Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Institut für Physik der Atmosphäre

Small-scale supersonic transport aircraft (S4TA): HISAC project

V. Grewe¹, M. Plohr¹, G. Cerino², M. Di Muzio², Y. Deremaux³, M. Galerneau³, P. de Saint Martin³, T. Chaika⁴, A. Hasselrot⁵, U. Tengzelius⁵, V. Korovkin⁶, ¹DLR, ²Alenia, ³Dassault, ⁴Sukhoi, ⁵FOI, ⁶CIAM

Low weight								
Common Require- ments	Entry into Service	Ref PAX	Max. PAX	Subsonic Cruise	Max. Speed	Max. Alt.	Max Range	Height Seating
	2015	8	19	0.95 MN	1.6 MN	FL410	4000 nm	1785 mm
Specific config.	Length [m]	Wing span [m]	MTO W [tons]	Fuel /MTOW [%]	Max. Speed	L/D	Max Range	Number of engines
A - weight	36.8	18.5	51.1	53	1.6	7.00	4000 nm	3
B - range	41.6	24.0	60.5	53	1.6	7.45	5000 nm	2
C - boom	40.9	19.1	53.3	51	1.8	7.74	4000 nm	2

The 3 HISAC Families

Con ATIS

ECATS

Summary

- Climate impact / ozone depletion of a fleet of S4TA are considerably smaller than for supersonic fleets considered previously for 3 reason:
 (1) Smaller fleet size (Factor 2-4)
 (2) Smaller aircraft = less fuel consumption (Factor ~40)
 (3) Lower flight altitude = smaller Non-CO, effects (Factor ~5)
- Climate impact and ozone depletion of a S4TA fleet are larger than for respective subsonic fleet (Factor 3±0.4).

Deutsches Zentrum für Luft- und Raumfahrt e.V. I in der Helmholtz-Gemeinschaft Contact: volker.grewe@dlr.de

Outlook

Current and future 3D-emission estimates for small-scale aircraft needed. Direct intercomparison of climate impact of sub- and supersonic smallscale aircraft should be performed on the basis of those data.

References

Grewe, V. and A. Stenke, AirClim: an efficient climate impact assessment tool, ACP 8, 4621 - 4639, 2008. Stenke, A., V. Grewe, and S. Pechtl, Do supersonic aircraft avoid contrails?, ACP ., 8, 955-967, 2008. Grewe, et al., Climate impact of supersonic air traffic:..., ACP 7, 5129-5145, 2007. Grewe, Plohr, Crion, Muzio, Dermanuz, Galemeau, Chaita, de Saint Maritin Hasseloot, Tengzelius, Korovkin, Estimates of the Climate Impact of Future Supersonic Business let Configurations – Results from the HISAC Project. In prevo. 2009.

Grewe, Stenke, Plohr, Korovkin, Climate functions for the use in multi-disciplinary optimization in the pre-design of supersonic business jet, submitted to The Aeronautical Journal, 2009.

> Physik der Atmosphare http://www.dlr.de/ipa