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ABSTRACT  
 
Besides the wide-area augmentation system (WAAS) in 
the US, an increasing number of space-based 
augmentation systems (SBAS) are being developed or 
planned, such as the European Geostationary Navigation 
Overlay System (EGNOS) in Europe, the Multi-
functional Satellite Augmentation System (MSAS) 
system in Japan, and the future Ground-based Regional 
Augmentation System (GRAS) in Australia and the GPS 
and Geo Augmented Navigation (GAGAN) system 
covering the Indian subcontinent. 
 
The integrity analysis in a given SBAS system includes 
calculating the probability of hazardous misleading 
information (PHMI) for the vertical ionospheric delays.  
We show that the built-in conservatism in the PHMI 
treatment that has been proposed for WAAS can be 
significantly reduced by using a more general model for 
the ionospheric process noise, i.e. we consider generalized 
models of the process noise, where the process noise is 
allowed to depend non-linearly on the chi-square statistic 
of the ionospheric measurement residuals. As a 
consequence, we obtain a more realistic dependence of 
PHMI on the ionospheric state, and the additional degrees 
of freedom of the process noise model can be used to 
optimize the system for availability under moderately 
disturbed ionospheric conditions. 
 
INTRODUCTION  
 
Since SBAS systems provide vertical ionospheric delays, 
the integrity analysis includes the calculation of the 
probability for hazardous misleading information PHMI 
for the ionospheric corrections [1]. 
 
Especially at the edges of the service volume the leading 
contribution to the grid ionospheric vertical error (GIVE) 
comes from mitigating the under-sampling threat [2][3]. 
Another contribution to the GIVE is the noise estimation.  
 
In this work, we re-consider the part of the iono PHMI 
calculation which deals with the analysis and separation 

of the measurement noise from the process noise 
[1][7][8]. This is important since the user is mostly 
affected by the process noise, but the measurement noise 
can be much bigger than the process noise and in some 
cases can even mask the process noise. 
 
Since the process noise is caused by the ionospheric de-
correlation, a model for the ionospheric de-correlation is 
needed. By analyzing the variogram related to the 
ionospheric de-correlation [4], it has been found that the 
process noise for active ionospheric conditions can be 
modeled as a multiple of the noise for quiet ionospheric 
conditions, 
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where process,0σ  denotes the process noise for nominal, 
i.e. quiet, ionospheric conditions. The state of the 
ionosphere is parameterized by the inflation factor w ; a 
value of unity corresponds to nominal ionospheric 
conditions, values greater than unity indicate active 
ionospheric conditions. This inflation factor has to be 
over-bounded using the measurements.  
 
While in previous work 2w  depended linearly on the 

2χ -statistics of the de-trended and de-correlated fit 
residuals, here we propose to use a more general 
(polynomial) dependence of 2w  on the measurements. 

As a consequence lower values of the overbound of 2w  
can be used while meeting the integrity requirements. 
This translates directly into lower SBAS grid ionospheric 
vertical errors. 
 
IONOSPHERIC ESTIMATION  
 
The plasma in the ionosphere influences the signals from 
the GPS satellites on their way to a user. Therefore SBAS 
systems broadcast ionospheric correction information. 
 
To first order, slant ionospheric delays are proportional to 
the integral of the electron density along the ray path 
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SI  Slant ionospheric delay 

en  Electron density 
Γ  Path from satellite to receiver 

sd  Line element 
f  Frequency of transmitted signal  

The ionosphere is approximated by a single shell at a 
fixed height. Then the slant delays SI  are related to 

vertical ionospheric delays VI by the so-called geometry 
function 
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SI  Slant ionospheric delay [m] 

VI  Vertical ionospheric delay [m] 
defined as 
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Er  Earth’s radius: 6371 km 

ionoh  Height of single layer ionosphere: 400 km 

elev  Satellite elevation [rad] 
 
SBAS systems provide vertical ionospheric delays at 
fixed grid points. These delays are computed from 
calibrated total electron content measurements of a 
network of reference stations. Since these measurements 
are in general not located at the fixed grid points, one way 
to obtain corrections at grid points is to perform a planar 
fit to the ionosphere around a given grid point using 
Kriging [1]. The model for the measurements is given by 
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x  Position relative to the grid point 

210 ,, aaa  Fit parameters 

( )eastx   East-component of distance 
( )northx North-component of distance 
( )xr  Process noise 

( )xm  Measurement noise 

By computing the variogram of ( )xr  for different 
ionospheric conditions, it has been found that the fit 
residuals can be described by a random field with 
covariance 

( ) ( )( ) ( )jiji xxCwxrxrCov −= 0
2,  (6)

where 0C denotes the covariance under quiet ionospheric 
conditions: 

( ) adecdC −=0  (7)

with parameters 2m2=c and km32000=a   for the 
CONUS region [8]. For quiet ionospheric conditions the 
parameter w  is 1; disturbed ionospheric conditions are 
modeled by 1>w : the de-correlation during storm times 
is a multiple of the de-correlation during quiet times. 
 

 
Fig 1 
Vertical ionospheric delays are computed by performing a 
planar fit to the measurements. 
 
When estimating the parameters ( )210 ,, aaa  it is 
important to carefully separate process noise which is 
caused by ionospheric de-correlation from the 
measurement noise, since the measurement noise can 
mask the process noise but the user is most affected by 
the process noise. 
 
PROBABILITY OF HAZARDOUS MISLEADING 
INFORMATION  
 
The probability of hazardous misleading information is 
defined as the probability that the estimated ionospheric 
delay differs from the true ionospheric delay more than 
the error Δ  provided by the SBAS system [1]: 

( ) ( )Δ>−= esttrue IIPHMIP  (8)

trueI  True ionospheric delay 

estI  Estimated ionospheric delay 

Δ  Estimated error bound  
 
The probability allocated for ionospheric hazardous 
misleading information is 8102.25 −× [5]. Thus we have 
to minimize Δ  such that 

( ) 810252 −×< .HMIP  (9)
As the covariance (6) used in the parameter estimation 
depends on the unknown parameter w , the following 
decomposition of PHMI is used 

( ) ( ) ( )∫
∞

=
0

d| uwpwHMIPHMIP  (10)

where ( )wp  is some probability density. Since ( )wp  is 
in general unknown, we demand that 



( ) -8102.25<| ×wHMIP  for any 0>w  (11)
 
As a starting point for the ( )HMIP  analysis we using 

the expression for ( )wHMIP |  derived, e.g., in Eq. 

(4.25) in Ref. [8]. There ( )wHMIP |  is given as a 
multi-dimensional integral with a Gaussian measure over 
the de-trended and de-correlated measurements: 
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y  de-trended and de-correlated measurements 
N  Number of measurements - 3 
( )yw0  Inflation factor 

( )wS  Covariance of y  
K  K-value, 5.592=K  
( )xQ  Cumulative distribution function  
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Since three parameters 210 ,, aaa  are estimated there are  

=N  Number of measurements – 3 independent fit 
residuals, cf. Section 4.2.2 in [8]. 
 
After a change of variables  

( ) ywSz 21−=  (13)
we obtain 
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In order to evaluate this integral we have to use a concrete 
representation of ( )uS  and of the inflation factor ( )yw0 . 
For the covariance of the reduced measurements we use 
     ( ) NswS 12= ,  ( )ββ −+= 122 ws  (15)

where [ ]1 0,∈β  determines the amount of measurement 
and process noise, the extreme cases being 0=β  for 
pure measurement noise, and 1=β  for pure process 
noise. Fig 1 shows a typical distribution of 
β determined from a WAAS-like system. 

 
Fig 1 
Distribution of process noise for a WAAS-like system. 
 
Note that here we assume ( )wS  to be proportional to the 
unit matrix. We leave the generalization of our results to a 
non-uniform ( )wS  for future work. 
 
For the inflation factor 0w  we consider polynomials of a 
positive definite quadratic form of the reduced 
measurements y : 

( ) ( )Ryypyw T=2
0  (16)

( )xp  Polynomial 
R  Positive definite quadratic form 
with 

NR 1α= ,    0>α  (17)

where N1  denotes the NN × unit matrix. While in [8] a 

linear polynomial, ( ) xxp = , was used, here we use 
polynomials of higher degree.  
 
Since both matrices, S and R , are proportional to N1  
the integrand depends on the radial coordinate 

zzz T= only. Therefore, when switching to angular 
coordinates in z  the angular integration can be performed 
right away; it is equal to the surface of the N -
dimensional unit hypersphere. Hence, we are left with the 
following one-dimensional integral over the radial 
coordinate: 
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This integral converges if the highest power of the 
polynomial ( )xp  has a positive coefficient and can be 
evaluated numerically. 
 
Given any polynomial ( )xp  we are now in a position to 

evaluate ( )wHMIP |  by numerical integration (18). By 
interval bisection, e.g., we can then search in α for the 
critical value cα  depending on β and N , such that the 

requirement 8102.25 −×<PHMI is fulfilled.  
 
Since we use a polynomial for the inflation factor, there 
are additional degrees of freedom. Therefore we need to 
be able to assess the performance of a given polynomial. 
As a measure of performance we compute the 99% 
quantile of the inflation factor, cw , under nominal 

conditions, i.e. when the N  reduced measurements y  

are distributed according to a 2χ  distribution with 
N degrees of freedom. In the following we use a typical 
value 30=N .  
 
Linear Polynomial 
 
As a reference, first we use the linear polynomial 

( ) xxp =  (19)
which has been used in [8]. An example of a 
( )wHMIP |  curve for a typical value of β  is shown in 

Fig 2. For different values ofβ  between 0.2 and 1.0, the 

99% quantile of the inflation factor, 2
cw , ranges from 

12.84 to 4.28, cf. Table 1. The values of α calculated by 
integrating (18) with a linear polynomial match the value 
of α found when using the determinant-like expression 
derived in (4.28) in Ref. [8]. 
 

 
Fig 2 

The bold blue curve is ( )wHMIP |  for a linear 
polynomial. It approaches the limiting value at infinity; 
the red line indicates the iono ( )HMIP  requirement. 
 
Quintic Polynomial 
 
Let us now consider a family of quintic polynomials 
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parameterized by γ . Its first derivative is ( )41 xγ− . 
Clearly, when 0=γ  the linear polynomial (19) is 
recovered. This family of polynomials has been found to 
give the best results. However, an exhaustive search for 
the optimal polynomial remains to be done. For each 
parameter γ  we obtain a different ( )wHMIP |  curve 

and different values of cw  and cα . As can be seen in 

Fig 3, the ( )uHMIP |  curve for 0≠γ  is qualitatively 
different from the curve for 0=γ : it has a maximum at 
finite values of w . We then search for a critical value of 

cγ  such that the reduction from 
0=γcw  to 

c
cw

γγ =
 

becomes maximal. The resulting parameters are 
summarized in Table 1; for a typical value of 0.4=β  
the achievable reduction is about 20%. 
 

β  cα  cγ  
0

2

=γcw  
c

cw
γγ =

2  % 

0.2 1.68 0.020 12.84 11.79 23 
0.3 1.14 0.030  8.56   8.19 20 
0.4 0.89 0.035  6.42   6.10 20 
0.5 0.72 0.045  5.13   4.99 19 
0.6 0.62 0.050  4.28   4.25 17 
1.0 0.40 0.080  3.06   2.78   9 

Table 1 
Critical values for α and γ  for different ratios of 
measurement to process noise parameterized byβ  for the 
polynomial (20) and 30=N . The last column displays 
the achieved reduction in the inflation factor relative to 
the method using a linear polynomial. 
 
Fig 4 displays two optimal inflation factor functions for 

0.4=β  as a function of 2χ , using ( ) ( )22
0 αχpyw = , 

cf. (16). Since at the evaluation point the quintic 
polynomial (in dark green) is lower than the linear 
polynomial (in blue), a reduction of the inflation factor is 
achieved. Note that the quintic polynomial function 
displays a threshold-like behavior: it is nearly constant for 
a range of 2χ values and then grows rapidly. 
 



 
Fig 3 
The dark green curve shows ( )wHMIP |  determined 
according to (18) for the quintic polynomial (20) using 

30=N , 5.592=K , 0.035=γ , and 89.0=α ; the  

blue curve is ( )wHMIP |  for a linear polynomial; the 

red line indicates the iono ( )HMIP  requirement. 
 

 
Fig 4 

Shown is the inflation factor 2
0w  depending on 2χ . The 

blue curve corresponds to a linear polynomial, the dark 
green curve corresponds to the quintic polynomial (20) 
with 0.035=γ . The vertical dashed line denotes the 

evaluation point at ( )99.030,chi2inv .  
 
CONCLUSIONS AND OUTLOOK  
 
By using the generalized models for the ionospheric 
inflation factor proposed in this work, SBAS systems can 
be made to operate less conservatively, thus increasing 
their robustness and achievable availability.   
 
When using a non-linear polynomial in a WAAS-like 
SBAS system, the lookup table ( )Nα , which for a linear 
polynomial is one-dimensional, has to be replaced by two 
lookup tables: one table ( )βα ,N  and another table 

( )βγ ,N , both depending on N  and on β . The second 

and third columns of Table 1 display ( )βα ,30  and  

( )βγ ,30  for the polynomial given in (20). 
 
As a measure of performance we have computed the 99% 
quantile of the distribution of the inflation factor for 
nominal measurements. Depending on the ratio between 
measurement noise and process noise a reduction of ca. 
20% in inflation factor is possible by using non-linear 
polynomials for the inflation factor. 
 
These benefits should be most interesting for those SBAS 
systems operating in the low geographic latitude area, 
where the active ionospheric conditions will likely make 
these systems operate near the design threshold to 
unavailability. 
 
Our analysis was performed for covariance matrices 
( )wS  which are a multiple of the identity matrix. In 

future, we will extend the results to the more realistic case 
of non-uniform covariance matrices not proportional to 
the identity matrix. Also a more systematic search for an 
optimal function ( )xp  in the space of all polynomial (or 
even peacewise-defined) functions remains to be 
performed. 
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