
A SYSTEM SIMULATOR FOR ADVANCED DVB-S2/RCS MULTIBEAM
SYSTEMS

V. Boussemart, H. Brandt, German Aerospace Center, Oberpfaffenhofen, Germany

Abstract
Satellite communication systems play an increasing role for broadband communication in the customer, as
well as in specialized segments. They can be used as gap-fillers for areas not covered and not likely to be
covered by broadband DSL, they have their advantages for some kinds of applications (massive multicast)
and can help closing the digital divide without having to invest into terrestrial infrastructure in challenging
territories. The peculiarities of satellite systems – high initial costs, complexity or impossibility of updates –
make it especially important to obtain a correct evaluation of the performance of the system before installing
it. It is also a major necessity to be able to invent new algorithms and techniques, to tune system parameters,
without having to use a real, expensive satellite system. This paper presents a simulator representing a
complete satellite communication system based on DVB-S2 and advanced DVB-RCS techniques, including
simulation of atmospheric effects, user behavior and all major protocols needed in transparent as well as
regenerative systems. This simulator allows developing new algorithms and protocols, tuning satellite
systems and analyzing system stability and performance. The paper also presents an advanced forward link
scheduling algorithm as well as some results obtained with the simulator.

1. INTRODUCTION

The emerging role of satellite communication systems for
the consumer market is based on several outstanding
properties of satellite systems: the large coverage of GEO
(Geostationary Earth Orbit) satellite based systems, which
allows serving areas which cannot be covered by
terrestrial systems with reasonable cost; the inherent
broadcast capability; and the high availability even in
disastrous situations. On the downside is the high initial
cost when exploiting a satellite system and the limited
reconfigurability – once a satellite is in orbit its elements
cannot be changed, though software updates may be
possible. These peculiarities require using techniques that
provide as much as possible service over a given satellite
and to evaluate and tune the performance of the system
in advance as good as possible.

This paper presents a software system that simulates a
transparent or regenerative satellite communication
system including atmospheric effects and interference,
protocols and algorithms, users and applications. The
system is based on DVB-S2 (Digital Video Broadcast via
Satellite) and advanced DVB-RCS (Return Channel for
Satellite) but its modularity allows replacing all protocols
and modules so systems based on DOCSIS (Data Over
Cable Service Interface Specification) or proprietary
protocols could be implemented. The simulator has been
used to develop and evaluate new resource management
algorithms and to verify the importance of adaptive coding
and modulation (ACM) in both the forward and the return
link of the system. It has been developed in an ESA
project†.

The paper is organized in four parts: in the first part a

† Resources Management using Adaptive Fade Mitigation
Techniques (FMT) in DVB-RCS Multi-Beam Systems; Contract
18826/05/NL/US

short overview of the simulator and the simulated system
architecture will be given and some basic explanation of
DVB-S2 and DVB-RCS will be given, the second part
shows a novel scheduling and encapsulation algorithm,
the third part describes the elements of ACM in the
forward and return link and the last part provides results
on the simulations, brings some conclusions and an
outlook on further work.

2. SYSTEM AND SIMULATOR ARCHITECTURE

The usual configuration of a DVB-S2/RCS system is a star
using a transparent satellite payload. Transparent means,
that the satellite does little processing on the signal:
amplification and changing its frequency band. The
resulting signal is then sent back to ground. The main
intelligence in the system is located in one or more
gateways on ground that contain the connections to the
internet and through which all traffic in both directions
(from the users and to the users) flows. For simplicity it is
usually assumed that only one gateway is used, in reality
more than one are normally in the system.

The forward traffic is traffic coming from the internet which
is destined for one or more satellite terminals or traffic
which was received from a satellite terminal and should
be sent to another one. Return link traffic is generated by
the terminals and sent to the gateway. Depending on its
final destination it is either inserted into the internet
connection or sent to another satellite terminal. It must be
noted, that in this transparent star configuration
communication between two satellite terminals result in a
very high round trip time.

In the following two sections an overview over the
processing of both the forward and the return link is given.

2.1. DVB-S2 Forward Link

The forward link send path as implemented in the
simulator in the gateway is shown FIG 1.

FIG 1. Forward link send path

The incoming traffic (either from the Internet or from other
satellite terminals) first enters the IWF (InterWorking
Function). This module has several taks:

• Mix the incoming traffic with IP (Internet Protocol)
packets from the resource manager in the gateway.

• Packet classification. The simulator implements QoS
(Quality Of Service) based on the DiffServ
(Differentiated Services) model. The incoming traffic
is classified by rules into several QoS classes. The
rules as well as the number of QoS classes are
configurable. Currently three flows are used: EF
(Expedited Forwarding), AF (Assured Forwarding)
and BE (Best Effort). The used rules work exclusively
on the ToS (Type of Service) field of the IP packets.
The classifier inspects all incoming packets and
inserts them into per-terminal per-QoS queues.

• Traffic policing. This function is part of the congestion
control mechanisms. If it is enabled the rate for each
QoS type for each terminal is limited to some amount
by means of a token bucket algorithm. This is used
by congestion control to stabilize the system in
overload situations.

• Multiplexing. All traffic for a given QoS class and a
given terminal SLA (Service Level Agreement) class
(terminals can come in different types, like SOHO
(Small Office/Home Office), SME1 and SME2
(Small/Medium Enterprise) and with different SLAs
(which specify, for example, maximum traffic rates
per QoS class) is multiplexed into a single output
channel. With the standard configuration of 3 QoS
classes and 2 SLA classes this results in a total of 6
channels.

The classified output of the IWF enters the scheduler
which schedules the packets according to their QoS,
inserts signaling packets, and encapsulates the packets
according to a configurable protocol and forms so called
BBFRAMEs. The scheduler provides the resource
management with several measurements for congestion
and admission control.

The S2-modem takes the BBFRAMEs, computes their
length in time and schedules them onto the output link. It
provides the resource management with a measurement
of its utilization.

The forward link is organized in BBFRAMEs (BaseBand
FRAMES). The structure of these frames is shown in
figure FIG 2. It consists of an 80-bit header and a data
field which contains the coded data bits. The data is
coded using the concatenation of a BCH (Bose, Ray-
Chaudhun and Hocquenghem were the inventors of the
code) and an LDPC (Low Density Parity Check) code. For
transmission the BBFRAMEs get another physical layer
header which is BPSK encoded and are modulated with

QPSK (Quadrature Phase-Shift Keying), 8PSK, 16APSK
(Assymmetric Phase Shift Keying) or 32APSK. Coding
rates range from 1/4 to 9/10.

BBFRAMEs (see FIG 2) come in two sizes in terms of bits
before modulation: long frames (64800 bits) and,
optionally, short frames (16200 bits). With the possible
modulations this results in 8 different length in time on the
physical link and with the 10 coding values in 19 different
length of the maximum data field (short frames don’t use
9/10 coding) from 3064 to 58184 bits). Not all
combinations of modulation and coding are used because
of overlapping critical thresholds – 28 are defined by the
standard. For the simulations a subset of 18 has been
used (no 32APSK and some almost-overlapping
combinations removed).

The modulation and coding combination (ModCod) that is
used for a given BBFRAME (and, hence, all containing
packets) can be either fixed or variable. The later case is
called ACM (adaptive coding and modulation). Here the
ModCod is selected based on the measured signal quality
that is periodically signaled from the terminals to the
gateway.

FIG 2. Forward link BBFRAME

Packing IP packets into BBFRAME data fields requires a
protocol that is able to fragment IP packets, to pack
several IP packets or fragments of them into a single
frame and to add data helping terminals extracting their IP
packets. The most used protocol is MPE/MPEG
(MultiProtocol Encapsulation in MPEG (Motion Pictures
Experts Group) cells). This protocol uses fixed size
containers of 188 bytes (MPEG cells) which are packed
into the BBFRAME (requiring some padding). IP packets
are fragment by MPE in fragments that fit into MPEG
cells. Because of the large overhead of MPE/MPEG a
replacement called ULE (Unidirectional Lightweight
Encapsulation) has been standardized by the IETF
(Internet Engineering Task Force). Because ULE/MPEG
still suffers from problems with MPEG (overhead) an
entirely new protocol has been standardized by the DVB-
S forum which is called Generic Stream Encapsulation
(GSE). GSE uses variable length fragments and
minimizes overhead as much as possible.

The receive path in the terminal is simple and is shown in
FIG 3.

FIG 3. Terminal receive path

The received frames are demodulated and decoded by
the receiver. In the simulator this module also applies the
transmission delay and decides whether the frame can be

correctly received with the actual signal-to-noise-and-
interference ratio (SNIR). The decoded frames are
forwarded to the layer 2 decapsulator which implements
the receiving half of MPE/MPEG, ULE/MPEG and GSE.
The decapsulated signaling packets are sent to the
terminal resource management and the IP packets to the
interworking function, which is just a placeholder in the
simulator that outputs the IP packets to the user.

2.2. DVB-RCS Return Link

The current standard for the return link is called DVB-
RCS. It features MF-TDMA with optional random access
for signaling and burst sizes that are multiple of either
MPEG cells or ATM (Asynchronous Transfer Mode) cells.
The encapsulation protocol is either MPE/MPEG or AAL5
(ATM Adaptation Layer 5) depending on the used bursts.

The code is either a Turbo code or a concatenation of a
convolutional and a Reed-Solomon code. It must be
noted, that while there are different code rates, the used
rate is fixed in a given system. The modulation is QPSK
and cannot be changed.

Allocation of resources is done in the gateway by the
return link resource manager. Terminals send requests on
a signaling channel to the gateway that are computed
based on the traffic in the given terminal. It is also
possible to used fixed, login-time allocations although this
is not very efficient already for medium numbers of
terminals. There are several options for signaling.

Usually a segmented organization of the return link is
used. In this case the entire return link is segmented into
so-called superframes which represent a portion of time
and frequency on the return link (FIG 4).

Fr
eq

ue
nc

y

FIG 4. Superframes in the return link

Superframes are identified by their ID and contain a set of
carriers (with corresponding associated allowed
symbolrates) over a fixed time span (up to several 100
milliseconds). The superframes are consecutive in time
and the resource control may select superframes from a
predefined set depending on the current traffic situations
(in the above example the third superframe with ID 1
could be followed by superframes with another ID).

Superframes are composed of frames much like the link is
composed of superframes (FIG 5). Frames in a single
superframe may have different durations, bandwidth,
frequency and number of timeslots. Frames are organized
in timeslots which are the basic allocation unit (FIG 6).

Fr
eq

ue
nc

y

FIG 5. Frames in a superframe

TS0 TS1 TS2

TS6TS3
T
S
4

T
S
5

FIG 6. Timeslots in a frame

The organization of the return link is periodically
broadcast by the gateway to all terminals in the form of
different tables: superframe composition table (SCT),
frame composition table (FCT) and time slot composition
table (TCT). The actual allocation to the terminals is
transmitted in the terminal burst time plan (TBTP) which is
sent for each new superframe.

While superframes, frames and timeslots allow for very
flexible allocation and management of the return link, this
flexibility is normally not used, because it requires a very
intelligent resource allocator. The resource allocation is
run in real-time and must be fast and scalable to
thousands of terminals. Therefore often a simple
configuration is used (single superframe ID, all frames the
same length as the superframe). The simulator allows
multiple superframes with equal sizes which are
dynamically chosen, but requires frames to be the same
length as the superframe. This results in an organization
as in FIG 7.

Fr
eq

ue
nc

y

FIG 7. Simulator superframe example

Here the superframe contains two frames with a
bandwidth ratio of 1:2. Because all timeslots are the same
size (in terms of symbols) one frame contains 4 and the
other 8 timeslots. Actual numbers are of course much
higher (several thousand timeslots per carrier).

2.2.1. Advanced DVB-RCS

One of the goals for the simulator was the evaluation of
an enhanced RCS. Two main features are required:

• Support for ACM (adaptive coding and modulation) as
in the forward link.

• Support for fixed burst length segmentation (FBL) as
opposed to variable burst length (VBL, or fixed
information length (FIL)).

To implement ACM the gateway measures the quality of
the received bursts from all terminals and sends these
reports to the resource manager. Here a ModCod will be
selected and taken into account when allocating the
bursts. Unfortunately this adds another dimension of
complexity to the resource allocation. The problem is that
the timeslots have different length on the physical layer
depending on the coding and the modulation when the
information size in them is fixed (to an MPEG or an ATM
cell, for example). This means that designing the
superframe also requires guessing to correct ModCod
distribution for the given terminal type and symbol rate
that gives maximum performance. The ModCod is fixed
during this process and the resource allocator must later
find slots matching not only the symbolrate of the terminal
but also the required minimum ModCod. Running with the
wrong ModCod distribution means that the resource
controller may not be able to allocate all requested slots
because all remaining free slots during an allocation
round have a ModCod that requires a better SNIR than
the terminal has.

This problem can partially be overcome by defining
several superframes with different ModCod distributions
and let the resource controller chose the best one in each
superframe allocation round based on the requests and
the terminal signal conditions. This is called semi-dynamic
allocation. Unfortunately this technique requires two
rounds over the requests – first to choose the superframe
to use and second to actually allocate bursts. Even with
this technique allocation is always sub-optimal.

This problem can entirely be overcome by drastically
changing the return link segmentation. Instead of using
bursts that fit the same number of data bits for all
ModCods one can use bursts that have always the same
number of symbols and, hence, length in time. Actually it
is useful to have a small set of possible burst length.
While the simulator allows full flexibility here, all
simulations have been done with burst of length 400 and
800 symbols. The length on the physical layer still
depends on the symbol rate, so that the resulting
superframe definition looks again as in FIG 7 when only
the short bursts are used. Long bursts are automatically
used by the terminal if it gets two consecutive short slots.

The win is obvious: the resource controller has full
freedom to assign ModCods to the slots – each slot
position can accommodate each ModCod. This allows
almost optimal allocation (limited by the used algorithm).

The backside of this FBL scheme is that MPE/MPEG and
AAL5/ATM are no longer usable. Instead the simulator
used the GSE protocol in this case which turns out to
have even less overhead than its counterparts.

The send path of the return link which is located in the
terminal is shown in FIG 8

FIG 8. Return link send path

The incoming IP packets are received by the IWF module
which multiplexes them with IP packets from the resource
management of the terminal. This IP path is used for call
admission control. The IWF classifies the packets into the
QoS classes and optionally applies policing to each class
with a token bucket. The three resulting flows enter the
scheduler where they are scheduled according to their
QoS requirements. The scheduler also does rate and
volume measurements on the traffic so that the local
resource manager can generate resource requests. It also
allows dedicated dropping of traffic for congestion control.
The resulting packet stream enters the layer 2 processing
where it gets fragmented, multiplexed with signaling
messages and encapsulated. The resulting bursts are
sent to the satellite.

In the receive path in the gateway (FIG 9) a multiburst
demodulator receives all the bursts of all carriers.

FIG 9. Return link receive path

In the simulator this module also applies the transmission
delay and checks the received bursts whether the current
signal quality is strong enough to demodulate and decode
the burst. The measurement is also sent to the resource
manager so that it can select the right ModCod for the
given terminal. The decoded bursts are handed over to
the layer 2 module where the encapsulation protocol
reassembles the IP and signaling packets. Signaling
packets are sent to the resource manager while IP
packets enter the IWF where IP packets for the resource
manager (for call admission control) are filtered out. The
remaining IP packets are sent to the Internet.

2.3. Simulator Architecture

The complete simulator for the transparent case consists
of one or more gateway modules (FIG 10), up to several
thousand satellite terminals, Internet terminals, forward
and return link transponders and a big router that
represents the Internet. The satellite terminals consist of
the transceiver (FIG 11) and a set of application modules,
modeling applications like web browsing, VoIP (Voice
over IP), video/audio streaming, mail and video
conferencing. The internet terminals consist just of the
traffic modules. The forward link transponders implement
the broadcasting – they duplicate the forward link frames
to all terminals, while the return link transponders are just
multiplexers to get the return link bursts from all terminals
into the gateway.

FL
 M

od
C

od
FL

 M
od

C
od

Si
gn

al
in

g

Si
gn

al
in

g

FL
 M

od
C

od

R
at

e
se

tti
ng

s

C
A

C
 A

cc
ep

t/R
ej

ec
t

C
AC

R
eq

ue
st

s

FL
M

od
C

od

R
L

R
eq

ue
st

s

FL
 R

ej
ec

t C
AC

FL
 L

oa
d

in
fo

rm
at

io
n

FIG 10. Gateway simulation module for two forward link
carriers

IWF
PEP

Classifier
Scheduler

Encapsulation/
Fragmentation

MAC

PL Decoder /
CEMSDecapsulator / BBFrame DecoderL3 Data IWF

SI Resource
Tables

S
ig

na
lin

g

B
ur

st
 P

la
n

M
od

C
od

Request
Manager (RM)

Queue states
and Rates

Return-Link
Congestion

Control (RLCC)

Drop ratesR
at

es

Congestion Indication

FL ModCod

iS2ForwardDown

oRCSReturnUpiInternetTraffic

oInternetTraffic

Requests

TBTP

Congestion Indication

FIG 11. Satellite terminal transceiver module

The simulator is written in C++ and uses the OMNeT++ [1]
simulation framework. A preprocessing step implemented
in Matlab generates SNIR (signal to noise and
interference ratio) timeseries for forward and return links
of all terminals, ModCod threshold tables and SNIR
estimation tables. A postprocessing step is also
implemented in Matlab. It reads the logfiles from the
simulator and produces graphs and numbers. It is written
in a toolbox-like approach so that new graphs and results
can be produced easily.

3. FORWARD LINK SCHEDULING

The forward link scheduling process for a DVB-S2 system
is complicated by the fact that not only QoS requirements
are to be taken into the account, but also the individual
current ModCod of the destination terminal plays an
essential role. The problem is, that forward link frames
(BBFRAMEs) are rather larger so that usually fragments
from more than one IP packet will fit into a single frame.
The ModCod of the frame must be selected so that all
terminals for which there are IP packets in the frame can
receive the frame. This means that the most robust
ModCod of the contained packets must be chosen. This,
in turn, means that some packets will be sent with a
ModCod that is more robust than required and that the
efficiency is worse than it could be. The task of the
scheduler is to avoid these situations as much as
possible. So informally stated the optimization tasks of the
scheduler are:

– Keep the minimum QoS requirements (delay, loss,
jitter) and try to do better than the minimum.

– Never drop signaling packets because this may
destabilize the system.

– Send each IP packet at the most efficient ModCod for
the destination terminal’s current conditions.

– Optimize the packing on the fragmentation layer and
prevent padding as much as possible.

– Fill the link as much as possible if there is enough
traffic.

The second point is actually easy – it just requires giving
the signaling traffic the highest absolute priority and
sending them at the most robust ModCod.

The last two points require intimate interworking between
the scheduler and the encapsulator to the extent that both
are a single integrated module. The first and third point
require a departure from the traditionally queuing model
for schedulers where the scheduling process can only see
the first packet in one or more queues – it is beneficial for
the scheduler to be able to see all available packets. This
will also help for the forth point.

3.1. Pool scheduler with ModCod optimization

Because of the described complexity a new scheduler has
bee proposed and implemented in the simulator
(described in detail in [2][3] and [4]). In addition the
simulator contains an additional optional optimization
step. The structure of the scheduler is shown in FIG 12.

GTW_Scheduler (Pool)

ipIn[0]

frameOut

Pool
SLA 0

QoS BE

Pool
SLA 0

QoS AF

Pool
SLA 0

QoS EF

Pool
SLA 1

QoS BE

Pool
SLA 1

QoS AF

Pool
SLA 1

QoS EF

Pool
Signaling

ipIn[1]

ipIn[2]

ipIn[3]

ipIn[4]

ipIn[5]

sigIn

Selector
And

ModCod
Distributor

Encapsulator
ModCod1

Encapsulator
ModCod2

Encapsulator
ModCod3

Encapsulator
ModCod28

Encapsulator
ModCod27

Optimizer
And

Frame
Scheduler

rateOutdropIn
modcodUpdates

idleClockIn

FIG 12. Forward link pool scheduler

In this example three different QoS classes are assumed
(EF, AF and BE) and two different terminal SLA classes
(gold and silver). As the already classified packets enter
the scheduler they are stored in so-called pools. These
pools differ from queues in that all the packets in the pool
are accessible and selectable for scheduling. Additionally
all packets are tagged with a label which contains: (1) a
link to the entry into the terminal database for fast retrieval
of the currently required minimum ModCod of the
destination terminal and (2) a field for storing an arbitrary
floating point value the use of which depends on the
selection algorithm applied to the pool.

There are three different selection algorithms available:
time-based, all-selection and fill-selection. A selection

algorithm is tied to a pool at pool creation time and
handles both – insertion of packets (so it can set the label
field) and retrieval.

The time-based selector sets the floating point field in the
packet’s label to the arrival time of the packet. When
selecting packets it selects those packets that are in the
queue for longer than a certain threshold time. Also it can
drop packets that are in the queue for too long. This
selector is used for expedited forwarding QoS classes.

The all-selection selector always selects all packets in the
queue and doesn’t use the floating point label field. It is
used for the signaling pool and the assured forwarding
pool.

The fill-selection selector selects packets while there is
still room in the current output frame(s) and stops when
they are full. The difference between this and the all-
selector is that the latter can create new output frames
while the former just fills what frames are already there.

The encapsulation protocol is handled in encapsulator
modules – one for each ModCod. At the output of the
encapsulators an optimizer implements the optional
ModCod optimization.

The scheduler works on a periodic basis which is selected
based on the desired maximum jitter – the typical period is
20ms. Each round consists of four steps the third of which
is optional:

1) Select packets from the packet pools by calling the
selectors in a fixed-priority order. For the selected
packets the ModCod is determined by looking up the
terminal in the database and the packet is handed
over to the encapsulator for this ModCod.

2) Call the selectors in the same order, but this time
always select all packets in the given pool.

3) Optimize the resulting partial frames.
4) Flush the remaining frames to the modem.

In steps (1) and (2) the scheduler ensures that the total
time the generated BBFRAMEs will use on the link does
not exceed the scheduling period. This is a hard stop
criterion for all selectors. As soon as a frame is full it gets
flushed to the modem immediately (there is a mechanism
available to keep BBFRAMEs adjacent which may be
required for some encapsulation protocols).

The encapsulators receive the IP packets and do the
necessary fragmentation, prepending of headers,
appending of trailers as required by the configured
protocol. They instantiate new BBFRAMEs as necessary
and track the total amount of time used by all BBFRAMEs
during the current scheduling round so far.

When the second scheduling step is finished the
encapsulators will normally contain partially filled frames.
Before sending them to the modem an additionally
optimization step may be applied. This step uses the fact
that the data needs not to be sent at the most effective
ModCod for the given terminal conditions but can also be
sent at a more robust ModCod. The algorithm tries to
move the data from partial BBFRAMEs with a less robust
ModCod to partially filled BBFRAMEs with more robust
ModCods so that some of the BBFRAMEs get empty and
need no to be sent.

FIG 13. ModCod optimization

In the example in FIG 13 three partial frames remain at
the end of scheduling step 2. The algorithm tries to move
the fragments from the frame with ModCod 2 (the most
efficient and last robust one) into the frames with
ModCods 0 or 1. In ModCod 0 there is not enough space,
but in ModCod 1 there is. So the fragments are moved
there and the ModCod 2 frame can be deleted.

Because the frames produced in a scheduling round do
normally not add up to 20ms there is an additional flow
control loop between the modem and the scheduler.
When the modem gets idle (when it is transmitting the last
frame in its buffer) it sends a signal to the scheduler to
start a new scheduling round. The signal is produced a
configurable amount of time before the modem actually
runs idle to give the scheduler a chance to come up with a
new frame during this time and keep the modem busy.
Under normal operating conditions the scheduler will be
driven by this modem flow control. Only when there is very
low traffic the scheduler will actually operate in 20ms
intervals.

3.2. Simulation methodology

In order to evaluate the pool scheduler a second
scheduler has been implemented as a reference point.
The structure of this reference scheduler is shown in FIG
14.

GTW_Scheduler (Simple)

ipIn[0]

frameOut

Queue
SLA 0

QoS BE

Queue
SLA 0

QoS AF

Queue
SLA 0

QoS EF

Queue
SLA 1

QoS BE

Queue
SLA 1

QoS AF

Queue
SLA 1

QoS EF

Queue
Signaling

ipIn[1]

ipIn[2]

ipIn[3]

ipIn[4]

ipIn[5]

sigIn

Scheduler
core Encapsulator

rateOutdropIn
modcodUpdates

idleClockIn

FIG 14. Reference scheduler

The incoming packets are stored in classical queues
which are accessible only at the head. The scheduler
uses a fixed priority scheme to select the next packet and
hands it over to the single encapsulator. If the
encapsulator currently has no BBFRAME it creates one
and puts the packet into it. If it already has a frame and if
the required ModCod of the selected packet is higher
(less robust) than the ModCod of the BBFRAME, the
packet is put into the frame (here efficiency is lost). If the

required ModCod of the packet is more robust than that of
the BBFRAME either the frame is changed to a more
robust ModCod (this may fail because less data fits in a
frame with a more robust ModCod and not all already
inserted data may fit) or the frame is flushed to the
modem (here again efficiency may be lost because of
padding) and a new frame is created. The scheduler is
driven by two event sources: the flow control messages
from the modem, telling that it soon will be idle, and an
encapsulation timeout that prevents that partial frames are
held for a long time when there is very low traffic.

Because the most interesting operating point for a
scheduler is near overload the number of terminals and
users in the systems has been setup so that the traffic on
the forward link is around the maximum possible traffic. In
fact there are three scenarios low load (90%), medium
load (95%) and high load (105%). For simulations with
ACM enabled there is a extreme load scenario (40% more
terminals for the forward link simulations and 100% more
terminals for the return link simulations) that is needed to
overload the link in this case.

4. ADAPTIVE CODING AND MODULATION

The link budget of satellite communication system is
usually computed by assuming a certain availability (for
example 99.99%) and taking into account several
limitations (power in the terminal and the satellite, dish
size, maximum allowed interference and so on). This
results in a certain bandwidth that can be transferred.
Because of the high assumed availability this results in a
large margin that most of the time is not needed, because
most of the time whether conditions are good (rain fading
is the prevailing variable influence on the channel in
Ka/Ku band). The idea of ACM is to use this link margin
when the link is good by switching to higher-order
modulations and/or higher coding rates.

ACM requires a feedback loop: the receiver measures the
signal quality (SNIR) and sends this back to the sender
which changes the ModCod it uses so that the actual
SNIR is always larger than the critical SNIR of the
ModCod. This decision process needs to take into
account the delay it takes from making the measurement
to the use of the measurement and the maximum change
rate of the SNIR. This results in some margin that is
applied to the critical thresholds. These margins are
selected in a way that a hysteresis results which prevents
extensively fast switching between ModCods (FIG 15).

Here the solid lines are the critical thresholds. They
represent the minimum SNIR that is needed in order that
the frame or burst can be demodulated and decoded
taking into account the characteristics of the coding
scheme and rate. The dashed lines are the up thresholds.
When the system currently uses a given ModCod for a
given terminal and a measurement arrives which is above
the up threshold, the system switches to the next higher
ModCod. This up threshold is obviously always higher
than the critical threshold of the higher ModCod. The
dotted lines are the down thresholds of a ModCod. If the
SNIR falls below the down threshold the system switches
to a lesser ModCod. The thresholds are chosen so that
there is a hysteresis – the up threshold of a given
ModCod is always larger than the down threshold of the
next higher ModCod.

The difference between the down threshold and the
critical threshold forms a safety margin.

In the return link this safety margin may be optimized by
making it dependent on the age of the measurement
(given that no new measurement arrives). This is possible
because in the return link measurements can be taken
only when the terminal actually sends a burst (the forward
link is always active and can be measured all the time).
The older the measurement gets that led to the current
ModCod the higher gets the margin because the
uncertainty about the current channel state gets larger.
When the margin finally gets higher than that old
measurement the system switches down to the next
ModCod. If the age of the measurements gets to old a
switch to the most robust ModCod occurs. If the margins
are non-adaptive they must be just large enough the
accommodate the oldest possible measurement.

ModCod

SNIR

Critical threshold

Up threshold

Down threshold

0 1 2 3

FIG 15. ModCod thresholds

For the DVB-S2 forward link the measurements are done
in the terminal, but are needed in the gateway scheduler.
Therefore it is necessary to signal these measurements
on the return channel. This is done using the same signal
mechanism that is used for the resource requests sent to
the gateway by the terminal.

In the return link the measurements are done in the
receiver in the gateway and they are needed in the return
link resource controller in the gateway. Therefore only
local transmission of these measurements in the gateway
is necessary. The terminals get the ModCod to use in the
TBTP that is broadcasted to all terminals for every
superframe.

5. RESULTS AND CONCLUSIONS

This chapter provides some results obtained with the
simulator. There is a very large number of results that
may be obtained so we will focus on two aspects: the
performance of the new scheduler and ACM in the
forward link and the performance of ACM and the FBL
scheme in the return link.

5.1. Forward link scheduler and ACM

The efficiency of the forward link scheduler can be
measured in different ways. An ideal scheduler should
fulfill the QoS requirements up to a load of 100% without
dropping packets. In overload situations it should remain

stable, which means it should fill the link to 100% and
drop only packets with low priority. Even in this situation
QoS requirements should be kept as good as possible.

FIG 16. Forward link performance

FIG 16 shows one of the possible measurements. It
contains the results of four simulation runs and shows
several aspects of the scheduling system. The simulations
were setup as follows:

1) A simulation with high load (105% of theoretical
forward link capacity) with the reference scheduler,
MPE/MPEG as encapsulation protocol and no ACM
(marked ‘1’).

2) A simulation with extreme load (40% more terminals
than high load) with the reference scheduler, GSE as
encapsulation protocol and ACM enabled (marked
‘2’).

3) A simulation with extreme load, the pool scheduler
without optimization, GSE as encapsulation protocol
and ACM enabled (marked ‘3’).

4) A simulation with extreme load, the pool scheduler
with optimization, GSE as encapsulation protocol and
ACM enabled.

For each simulation run two lines are shown: the total
scheduler input data rate in bits/s (upper line) and the
scheduler output data rate in bits/s (lower line). The input
data rate starts from 0 and goes up because the traffic
models are warming up at the beginning and reach a
stable point after approx. 1.5 hours. During the warm up
both curves for all scenarios are lying on each other
meaning that the link load is below 100% and the output
rate equals the input rate. At a certain point the output
rate flattens because the link utilization reaches 100%
and the difference between the input and the output curve
is the loss.

It can be seen that switching to a better encapsulation
protocol (GSE instead of MPE/MPEG) and using ACM
alone gives 28% more capacity with exactly the same link
(difference between output of scenario 1 and 2). Now
when switching from the reference scheduler to the pool
scheduler there is an additional gain of 13.5%. So the
total gain in capacity from using GSE instead of
MPE/MPEG, enabling ACM and having a better scheduler
is 48%.

A good measure for the efficiency of the entire scheduling
and encapsulation system is the IP efficiency. This is the
number of IP (that is, useful) bits transmitted per physical
layer symbol. Measured in the stable state of the
applications it is 1.19 bits/symbol for MPE/MPEG, no
ACM, simple scheduler and 1.70 for GSE, ACM and the
pool scheduler. This is a win of 42.8%. The IP efficiency
takes into account the efficiency of the encapsulation
protocol itself, the efficiency of the scheduler and the
physical layer efficiency which is determined by the
coding rate and the modulation order.

The following two figures show how the pool scheduler
reaches the higher efficiency when compared to the
reference scheduler.

FIG 17. Forward link ModCod distribution (reference
scheduler).

FIG 17 shows the ModCod distribution when using the
reference scheduler (note, that the 32APSK ModCods and
8/9 and 9/10 coding rates are disabled). For each
ModCod two bars are shown: the left is the percentage of
short frames and the right the percentage of long frames.
The absolute peak in ModCod usage is at 8PSK and 5/6
with some usage (around 17%) of 16APSK rate 2/3. The
ModCod 0 frames carry signaling information.

The figure changes when the pool scheduler is used (both
simulation use exactly the same channel conditions) as
shown in FIG 18.

There is a big shift to more efficient ModCods. Now the
peak is 16APSK rate 2/3, over 20% 16APSK rate 3/4 and
some use of 16APSK rate 4/5 and 5/6.

The reason for this shift is that the reference scheduler
often needs to put IP packets that could be sent at a more
efficient ModCod into a BBFRAME that has a less efficient
ModCod just because there is also a packet to a terminal
in worse conditions (ModCod downgrading). The pool
scheduler will put these packets into different
BBFRAMES, each with the optimum ModCod. It
downgrades packets only in the optimization step and
there it makes the efficiency larger, because the packet
will be transmitted instead of padding which would be
even worse from the efficiency point of view and one
BBFRAME needs not to be sent altogether.

1
2 3 4

FIG 18. Forward link ModCod distribution (pool
scheduler).

Another interesting measure is the packet delay jitter.
Especially for real-time applications like VoIP the jitter
should be as low as possible because a larger jitter
means that a larger playout buffer is needed on the
receiver leading to more delay. FIG 19 shows the delay
jitter in the forward link for the VoIP, the audio/video
stream (avstream) and the video conferencing (vconf)
application measured as the absolute difference between
the expected and the real arrival time of a packet. It must
be noted, that VoIP traffic is classified into the EF class
while avstream and vconf is transferred as BE traffic.

FIG 19. Delay jitter in the forward link

For VoIP it can be seen that there is almost no difference
between the reference scheduler and the pool scheduler
even in overload situations (the simulation was done with
GSE, ACM enabled and the extreme load) – the reference
scheduler is even slightly better (35ms instead of 36ms).
For the video conference the situation is entirely different,
though. With the reference scheduler the jitter is always
larger than 60ms having peaks going up to 160ms (upper
of the three lines for vconf). These peaks are related to
extreme bursts in total traffic. With the pool scheduler the

situation is more stable – the jitter is always kept between
40ms and 50ms. It is less and more stable.

5.2. Return link ACM

In the return link the gain from using advanced
technologies is even more impressive than in the forward
link.

FIG 20 shows the terminal scheduler cumulative (over all
terminals) input and output rates for three scenarios:

1) MPEG sized bursts, MPE encapsulation and no ACM
with high load (105% of the link capacity).

2) MPEG sized bursts, GSE encapsulation and no ACM
with high load.

3) Fixed sized bursts (400 and 800 symbols), GSE
encapsulation and ACM. Twice the number of
terminals as in scenarios 1 and 2.

FIG 20. Return link performance

The lowest straight line is the output rate for case 1 – the
system is obviously in overload. Just by replacing the
encapsulation protocol with a more efficient one, the
output rate goes up by around 11% and there is almost no
loss anymore.

With switching to fixed-burst-length segmentation on the
link, enabling ACM and exploiting the full dynamic burst
allocation a gain of 100% in output rate is reached.

A very interesting performance figure is the delay in the
scheduler which is the biggest contributor to the delay
jitter in the return link.

In FIG 21 the upper line is the delay (measured as the
time it takes a packet to travel through the scheduler) for
scenario 1. It jitters between 0.4s and 1.3s which means
that the total delay on the return link may be more than
1.5s with a very large jitter that gives additional delay due
to the large required playout buffer. By going to a more
efficient encapsulation (GSE) the delay is reduced 0.2 and
0.7s but this is due to the fact the the overload is reduced.
With the same overlead the delay would also be the same
as for MPLE.

VoIP

Vconf

11%

100%

FIG 21. Return link scheduler delay

The situation, however, drastically changes by switching
the FBL and ACM. Even though the overload is the same
as in the first scenario (albeit with twice the number of
terminals) the delay is constant and well below 0.2s
(lowest line). This is due to the fact that the scheduler has
much more freedom when allocating bursts to terminals
with different channel conditions.

5.3. Conclusions

A modular simulator has been developed that can be
used for performance evaluation and tuning of satellite
communication systems based on the DVB-S family of
standards. The simulator allows also developing and
evaluating new protocols and algorithms.

The simulator has been used to show the benefits from
using ACM and advanced algorithms and protocols in
such a system. The total gain in capacity in the forward
link from using DVB-S2 with enhanced schedulers and
encapsulation protocols compared to a DVB-S-like system
is around 48%.

The benefit of using better suited return link segmentation,
a more efficient encapsulation protocol and ACM is 100%
- the available bandwidth is doubled. At the same time the
delay jitter is reduced and stabilized even for overload
situations.

5.4. Further work

Several topics are currently in the works which enhance
both the simulator and the simulated communication
systems:

– Terminal login and logout. This allows varying the
load during a simulation run. Currently several runs
are necessary to simulate different loads.

– A MySQL backend for the results produced by the
simulator. This allows more flexibility in the
postprocessing and also would allow displaying
results while the simulator is still running.

– A TCP implementation for the applications (currently
only IP is fully implemented).

System related enhancements:

– Better schedulers for both the forward and the return
link that integrate the policing function with the
scheduler and provide early overload detection.

– A new return link encapsulation protocol based on
GSE but with less overhead.

– A better return link resource manager which can
allocate very low rates (one burst per N superframes).

– TCP-awareness of the system.

References

[1] www.omnetpp.org
[2] C. Párraga Niebla, “Scheduling Techniques for

Satellite Systems with Adaptive Coding and
Modulation”, in Proc. of ASMS Conference,
Herrsching, Germany, 29 – 31 May 2006.

[3] R. Toegl, C.Párraga Niebla, U. Birnbacher, “Framing
Efficiency Optimization for DVB-S2 Systems with QoS
Guarantees,” in Proc. of 12th Ka and Broadband
Communications Conference, Naples, Italy,
September 27 – 29, 2006.

[4] R. Toegl, C. Párraga Niebla, U. Birnbacher, “Framing
Efficiency Optimization for DVB-S2 Systems,” in Proc.
of IEEE Globecom 2006, San Francisco, California,
USA, 27 November – 1 December 2006

