

Simulations of contrail-to-cirrus transition: Study of the radiative impact on contrail evolution

S. Unterstraßer, K. Gierens

Personal Introduction

Simon Unterstrasser

- Currently Post-Doc position at DLR, Oberpfaffenhofen (since 01/2009)
- From 09/2006 to 12/2008 PhD at DLR-IPA
- Title: "Numerical simulations of contrails and their transition to cirrus" (in german, supervisors U. Schumann and B. Kärcher)

Motivation

- The climatic impact of contrail-cirrus only vaguely known (Lee et al., 2009; Sausen et al., 2005; IPCC, 2007)
- Discrimination from natural cirrus difficult (in-situ and in satellite imagery)
- Poor knowledge on contrail-cirrus

Presence & Future

- Model-based approach to finally obtain RF of contrail-cirrus
- In models cirrus and contrail-cirrus distinguishable
- LES-model simulates contrail-to-cirrus transition in detail
- Parameterization of contrail life cycle in GCM (Burkhardt & Kärcher, JGR 2009, accepted)

LES-Model for contrail-cirrus simulations

- Basic model: EULAG (Smolarkiewicz & Margolin, 1997, 1998)
- Ice microphysics: 2-moment bulk scheme with lognormal ice crystal size distribution (Spichtinger & Gierens, 2009)
- Radiation routine with independent column approximation (Fu & Liou, 1993, Fu et al., 1998)
- Initialization with realistic contrails (2 3 min old) using results from vortex-phase simulations (Unterstrasser et al., 2008)

Study the evolution of

- microphysical properties
- geometric properties
- optical properties

Study the impact of

- relative humidity
- temperature
- vertical wind shear

Selected findings on the Poster (last chance !)

Radiation-induced dynamics

- Radiative heating/cooling leads to contrail lifting/sinking
- A radiatively heated contrail cools adiabatically
- The saturation pressure changes and the contrail ice mass changes accordingly
- Affects the contrails micro- and macrophysical properties
- The vertical displacement depends on the heating rate and the atmospheric stratification $N_{\rm BV}$

Coupling of the basic model with the radiation routine

Input of the radiation routine

T(z), p(z), [NO₂, CO₂, N₂O, CH₄, H₂O](z), T_{sfc}, Albedo_{sfc}, solar zenith angle, ice clouds (IWC, r_e), water clouds (LWC, r_e)

Anderson et al, 1986 provide vertical profiles for various seasons and latitudes, z = 0 - 120km

Shift the EULAG domain to an adequate height in the UTLS region use the EULAG values in this layer

Output: Heating rates act as diabetic term in EULAG thermodynamic equation

LR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Sensitivity study of the radiative impact

Study the sensitivity of the contrail properties on the ...

radiation scenario Determined by season, time of day and lower-level cloud			stratification Given in terms of N _{BV}
Season	Summer or winter	Characteristic profiles (Anderson,1986)	$N_{BV} = 0.5 \times 10^{-2} \text{s}^{-1}$ 0.7 x 10 ⁻² s ⁻¹ 1.0 x 10 ⁻² s ⁻¹ 1.3 x 10 ⁻² s ⁻¹ 2.0 x 10 ⁻² s ⁻¹
Time of day	Day or night	Solar zenith angle 45° or 90°	
Lower- level cloud	Yes or No	Yes or No	

Heating rate inside the contrail

- Cloudless summer day
- $N_{BV} = 10^{-2} s^{-1}, T = 217 K$
- $RH_i = 120\%, s = 0s^{-1}$
- Taken at t = 6500s
- Flight altitude z = 1300m

Radiation scenario I: Vertical displacement

- Reference run with no radiation (black)
- Color denotes season (summer, winter)
- Line style denotes time of day (Day: solid, Night: dotted)
- Summer Winter $N_{BV} = 10^{-2}s^{-1}$ Day T = 217K Wight $RH_i = 120\%$ $s = 0s^{-1}$ Taken at t = 6500s Flight altitude z = 1300m
- All cases without lower-level water cloud

in der Helmholtz-Gemeinschaft

Radiation scenario II: Impact on contrail properties

Study total extinction E \approx characteristic optical depth x characteristic width

$$N_{BV} = 10^{-2}s$$

$$T = 217K$$

$$RH_i = 120\%$$

$$s = 0s^{-1}$$

$$E = \int (1 - e^{-\tau}) \, dx \approx \int (1 - (1 - \tau)) \, dx = \int \tau \, dx = \iint \chi \, dx \, dz = \widetilde{\tau} \times \widetilde{B}$$

in der Helmholtz-Gemeinschaft

optical depth τ , extinction χ , characteristic optical depth $\tilde{\tau}$ and width \tilde{B}

Stratification: Vertical displacement and contrail evolution

- Reference run without radiation: black
- Runs with radiation: N_{BV} = 0.5, 0.7, 1.0, 1.3, 2.0 x 10⁻²s⁻¹

Cloudless summer day T = 217K RHi = 120% s = 0s-1Taken at t = 6500s Flight altitude z = 800m

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Summary

- The radiation impact depends on the radiation scenario and the stratification
- Radiative impact small when a lower-level water cloud is present
- Radiative impact largest during summer (esp. during the day) and generally stronger at day than night
- Radiation scenario: Strongest sensitivity to lower-level cloudiness, followed by season and time of day
- At the standard $N_{BV}=10^{-2}s^{-1}$, the radiation impact is substantial only for $RH_i>120\%$, at smaller N_{BV} the threshold humidity is lower.
- In weakly stable atmospheres contrails can rise by more than 1km
- Radiative impact gets stronger with increasing temperature (the reduced temperature difference between contrail and earth surface is a second order effect)
- Ground-based observations of contrails, only if no lower-level clouds are present.
 Sampling biased to longer-living contrail
- Stuber study on contrail radiative contrail forcing assumed constant contrail properties. If one included the radiation effect, the RF contribution of night time contrails might be reduced slightly.
- The model suggest that the radiation-induced uplift doesn't support secondary nucleation for most atmospheric conditions

Acknowledgement

We want to thank B. Kärcher, U. Schumann, C. Emde, I. Sölch, P. Spichtinger, A. Dörnbrack for fruitful discussions and assistance

References

S. Unterstrasser, K. Gierens, P. Spichtinger, 2008, *TAC special issue in Meteorologische Zeitschrift*: The evolution of contrail microphysics in the vortex phase

S. Unterstrasser, K. Gierens, *submitted to ACPD*: Numerical Simulations of Contrail-to-cirrus transition. Part 1: An extensive parametric study

S. Unterstrasser, K. Gierens, *submitted to ACPD*: Numerical Simulations of Contrail-to-cirrus transition. Part 2: The impact of initial ice crystal number, radiation, stratification, secondary nucleation and layer depth

