Fig. 13. (Color online) Relative beam wander g, and g, for a LEO-
to-GEO link with g, ¥23urad and A % 1um.

can be explained as follows. Starting at Hp % 0km
and going up, f increases becausel g increases and
beam spread decreases (beam spread reduces the
effect of absolute beam wander on relative beam
wander). Above Hp ~ 20 km, even though L still in-
creases, § starts decreasing because beam spread is
negligible, whereas turbulence strength  &C2,S2b
keeps decreasing. For f < 0.1, beam wander may
be regarded as negligible. We see that only the xwan-
der component combined with a large L, exceeds the
value 0.1.

7. Effect on Optical Tracking

Let us consider a terminal measuring AoA ’s over an
aperture of diameter D and transmitting its beam
over the same aperture. The condition of Eq. ( 13) im-
plies that the beam radius at the PS is much greater
than the sending aperture, i.e., W; > D. In terms of
optical tracking, this situation corresponds to a
strong on-axis aperture mismatch and leads to a dec-
orrelation between the measured AoA and the angu-
lar deviation of the emitted beam [ 26]. Furthermore,
the point-ahead angle, which is induced by the satel-
lites’ motions, strengthens this decorrelation [ 27]. So
the reciprocity principle [ 28] does not apply in that
context, and the tracking of the perturbed AoA will
not improve the pointing performance. We can iden-
tify two situations where the atmosphere causes
pointing errors:

i. The first situation is when the relative beam
wander g turns out to be significant (outer scale L,
turns out to be large).

ii. The second situation is when g is negligible
but AoA fluctuations are tracked and are strong en-
ough to displace the outgoing beam off the counter
terminal. The AoA fluctuations are strong enough
to cause a displacement if the condition Lopga <
Wt is not fulfilled (for both x and y axes). The
long-term beam radius is W/ g ¥%sLéy,, where s is
the beam spread factor, so that the condition becomes
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opon <K SHygiy - One can further develop the condition ’s
expression using Egs. (38), (56), and (57), and being
careful about the link directions ( L, for the calcula-
tion of o COrresponds to L, for the calculation of s).
For the critical LEO-to-GEO link, one can derive a
simpler condition, namely, 6y, K 64, for both x
and y axes (considering ¢ % 1 for the x axis is here
a safety measure).

8. Conclusion

Based on given turbulence models, we have evalu-
ated the spatial and temporal wave structure func-
tions of optical ISLs occulted by the atmosphere.
For such links, perturbation anisotropy is particu-
larly pronounced. For certain scenarios, one can ex-
pect a coherence width p, smaller than the Rx
aperture even above the cloud ceiling ( Hp ~ 13 km).
ISL scintillation is generally the most severe distur-
bance above the cloud region. However, a distorted
wavefront reaching the receiver can be an additional
problem. Having evaluated the spatial WSF, we de-
fined a diffraction angle 6, thatis essentially deter-
mined by the path-integrated turbulence, with a
weak dependence on the wavelength. The angular
ratio Oum /Oqiv Qives the strength of both the beam
spread and the relative beam wander. We found that
turbulence-induced beam spread and beam wander
are significant for narrow beams ( 6y, of the order
of 1 urad).

Appendix A

The wave structure function of a Gaussian beam pro-
pagating through a thin phase screen was evaluated
by Andrews and Phillips. Considering two points sur-
rounding the beam center and a Kolmogorov spec-
trum, the WSF is given by Eq. (33), p. 656 of Ref.[ 17].
From this relation, we can derive the ratio of
Gaussian-beam WSF Dy, &P to spherical-wave
Ds,&R which yields

DgalbP, kal — dyBp? -5/6
/,Ta11/6p—— 2 £
DepP / 4ALd2
5 kdl — OdyBp?
F, —>1—— 3P
* T T T T AL
kAp?
- —2;1; 4[’ , 5b

where ,F, is the hypergeometric function and the di-
mensionless parameters ds, ®, and A applied to our
ISL scenario are given by

q?, ]/4L2/L
0=1 )
A Va2l /&W?2p

We have Dgy,dP~ Dg,dPunder the two following con-
ditions: in Eq. ( 65), the last argument of the first hy-
pergeometric function tends to -, and the last
argument of the second hypergeometric function
tends to 0. These conditions can be written as



kL ipz
4ALLZ

kAp?
<1

>1

)

and one easily finds that these two conditions are
equivalent to Eq. ( 15).

Appendix B

This appendix is dedicated to the evaluation of the
following integral:

y
=1 - Jo&pb

6D
o 2P 2P

Ip Ya dx,

which converges if 1 <p <2, orif p>2 and kg #0.
This integral was evaluated by Lucke and Young
[29] for the case p ¥ 11/6. Based on Eq. (11.4.44)
of Ref. [30], |, takes the general form

28l-pb
Ko g2 kop P
P 2p-1p " TI'p-1bp 2

Kp_l&opb s &7'3

where K,_,&Pis the modified Bessel function of the
second kind, order p — 1. We deduce

sz—pb
Ip d h, fOI’ Kop —> 00, &8'3

To obtain the asymptotic behavior of |, for xop <1,
we use the MaclLaurin series given by Eq. (1.25) of
Ref. [31]. This series leads to

\ < _ 2np 2v
2 X K &b s 8-1P I'd-n-vb X
Tam 2 e N Tap 2
I'6-np vb x 2n
P—sp 2 &9

Based on Egs. (67) and (69), one finds

5/3

_3ra/epr p
l11/6 = 2 5 Kop K1
/6 T 5Ta1/6p 2 ) 7 570b
l11/6 z%}(s%a Kop >1
0
|5/2zi» Kop K1
8o &71p

|5/2zﬁ» kop > 1

The author thanks Y. Takayama, V. Sofieva, and
C. Robert for helpful discussions.
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