Measurements within Saharan mineral dust plumes durlng SAMUM-1 in Morocco 2006

- Environmental conditions: temperature, pressure, relative humidity profiles
- Number size distribution N,,(D) of the Saharan mineral dust (Weinzierl et al., 2009; A) to calculate the cross section size distribution G,(D,) and the cumulative cross section
’ distribution G¢(D,,): high fraction of coarse particles which have a large optical impact (e.g. Otto et al., 2007)
| - Chemical composition of the airborne dust particle ensemble (Kandler et al., 2009; B) to derive the size-resolved complex refractive index (C, colored) using literature data for
the individual component classes of mineral dust silicates, quartz, carbonates, sulfates, iron rich material:
A =550 nm: real part 1.51-1.55, imaginary part 0.0008-0.006 depending of particle size
| - Extinction coefficient at 532 nm applying the air-based lidar HSRL (Esselborn et al., 2009) and the ground-based BERTHA (Tesche et al., 2009)
- Spectral surface albedo and upwelling as well as downwelling irradiances (Bierwirth et al., 2009)
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Radiative effects of spheriodal dust particles

- Spheroidal model particles assuming various cases of interpreting ,size" D, in
the measured size distributions: volume, surface, volume-to-surface, longest
axis and shortest axis equivalence; considering fixed particle aspect ratios

- Non-spherical particle effects on «, and g with up to + 1 % and 4 % for realistic
cases of VEQV, SEQV and VSEQV; non-sphericity effects on the optical
depths up to 40 % depending on size egivalence (SE) and aspect ratio (AR)

- Lidar and sun photometer measurements were used to estimate the most
representative SE and particle shape: volume equivalent oblate spheroids with
an AR of 1.6 which was also found by single particle analyses using a scanning
electron microscope (Kandler et al., 2009)

- Assumed spherical particles
(MODEL) cannot explain the
measured lidar backscatter
coefficient (HSRL, BERTHA)

- Dust particles were of
non-spherical shape resulting
in enhanced backscattering
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- Single scattering albedo of
0.8 at 550 nm due to the

presence of coarse particles ol
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smaller particles o
- Asymmetry parameter of - Non-sphericity causes always
0.8 at 550 nm is increased by cooling due to backscattering:
the large particles, t00 ARE increases by ~ 30 % over
desert and ~ 170 % over ocean

- Details: see Otto et al. (2009) 1/20 115
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