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Abstract 
Satellite communication systems play an increasing role for broadband communication in the customer, as 
well as in specialized segments. They can be used as gap-fillers for areas not covered and not likely to be 
covered by broadband DSL, they have their advantages for some kinds of applications (massive multicast) 
and can help closing the digital divide without having to invest into terrestrial infrastructure in challenging 
territories. The peculiarities of satellite systems – high initial costs, complexity or impossibility of updates – 
make it especially important to obtain a correct evaluation of the performance of the system before installing 
it. It is also a major necessity to be able to invent new algorithms and techniques, to tune system parameters, 
without having to use a real, expensive satellite system. This paper presents a simulator representing a 
complete satellite communication system based on DVB-S2 and advanced DVB-RCS techniques, including 
simulation of atmospheric effects, user behavior and all major protocols needed in transparent as well as 
regenerative systems. This simulator allows developing new algorithms and protocols, tuning satellite 
systems and analyzing system stability and performance. The paper also presents an advanced forward link 
scheduling algorithm as well as some results obtained with the simulator. 

 
 

1. INTRODUCTION 

The emerging role of satellite communication systems for 
the consumer market is based on several outstanding 
properties of satellite systems: the large coverage of GEO 
(Geostationary Earth Orbit) satellite based systems, which 
allows serving areas which cannot be covered by 
terrestrial systems with reasonable cost; the inherent 
broadcast capability; and the high availability even in 
disastrous situations. On the downside is the high initial 
cost when exploiting a satellite system and the limited 
reconfigurability – once a satellite is in orbit its elements 
cannot be changed, though software updates may be 
possible. These peculiarities require using techniques that 
provide as much as possible service over a given satellite 
and to evaluate and tune the performance of the system 
in advance as good as possible. 

This paper presents a software system that simulates a 
transparent or regenerative satellite communication 
system including atmospheric effects and interference, 
protocols and algorithms, users and applications. The 
system is based on DVB-S2 (Digital Video Broadcast via 
Satellite) and advanced DVB-RCS (Return Channel for 
Satellite) but its modularity allows replacing all protocols 
and modules so systems based on DOCSIS (Data Over 
Cable Service Interface Specification) or proprietary 
protocols could be implemented. The simulator has been 
used to develop and evaluate new resource management 
algorithms and to verify the importance of adaptive coding 
and modulation (ACM) in both the forward and the return 
link of the system. It has been developed in an ESA 
project†. 

The paper is organized in four parts: in the first part a 
                                                           
† Resources Management using Adaptive Fade Mitigation 
Techniques (FMT) in DVB-RCS Multi-Beam Systems; Contract 
18826/05/NL/US 

short overview of the simulator and the simulated system 
architecture will be given and some basic explanation of 
DVB-S2 and DVB-RCS will be given, the second part 
shows a novel scheduling and encapsulation algorithm, 
the third part describes the elements of ACM in the 
forward and return link and the last part provides results 
on the simulations, brings some conclusions and an 
outlook on further work. 

2. SYSTEM AND SIMULATOR ARCHITECTURE 

The usual configuration of a DVB-S2/RCS system is a star 
using a transparent satellite payload. Transparent means, 
that the satellite does little processing on the signal: 
amplification and changing its frequency band. The 
resulting signal is then sent back to ground. The main 
intelligence in the system is located in one or more 
gateways on ground that contain the connections to the 
internet and through which all traffic in both directions 
(from the users and to the users) flows. For simplicity it is 
usually assumed that only one gateway is used, in reality 
more than one are normally in the system. 

The forward traffic is traffic coming from the internet which 
is destined for one or more satellite terminals or traffic 
which was received from a satellite terminal and should 
be sent to another one. Return link traffic is generated by 
the terminals and sent to the gateway. Depending on its 
final destination it is either inserted into the internet 
connection or sent to another satellite terminal. It must be 
noted, that in this transparent star configuration 
communication between two satellite terminals result in a 
very high round trip time. 

In the following two sections an overview over the 
processing of both the forward and the return link is given. 



2.1. DVB-S2 Forward Link 

The forward link send path as implemented in the 
simulator in the gateway is shown FIG 1. 

 

FIG 1. Forward link send path 

The incoming traffic (either from the Internet or from other 
satellite terminals) first enters the IWF (InterWorking 
Function). This module has several taks: 

• Mix the incoming traffic with IP (Internet Protocol) 
packets from the resource manager in the gateway. 

• Packet classification. The simulator implements QoS 
(Quality Of Service) based on the DiffServ 
(Differentiated Services) model. The incoming traffic 
is classified by rules into several QoS classes. The 
rules as well as the number of QoS classes are 
configurable. Currently three flows are used: EF 
(Expedited Forwarding), AF (Assured Forwarding) 
and BE (Best Effort). The used rules work exclusively 
on the ToS (Type of Service) field of the IP packets. 
The classifier inspects all incoming packets and 
inserts them into per-terminal per-QoS queues. 

• Traffic policing. This function is part of the congestion 
control mechanisms. If it is enabled the rate for each 
QoS type for each terminal is limited to some amount 
by means of a token bucket algorithm. This is used 
by congestion control to stabilize the system in 
overload situations. 

• Multiplexing. All traffic for a given QoS class and a 
given terminal SLA (Service Level Agreement) class 
(terminals can come in different types, like SOHO 
(Small Office/Home Office), SME1 and SME2 
(Small/Medium Enterprise) and with different SLAs 
(which specify, for example, maximum traffic rates 
per QoS class) is multiplexed into a single output 
channel. With the standard configuration of 3 QoS 
classes and 2 SLA classes this results in a total of 6 
channels. 

The classified output of the IWF enters the scheduler 
which schedules the packets according to their QoS, 
inserts signaling packets, and encapsulates the packets 
according to a configurable protocol and forms so called 
BBFRAMEs. The scheduler provides the resource 
management with several measurements for congestion 
and admission control. 

The S2-modem takes the BBFRAMEs, computes their 
length in time and schedules them onto the output link. It 
provides the resource management with a measurement 
of its utilization. 

The forward link is organized in BBFRAMEs (BaseBand 
FRAMES). The structure of these frames is shown in 
figure FIG 2. It consists of an 80-bit header and a data 
field which contains the coded data bits. The data is 
coded using the concatenation of a BCH (Bose, Ray-
Chaudhun and Hocquenghem were the inventors of the 
code) and an LDPC (Low Density Parity Check) code. For 
transmission the BBFRAMEs get another physical layer 
header which is BPSK encoded and are modulated with 

QPSK (Quadrature Phase-Shift Keying), 8PSK, 16APSK 
(Assymmetric Phase Shift Keying) or 32APSK. Coding 
rates range from 1/4 to 9/10. 

BBFRAMEs (see FIG 2) come in two sizes in terms of bits 
before modulation: long frames (64800 bits) and, 
optionally, short frames (16200 bits). With the possible 
modulations this results in 8 different length in time on the 
physical link and with the 10 coding values in 19 different 
length of the maximum data field (short frames don’t use 
9/10 coding) from 3064 to 58184 bits). Not all 
combinations of modulation and coding are used because 
of overlapping critical thresholds – 28 are defined by the 
standard. For the simulations a subset of 18 has been 
used (no 32APSK and some almost-overlapping 
combinations removed). 

The modulation and coding combination (ModCod) that is 
used for a given BBFRAME (and, hence, all containing 
packets) can be either fixed or variable. The later case is 
called ACM (adaptive coding and modulation). Here the 
ModCod is selected based on the measured signal quality 
that is periodically signaled from the terminals to the 
gateway. 

 

FIG 2. Forward link BBFRAME 

Packing IP packets into BBFRAME data fields requires a 
protocol that is able to fragment IP packets, to pack 
several IP packets or fragments of them into a single 
frame and to add data helping terminals extracting their IP 
packets. The most used protocol is MPE/MPEG 
(MultiProtocol Encapsulation in MPEG (Motion Pictures 
Experts Group) cells). This protocol uses fixed size 
containers of 188 bytes (MPEG cells) which are packed 
into the BBFRAME (requiring some padding). IP packets 
are fragment by MPE in fragments that fit into MPEG 
cells. Because of the large overhead of MPE/MPEG a 
replacement called ULE (Unidirectional Lightweight 
Encapsulation) has been standardized by the IETF 
(Internet Engineering Task Force). Because ULE/MPEG 
still suffers from problems with MPEG (overhead) an 
entirely new protocol has been standardized by the DVB-
S forum which is called Generic Stream Encapsulation 
(GSE). GSE uses variable length fragments and 
minimizes overhead as much as possible. 

The receive path in the terminal is simple and is shown in 
FIG 3.  

 

FIG 3. Terminal receive path 

The received frames are demodulated and decoded by 
the receiver. In the simulator this module also applies the 
transmission delay and decides whether the frame can be 



correctly received with the actual signal-to-noise-and-
interference ratio (SNIR). The decoded frames are 
forwarded to the layer 2 decapsulator which implements 
the receiving half of MPE/MPEG, ULE/MPEG and GSE. 
The decapsulated signaling packets are sent to the 
terminal resource management and the IP packets to the 
interworking function, which is just a placeholder in the 
simulator that outputs the IP packets to the user. 

2.2. DVB-RCS Return Link 

The current standard for the return link is called DVB-
RCS. It features MF-TDMA with optional random access 
for signaling and burst sizes that are multiple of either 
MPEG cells or ATM (Asynchronous Transfer Mode) cells. 
The encapsulation protocol is either MPE/MPEG or AAL5 
(ATM Adaptation Layer 5) depending on the used bursts. 

The code is either a Turbo code or a concatenation of a 
convolutional and a Reed-Solomon code. It must be 
noted, that while there are different code rates, the used 
rate is fixed in a given system. The modulation is QPSK 
and cannot be changed. 

Allocation of resources is done in the gateway by the 
return link resource manager. Terminals send requests on 
a signaling channel to the gateway that are computed 
based on the traffic in the given terminal. It is also 
possible to used fixed, login-time allocations although this 
is not very efficient already for medium numbers of 
terminals. There are several options for signaling. 

Usually a segmented organization of the return link is 
used. In this case the entire return link is segmented into 
so-called superframes which represent a portion of time 
and frequency on the return link (FIG 4). 

Fr
eq

ue
nc

y

 

FIG 4. Superframes in the return link 

Superframes are identified by their ID and contain a set of 
carriers (with corresponding associated allowed 
symbolrates) over a fixed time span (up to several 100 
milliseconds). The superframes are consecutive in time 
and the resource control may select superframes from a 
predefined set depending on the current traffic situations 
(in the above example the third superframe with ID 1 
could be followed by superframes with another ID). 

Superframes are composed of frames much like the link is 
composed of superframes (FIG 5). Frames in a single 
superframe may have different durations, bandwidth, 
frequency and number of timeslots. Frames are organized 
in timeslots which are the basic allocation unit (FIG 6). 
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FIG 5. Frames in a superframe 

TS0 TS1 TS2

TS6TS3
T
S
4

T
S
5

 

FIG 6. Timeslots in a frame 

The organization of the return link is periodically 
broadcast by the gateway to all terminals in the form of 
different tables: superframe composition table (SCT), 
frame composition table (FCT) and time slot composition 
table (TCT). The actual allocation to the terminals is 
transmitted in the terminal burst time plan (TBTP) which is 
sent for each new superframe. 

While superframes, frames and timeslots allow for very 
flexible allocation and management of the return link, this 
flexibility is normally not used, because it requires a very 
intelligent resource allocator. The resource allocation is 
run in real-time and must be fast and scalable to 
thousands of terminals. Therefore often a simple 
configuration is used (single superframe ID, all frames the 
same length as the superframe). The simulator allows 
multiple superframes with equal sizes which are 
dynamically chosen, but requires frames to be the same 
length as the superframe. This results in an organization 
as in FIG 7. 
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FIG 7. Simulator superframe example 

Here the superframe contains two frames with a 
bandwidth ratio of 1:2. Because all timeslots are the same 
size (in terms of symbols) one frame contains 4 and the 
other 8 timeslots. Actual numbers are of course much 
higher (several thousand timeslots per carrier). 



2.2.1. Advanced DVB-RCS 

One of the goals for the simulator was the evaluation of 
an enhanced RCS. Two main features are required: 

• Support for ACM (adaptive coding and modulation) as 
in the forward link. 

• Support for fixed burst length segmentation (FBL) as 
opposed to variable burst length (VBL, or fixed 
information length (FIL)). 

To implement ACM the gateway measures the quality of 
the received bursts from all terminals and sends these 
reports to the resource manager. Here a ModCod will be 
selected and taken into account when allocating the 
bursts. Unfortunately this adds another dimension of 
complexity to the resource allocation. The problem is that 
the timeslots have different length on the physical layer 
depending on the coding and the modulation when the 
information size in them is fixed (to an MPEG or an ATM 
cell, for example). This means that designing the 
superframe also requires guessing to correct ModCod 
distribution for the given terminal type and symbol rate 
that gives maximum performance. The ModCod is fixed 
during this process and the resource allocator must later 
find slots matching not only the symbolrate of the terminal 
but also the required minimum ModCod. Running with the 
wrong ModCod distribution means that the resource 
controller may not be able to allocate all requested slots 
because all remaining free slots during an allocation 
round have a ModCod that requires a better SNIR than 
the terminal has. 

This problem can partially be overcome by defining 
several superframes with different ModCod distributions 
and let the resource controller chose the best one in each 
superframe allocation round based on the requests and 
the terminal signal conditions. This is called semi-dynamic 
allocation. Unfortunately this technique requires two 
rounds over the requests – first to choose the superframe 
to use and second to actually allocate bursts. Even with 
this technique allocation is always sub-optimal. 

This problem can entirely be overcome by drastically 
changing the return link segmentation. Instead of using 
bursts that fit the same number of data bits for all 
ModCods one can use bursts that have always the same 
number of symbols and, hence, length in time. Actually it 
is useful to have a small set of possible burst length. 
While the simulator allows full flexibility here, all 
simulations have been done with burst of length 400 and 
800 symbols. The length on the physical layer still 
depends on the symbol rate, so that the resulting 
superframe definition looks again as in FIG 7 when only 
the short bursts are used. Long bursts are automatically 
used by the terminal if it gets two consecutive short slots. 

The win is obvious: the resource controller has full 
freedom to assign ModCods to the slots – each slot 
position can accommodate each ModCod. This allows 
almost optimal allocation (limited by the used algorithm). 

The backside of this FBL scheme is that MPE/MPEG and 
AAL5/ATM are no longer usable. Instead the simulator 
used the GSE protocol in this case which turns out to 
have even less overhead than its counterparts. 

The send path of the return link which is located in the 
terminal is shown in FIG 8 

 

FIG 8. Return link send path 

The incoming IP packets are received by the IWF module 
which multiplexes them with IP packets from the resource 
management of the terminal. This IP path is used for call 
admission control. The IWF classifies the packets into the 
QoS classes and optionally applies policing to each class 
with a token bucket. The three resulting flows enter the 
scheduler where they are scheduled according to their 
QoS requirements. The scheduler also does rate and 
volume measurements on the traffic so that the local 
resource manager can generate resource requests. It also 
allows dedicated dropping of traffic for congestion control. 
The resulting packet stream enters the layer 2 processing 
where it gets fragmented, multiplexed with signaling 
messages and encapsulated. The resulting bursts are 
sent to the satellite. 

In the receive path in the gateway (FIG 9) a multiburst 
demodulator receives all the bursts of all carriers. 

 

FIG 9. Return link receive path 

In the simulator this module also applies the transmission 
delay and checks the received bursts whether the current 
signal quality is strong enough to demodulate and decode 
the burst. The measurement is also sent to the resource 
manager so that it can select the right ModCod for the 
given terminal. The decoded bursts are handed over to 
the layer 2 module where the encapsulation protocol 
reassembles the IP and signaling packets. Signaling 
packets are sent to the resource manager while IP 
packets enter the IWF where IP packets for the resource 
manager (for call admission control) are filtered out. The 
remaining IP packets are sent to the Internet. 

2.3. Simulator Architecture 

The complete simulator for the transparent case consists 
of one or more gateway modules (FIG 10), up to several 
thousand satellite terminals, Internet terminals, forward 
and return link transponders and a big router that 
represents the Internet. The satellite terminals consist of 
the transceiver (FIG 11) and a set of application modules, 
modeling applications like web browsing, VoIP (Voice 
over IP), video/audio streaming, mail and video 
conferencing. The internet terminals consist just of the 
traffic modules. The forward link transponders implement 
the broadcasting – they duplicate the forward link frames 
to all terminals, while the return link transponders are just 
multiplexers to get the return link bursts from all terminals 
into the gateway. 
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FIG 10. Gateway simulation module for two forward link 
carriers 
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FIG 11. Satellite terminal transceiver module 

The simulator is written in C++ and uses the OMNeT++ [1] 
simulation framework. A preprocessing step implemented 
in Matlab generates SNIR (signal to noise and 
interference ratio) timeseries for forward and return links 
of all terminals, ModCod threshold tables and SNIR 
estimation tables. A postprocessing step is also 
implemented in Matlab. It reads the logfiles from the 
simulator and produces graphs and numbers. It is written 
in a toolbox-like approach so that new graphs and results 
can be produced easily. 

3. FORWARD LINK SCHEDULING 

The forward link scheduling process for a DVB-S2 system 
is complicated by the fact that not only QoS requirements 
are to be taken into the account, but also the individual 
current ModCod of the destination terminal plays an 
essential role. The problem is, that forward link frames 
(BBFRAMEs) are rather larger so that usually fragments 
from more than one IP packet will fit into a single frame. 
The ModCod of the frame must be selected so that all 
terminals for which there are IP packets in the frame can 
receive the frame. This means that the most robust 
ModCod of the contained packets must be chosen. This, 
in turn, means that some packets will be sent with a 
ModCod that is more robust than required and that the 
efficiency is worse than it could be. The task of the 
scheduler is to avoid these situations as much as 
possible. So informally stated the optimization tasks of the 
scheduler are: 

– Keep the minimum QoS requirements (delay, loss, 
jitter) and try to do better than the minimum. 

– Never drop signaling packets because this may 
destabilize the system. 

– Send each IP packet at the most efficient ModCod for 
the destination terminal’s current conditions. 

– Optimize the packing on the fragmentation layer and 
prevent padding as much as possible. 

– Fill the link as much as possible if there is enough 
traffic. 

The second point is actually easy – it just requires giving 
the signaling traffic the highest absolute priority and 
sending them at the most robust ModCod. 

The last two points require intimate interworking between 
the scheduler and the encapsulator to the extent that both 
are a single integrated module. The first and third point 
require a departure from the traditionally queuing model 
for schedulers where the scheduling process can only see 
the first packet in one or more queues – it is beneficial for 
the scheduler to be able to see all available packets. This 
will also help for the forth point. 

3.1. Pool scheduler with ModCod optimization 

Because of the described complexity a new scheduler has 
bee proposed and implemented in the simulator 
(described in detail in [2][3] and [4]). In addition the 
simulator contains an additional optional optimization 
step. The structure of the scheduler is shown in FIG 12. 
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FIG 12. Forward link pool scheduler 

In this example three different QoS classes are assumed 
(EF, AF and BE) and two different terminal SLA classes 
(gold and silver). As the already classified packets enter 
the scheduler they are stored in so-called pools. These 
pools differ from queues in that all the packets in the pool 
are accessible and selectable for scheduling. Additionally 
all packets are tagged with a label which contains: (1) a 
link to the entry into the terminal database for fast retrieval 
of the currently required minimum ModCod of the 
destination terminal and (2) a field for storing an arbitrary 
floating point value the use of which depends on the 
selection algorithm applied to the pool. 

There are three different selection algorithms available: 
time-based, all-selection and fill-selection. A selection 



algorithm is tied to a pool at pool creation time and 
handles both – insertion of packets (so it can set the label 
field) and retrieval. 

The time-based selector sets the floating point field in the 
packet’s label to the arrival time of the packet. When 
selecting packets it selects those packets that are in the 
queue for longer than a certain threshold time. Also it can 
drop packets that are in the queue for too long. This 
selector is used for expedited forwarding QoS classes. 

The all-selection selector always selects all packets in the 
queue and doesn’t use the floating point label field. It is 
used for the signaling pool and the assured forwarding 
pool. 

The fill-selection selector selects packets while there is 
still room in the current output frame(s) and stops when 
they are full. The difference between this and the all-
selector is that the latter can create new output frames 
while the former just fills what frames are already there. 

The encapsulation protocol is handled in encapsulator 
modules – one for each ModCod. At the output of the 
encapsulators an optimizer implements the optional 
ModCod optimization. 

The scheduler works on a periodic basis which is selected 
based on the desired maximum jitter – the typical period is 
20ms. Each round consists of four steps the third of which 
is optional: 

1) Select packets from the packet pools by calling the 
selectors in a fixed-priority order. For the selected 
packets the ModCod is determined by looking up the 
terminal in the database and the packet is handed 
over to the encapsulator for this ModCod. 

2) Call the selectors in the same order, but this time 
always select all packets in the given pool. 

3) Optimize the resulting partial frames. 
4) Flush the remaining frames to the modem. 

In steps (1) and (2) the scheduler ensures that the total 
time the generated BBFRAMEs will use on the link does 
not exceed the scheduling period. This is a hard stop 
criterion for all selectors. As soon as a frame is full it gets 
flushed to the modem immediately (there is a mechanism 
available to keep BBFRAMEs adjacent which may be 
required for some encapsulation protocols). 

The encapsulators receive the IP packets and do the 
necessary fragmentation, prepending of headers, 
appending of trailers as required by the configured 
protocol. They instantiate new BBFRAMEs as necessary 
and track the total amount of time used by all BBFRAMEs 
during the current scheduling round so far. 

When the second scheduling step is finished the 
encapsulators will normally contain partially filled frames. 
Before sending them to the modem an additionally 
optimization step may be applied. This step uses the fact 
that the data needs not to be sent at the most effective 
ModCod for the given terminal conditions but can also be 
sent at a more robust ModCod. The algorithm tries to 
move the data from partial BBFRAMEs with a less robust 
ModCod to partially filled BBFRAMEs with more robust 
ModCods so that some of the BBFRAMEs get empty and 
need no to be sent. 

 

FIG 13. ModCod optimization 

In the example in FIG 13 three partial frames remain at 
the end of scheduling step 2. The algorithm tries to move 
the fragments from the frame with ModCod 2 (the most 
efficient and last robust one) into the frames with 
ModCods 0 or 1. In ModCod 0 there is not enough space, 
but in ModCod 1 there is. So the fragments are moved 
there and the ModCod 2 frame can be deleted. 

Because the frames produced in a scheduling round do 
normally not add up to 20ms there is an additional flow 
control loop between the modem and the scheduler. 
When the modem gets idle (when it is transmitting the last 
frame in its buffer) it sends a signal to the scheduler to 
start a new scheduling round. The signal is produced a 
configurable amount of time before the modem actually 
runs idle to give the scheduler a chance to come up with a 
new frame during this time and keep the modem busy. 
Under normal operating conditions the scheduler will be 
driven by this modem flow control. Only when there is very 
low traffic the scheduler will actually operate in 20ms 
intervals. 

3.2. Simulation methodology 

In order to evaluate the pool scheduler a second 
scheduler has been implemented as a reference point. 
The structure of this reference scheduler is shown in FIG 
14. 
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FIG 14. Reference scheduler 

The incoming packets are stored in classical queues 
which are accessible only at the head. The scheduler 
uses a fixed priority scheme to select the next packet and 
hands it over to the single encapsulator. If the 
encapsulator currently has no BBFRAME it creates one 
and puts the packet into it. If it already has a frame and if 
the required ModCod of the selected packet is higher 
(less robust) than the ModCod of the BBFRAME, the 
packet is put into the frame (here efficiency is lost). If the 



required ModCod of the packet is more robust than that of 
the BBFRAME either the frame is changed to a more 
robust ModCod (this may fail because less data fits in a 
frame with a more robust ModCod and not all already 
inserted data may fit) or the frame is flushed to the 
modem (here again efficiency may be lost because of 
padding) and a new frame is created. The scheduler is 
driven by two event sources: the flow control messages 
from the modem, telling that it soon will be idle, and an 
encapsulation timeout that prevents that partial frames are 
held for a long time when there is very low traffic. 

Because the most interesting operating point for a 
scheduler is near overload the number of terminals and 
users in the systems has been setup so that the traffic on 
the forward link is around the maximum possible traffic. In 
fact there are three scenarios low load (90%), medium 
load (95%) and high load (105%). For simulations with 
ACM enabled there is a extreme load scenario (40% more 
terminals for the forward link simulations and 100% more 
terminals for the return link simulations) that is needed to 
overload the link in this case. 

4. ADAPTIVE CODING AND MODULATION 

The link budget of satellite communication system is 
usually computed by assuming a certain availability (for 
example 99.99%) and taking into account several 
limitations (power in the terminal and the satellite, dish 
size, maximum allowed interference and so on). This 
results in a certain bandwidth that can be transferred. 
Because of the high assumed availability this results in a 
large margin that most of the time is not needed, because 
most of the time whether conditions are good (rain fading 
is the prevailing variable influence on the channel in 
Ka/Ku band). The idea of ACM is to use this link margin 
when the link is good by switching to higher-order 
modulations and/or higher coding rates. 

ACM requires a feedback loop: the receiver measures the 
signal quality (SNIR) and sends this back to the sender 
which changes the ModCod it uses so that the actual 
SNIR is always larger than the critical SNIR of the 
ModCod. This decision process needs to take into 
account the delay it takes from making the measurement 
to the use of the measurement and the maximum change 
rate of the SNIR. This results in some margin that is 
applied to the critical thresholds. These margins are 
selected in a way that a hysteresis results which prevents 
extensively fast switching between ModCods (FIG 15). 

Here the solid lines are the critical thresholds. They 
represent the minimum SNIR that is needed in order that 
the frame or burst can be demodulated and decoded 
taking into account the characteristics of the coding 
scheme and rate. The dashed lines are the up thresholds. 
When the system currently uses a given ModCod for a 
given terminal and a measurement arrives which is above 
the up threshold, the system switches to the next higher 
ModCod. This up threshold is obviously always higher 
than the critical threshold of the higher ModCod. The 
dotted lines are the down thresholds of a ModCod. If the 
SNIR falls below the down threshold the system switches 
to a lesser ModCod. The thresholds are chosen so that 
there is a hysteresis – the up threshold of a given 
ModCod is always larger than the down threshold of the 
next higher ModCod. 

The difference between the down threshold and the 
critical threshold forms a safety margin. 

In the return link this safety margin may be optimized by 
making it dependent on the age of the measurement 
(given that no new measurement arrives). This is possible 
because in the return link measurements can be taken 
only when the terminal actually sends a burst (the forward 
link is always active and can be measured all the time). 
The older the measurement gets that led to the current 
ModCod the higher gets the margin because the 
uncertainty about the current channel state gets larger. 
When the margin finally gets higher than that old 
measurement the system switches down to the next 
ModCod. If the age of the measurements gets to old a 
switch to the most robust ModCod occurs. If the margins 
are non-adaptive they must be just large enough the 
accommodate the oldest possible measurement. 
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FIG 15. ModCod thresholds 

For the DVB-S2 forward link the measurements are done 
in the terminal, but are needed in the gateway scheduler. 
Therefore it is necessary to signal these measurements 
on the return channel. This is done using the same signal 
mechanism that is used for the resource requests sent to 
the gateway by the terminal. 

In the return link the measurements are done in the 
receiver in the gateway and they are needed in the return 
link resource controller in the gateway. Therefore only 
local transmission of these measurements in the gateway 
is necessary. The terminals get the ModCod to use in the 
TBTP that is broadcasted to all terminals for every 
superframe. 

5. RESULTS AND CONCLUSIONS 

This chapter provides some results obtained with the 
simulator. There is a very large number of results that 
may be obtained so we will focus on two aspects: the 
performance of the new scheduler and ACM in the 
forward link and the performance of ACM and the FBL 
scheme in the return link. 

5.1. Forward link scheduler and ACM 

The efficiency of the forward link scheduler can be 
measured in different ways. An ideal scheduler should 
fulfill the QoS requirements up to a load of 100% without 
dropping packets. In overload situations it should remain 



stable, which means it should fill the link to 100% and 
drop only packets with low priority. Even in this situation 
QoS requirements should be kept as good as possible. 

 

FIG 16. Forward link performance 

FIG 16 shows one of the possible measurements. It 
contains the results of four simulation runs and shows 
several aspects of the scheduling system. The simulations 
were setup as follows: 

1) A simulation with high load (105% of theoretical 
forward link capacity) with the reference scheduler, 
MPE/MPEG as encapsulation protocol and no ACM 
(marked ‘1’). 

2) A simulation with extreme load (40% more terminals 
than high load) with the reference scheduler, GSE as 
encapsulation protocol and ACM enabled (marked 
‘2’). 

3) A simulation with extreme load, the pool scheduler 
without optimization, GSE as encapsulation protocol 
and ACM enabled (marked ‘3’). 

4) A simulation with extreme load, the pool scheduler 
with optimization, GSE as encapsulation protocol and 
ACM enabled. 

For each simulation run two lines are shown: the total 
scheduler input data rate in bits/s (upper line) and the 
scheduler output data rate in bits/s (lower line). The input 
data rate starts from 0 and goes up because the traffic 
models are warming up at the beginning and reach a 
stable point after approx. 1.5 hours. During the warm up 
both curves for all scenarios are lying on each other 
meaning that the link load is below 100% and the output 
rate equals the input rate. At a certain point the output 
rate flattens because the link utilization reaches 100% 
and the difference between the input and the output curve 
is the loss. 

It can be seen that switching to a better encapsulation 
protocol (GSE instead of MPE/MPEG) and using ACM 
alone gives 28% more capacity with exactly the same link 
(difference between output of scenario 1 and 2). Now 
when switching from the reference scheduler to the pool 
scheduler there is an additional gain of 13.5%. So the 
total gain in capacity from using GSE instead of 
MPE/MPEG, enabling ACM and having a better scheduler 
is 48%. 

A good measure for the efficiency of the entire scheduling 
and encapsulation system is the IP efficiency. This is the 
number of IP (that is, useful) bits transmitted per physical 
layer symbol. Measured in the stable state of the 
applications it is 1.19 bits/symbol for MPE/MPEG, no 
ACM, simple scheduler and 1.70 for GSE, ACM and the 
pool scheduler. This is a win of 42.8%. The IP efficiency 
takes into account the efficiency of the encapsulation 
protocol itself, the efficiency of the scheduler and the 
physical layer efficiency which is determined by the 
coding rate and the modulation order. 

The following two figures show how the pool scheduler 
reaches the higher efficiency when compared to the 
reference scheduler. 

 

FIG 17. Forward link ModCod distribution (reference 
scheduler). 

FIG 17 shows the ModCod distribution when using the 
reference scheduler (note, that the 32APSK ModCods and 
8/9 and 9/10 coding rates are disabled). For each 
ModCod two bars are shown: the left is the percentage of 
short frames and the right the percentage of long frames. 
The absolute peak in ModCod usage is at 8PSK and 5/6 
with some usage (around 17%) of 16APSK rate 2/3. The 
ModCod 0 frames carry signaling information. 

The figure changes when the pool scheduler is used (both 
simulation use exactly the same channel conditions) as 
shown in FIG 18. 

There is a big shift to more efficient ModCods. Now the 
peak is 16APSK rate 2/3, over 20% 16APSK rate 3/4 and 
some use of 16APSK rate 4/5 and 5/6. 

The reason for this shift is that the reference scheduler 
often needs to put IP packets that could be sent at a more 
efficient ModCod into a BBFRAME that has a less efficient 
ModCod just because there is also a packet to a terminal 
in worse conditions (ModCod downgrading). The pool 
scheduler will put these packets into different 
BBFRAMES, each with the optimum ModCod. It 
downgrades packets only in the optimization step and 
there it makes the efficiency larger, because the packet 
will be transmitted instead of padding which would be 
even worse from the efficiency point of view and one 
BBFRAME needs not to be sent altogether. 
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FIG 18. Forward link ModCod distribution (pool 
scheduler). 

Another interesting measure is the packet delay jitter. 
Especially for real-time applications like VoIP the jitter 
should be as low as possible because a larger jitter 
means that a larger playout buffer is needed on the 
receiver leading to more delay. FIG 19 shows the delay 
jitter in the forward link for the VoIP, the audio/video 
stream (avstream) and the video conferencing (vconf) 
application measured as the absolute difference between 
the expected and the real arrival time of a packet. It must 
be noted, that VoIP traffic is classified into the EF class 
while avstream and vconf is transferred as BE traffic. 

 

FIG 19. Delay jitter in the forward link 

For VoIP it can be seen that there is almost no difference 
between the reference scheduler and the pool scheduler 
even in overload situations (the simulation was done with 
GSE, ACM enabled and the extreme load) – the reference 
scheduler is even slightly better (35ms instead of 36ms). 
For the video conference the situation is entirely different, 
though. With the reference scheduler the jitter is always 
larger than 60ms having peaks going up to 160ms (upper 
of the three lines for vconf). These peaks are related to 
extreme bursts in total traffic. With the pool scheduler the 

situation is more stable – the jitter is always kept between 
40ms and 50ms. It is less and more stable. 

5.2. Return link ACM 

In the return link the gain from using advanced 
technologies is even more impressive than in the forward 
link. 

FIG 20 shows the terminal scheduler cumulative (over all 
terminals) input and output rates for three scenarios: 

1) MPEG sized bursts, MPE encapsulation and no ACM 
with high load (105% of the link capacity). 

2) MPEG sized bursts, GSE encapsulation and no ACM 
with high load. 

3) Fixed sized bursts (400 and 800 symbols), GSE 
encapsulation and ACM. Twice the number of 
terminals as in scenarios 1 and 2. 

 

FIG 20. Return link performance 

The lowest straight line is the output rate for case 1 – the 
system is obviously in overload. Just by replacing the 
encapsulation protocol with a more efficient one, the 
output rate goes up by around 11% and there is almost no 
loss anymore. 

With switching to fixed-burst-length segmentation on the 
link, enabling ACM and exploiting the full dynamic burst 
allocation a gain of 100% in output rate is reached. 

A very interesting performance figure is the delay in the 
scheduler which is the biggest contributor to the delay 
jitter in the return link. 

In FIG 21 the upper line is the delay (measured as the 
time it takes a packet to travel through the scheduler) for 
scenario 1. It jitters between 0.4s and 1.3s which means 
that the total delay on the return link may be more than 
1.5s with a very large jitter that gives additional delay due 
to the large required playout buffer. By going to a more 
efficient encapsulation (GSE) the delay is reduced 0.2 and 
0.7s but this is due to the fact the the overload is reduced. 
With the same overlead the delay would also be the same 
as for MPLE. 
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FIG 21. Return link scheduler delay 

The situation, however, drastically changes by switching 
the FBL and ACM. Even though the overload is the same 
as in the first scenario (albeit with twice the number of 
terminals) the delay is constant and well below 0.2s 
(lowest line). This is due to the fact that the scheduler has 
much more freedom when allocating bursts to terminals 
with different channel conditions. 

5.3. Conclusions 

A modular simulator has been developed that can be 
used for performance evaluation and tuning of satellite 
communication systems based on the DVB-S family of 
standards. The simulator allows also developing and 
evaluating new protocols and algorithms. 

The simulator has been used to show the benefits from 
using ACM and advanced algorithms and protocols in 
such a system. The total gain in capacity in the forward 
link from using DVB-S2 with enhanced schedulers and 
encapsulation protocols compared to a DVB-S-like system 
is around 48%. 

The benefit of using better suited return link segmentation, 
a more efficient encapsulation protocol and ACM is 100% 
- the available bandwidth is doubled. At the same time the 
delay jitter is reduced and stabilized even for overload 
situations. 

5.4. Further work 

Several topics are currently in the works which enhance 
both the simulator and the simulated communication 
systems: 

– Terminal login and logout. This allows varying the 
load during a simulation run. Currently several runs 
are necessary to simulate different loads. 

– A MySQL backend for the results produced by the 
simulator. This allows more flexibility in the 
postprocessing and also would allow displaying 
results while the simulator is still running. 

– A TCP implementation for the applications (currently 
only IP is fully implemented). 

System related enhancements: 

– Better schedulers for both the forward and the return 
link that integrate the policing function with the 
scheduler and provide early overload detection. 

– A new return link encapsulation protocol based on 
GSE but with less overhead. 

– A better return link resource manager which can 
allocate very low rates (one burst per N superframes). 

– TCP-awareness of the system. 
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