
decribed in Cha. 3.3.6.1.

Messages from other modules or brokers might be sent from a remote host but in the end
the last node on the route through the network is the broker the module has connected
to during its registration process. So all communication of a module is controlled by a
directly connected broker. Consequently all incoming messages arrive at one socket at
the DI of the module and therefore only one message queue for incoming messages is
necessary.

void CheckMessageQueue(void);

DIPLOMA THESIS - OLIVER MEYNBERG

3.2. Services Offered by DANAOS 36

char GetNextMessage(void);

If CheckMessageQueue() is called this function will block until a new message
has arrived in the message queue of this DI. Moreover the new message is stored in the
array DanaosInterface::recv_buffer[] for further processing. This is done
by calling the function GetNextMessage(), which the user can call directly as well.

Synchronous communication is provided by the function
int SynchronousSend(Message *msg_send, Message **msg_recv);

The first parameter is a pointer to an object of class Messagewhich contains the message
to be sent. The function blocks until an answer to the sent message was received. Then the
second parameter points to an object of class Message which contains the reply. So the
user of this function only needs to provide two messages: one contains the data to be sent
and the other is an “empty” message, which is filled with the received data by the function
SynchronousSend(). The advantage of this function signature is that the user does
not have to deal with the marshalling or unmarshalling of data and can access parts of the
message by calling member functions of class Message and MObject respectively.

3.2.3 Publish/Subscribe Service

This service enables the user to reach many recipients by sending only one message. It
is a form of group communication where modules can subscribe to certain services. As
soon as a message is published as a service “GPS” for instance, only those modules will
receive this message, which have previously subscribed to that service.

The subscription process is illustrated in Fig. 3.3(a). Module CAM.SCOTTY on host
SCOTTY, supported by its DI, sends a message to BROKER.SCOTTY on the same host by
calling the function:

void Subscribe(char *service_name);

service_name points to “GPS” in this case. Under this name GPS coordinates might
be published regularly. BROKER.SCOTTY stores the information that CAM.SCOTTY is
now subscribed to all messages which will be published under the name “GPS” in the
following. Then it broadcasts this information to all brokers in the network.

In Fig. 3.3(b) module IGI.KIRK wants to publish new acquired GPS coordinates. It sends
a message of type PUBLISH containing the service name and these coordinates to BRO-
KER.KIRK. Then this broker looks up “GPS” in its subscription table where every sub-
scribed module is listed. It turns out that in addition to CAM.SCOTTY also CAM2.SPOCK

is subscribed to this service. Now the only thing BROKER.KIRK does is sending two inde-
pendent messages to each broker of these hosts. BROKER.SPOCK and BROKER.SCOTTY

respectively forward the incoming message to the destination modules directly connected
to them. Note that IGI.KIRK only sends one message.

DIPLOMA THESIS - OLIVER MEYNBERG

37 Chapter 3. DANAOS - A New Middleware

broker.kirk

igi.kirkkirk

broker.spock

broker.pillebroker.scotty

cam.
scotty

subscribe(GPS)

sub_update(GPS)

sub_update(GPS)

sub_update(GPS) xy.pille

yz.pille

cam2.
spock

pille

spock

scotty

Established
connection

Active
connection

(a) Subscribing to a service.

broker.kirk

igi.kirkkirk

broker.spock

broker.pillebroker.scotty

cam.
scotty

Pub(GPS,coord)

xy.pille

yz.pille

cam2.
spock

pille

spock
scotty

Pub(GPS,coord)

Pub(GPS,coord)

Pub(GPS,coord)

Pub(GPS,coord)

(b) Publishing data as a service.

Figure 3.3: Group communication in DANAOS. Every subscribed host is informed when a
service is published. The publishing module needs to send only one message.

This distribution strategy offers several advantages. Each broker knows all subscriptions
of a module, i.e. a message of type publish is analyzed by the first broker it is sent to

DIPLOMA THESIS - OLIVER MEYNBERG

3.2. Services Offered by DANAOS 38

and then it is forwarded to only those hosts which have a subscribed module directly
connected. All other hosts are not affected by this publishment. Furthermore the brokers
of intermediate hosts lying on the route are not affected as well because the routing is
done by the underlying operating system. On the other hand each broker must be updated
as soon as a new module connects or disconnects. But due to the small number of hosts
in the network and the long time a connection remains established the number of sent
update messages is acceptable and should not have a serious influence on the network
performance.

3.2.4 Service to Share Data

Host 1

Memory 1

Ethernet

Distributed Shared Memory

Host 2

Memory 2

Host N

Memory N

Figure 3.4: The distributed shared memory is a virtual address space, physically distributed
on several hosts but logically appearing as one address space.

Because of having to exchange large amounts of data frequently between processes an
efficient mechanism to share data is provided. This Distributed Shared Memory consists
of parts of the physical memory from each participating host and is logically “fused” as
one large virtual address space (Fig. 3.4). DANAOS provides the necessary functionality
to conceal the physical distribution of the DSM from the user and let it work almost like a
conventional memory. Of course sharing data between two processes running on the same
host is faster than sharing data between two processes running on different hosts, as in the
latter case the data need to be transferred after all via a network with a limited data rate.
Moreover this IPC mechanism requires not quite a simple access control to avoid memory
coherency problems. Memory coherency and issues on how the DSM works are described
in Cha. 3.3.7. For now we concentrate on the usage of the DSM functions provided by
the DI.

int DSMWriteRequest(
char *dst_host_name,
SIZE_T allocation_size,
char **dst_addr,
MEMORY_ID *new_memory_id
);

Before you can actually access the DSM to perform some read or write operations, access
must be granted by DANAOS. While the interface functions for requesting read or write

DIPLOMA THESIS - OLIVER MEYNBERG

39 Chapter 3. DANAOS - A New Middleware

access are similar, the internal processing triggered by a write request is more complicated
than that triggered by a read request, so two different functions are provided by DANAOS.
DSMWriteRequest() requests a memory block of size allocation_size on host
dst_host_name. When the function returns dst_addr points to the first byte of the
newly allocated memory, if the physical memory is located on the same host. The user
benefits from it as now he has a pointer to a memory block he can use in his program
as he would use any other “local” pointer. He has exclusive write access to this memory
block of size allocation_size. Moreover a MEMORY_ID is provided and is used
to uniquely identify a specific memory block. It is a structure with two DWORD member
variables: first_page and last_page. The whole distributed shared memory is
subdivided in pages and the variables indicate that these two pages and all pages between
these two pages belongs to this memory id. The internal funtionality is described in Cha.
3.3.7.

The actual write operation is performed with the following function:

int DSMWrite(
char *dst_host,
char *dst_addr,
SIZE_T buffer_size,
char *src_addr,
MEMORY_ID mem_id
);

The pointer to the memory block returned by DSMWriteRequest() can now be used
by this function, if that is located on the same host. Alternatively the memory ID can be
used to address a memory block on another host. buffer_size bytes of data are copied
from src_addr to dst_addr where src_addr is a pointer pointing to a memory
block in the module’s address space and dst_addr is a pointer pointing to a memory
block in the Distributed Shared Memory.

3.3 DANAOS Inside Out

The previous section has given an overview about what kinds of services are offered. Let
us now have a look at how the internal mechanisms providing those services actually work.
In this section internal parts like algorithms and data structures of DANAOS are described.
The class diagram of DANAOS (Fig. 3.5) gives an overview of the main components of
the system. Basically it can be divided into three packages of classes. DI is the first pack-
age, which implements classes like DanoasInterface itself and supporting classes
like CSocketHandler, which handles incoming and outgoing messages. Broker, the
second package, includes the class SSocketHandler, which handles all connections
to all modules and brokers. It is by far the biggest class and continuously writes data
entries to and reads data entries from three supporting maps, which are represented by
the classes ModuleMap, Router and SubDbase. Class DistributedSM creates

DIPLOMA THESIS - OLIVER MEYNBERG

3.3. DANAOS Inside Out 40

and maintains the distributed virtual address space, whereas class SharedMemory and
its derived classes provide the physical memory the distributed virtual memory consists
of.DanaosLib is the third package and comprehends all data structures used both by
classes of the DI package and by classes of the Broker package.

DI::DanaosInterface DanaosLib::Message

DI::CSocketHandler

Broker::SSocketHandler

DanaosLib::MObject

1*1

1

Broker::ModuleMapEnd3End4

Broker::Router

Broker::SubDbase

DanaosLib::MessageQueue Broker::ModuleContext11

DanaosLib::SharedMemory

Broker::SharedMemoryCreator
DI::SharedMemoryAllocator

*

*

Broker::DistributedSM Broker::PageTableEntry

11

*

*

1

1

1 1
1

1

1

*

1 *

Figure 3.5: Class diagram of DANAOS. Member functions and attributes are not displayed
herein.

3.3.1 Interprocess Communication

How does interprocess communication work in DANAOS? Nine mechanisms are pro-
vided by Windows for facilitating interprocess communication from which we have to
choose. A comprehensive overview of these mechanisms is given on the MSDN sites2.
We have chosen File Mapping and Windows Sockets for the following reasons:

Clipboard and its extension Data Copy do not have network support. We have already
discussed the usage of DCOM in Cha. 2.5.4 and have concluded that it is not appropriate
for our task. Dynamic Data Exchange (DDE) is considered to be not as efficient as newer
technologies and therefore can be excluded as well. Mailslots and anonymous pipes only
provide one-way communication. Named Pipes provide all the necessary functionality but
one thread per pipe-client is necessary, which is unacceptable for our application because
of reasons described in Cha. 3.3.1.1.

Remote Procedure Calls: RPCs provide a programming model with a rich API to
control client/server communication. The programmer does not need to deal with the

2http://msdn.microsoft.com/en-us/library/aa365574(VS.85).aspx

DIPLOMA THESIS - OLIVER MEYNBERG

41 Chapter 3. DANAOS - A New Middleware

details of network data representation, traffic, data integrity, etc. and it is portable to other
operating systems.

On the contrary it sits on top of the transport layer, so we have no influence on the message
structures. Moreover it is a way of synchronized communication as described in Cha.
2.3.1.2. Of course concepts like asynchronous RPC exist, but even then the client has to
wait for the server’s acknowledgement before it can continue to work. Microsoft does not
provide any details if one-way RPCs are supported. These RPCs abandon the otherwise
mandatory acknowledgements. Given that Microsoft’s RPC does not support one-way
RPC, each instance must acknowledge its receipt additionaly to the connection-oriented
support of the transport layer (e.g. TCP). These unncessarily sent acknowledgements on
top of the transport layer double the number of sent messages compared to the usage of
Windows Sockets. So by using RPC our software-stack would grow by an additional layer.
Microsoft’s RPC would sit on top of the Transport layer, on the RPC layer DANAOS
would sit and on DANAOS in turn the module applications would be located. Furthermore
the programmer needs to learn Microsoft’s Interface Definition Language before he can
start using RPCs efficiently.

Due to the fact that we want to have a custom-tailored implementation after a short period
of time with no additional software-layer, I decided to not use RPC but pure Windows
Sockets instead. They are described in Cha. 3.3.1.1.

File Mapping is an efficient way of quickly addressing large amounts of data and is de-
scribed in Cha. 3.3.7.1.

3.3.1.1 Windows Sockets

The Windows Sockets API or shortly Winsock3 specifies how network software can ac-
cess network services, especially TCP/IP and UDP/IP communication services. Functions
and attributes are based on the Berkeley sockets API model.

Several reasons for using Winsock as a message delivery mechanism exist. The clien-
t/server model is suitable for the DANAOS architecture because the DI requests infor-
mation from the broker or attempts to use offered services. Without the broker the DI
cannot operate. So the DI acts like a client and the broker like a server. Winsock supports
this model very well. Typical server functions like LISTEN() and ACCEPT() deal with
incoming connection requests and are as well supported as typical client functions like
CONNECT(), which starts a connection attempt to a known server address. So Winsock
provides the functionality to reach every process in the network, it must only have a server
listening for incoming connections. It doesn’t matter if this server is located on the same
host or not. Due to this fact you need to develop only one mechanism for both remote and
local process communication.

3http://msdn.microsoft.com/en-us/library/ms740673.aspx

DIPLOMA THESIS - OLIVER MEYNBERG

3.3. DANAOS Inside Out 42

3.3.1.2 Identification of Modules

When you use Winsock another problem is solved automatically. There must be a way to
identify a module througout the distributed system. Of course the global module label is
an identifier but it is only convenient for the user of DANAOS but not for the internal pro-
gram structure. The combination of IP address and port is ideal for internal identification
processes because it is used for the same purpose by the operating system.

3.3.2 Perfomance Issues and IO Completion Ports

When we recall the number of communication peers connected to one broker (Fig. 3.1)
we face an interesting design issue, which needs some additional explanation. Each com-
munication peer (either a broker or a module) is connected to one broker by a socket. The
number of established connections depends on the number of hosts in the network and on
the number of running modules on its own host. In a typical ARGOS scenario each broker
has to deal with 15 to 20 open sockets simultaneously. A straight-forward or intuitive way
of serving all sockets would be to create one thread per socket and to apply some kind of
scheduling strategy to serve all sockets in a more or less efficient way.

But this strategy, also called thread-thrashing, would have a serious drawback. If every
socket had a dedicated thread the operating system would have to switch contexts every
time it wants to serve another socket. A context switch, however, is a computationally
intensive task, because the thread state and its data must be unloaded and stored in the
memory and the next active thread needs to load its own state and data again. So the
best strategy to increase performance is to avoid as many context switches as possible to
reduce the computational overhead for the CPU.

Every major operating system has a solution for this problem. A Linux-like OS uses Asyn-
chronous I/O and Windows has been using I/O Completion Port (IOCP) since Windows
NT 3.5. It provides a set of APIs and an efficient threading model to handle multiple
asynchronous I/O requests. Fig. 3.6 illustrates the way an I/O Completion Port works.
After an IOCP has been created in the process every newly created socket is associated
with this IOCP. When a packet from a communication peer arrives on one of these sock-
ets it will be placed as a completion packet into a FIFO queue. Now a prior specified
number of worker-threads (here: four), which have already been waiting for incoming
packets, take these completion packets and process them. Each packet is processed by
one worker-thread. The number of concurrent worker-threads is specified by a previously
defined parameter and will almost never be exceeded. When a running worker-thread has
finished the processing of one packet, it makes checks to see if there is another packet
waiting in the FIFO queue - if there is then it simply grabs it and starts processing it. If
not, it becomes inactive and waits in the LIFO queue for the next packet.

The main advantage of this concept is that, provided that there are constantly incoming
packets waiting to be processed, a running worker-thread is not dedicated to a specific

DIPLOMA THESIS - OLIVER MEYNBERG

43 Chapter 3. DANAOS - A New Middleware

I/O
Completion

Port

A
C
C
E
S
S

C
O
N
T
R
O
L

Routing

Name service

Subscriptions

LIFO queue:
blocked threads

FIFO queue:
Completion packet queue for new messages

active worker-threads

inactive worker-threads

Figure 3.6: An I/O Completion Port at work. Two active worker-threads process incoming
completion packets. If the concurrency value of this IOCP was increased to four the two
worker-threads from the LIFO queue could join the other worker-threads and process comple-
tion packets.

socket. So when taking another package out of the queue there is no context switch, and
the CPUs are utilized to near their full capacity.

The reason to let inactive threads wait in a LIFO queue is the following. When new
completion packets arrive the most recent thread from the queue is woken up because
threads that block for long periods of time can have their stacks swapped out to disk.
Waking up the most recent one minimizes the work to process the in-memory footprints.

What functions are provided to use IOCP? During the initialization phase of DANAOS the
function CreateIoCompletionPort()4 of the Windows API is initially called with
the parameter NumberOfConcurrentThreads, which is the concurrency value. It
specifies the maximum number of concurrent worker-threads which will serve the sockets
and should be chosen carefully. Microsoft’s guidelines are to set this concurrency value
roughly equal to the number of processors in a system.

The worker-threads are notified of new packets by the
GetQueuedCompletionStatus()5 function. It blocks one thread until a new
packet is ready to be processed by this thread.

Another powerful function is PostQueuedCompletionStatus()6.
GetQueuedCompletionStatus() removes a packet from the FIFO queue
and PostQueuedCompletionStatus() adds a packet. The broker can use this
function for communication between threads, like forwarding messages from one internal

4http://msdn.microsoft.com/en-us/library/aa363862(VS.85).aspx
5http://msdn.microsoft.com/en-us/library/aa364986(VS.85).aspx
6http://msdn.microsoft.com/en-us/library/aa365458(VS.85).aspx

DIPLOMA THESIS - OLIVER MEYNBERG

3.3. DANAOS Inside Out 44

socket to the next.

An in-depth coverage of IO Completion Ports can be found at (MSDN (2008)). (Russi-
novich (2006)) gives some backrground information as well as a description of the inter-
nals of IOCP.

3.3.3 Broker’s State Machine

Each broker creates exactly one I/O Completion Port. After being accepted by the
broker’s listening socket each local module as well as each remote broker is regis-
tered with this IOCP. Lst. 3.2 shows a code snippet with some important states.
GetQueuedCompletionStatus() in line 8 blocks until a new completion packet
from either one of the sockets or from another thread arrives. When this function returns
because of incoming data at one of the sockets this data is received by WSARecv() in line
23. The function gets the right socket from an object of the class ModuleContext. This
class stores data structures regarding each socket. Important members of this class are for
example the socket variable itself or a pointer to a message queue. After the message is
stored in a buffer it can be parsed and further processed in one of the thread states.

ModuleWorkerThread() is called in a for-loop for a certain number of times during
the initialization phase. Each call of this function runs in a separate thread. The number
of threads is identical to the concurrency value mentioned in Cha. 3.3.2.

Listing 3.2: Code snippet of the broker’s state machine. The original state machine has
about 25 thread states and roughly 700 lines of code making it the most complex function of
DANAOS.

1 void SSocketHandler::ModuleWorkerThread(...)
2 {
3 // ...a lot of local variables
4

5 while(WaitForSingleObject(g_hShutdownEvent, 0)!=WAIT_OBJECT_0)
6 {
7 //Blocks until new completion packet arrives.
8 GetQueuedCompletionStatus(completion_port,....);
9

10 //
11

12

13 while(thread_state != STATE_DONE)
14 {
15 //state-machine
16 switch(thread_state)
17 {
18 case STATE_INIT:
19

20 //
21 //current_context stores information

DIPLOMA THESIS - OLIVER MEYNBERG

45 Chapter 3. DANAOS - A New Middleware

22 //for every socket.
23 result = WSARecv(current_context->GetSocket(),...);
24

25

26 case STATE_PARSE:
27 //
28 case STATE_FORWARD:
29 //
30 case STATE_BROADCAST:
31 //
32 case STATE_WRITE_FAULT_REQUEST:
33 //
34 case STATE_DONE:
35 //
36 default:
37 //
38 }
39 thread_state = next_thread_state;
40 }
41 }
42 }

3.3.4 Internal Message Handling

Fig. 3.7 illustrates how messages are handled by DANAOS during its way from the source
to the destination module. Assume that module IGI.KIRK sends a set of GPS coordinates
to module CAM.SCOTTY. At first the GPS coordinates, which are stored as double values
in the modules’ address space, are stored in a message object, serialized and copied into a
send buffer. The class CSocketHandler of the DI sends this buffer to BROKER.KIRK

via the Winsock-API, where it produces a completion packet at the broker’s IOCP.

After being dequeued from the FIFO-queue by one worker-thread, the destination ad-
dress is retrieved from the message. This address, which is an (IP,Port)-combination,
is looked up in a table, mapping each address to a local socket. This table is repre-
sented by the class Router. Once the socket has been found by the broker, the mes-
sage can be put into the socket’s message queue. This message queue arranges messages
according to its priority. The priority is stored in the message itself and is determined
by the source of the message. When the message is put into the queue the function
PostQueuedCompletionStatus() is called to put a completion packet into the
FIFO-Queue. This completion packet is nothing more than a reminder for a worker-
thread to actually send the message. So when the completion packet is dequeued by a
worker-thread it gets the current state of this socket and sends the message to the next
module.

This module is either the destination module on the same host or that broker on a dif-

DIPLOMA THESIS - OLIVER MEYNBERG

3.3. DANAOS Inside Out 46

ferent host where the destination module is connected to. Because we want to send the
GPS coordinates to CAM.SCOTTY the message is at first received by BROKER.SCOTTY.
The internal forwarding process of the message corresponds to the process just being de-
scribed for BROKER.KIRK. The next step is to send the message to the destination module
CAM.SCOTTY, which is directly connected to BROKER.SCOTTY and sites on the same
host. The DI’s socket of this module has also implemented a prioritized message queue
where the incoming message is stored. Finally the module can dequeue the message by
calling the DI function CheckMessageQueue().

Host scotty

Host kirk

broker.kirk

broker.scotty

Receive buffer

Send buffer

igi.kirk

Receive buffer

Send buffer

cam.scotty

Socket

Established
connection

Active
connection

Message
Queue

active

inactive

Figure 3.7: Illustration of the stages a message takes on its way from source to destina-
tion. The route which the message takes is indicated with a continous line whereas currently
established but inactive routes are indicated as dashed lines.

DIPLOMA THESIS - OLIVER MEYNBERG

47 Chapter 3. DANAOS - A New Middleware

3.3.5 Routing

The DANAOS routing service uses the information provided by the underlying operating
system. Brokers and modules are identified by an (IP,Port)-combination. This combina-
tion is assigned during the TCP/IP connection establishment. Messages routed through
the network are forwarded like normal IP packets and are routed directly from application
to application. The only difference to other TCP/IP communication is that both source
and destination applications are always DANAOS brokers and not the users’ applications
themselves. Intermediate hosts, where the message might be routed through, simply for-
ward the message without any knowledge about the contents of the message according to
the IP routing policy (Fig. 3.8). Of course, a router between two communicating hosts
is not necessary as the messages produced and consumed by DANAOS are encapsulated
as normal payload data. The resulting traffic can handled by layer 2. However, the hosts
which are used in Project ARGOS are connected by a software router.

IEEE 802.3ab

IP

TCP

DANAOS

Module

Intermediate
hostSender Receiver

Figure 3.8: DANAOS uses IP routing mechanisms to deliver messages. Consequently bro-
kers running on intermediate hosts are unaware of these messages.

From the perspective of the transport layer DANAOS messages are sent from the broker’s
source port to the broker’s destination port on the destination host. The destination broker
parses the message and gets the necessary information to which destination module the
message has to be forwarded.

The message communication services we have discussed until now are always based on
connection-oriented TCP communication. So before a message can be sent a connection
has to be established. Subscription and name updates are delivered in a different way.
Each broker creates during its initialization phase in addition to the TCP sockets also two
UDP sockets. One socket is used to broadcast the supscription and name updates to every

DIPLOMA THESIS - OLIVER MEYNBERG

3.3. DANAOS Inside Out 48

broker using the networks broadcast IP address. The other socket is bound to a pre-defined
port and is used to receive these updates. Unsecure UDP communication is used in this
case because a TCP broadcast would produce a lot of overhead messages. Each received
message results in sending back an ACK/NAK-message when using TCP. So if the num-
ber of hosts increases the number of acknowledgements will increase proportionally to it
and will cause scalability problems.

3.3.6 The DANAOS Message

Category 1 Category 2 Category 3
ADMIN SUBSCRIBE SUB_UPDATE

SEND PUBLISH NAME_UPDATE

 BROADCAST DSM_WRITE_FAULT

 DSM_READ_FAULT

Figure 3.9: The DANAOS message structure supports three different categories depending
on the message type.

A DANAOS message consists of a message header and a payload, which is in turn sub-
divided into message objects. The header structure and the payload varies slightly de-
pending on the type of the message. These different structures can be sorted into three
categories: In the first category are messages of type SEND and ADMIN used for admin-
istrative purposes and the transfer of (a)synchronous messages respectively. Messages of
type SUBSCRIBE, PUBLISH and BROADCAST can be found in the second category. The
third category comprises all messages for internal message transfers, i.e communication
between broker instances (Fig. 3.9).

(Lst. 3.3) illustrates a message structure of category 1. After the message header ending
with the last byte of the field SOURCE_LABEL one or more message objects are transmit-
ted. The message object type further specifies the type of the transfered information. If the
message type indicates that the message is of type ADMIN then the message object type
may indicate whether it is a message to register a module or a message to acknowledge
a successful registration. Because each message object can vary in its length it is stated
after the message object type and is part of each message object header. The number of
message objects in a message is only capped by the overall length of a message.

DIPLOMA THESIS - OLIVER MEYNBERG

49 Chapter 3. DANAOS - A New Middleware

Listing 3.3: Message structure of category 1. One row corresponds to 32 bits.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| MESSAGE TYPE | MESSAGE LENGTH |I| PRIORITY |
+-+
| DST_LENGTH | DESTINATION LABEL |
+-+-+-+-+-+-+-+-+ +
| ... |
+-+
| SRC_LENGTH | SOURCE LABEL |
+-+-+-+-+-+-+-+-+ .
| ... |
+=+
| MO_TYPE | MESSAGE OBJECT LENGTH | |
+-+ .
| MESSAGE OBJECT PAYLOAD |
.
+-+
.

In the following each header field is described briefly.

Message type: Specifies the type of the message. It is used by the receiving module to
identify the type of the message and to parse it accordingly. 1 byte

Message length: Specifies the total length in bytes of the message including header, pay-
load and terminating NULL-character. 2 bytes

I flag: Immediate-Send flag. It is for internal processing and indicates whether a message
has been aready parsed or not. 1 bit

Priority: Specifies the priority of the message (0x00=low, 0x3E=high). 7 bit

DST_LENGTH: Specifies the length of the global module label of the destination in
bytes. 1 byte

Destination Label: Specifies the global module label of the destination as a character
string. <DST_LENGTH> bytes

SRC_LENGTH: Specifies the length of the global module label of the source in bytes.
1 byte

Source Label: Specifies the global module label of the source as a character string.
<SRC_LENGTH> bytes

MO_TYPE: Specifies the type of this message object. 1 byte

Message Object Length: Specifies the length of this message object in bytes. 2 bytes

Message Object Payload: This is the payload of this message object. It stores the actual
information of the message. Multiple message objects can be transfered one after
the other in one message. <MESSAGE OBJECT LENGTH> bytes

DIPLOMA THESIS - OLIVER MEYNBERG

3.3. DANAOS Inside Out 50

+Serialize(in buffer : char*)
+Parse(in recv_buffer : char*)
+GetMObject(in index : int) : MObject*
+AddObject(in type : int, in label)
+GetBufferSize() : int
+GetPayloadLength() : int
+GetSourceLabel() : char*
+GetDestinationLabel() : char*
+GetServiceName() : char*
+GetType() : char
+AddBrokerUpdate(in id, in n, in type : int)
+AddObject(in type : int, in id : unsigned short)
+AddObject(in type : int, in id : int)
+AddObject(in type : int, in id : double)
+SetSourceAddressLabel(in label) : bool
+SetDestinationAddressLabel(in label) : bool
+SetServiceName(in name) : bool
+SetPriority(in priority : char)
+GetPriority() : char
+GetUpdateId() : GLOBAL_ID

-type : char
-buffer_size : unsigned short
-priority : char
-service_name : char*[]
-payload : MObject[]
-service_name_length : char
-src_label : char*
-src_label_length : char
-update_id : GLOBAL_ID
-header_length : int
-payload_length : int

Message

+Serialize() : char*
+Parse(in recv_buffer : char*)
+MObject(in type : int, in label)
+MObject(in type : int, in id : unsigned short)
+MObject(in type : int, in id : int)
+MObject(in type : int, in id : double)
+GetMoSize() : unsigned short
+GetType() : char
+GetData() : char*
+GetUshort() : unsigned short
+GetDword() : unsigned long
+GetDouble() : double

-mo_type : char
-mo_size : unsigned short
-mo_payload : char[]
-mo_buffer

MObject

1 *

Figure 3.10: Class Message and class MObject provide a set of functions to assemble a
message object.

3.3.6.1 The Message Object

Class Message and class MObject provide an object-oriented approach to han-
dle DANAOS messages (Fig. 3.10). After creating an “empty” message ob-
ject the user can choose from several functions to equip the message object
with the information to be sent to the destination. For instance, message ob-
jects are added with Message::AddObject() the message priority is set with
Message::SetPriority(), and so on. When the message object contains the nec-
essary information, the module calls Message::Serialize() to transform the mes-
sage in an array of characters.

The receiving site reads the character-array into a buffer and hands it over to the function
Message::Parse(), which fills a prior allocated message object with the information
from the buffer. Now the module can use functions like Message::GetMObject()
to retrieve the received information.

Fig. 3.11 describes a message transmission in detail using the example of Fig. 3.2 where
message creation and parsing were handled as “black boxes”.

DIPLOMA THESIS - OLIVER MEYNBERG

51 Chapter 3. DANAOS - A New Middleware

Module DanaosInterface SSocketHandler

Initialize

RegModule(label)

module igi on
kirk.af.op.dlr.de

broker on
scotty.af.op.dlr.de

CSocketHandler Message MObject

CreateSocket(label)
Initialize()

AddObject(type, label)

Message()

size:=GetBufferSize()

SetBufferSize(size)

char*:=GetSendBuffer()

Serialize(buffer)

err:=SendData(buffer) Register module

mo_buffer:=Serialize()

Figure 3.11: In Fig. 3.2 one processing step of an object of class DanaosInterface
has been named “Create Message”. This step is illustrated in detail in this figure. Class
Message and class MObject create a data structure to easily add and modify information
whereas class CSocketHandler provides the buffer and the socket to send the information via
the Winsock-API.

3.3.7 Distributed Shared Memory

The distributed shared memory is a virtual address space which is physically distributed
on several hosts. The DSM being used in DANAOS consists of DSM pages of a constant
size and must be allocated to the physical address space. In the following this relation-
ship between local and distributed address space is described by firstly explaining the
local shared memory concept and by secondly explaining the distributed shared memory
concept.

3.3.7.1 Windows File Mapping

The Windows-API provides the FileMapping concept to create a memory, which
can be shared with other processes on the same host. At first the function
CreateFileMapping() called with a unique character-based string creates a file

DIPLOMA THESIS - OLIVER MEYNBERG

3.3. DANAOS Inside Out 52

mapping object. This object is used to call the function MapViewOfFile() which
returns a pointer to the first byte of the newly mapped address space. This pointer can be
used to copy data into this shared memory (e.g. by using memcpy()). All other processes
on the same host firstly open the shared memory by calling OpenFileMapping() and
secondly by calling also MapViewOfFile(). The second process must ensure that
OpenFileMapping() is called with the same character-based string as only already
created file mapping objects can be opened with this function and this character-based
string serves as the object’s system-wide ID.

To subdivide this shared address space into local pages MapViewOfFile() is called
with the parameter dwFileOffset. Also the size of this mapped view can be specified.
With these parameters it is possible to make a part of the shared memory available to the
address space of the calling process. The file offset must be a multiple of the system’s
allocation granularity which is usually 65536 bytes.

The creation and allocaion of these file mapping objects is managed by
the DANAOS broker class SharedMemoryCreator and by the DI class
SharedMemoryAllocator.

3.3.7.2 Implementation of the Distributed Shared Memory

Because of the allocation granularity it makes sense to set the page size of the distributed
shared memory to a multiple of the allocation granularity. It is defined with the parameter
DSM_PAGE_SIZE in DANAOS. The first and the last DSM page on a host are defined
with the parameters FIRST_PAGE and LAST_PAGE.

The crucial part in implementing a distributed shared memory is the implementation of
the access control to the single DSM pages to maintain memory coherency. This area was
subject to intesive research in the last two decades. A memory is said to be coherent if
a read operation to a page returns the same data the last write operation has written to
that page. Basically all algorithms in literature deal with the solution of this problem.
For DANAOS the algorithm proposed by Li and Hudak (1989) is appropriate. It supports
multiple read access to a page and single write access. In this paper the algorithm has been
proven to keep the DSM coherent. The same algorithm has been evaluated and compared
to other algorithms (e.g the Hot Potato algorithm) by Kessler and Livny (1989) and has
been finally chosen for DANAOS.

DIPLOMA THESIS - OLIVER MEYNBERG

Chapter 4

Evaluation

In this chapter tests of the DANAOS Middleware are minuted to give an overview of
its behaviour in critical situations. Special emphasis is placed on timing measurements
because the image processing modules must perform their own tasks in a certain period
of time and therefore the processing rate of the DANAOS middleware must be known in
advance.

4.1 General Test Set-Up

For the following test scenarios two machines have been chosen out of the ARGOS-
network as shown in Fig. 1.2. They are directly connected to each other via Gigabit
Ethernet (IEEE 802.3ab). The relevant technical data is also specified in that figure. Slight
differences in configuration come from the different tasks of the machines in the ARGOS
network. PILLE is directly connected to one camera whereas KIRK has several tasks like
traffic monitoring.

In addition to the powerful CPUs and graphics cards being used, which are necessary for
the computationally intensive image processing modules, the support of jumbo frames by
the ethernet adapters is worth mentioning. A jumbo frame is an Ethernet frame with a
Maximum Transmission Unit (MTU) of more than 1,500 bytes. This upper limit varies by
vendor and the hosts KIRK and PILLE are equipped with three and two Intel PRO/1000 GT
Desktop Adapters respectively, which all support jumbo frames of 4088 and 9014 bytes
in size. This higher MTU results in greater efficiency because each IP packet can hold
more payload data and it does not need to be fragmented and reassembled so often. In
the specialized ARGOS environment, where large amounts of data need to be transferred
frequently, the support of jumbo frames seems to be promising.

All ARGOS machines run on Windows XP SP2 with Visual Studio 2008. To measure
the time on Windows operated machines as accurately as possible the so-called “High-

53

4.1. General Test Set-Up 54

Resolution Timer” of the Windows-API is used by calling the following two functions in
our test programs:

BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);
BOOL QueryPerformanceCounter(LARGE_INTEGER *lpPerformanceCount);

Initially the function QueryPerformanceFrequency()must be called to determine
if the system supports a high resolution counter. If it does, the pointer lpFrequency
points to a variable that receives the counter frequency in counts per second, otherwise
the bool-return value is zero. Most often the counter-frequency is equal to the CPU’s
clock rate. Every time the function QueryPerformanceCounter() is called the
variable lpPerformanceCount receives a pointer to a 64-bit signed integer value,
which represents the absolute number of counts since the system’s start-up. Whenever
the function is called its value is stored and then it is possible to calculate the difference
between two subsequent calls. With the help of the first function it can be converted into
seconds or milliseconds, for instance. A short check on the continuity of this counter has
not revealed any leaps in continuity and is therefore regarded as capable of measuring
time.

4.1.1 Configuration of DANAOS

Some parameters must be given before starting the broker. For now these parameters
must be set as #define-directives in the header files before compilation. Reading these
prameters from an XML configuration file would be a more convenient way. In this case
appropriate classes for parsing XML files must be provided.

• Parameter MAX_INIT_CONNECTIONS defines the number of previously started
brokers in the network, which are waiting for incoming connection attempts. This
can also be done automatically by sending a ping to the network’s broadcast ad-
dress. Assuming that all replying hosts also have a DANAOS broker running this
ICMP request will reveal the IP address of each active broker in the network. This
solution is sufficient for networks with a small number of active hosts (e.g. the
ARGOS network) but in larger networks an ICMP request might not be forwarded
by the majority of routers due to security reasons (smurf attack).

• LISTENING_PORT defines the port where the broker listens for incoming connec-
tion attempts both from local image processing modules and from brokers running
on other hosts.

• The parameter BROADCAST_ADDR and BROADCAST_PORT define the broad-
cast address where broadcast messages must be sent to and the broadcast port every
broker must listen to in order to receive broadcast messages.

• The parameter BUFFER_SIZE sets the size of the receiving buffer in bytes. It must
be set high enough if jumbo-frame support is activated at the network interface

DIPLOMA THESIS - OLIVER MEYNBERG

55 Chapter 4. Evaluation

drivers.

• PAGE_OFFSET indicates the first byte of that part of the distributed shared mem-
ory which is physically located on this host.

• FIRST_PAGE indicates the first page of that part of the distributed shared memory
which is physically located on this host.

• LAST_PAGE indicates the last page of that part of the distributed shared memory
which is physically located on this host.

By running the command

Broker.exe

the broker is started. After initializing the local shared memory it tries to connect to
already running brokers. Then it starts its own socket to listen to incoming connection
attempts from modules and brokers.

The DANAOS Interface and its messages can be used by performing the following steps:

• Link to the static library DanaosInterface.lib.

• Include DanaosInterface.h in your source code.

• Call the constructor of class DanaosInterface.

These three steps are implemented in the test programs supplied on CD.

4.2 Measuring the Average Message Round Trip
Time

During this test the Message Round Trip Time (MRTT) is determined. Two different
aspects are to be evaluated in this test. The first one is the comparison between the MRTT
and the pure RTT where no message processing takes place (Cha. 4.2.1). The second
aspect is the influence of high message load on the MRTT. Therefore several modules
start sending messages via DANAOS while the MRTT of one module is being measured.

4.2.1 Comparison of MRTT and RTT

The goal of the first aspect of this MRTT test is to measure the processing time a module
needs to create a message, sends it to another module, receives the reply and processes
it. Of course, the receiving module needs to parse and process this message as well.

DIPLOMA THESIS - OLIVER MEYNBERG

4.2. Measuring the Average Message Round Trip Time 56

Moreover the brokers of the sending module and of the receiving module also need to
analyze and forward this message. This sequence of processing steps is shown in Fig.
4.1. In this context an interesting aspect is to what extent the computational overhead
caused by message serialization and parsing influences the MRTT. It is compared with a
measurement of the round trip time of ICMP packets.

TEST.KIRK BROKER.KIRK BROKER.PILLE TEST.PILLE

Send message

ParseMessage

Forward Message

Forward Message

Create Message

ParseMessage

ParseMessage

CreateReply
ForwardReply

ParseReply

ForwardMessage

ParseReply

ForwardMessage

ParseReply

M
essage R

ound Trip Tim
e

R
ound Trip Tim

e

Figure 4.1: Measurement of the message round trip time. To calculate the message process-
ing overhead the RTT must be subtracted from the MRTT.

4.2.1.1 Execution of the Test

Therefore a test program called DummyModule.exe can be started from the command
prompt:

DummyModule.exe <start_delay> <my_label> <dst_label> <op_mode>

From the viewpoint of DANAOS it behaves like a real image processing module.
start_delay delays the registration of this module with the broker by start_delay

DIPLOMA THESIS - OLIVER MEYNBERG

57 Chapter 4. Evaluation

seconds. my_label is the label of this module. dst_label is the label of the destina-
tion module where the test messages are sent to. op_mode indicates the test mode. To
print a menu, choose mode 7.

At first it is important to know how long it takes DANAOS to deliver one message from
module TEST.KIRK to module TEST.PILLE. To achieve this the MRTT can be measured
by starting test mode 2 because in this case only one timer triggered and stopped by one
module is necessary and synchronization problems caused by different timers on different
hosts can be avoided.

The code snippet in Lst. 4.2 shows the relevant lines of code of this test scenario. To get
the current time the function Timer::GetTime() is called. It calls the high-resolution
timer described above. The test program measures the time between line 6 and line 17.
Attention should be paid to the if-statements in lines 5 and 15 which cause the timer not
to measure the duration of each loop iteration but of every N_LOOPS_PER_SAMPLE
iteration. If this value is 50,for instance, the sum of 50 MRTTs will actually be mea-
sured. Moreover after every loop iteration the test program waits for WAIT_INTERVAL
milliseconds.

Listing 4.1: Code snippet of the test program to measure the message round trip time.

1 utils::Timer *timer = new utils::Timer();
2 //...
3 while(!_kbhit() && loop_iter < N_LOOPS)
4 {
5 if(!(loop_iter % N_LOOPS_PER_SAMPLE))
6 timer->Reset();
7

8 //Create message objects msg_send and msg_recv
9

10 //Send and receive message
11 my_di->SynchronousSend(msg_send,&msg_recv);
12

13 //Parse message object msg_recv
14

15 if(!((loop_iter+1) % N_LOOPS_PER_SAMPLE))
16 {
17 mrtt = timer->GetTime();
18 //write into log file
19 send_test_log << mrtt << " ";
20 }
21 //delete message objects
22 loop_iter++;
23 Sleep(WAIT_INTERVAL);
24 }

DIPLOMA THESIS - OLIVER MEYNBERG

4.2. Measuring the Average Message Round Trip Time 58

4.2.1.2 Evaluation of the Test

The program writes its output into the log file MRTT_test_1.log, which can also be
found on CD. The most relevant lines are the following:

Listing 4.2: Snippet of log file MRTT_test_1.log.

#Test module label: test.kirk
#MRTT = message round trip time
#WAIT_INTERVAL 50 ms
#total number of loops 2000
#NUMBER_OF_LOOPS_PER_SAMPLE 200
#ETHERNET_FRAMESIZE: 1500 bytes
#TEST_MODE: 2
#Copied 999 bytes to test message array.

#START: 30918.972212195

30931.404347511 199 12.430646315
30943.904510302 399 12.438605886
30956.404684696 599 12.438666919
...
...
#END: 33043.966974848

If the test program did not wait for the period of time indicated by WAIT_INTERVAl,
DANAOS would crash after approximately 800 sent messages of 1000 bytes in size. The
lower limit of 50 milliseconds for this value has been empirically measured, i.e. if a mod-
ule waits for 50 milliseconds before it sends the next message DANAOS will not crash.
A possible explanation for this behaviour could be that one of the message queues in the
broker or in the module is overloaded and causes succeeding messages to be discarded.
This assumption can be substantiated by the fact that the minimum WAIT_INTERVAL
is not correlated to the number of concurrently running modules on the system. Each
module is dedicated to one socket and each socket has one message queue both in the
DANAOS Interface and in the broker. So a critical “filling level” of one message queue
does not affect other message queues.

Three variables are logged in three columns in Lst.4.2: system uptime, number of loop
iterations and message round trip time. This value in the third column indicates the time
a message needs for 200 round trips. From this value the average message round trip
time can be calculated. In this way a much more accurate value will be achieved than by
measuring only one round trip. Of course the WAIT_INTERVAL must be subtracted as
well. The average MRTT is defined by the following equation:

Average MRT T =
Measured MRT T

NUMBER OF LOOPS PER SAMPLE
−WAIT INT ERVAL

For the above values it is 12 milliseconds in average. The elapse time for an ICMP echo
request on both test machines is less than 1 millisecond for packet sizes smaller than 3000

DIPLOMA THESIS - OLIVER MEYNBERG

59 Chapter 4. Evaluation

bytes. Consequently more than 90 percent of the average MRTT is caused by the message
serialization and parsing steps in both the participating brokers and the modules (Fig. 4.2).

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

 13.5
 14

 14.5
 15

 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Y
 (

T
im

e
[m

ill
is

ec
on

ds
])

X (Number of sent messages = number of loop iterations)

Comparison of the MRTT with the RTT

MRTT
ICMP RTT

Figure 4.2: Comparison of the average MRTT with the RTT gained from the ICMP echo
request.

4.2.2 Influence of Background Traffic on the MRTT

The second part of this MRTT test is to show the influence of other running modules,
which consume processing time and produce network traffic.

4.2.2.1 Execution of the Test

The MRTT is measured in the same way as in the first MRTT test. In addition several
instances of the test program described above run in the background and send data con-
tinuously via DANAOS. Thus the performance of DANAOS during high traffic loads can
be simulated. Always two test instances send data to each other, i.e. one half of the test
modules runs on host KIRK and the other half runs on host PILLE. Moreover the pro-
gram Wireshark captures the data on one host, which is being sent from the relevant ports

DIPLOMA THESIS - OLIVER MEYNBERG

4.3. Increasing Complexity and Size of DANAOS Messages 60

during the test. Due to the distribution of the modules the whole incoming and outgoing
traffic of DANAOS is captured by Wireshark.

From the beginning of the test every 5 seconds another module starts sending data via
DANAOS. The question is if the MRTT is significantly affected by the increasing number
of running modules.

4.2.2.2 Evaluation of the Test

It turns out that the MRTT is not affected. The MRTT is not correlated to the number of
running modules basically because of two reasons.

Firstly Wireshark’s capture file allows us to calculate the data rate of the incoming and
outgoing traffic. Seven running modules per host, which are continuously sending data,
produce an overall data rate of 241 Kbyte/s. This data rate is far below the maximum data
rate of Gigabit Ethernet, which is about 100 Mbyte/s. Consequently the maximum data
rate is only reached when about 400 modules are sending data. Before this value would
be reached the participating hosts would have run out of memory. Of course, the data
rate would rise significantly as soon as the wait interval of 50 ms is decreased. In this
case, however, the dependence of the MRTT on the number of active modules cannot be
measured, because messages are discarded in the broker. During a real flight campaign
messages will not be sent at such high rates and therefore DANAOS’ performance is
sufficient in this case.

The second reason is the internal message handling of DANAOS. As already described in
Cha. 4.2.1.2 each active socket has its own message queue. Packets which are not routed
through a specific socket are not placed in their message queue either. The implementation
of the class MessageQueue as a composition of class ModuleContext makes this
handling possible. It supports the conclusion that the I/O Completion Port of the broker
in conjunction with class ModuleContext provides scalability in terms of connecting
clients.

4.3 Increasing Complexity and Size of DANAOS
Messages

The foregoing tests have been executed with a constant total message size and the mes-
sages have been constructed with one instance of class MObject. Now the question
arises what happens if the number of MObjects per message is increased or if the total
length of a message is increased significantly. Increasing the message size is an impor-
tant feature as soon as large data blocks are copied via DSM functions from host to host.
Therefore two test modes have been written.

DIPLOMA THESIS - OLIVER MEYNBERG

61 Chapter 4. Evaluation

4.3.1 Execution of the Test

The first mode uses a modified Message::AddObject() function with an additional
parameter to set explicitly the size of the payload of the thereby constructed MObject.
Then it is possible to increase the number of MObjects while the total length of the mes-
sage remains constant. Each MObject size must dynamically decrease with an increasing
number of MObjects. In this way it is possible to meassure the time which is needed to
create and parse a message without increasing the data rate which is finally sent over the
network.

In the second mode the number of MObjects per message is left constant and the payload
of each object is increased every test iteration. This test can be executed with the help of
the modified Message::AddObject() function described in the previous paragraph.

4.3.2 Evaluation of the Test

 12.436

 12.4365

 12.437

 12.4375

 12.438

 12.4385

 12.439

 12.4395

 12.44

 0 1 2 3 4 5 6 7 8 9 10

Y
 (

M
es

sa
ge

 R
ou

nd
 T

rip
 T

im
e

[s
])

X (Number of Message Objects per Message)

Influence of the Message Complexity on the MRTT

MO Payload Size: 50 bytes
MO Payload Size: 100 bytes
MO Payload Size: 250 bytes
MO Payload Size: 500 bytes

Figure 4.3: Influences of the message size and number of MObjects on the MRTT.

The test log file produces the output shown in Fig. 4.3. Instead of the
Message::AddObject() function described above another slightly different imple-

DIPLOMA THESIS - OLIVER MEYNBERG

4.3. Increasing Complexity and Size of DANAOS Messages 62

mentation had to be used due to an unexpected behaviour for large messages. This
modified Message::AddObject() function is frequently used during all tests and
performs well. However, it can only be used for a limited number of MObjects. Nev-
ertheless some conclusions can be drawn from Fig. 4.3. It plots the message round
trip time against the number of MObjects per message. Because the used variant of the
Message::AddObject() function does not support a dynamic adaptation of the pay-
load size during the meassurement, the payload size in this test is constant. Each of the
four test iterations has been executed with a constant payload size. As the number of
MObjects increases the overall message length increases as well resulting in a bigger
MRTT. This is best shown by the plot with a payload size of 500 bytes.

DIPLOMA THESIS - OLIVER MEYNBERG

Chapter 5

Conclusion and Outlook

5.1 Conclusion

For a network of independent, loosely-coupled computers the middleware is the most
appropriate design to transform this network into a distributed system. This software-
based solution is typically implemented as an additional layer between the transport layer
and the application layer in the network protocol stack.

Various already existing middleware solutions offer a large spectrum of different services.
Traditional designs like CORBA and DCOM try to provide as many features as possible,
which decreases performance. As a result newer middlewares offer less features but are
more specialized in one or the other direction. Examples are ZeroC’s Ice or TAO, which
offer real-time support, or Jini, which provides an innovative concept in sharing data with
JavaSpaces.

The middleware DANAOS - developed in this thesis - is specialized in another way, which
has not been done before. Both the sharing of data by a distributed shared memory and
fast communication via message passing is supported. The distributed shared memory
is founded on an approved algorithm ensuring memory coherency and mutual exclusion.
Due to the modular design the actual physical distribution of the shared memory data
is for one thing realized by the Windows’ file mapping concept and for another thing
realized by the DANAOS message passing. The message passing system itself is based
on the client/server concept and is implemented by using Windows’ asynchronous I/O
mechanism, called I/O completion port. This mechanism is particularly suited to process
a large number of active network sockets in parallel and fits perfectly in the design of the
DANAOS Broker. Finally the DANAOS Interface constitutes the API to the programmer
of the application. It provides a set of easy-to-use functions like publishing messages or
sharing large data blocks. These functions are specially tailored for the requirements of
the image processing modules which run on the ARGOS machines and provide maximum
flexibility at the same time. That means that the function signatures often allow instances

63

5.2. Outlook 64

of class Message to be passed to the function. These objects can be easily extended and
manipulated by calling one of the member functions.

The middleware has been tested on the same machines which will later be used in the
ARGOS scenario. Its performance has been examined when the number of concurrently
running modules or the message size increase. If these parameters are set to realistic
values as they occur when sending administrative messages DANAOS performs well. In
particular the achieved message round trip times and the message processing rate fulfil
the near real-time criteria required by ARGOS.

During the early design phase several interesting questions arose. For instance the
DANAOS broker needs to handle multiple sockets at the same time. The first approach
was to simply create one thread per socket. Then one socket after the other could be
served with a round-robin scheduling procedure. After some additional research the high-
performance I/O Completion Port concept has been preferred.

The first idea of the distributed shared memory design was also quite simple. After a
short period of time and some research it was obvious that the implementation of a self-
written DSM algorithm would slow down the implementation process significantly due to
the complex handling of read and write faults. For this reason one well-designed existing
algorithm has been chosen and adapted for the needs of DANAOS.

5.2 Outlook

Both the implementation of a message passing system for multiple clients and the imple-
mentation of a distributed shared memory is a challenging and complex task.

One interesting aspect for further evaluation is the performance of the distributed shared
memory when a varying number of read and write faults occur and how often a page has
to be copied between hosts. The results could reveal several possibilities to optimize the
distributed shared memory. The load level of the message queues could give further hints
at shortages in the message routing. As they are a nucleus component of DANAOS it
should be possible to achieve further improvements when additional performance data of
these data structures are available.

For the long term diagnostic tools would be a useful extension of the middleware. Or-
ganic computing offers automatic reconfigurability, which can be used to re-arrange the
processing order of the modules, and self-healing mechanisms. Because a flight campaign
is costly these diagnostic tools could detect or even prevent malfunctions of running image
processing modules and this way could possibly prevent the failure of flight campaigns.

Moreover extra tests and application scenarios can be constructed. For instance via an
additional wireless interface the distributed system could be extended to the station on
the ground or to more than one aircraft to combine the acquired image data of several
aircrafts. Scalability would be the key issue in this scenario.

DIPLOMA THESIS - OLIVER MEYNBERG

Bibliography

[Birrell and Nelson 1984] BIRRELL, Andrew D. ; NELSON, Bruce J.: Implementing
remote procedure calls. In: ACM Trans. Comput. Syst. 2 (1984), Nr. 1, S. 39–59.
http://dx.doi.org/http://doi.acm.org/10.1145/2080.357392. –
DOI http://doi.acm.org/10.1145/2080.357392. – ISSN 0734–2071

[Chockler et al. 2000] CHOCKLER, Gregory V. ; DOLEV, Danny ; FRIEDMAN, Roy ;
VITENBERG, Roman: Implementing a caching service a distributed COBRA objects.
In: Middleware ’00: IFIP/ACM International Conference on Distributed systems plat-
forms. Secaucus, NJ, USA : Springer-Verlag New York, Inc., 2000. – ISBN 3–540–
67352–0, S. 1–23

[Coulouris et al. 2005] COULOURIS, George ; DOLLIMORE, Jean ; KINDBERG, Tim ;
LIMITED, Pearson E. (ed.): Distributed Systems - Concepts and Design. Addison-
Wesley Publishers Limited, 2005

[Fleisch and Hyde 1998] FLEISCH, B.D. ; HYDE, R.L.: High Perfor-
mance Distributed Objects Using Distributed Shared Memory and Re-
mote Method Invocation. In: Hawaii International Conference on Sys-
tem Sciences 7 (1998), S. 574. http://dx.doi.org/http://doi.
ieeecomputersociety.org/10.1109/HICSS.1998.649255. – DOI
http://doi.ieeecomputersociety.org/10.1109/HICSS.1998.649255. – ISSN 1060–3425

[ISO 1998] ISO: Information technology - Open Distributed Processing - Reference
model: Overview. 12 1998

[ITU 1994] ITU: X.200 : Information technology - Open Systems Interconnection - Basic
Reference Model: The basic model. July 1994

[Kessler and Livny 1989] KESSLER, R. E. ; LIVNY, M.: An analysis of distributed shared
memory algorithms. In: Proc. th International Conference on Distributed Computing
Systems, 1989, S. 498–505

[Kurz et al. 2008] KURZ, Franz ; EBNER, V. ; ROSENBAUM, Dominik ; THOMAS, Ulrike
; REINARTZ, Peter: Near Real Time Processing of DSM from Airborne Digital Camera
System for Disaster Monitoring. (2008)

65

http://dx.doi.org/http://doi.acm.org/10.1145/2080.357392
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/HICSS.1998.649255
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/HICSS.1998.649255

Bibliography 66

[Kurz et al. 2007] KURZ, Franz ; MUELLER, Rupert ; STEPHANI, Manfred ; REINARTZ,
Peter ; SCHROEDER, Manfred: Calibration of a Wide-Angle Digital Camera System
for Near Real Time Scenarios. (2007). http://elib.dlr.de/48842/

[Laukien 2005] LAUKIEN, Marc: Comment on shared mem-
ory in Ice. http://www.zeroc.com/forums/comments/
294-what-feature-would-you-like-see-most-ice-8.html#
post5763. Version: 2005

[Li and Hudak 1989] LI, Kai ; HUDAK, Paul: Memory coherence in shared vir-
tual memory systems. In: ACM Trans. Comput. Syst. 7 (1989), Nr. 4, S. 321–359.
http://dx.doi.org/http://doi.acm.org/10.1145/75104.75105. –
DOI http://doi.acm.org/10.1145/75104.75105. – ISSN 0734–2071

[MSDN 2008] MSDN: I/O Completion Ports. http://msdn.microsoft.com/
en-us/library/aa365198(VS.85).aspx. Version: 2008

[Neuman 1994] NEUMAN, B. C.: Scale in distributed systems. In: Readings in Dis-
tributed Computing Systems, IEEE Computer Society Press, 1994, S. 463–489

[Rosenbaum et al. 2008] ROSENBAUM, Dominik ; CHARMETTE, Baptiste ; KURZ, Franz
; SURI, Sahil ; THOMAS, Ulrike ; REINARTZ, Peter: Automatic Traffic Monitoring
from an Airborne Wide Angle Camera System. In: ISPRS 2008 (21. Congress), 2008

[Russinovich 2006] RUSSINOVICH, Mark: Inside I/O Completion Ports. http:
//technet.microsoft.com/en-us/sysinternals/bb963891.aspx.
Version: November 2006

[Schill and Springer 2007] SCHILL, Andreas ; SPRINGER, Thomas ; SPRINGER (ed.):
Verteilte Systeme. Springer-Verlag Berlin Heidelberg, 2007

[Tanenbaum and van Steen 2002] TANENBAUM, Andrew S. ; STEEN, Maarten van ;
HOLM, Toni D. (ed.): Distributed Systems - Principles and Paradigms. Prentice Hall,
Inc., 2002

[Tay and Ananda 1990] TAY, B. H. ; ANANDA, A. L.: A survey of remote proce-
dure calls. In: SIGOPS Oper. Syst. Rev. 24 (1990), Nr. 3, S. 68–79. http://
dx.doi.org/http://doi.acm.org/10.1145/382244.382832. – DOI
http://doi.acm.org/10.1145/382244.382832. – ISSN 0163–5980

[Thomas et al. 2008a] THOMAS, Ulrike ; KURZ, Franz ; ROSENBAUM, Dominik ;
MUELLER, Rupert ; REINARTZ, Peter: GPU-based Orthorectification of Digital Air-
borne Camera Images in Real Time. (2008)

[Thomas et al. 2008b] THOMAS, Ulrike ; ROSENBAUM, Dominik ; KURZ, Franz ; SURI,
Sahil ; REINARTZ, Peter: A new Software / Hardware Architecture for Real Time

DIPLOMA THESIS - OLIVER MEYNBERG

http://elib.dlr.de/48842/
http://www.zeroc.com/forums/comments/294-what-feature-would-you-like-see-most-ice-8.html#post5763
http://www.zeroc.com/forums/comments/294-what-feature-would-you-like-see-most-ice-8.html#post5763
http://www.zeroc.com/forums/comments/294-what-feature-would-you-like-see-most-ice-8.html#post5763
http://dx.doi.org/http://doi.acm.org/10.1145/75104.75105
http://msdn.microsoft.com/en-us/library/aa365198(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa365198(VS.85).aspx
http://technet.microsoft.com/en-us/sysinternals/bb963891.aspx
http://technet.microsoft.com/en-us/sysinternals/bb963891.aspx
http://dx.doi.org/http://doi.acm.org/10.1145/382244.382832
http://dx.doi.org/http://doi.acm.org/10.1145/382244.382832

67 List of Abbreviations

Image Processing of Wide Area Airborne Camera Images. In: Journal of Real Time
Image Processing (2008)

[Waldo 1999] WALDO, Jim: The Jini architecture for network-centric com-
puting. In: Commun. ACM 42 (1999), Nr. 7, S. 76–82. http://
dx.doi.org/http://doi.acm.org/10.1145/306549.306582. – DOI
http://doi.acm.org/10.1145/306549.306582. – ISSN 0001–0782

[Wessels and Fomenkov 2003] WESSELS, Duane ; FOMENKOV, Marina: Wow, That’s a
Lot of Packets. In: - 1 (2003), S. 1–9

[ZeroC 2008a] ZEROC: Differences between Ice and CORBA. http://www.zeroc.
com/iceVsCorba.html. Version: 2008

[ZeroC 2008b] ZEROC: Ice Performance. http://www.zeroc.com/
performance/index.html. Version: 2008

DIPLOMA THESIS - OLIVER MEYNBERG

http://dx.doi.org/http://doi.acm.org/10.1145/306549.306582
http://dx.doi.org/http://doi.acm.org/10.1145/306549.306582
http://www.zeroc.com/iceVsCorba.html
http://www.zeroc.com/iceVsCorba.html
http://www.zeroc.com/performance/index.html
http://www.zeroc.com/performance/index.html

List of Abbreviations 68

DIPLOMA THESIS - OLIVER MEYNBERG

List of Abbreviations

API application programming interface

ARGOS airborne wide area high altitude monitoring system

CORBA Common Object Request Broker Architecture

DANAOS Distributed Middleware for a Near Real Time Monitoring System

DCOM Distributed Component Object Model

DDE Dynamic Data Exchange

DEM Digital Elavation Model

DI DANAOS Interface

DII Dynamic Interface Invocation

DSI Dynamic Skeleton Interface

DSM Distributed shared memory

DSM digital surface models

FQDN Fully Qualified Domain Name

GIOP General Inter-ORB Protocol

GPL General Public License

HTTP hypertext transfer protocol

Ice Internet Communications Engine

IDE Integrated Development Environment

IDL interface definition language

IIOP Internet Inter-ORB Protocol

69

List of Abbreviations 70

IOCP I/O Completion Port

IPC interprocess communication

MOM message oriented middleware

MRTT Message Round Trip Time

MTU Maximum Transmission Unit

OMB Object Management Group

ORB Object Request Broker

PDU protocol data units

RMI remote method invocation

RPC remote procedure calls

RT SIG Real-Time Special Interest Group

SAP service access point

Slice Specification Language for Ice

TAO The ACE ORB

VDO virtual distributed object

DIPLOMA THESIS - OLIVER MEYNBERG

List of Figures

1.1 Project ARGOS. Figures from Kurz et al. (2008) 2

1.2 Topology of the on-board network. 4

1.3 Software stack of the ARGOS machines with the additional DANAOS

middleware layer . 6

2.1 Modified protocol stack of network layers 16

2.2 Forms of communication . 18

2.3 Client and server communicating via remote procedure calls. 19

2.4 Horizontal and vertical interfaces to provide portability and interoperability. 21

2.5 Exemplary overview of applications compiled for the use with CORBA.

The participating entities can be written in any of the CORBA-supported

programming languages. In this example the client is written in Java and

the server in C++. 23

2.6 Remote object invocation: a client application invokes a server-object

without being aware of its location. 24

2.7 Scenario of a client-server communication with Jini. Figures from Waldo

(1999). 28

2.8 List of exisiting middleware solutions. Each middleware has been tested

for the necessary features Project ARGOS requires. 30

71

List of Figures 72

3.1 Block diagram of DANAOS. Image processing modules use their

DANAOS Interface to communicate with each other via one or more Bro-

kers. 32

3.2 Registering a new module: This figure shows three processes, which are

separated by a vertical dashed line. Process B on host X registers with

DANAOS. With the help of its DI it sends a message (“Register module”)

to the broker on the same host. The broker registers the module, acknowl-

edges it (“ACK/NAK message”) and broadcasts a message to all other

brokers (“Broadcast new module label”). 35

3.3 Group communication in DANAOS. Every subscribed host is informed

when a service is published. The publishing module needs to send only

one message. 37

3.4 The distributed shared memory is a virtual address space, physically dis-

tributed on several hosts but logically appearing as one address space. . . 38

3.5 Class diagram of DANAOS. Member functions and attributes are not dis-

played herein. 40

3.6 An I/O Completion Port at work. Two active worker-threads process in-

coming completion packets. If the concurrency value of this IOCP was

increased to four the two worker-threads from the LIFO queue could join

the other worker-threads and process completion packets. 43

3.7 Illustration of the stages a message takes on its way from source to des-

tination. The route which the message takes is indicated with a conti-

nous line whereas currently established but inactive routes are indicated

as dashed lines. 46

3.8 DANAOS uses IP routing mechanisms to deliver messages. Consequently

brokers running on intermediate hosts are unaware of these messages. . . 47

3.9 The DANAOS message structure supports three different categories de-

pending on the message type. 48

3.10 Class Message and class MObject provide a set of functions to assem-

ble a message object. 50

DIPLOMA THESIS - OLIVER MEYNBERG

73 List of Figures

3.11 In Fig. 3.2 one processing step of an object of class DanaosInterface

has been named “Create Message”. This step is illustrated in detail in this

figure. Class Message and class MObject create a data structure to eas-

ily add and modify information whereas class CSocketHandler provides

the buffer and the socket to send the information via the Winsock-API. . . 51

4.1 Measurement of the message round trip time. To calculate the message

processing overhead the RTT must be subtracted from the MRTT. 56

4.2 Comparison of the average MRTT with the RTT gained from the ICMP

echo request. 59

4.3 Influences of the message size and number of MObjects on the MRTT. . . 61

DIPLOMA THESIS - OLIVER MEYNBERG

List of Figures 74

DIPLOMA THESIS - OLIVER MEYNBERG

Appendix A

Class Documentation

A.1 Danaos::DanaosInterface Class Reference

Provides function to use DANAOS. Provides functions to communicate and share data

with local and remote modules via DANAOS.

#include <DanaosInterface.h>

Public Member Functions

• int Initialize (void)

• SOCKADDR_IN GetMyId (void)

• char ∗ GetRecvBuffer (void)

• int RegModule (char ∗label)

• int DeregModule (void)

• void Subscribe (char ∗)
• void Unsubscribe (char ∗)
• void Publish (char ∗, char ∗)
• void Broadcast (Message ∗msg_bcast)

• char ∗ GetMyLabel (void)

• bool CheckLabelFormat (char ∗∗label)

• void CheckMessageQueue (void)

75

A.1. Danaos::DanaosInterface Class Reference 76

• bool PrepareSendMessage (char ∗dst_label, char ∗payload, Message ∗msg_send)

• bool AsynchronousSend (Message ∗msg_send)

• bool AsynchronousSend (char ∗raw_bytes)

• char GetNextMessage (void)

• int SynchronousSend (Message ∗msg_send, Message ∗∗msg_recv)

• int DSMWriteRequest (char ∗dst_host_name, SIZE_T allocation_size, char

∗∗dst_addr, MEMORY_ID ∗new_memory_id)

Maps view of a distributed shared memory data block of size allocation_size on

host host_name.

• int DSMReadRequest (char ∗src_host_name, SIZE_T src_size, char ∗∗src_addr,

MEMORY_ID memory_id)

• int DSMWrite (char ∗dst_host, char ∗dst_addr, SIZE_T buffer_size, char ∗src_-

addr, MEMORY_ID mem_id)

• int DSMRead (char ∗dst_addr, char ∗src_host, char ∗src_addr, SIZE_T buffer_-

size, MEMORY_ID mem_id)

Private Member Functions

• void GetDomainName (char ∗global_label, char ∗domain_name)

• char ∗ AppendHostname (char ∗src_label1, char ∗src_label2)

• int DSMMapViewOfRemoteFile (char ∗host_name, SIZE_T allocation_size, char

∗∗p_remote_base_addr, MEMORY_ID mem_id)

Maps view of a shared memory data block, located on a remote host.

Private Attributes

• CSocketHandler ∗ cs_handler

• MessageQueue ∗ di_msg_queue

• SharedMemoryAllocator ∗ sm_accessor

• HANDLE mq_update

DIPLOMA THESIS - OLIVER MEYNBERG

77 Appendix A. Class Documentation

• HANDLE shutdown_event

• boost::mutex di_msg_queue_mutex

• char label [LABEL_LENGTH]

• char domain_name [LABEL_LENGTH]

• SOCKADDR_IN my_id

• char recv_buffer [BUFFER_SIZE]

A.1.1 Detailed Description

Provides function to use DANAOS. Provides functions to communicate and share data

with local and remote modules via DANAOS.

A.1.2 Member Function Documentation

A.1.2.1 int Danaos::DanaosInterface::DSMWriteRequest (char ∗
dst_host_name, SIZE_T allocation_size, char ∗∗ dst_addr,
MEMORY_ID ∗ new_memory_id)

Maps view of a distributed shared memory data block of size allocation_size on host

host_name.

Parameters:

char ∗host_name specifies host where data shall physically be stored.

Returns:

If the function succeeds, the return value is zero.

The documentation for this class was generated from the following file:

• Module/DanaosInterface.h

DIPLOMA THESIS - OLIVER MEYNBERG

A.2. Danaos::Message Class Reference 78

A.2 Danaos::Message Class Reference

Represents a message for communication between modules. A message object holds all

fields of the message as attributes and provides functions to easily read and modify them.

Message between modules and between brokers are represented by message objects. For

sending a ready-made message it provides a serialization function and also for parsing a

received buffer from a socket, it provides a function for parsing.

#include <Message.h>

Public Member Functions

• Message (void)

Constructs a message object for received message data.

• Message (unsigned)

Constructs a message object for sending.

• ∼Message (void)

Destructs a message object.

• SOCKADDR_IN GetUpdateId (void)

Retrieves a GLOBAL ID from a message object.

• int GetBufferSize (void)

Calculates buffer size for a new message object. Must be called before Serial-

ize() function to calculate the correct size for the sending buffer. The sending

buffer is provided by either a CSocketHandler object in the DANAOS Interface

or by a ModuleContext object in the broker.

• void SetPriority (char priority)

Sets the priority of this message The specified priority must be a value of the

interval [0x01..0x3F]. The higher the value, the higher the priority.

DIPLOMA THESIS - OLIVER MEYNBERG

79 Appendix A. Class Documentation

• char GetPriority (void)

Gets the priority of this message The higher the value, the higher the priority.

• bool SetServiceName (char ∗)

Sets the service name which either stores a service name of a subscription or a

module label.

• bool SetDestinationAddressLabel (char ∗)

Sets the module label of the destination.

• bool SetSourceAddressLabel (char ∗)
• void AddObject (int mo_type, char ∗label)

• void AddObject (int mo_type, int id)

• void AddObject (int mo_type, double id)

• void AddObject (int mo_type, unsigned short id)

• void AddBrokerUpdate (SOCKADDR_IN id, char ∗n, int type)

Adds subscription or name service information to a message object. Adds one

of two different kinds of a broker update to a message object. 1. Adds a la-

bel of a newly registered or recently removed module with its corresponding

SOCKADDR_IN to a message object. 2. Adds a service name with the GLOBAL

ID of the module which wants to subscribe/unsubscribe to/from a service.

• char GetType (void)

Gets the message type.

• char ∗ GetServiceName (void)

Gets a service name. The returned service name identifies a service a module

can (un)subscribe to/from.

• char ∗ GetDestinationLabel (void)

Gets the label of the destination module. The destination label is used by the

owning broker to determine the destination module.

DIPLOMA THESIS - OLIVER MEYNBERG

A.2. Danaos::Message Class Reference 80

• char ∗ GetSourceLabel (void)

Gets the label of the source module. The returned source label identifies a

module which has sent a message.

• int GetPayloadLength (void)

Gets the number of message objects in a message.

• MObject ∗ GetMObject (int index)

Gets a pointer to a message object.

• void Serialize (char ∗send_buffer)

Transforms an object of class message into a byte stream. Must be called with

a pointer to an already allocated byte buffer which has the correct size to hold

the whole message object. When the function returns, send_buffer stores the

message which is ready to be sent.

• void Parse (char ∗recv_buffer)

Transforms a byte stream into an object of class message. Must be called with a

pointer to an already allocated byte buffer which has the correct size to hold the

whole message object. When the function returns, this message object stores all

parameters and message objects. The members can accessed by the appropriate

functions.

Private Attributes

• char type

Type of the message.

• unsigned short buffer_size

length of the whole message buffer in bytes.

DIPLOMA THESIS - OLIVER MEYNBERG

81 Appendix A. Class Documentation

• char priority

Priority of the message.

• char ∗ service_name

Pointer to the name of the service which a module wants to publish or subscribe

to.

• char ∗ src_label

Pointer to the label of the source module.

• SOCKADDR_IN update_id

IP address and port of a {NAME|SUB}-update.

• int header_length

Header length in bytes. The header of an Object is not included.

• int payload_length

Number of objects in this message.

• char service_name_length

Length of service name or of destination module label.

• char src_label_length

Length of source module label.

• MObject ∗ payload [10]

Array of pointers to message objects. Each message object contains a header

and payload.

DIPLOMA THESIS - OLIVER MEYNBERG

A.2. Danaos::Message Class Reference 82

A.2.1 Detailed Description

Represents a message for communication between modules. A message object holds all

fields of the message as attributes and provides functions to easily read and modify them.

Message between modules and between brokers are represented by message objects. For

sending a ready-made message it provides a serialization function and also for parsing a

received buffer from a socket, it provides a function for parsing.

A.2.2 Member Function Documentation

A.2.2.1 void Danaos::Message::SetPriority (char priority)

Sets the priority of this message The specified priority must be a value of the interval

[0x01..0x3F]. The higher the value, the higher the priority.

Parameters:

char priority this message is set to.

A.2.2.2 char Danaos::Message::GetPriority (void)

Gets the priority of this message The higher the value, the higher the priority.

Returns:

The priority of this message.

A.2.2.3 void Danaos::Message::AddBrokerUpdate (SOCKADDR_IN id,
char ∗ n, int type)

Adds subscription or name service information to a message object. Adds one of two

different kinds of a broker update to a message object. 1. Adds a label of a newly regis-

tered or recently removed module with its corresponding SOCKADDR_IN to a message

object. 2. Adds a service name with the GLOBAL ID of the module which wants to

subscribe/unsubscribe to/from a service.

DIPLOMA THESIS - OLIVER MEYNBERG

83 Appendix A. Class Documentation

Parameters:

SOCKADDR_IN id of module which wants to (un)subscribe or (de)register.

char∗ n Points either to a service name or a new module label.

A.2.2.4 char Danaos::Message::GetType (void)

Gets the message type.

Returns:

the type of the message.

A.2.2.5 char∗ Danaos::Message::GetServiceName (void)

Gets a service name. The returned service name identifies a service a module can

(un)subscribe to/from.

Returns:

the pointer to a character array which stores the label of the destination of this mes-

sage.

A.2.2.6 char∗ Danaos::Message::GetDestinationLabel (void)

Gets the label of the destination module. The destination label is used by the owning

broker to determine the destination module.

Returns:

the label of the destination module

A.2.2.7 char∗ Danaos::Message::GetSourceLabel (void)

Gets the label of the source module. The returned source label identifies a module which

has sent a message.

Returns:

the pointer to a character array which stores the label of the source of this message.

DIPLOMA THESIS - OLIVER MEYNBERG

A.2. Danaos::Message Class Reference 84

A.2.2.8 int Danaos::Message::GetPayloadLength (void)

Gets the number of message objects in a message.

Returns:

the number of message objects in a message.

A.2.2.9 MObject∗ Danaos::Message::GetMObject (int index)

Gets a pointer to a message object.

Parameters:

int index specifies the object with this index in an array of message objects

Returns:

a message object.

A.2.2.10 void Danaos::Message::Serialize (char ∗ send_buffer)

Transforms an object of class message into a byte stream. Must be called with a pointer

to an already allocated byte buffer which has the correct size to hold the whole message

object. When the function returns, send_buffer stores the message which is ready to be

sent.

Parameters:

char∗ send_buffer points to the first byte of the buffer of the serialized message

object.

A.2.2.11 void Danaos::Message::Parse (char ∗ recv_buffer)

Transforms a byte stream into an object of class message. Must be called with a pointer

to an already allocated byte buffer which has the correct size to hold the whole message

object. When the function returns, this message object stores all parameters and message

objects. The members can accessed by the appropriate functions.

DIPLOMA THESIS - OLIVER MEYNBERG

85 Appendix A. Class Documentation

Parameters:

char∗ recv_buffer points to the first byte of the buffer of the received message.

A.2.3 Member Data Documentation

A.2.3.1 char∗ Danaos::Message::service_name [private]

Pointer to the name of the service which a module wants to publish or subscribe to.

It is also used to store the label of the destination address. Name of a service to subscribe

to.

The documentation for this class was generated from the following file:

• DanaosLib/Message.h

DIPLOMA THESIS - OLIVER MEYNBERG

	Assertion
	Introduction
	Motivation
	Purpose
	Scheme of this Thesis

	Distributed Systems - A Middleware Approach
	Definition and Characteristics
	General Design Goals
	Connecting Users and Resources
	Transparency
	Openness
	Scalability
	The Effects of Scale
	Scaling Techniques

	Design Principles
	Communication Mechanisms
	Forms of Communication
	Hiding Communication

	Client-Server Model

	Middleware in Distributed Systems
	Examining Existing Middlewares
	CORBA
	Communication
	Sharing Data through Replication and Caching
	Name Service and Group Communication
	Timing

	TAO
	Ice
	DCOM
	Jini
	Conclusion of Examination

	DANAOS - A New Middleware
	Components of DANAOS
	Services Offered by DANAOS
	Name Service
	Synchronous and Asynchronous Communication Service
	Publish/Subscribe Service
	Service to Share Data

	DANAOS Inside Out
	Interprocess Communication
	Windows Sockets
	Identification of Modules

	Perfomance Issues and IO Completion Ports
	Broker's State Machine
	Internal Message Handling
	Routing
	The DANAOS Message
	The Message Object

	Distributed Shared Memory
	Windows File Mapping
	Implementation of the Distributed Shared Memory

	Evaluation
	General Test Set-Up
	Configuration of DANAOS

	Measuring the Average Message Round Trip Time
	Comparison of MRTT and RTT
	Execution of the Test
	Evaluation of the Test

	Influence of Background Traffic on the MRTT
	Execution of the Test
	Evaluation of the Test

	Increasing Complexity and Size of DANAOS Messages
	Execution of the Test
	Evaluation of the Test

	Conclusion and Outlook
	Conclusion
	Outlook

	List of Abbreviations
	Class Documentation
	Danaos::DanaosInterface Class Reference
	Detailed Description
	Member Function Documentation
	DSMWriteRequest

	Danaos::Message Class Reference
	Detailed Description
	Member Function Documentation
	SetPriority
	GetPriority
	AddBrokerUpdate
	GetType
	GetServiceName
	GetDestinationLabel
	GetSourceLabel
	GetPayloadLength
	GetMObject
	Serialize
	Parse

	Member Data Documentation
	service_name

