
can be explained as follows. Starting at H P ¼ 0 km
and going up, β increases because L0 increases and
beam spread decreases (beam spread reduces the
effect of absolute beam wander on relative beam
wander). Above H P ∼ 20 km, even though L0 still in-
creases, β starts decreasing because beam spread is
negligible, whereas turbulence strength ðC2

n ;S2
nÞ

keeps decreasing. For β < 0:1, beam wander may
be regarded as negligible. We see that only the x wan-
der component combined with a large L0 exceeds the
value 0.1.

7. Effect on Optical Tracking

Let us consider a terminal measuring AoA ’s over an
aperture of diameter D and transmitting its beam
over the same aperture. The condition of Eq. ( 13) im-
plies that the beam radius at the PS is much greater
than the sending aperture, i.e., W1 ≫ D. In terms of
optical tracking, this situation corresponds to a
strong on-axis aperture mismatch and leads to a dec-
orrelation between the measured AoA and the angu-
lar deviation of the emitted beam [ 26]. Furthermore,
the point-ahead angle, which is induced by the satel-
lites ’ motions, strengthens this decorrelation [ 27]. So
the reciprocity principle [ 28] does not apply in that
context, and the tracking of the perturbed AoA will
not improve the pointing performance. We can iden-
tify two situations where the atmosphere causes
pointing errors:

i. The first situation is when the relative beam
wander β turns out to be significant (outer scale L0
turns out to be large).

ii. The second situation is when β is negligible
but AoA fluctuations are tracked and are strong en-
ough to displace the outgoing beam off the counter
terminal. The AoA fluctuations are strong enough
to cause a displacement if the condition LσAoA ≪

WLT is not fulfilled (for both x and y axes). The
long-term beam radius is WLT ¼ sLθdiv , where s is
the beam spread factor, so that the condition becomes

σAoA ≪ sθdiv . One can further develop the condition ’s
expression using Eqs. ( 38), (56), and (57), and being
careful about the link directions ( L1 for the calcula-
tion of σAoA corresponds to L2 for the calculation of s).
For the critical LEO-to-GEO link, one can derive a
simpler condition, namely, θatm ≪ θdiv for both x
and y axes (considering ϕ ¼ 1 for the x axis is here
a safety measure).

8. Conclusion

Based on given turbulence models, we have evalu-
ated the spatial and temporal wave structure func-
tions of optical ISLs occulted by the atmosphere.
For such links, perturbation anisotropy is particu-
larly pronounced. For certain scenarios, one can ex-
pect a coherence width ρ0 smaller than the Rx
aperture even above the cloud ceiling ( H P ∼ 13 km).
ISL scintillation is generally the most severe distur-
bance above the cloud region. However, a distorted
wavefront reaching the receiver can be an additional
problem. Having evaluated the spatial WSF, we de-
fined a diffraction angle θatm that is essentially deter-
mined by the path-integrated turbulence, with a
weak dependence on the wavelength. The angular
ratio θatm =θdiv gives the strength of both the beam
spread and the relative beam wander. We found that
turbulence-induced beam spread and beam wander
are significant for narrow beams ( θdiv of the order
of 1 μrad).

Appendix A

The wave structure function of a Gaussian beam pro-
pagating through a thin phase screen was evaluated
by Andrews and Phillips. Considering two points sur-
rounding the beam center and a Kolmogorov spec-
trum, the WSF is given by Eq. (33), p. 656 of Ref. [ 17].
From this relation, we can derive the ratio of
Gaussian-beam WSF DgaðρÞ to spherical-wave
DspðρÞ, which yields

DgaðρÞ
DspðρÞ

¼ Γð11=6Þ
�
kð1 − d3Þ2ρ2

4ΛLd 2
3

�
−5=6

×
�

1F1

�
−

5
6
; 1;−

kð1 − �Θd3Þ2ρ2

4ΛLd 2
3

�

− 1F1

�
−

5
6
; 1;

kΛρ2

4L

��
; ð65Þ

where 1F1 is the hypergeometric function and the di-
mensionless parameters d3, �Θ, and Λ applied to our
ISL scenario are given by

d3 ¼ L2=L
�Θ ≈ 1
Λ ¼ 2L=ðkW2Þ

:

We have DgaðρÞ≈ DspðρÞunder the two following con-
ditions: in Eq. ( 65), the last argument of the first hy-
pergeometric function tends to −∞, and the last
argument of the second hypergeometric function
tends to 0. These conditions can be written as

Fig. 13. (Color online) Relative beam wander βx and βy for a LEO-
to-GEO link with θdiv ¼ 3 μrad and λ ¼ 1 μm.
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kL 2
1ρ2

4ΛLL 2
2
≫ 1

kΛρ2

4L ≪ 1
;

and one easily finds that these two conditions are
equivalent to Eq. ( 15).

Appendix B

This appendix is dedicated to the evaluation of the
following integral:

I p ¼
Z

∞

0

1 − J 0ðκρÞ
ðκ2 þ κ2

0Þp κdκ; ð66Þ

which converges if 1 < p < 2, or if p ≥ 2 and κ0 ≠ 0.
This integral was evaluated by Lucke and Young
[29] for the case p ¼ 11=6. Based on Eq. (11.4.44)
of Ref. [30], I p takes the general form

I p ¼
κ2ð1−pÞ

0

2ðp − 1Þ

�
1 −

2
Γðp − 1Þ

�κ0ρ
2

�
p−1

K p−1ðκ0ρÞ
�
; ð67Þ

where K p−1ð·Þis the modified Bessel function of the
second kind, order p − 1. We deduce

I p →
κ2ð1−pÞ

0

2ðp − 1Þ
; for κ0ρ → ∞: ð68Þ

To obtain the asymptotic behavior of I p for κ0ρ ≪ 1,
we use the MacLaurin series given by Eq. (1.25) of
Ref. [31]. This series leads to

2
ΓðvÞ

�
x
2

�
v
K vðxÞ ¼

X∞
n¼0

ð−1Þn

n!

�Γð−n − vÞ
ΓðvÞ

�
x
2

�
2nþ 2v

þ
Γð−n þ vÞ

ΓðvÞ

�
x
2

�
2n

�
: ð69Þ

Based on Eqs. (67) and (69), one finds

I 11=6 ≈ 3
5

Γð1=6Þ
Γð11=6Þ

�
ρ
2

�
5=3

; κ0ρ ≪ 1

I 11=6 ≈ 3
5

1
κ5=3

0

; κ0ρ ≫ 1
; ð70Þ

I 5=2 ≈
ρ2

8κ0
; κ0ρ ≪ 1

I 5=2 ≈ 1
3κ3

0
; κ0ρ ≫ 1

: ð71Þ

The author thanks Y. Takayama, V. Sofieva, and
C. Robert for helpful discussions.
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