Combining the independent pixel and point-spread function approaches to simulate the actinic radiation field in moderately inhomogeneous 3D cloudy media

Anke Kniffka, Thomas Trautmann

(1) Institute for Meteorology, University of Leipzig, 04103 Leipzig, Germany
(2) Remote Sensing Technology Institute, DLR Oberpfaffenhofen, 82234 Wessling, Germany

Introduction
A fast method is presented for gaining 3D actinic flux density fields, F_{act} in clouds employing the Independent Pixel Approximation (IPA) with a parameterized horizontal photon transport to imitate radiative smoothing effects. For 3D clouds the IPA is an efficient method to simulate radiative transfer, but it suffers from the neglect of horizontal photon fluxes leading to significant errors (up to locally 30% in the present study). Consequently, the resulting actinic flux density fields exhibit an unrealistically rough and rugged structure. In this study, the radiative smoothing is approximated by applying a physically based smoothing algorithm to the calculated IPA actinic flux field.

Gaussian smoothing and PSF
Point Spread Function (PSF) for a scattering & absorbing medium: The spreading of a beam normal to its traveling direction in the medium follows a Gaussian law (Premoze et al., 2004 and Tessendorf, 1987) with width of the distribution:

$$ b^*(S) = \frac{2(1-g)\beta \lambda}{16(1+\lambda^2)} $$

s path through the medium, g = asymmetry parameter, β scattering coefficient, λ = diffusive path length with $l(=4\sigma_{g})/\beta$, λ_{g} = absorption coefficient

Gaussian smoothing of a single layer of the F_{act} field:

$$ F_{act}(x, y) = \int \int F_{act,IPA}(x', y') \cdot e^{-\frac{(x-x')^2}{\lambda^2} - \frac{(y-y')^2}{\lambda^2}} \, dx' \, dy' $$

Medium contains standardized profiles of air molecules, aerosol particles, molecular O3 and NO2.

LES cloud field – increasing optical thickness

Fig. 3: Horizontal out of F_{act} fields at $l = 10$ and $\lambda = 550$ nm, upper left $F_{act,IPA}$, upper right $F_{act,PSF}$, lower left $F_{act,IPArm neighbourhood}$, lower right $F_{act,PSF}$. 3D inhomogeneous cloud field (thickness 250 m) for for $SZA = 66°$. Convolved fields resemble results for 3D simulations much more than 3dbIPA without smoothing, see also ratio $F_{act,IPA}/F_{act,3D}$ in Fig. 4.

Varying l of cloud field in Fig. 5: Convolution reduces roughness to resemble 3D result.

Method and radiative transfer model

Radiative Transfer Calculations: SHDOM (Spherical Harmonics Discrete Ordinate Method). 3D IPA using direct beam (3dbIPA) by Evans and Gabriel, 1996

Fig. 2: IPA + smoothing.

Determination of the convolution parameter: i) empirically (control method) or ii) with PSF (see Fig. 1). Cloud masks can be applied, i.e. the convolution is performed in cloudy regions only.

LES cloud field – increasing optical thickness

Fig. 4: Frequency distribution of $F_{act,IPA}/F_{act,3D}$: control method vs. PSF (all layers).

Stratiform cloud: wavelength dependence

Fig. 6: Horizontal cut of F_{act} fields: left $F_{act,IPA}$, middle $F_{act,3D}$, right $F_{act,PSF}$. L = 550 nm. This stratiform cloud field was (max. opt. depth ~ 28, max. vertical extent ~ 200 m) created with 1AAPT cloud generator algorithm (Viereva et al., 2006). The simulation was carried out at 0° SZA.

Fig. 7: Wavelength dependence of the spatial variability of the F_{act} field: IPA exhibits variance increasing with l. Convolution mimics 3D results very well and reduces IPA’s l-dependence to ~17° (not valid for all cloudy cases).

2D: Increasing cloud gaps

2D cloud fields via AAPF method, LWC content is derived from certain PDF with standard deviation σ, which is increased from 5 to 27 % to achieve gradually more cloud-free pixels, while overall LWC remains fixed

SZA = 66°, $\lambda = 400$ nm, urban aerosol exponentially decaying with altitude.

Fig. 8: Effectivity of smoothing: standard deviation of $F_{act,PSF}$ of all pixels in cloud region is connected to number of degrading or had simulated pixels.

Discussion

• Horizontal photon transport can be mimicked by combining IPA results with PSF-smoothing kernel.

• Depending on the variability of the cloud structure the convoluted fields show a good resemblance with the exact 3D radiation fields.

• The physically unrealistic roughness of IPA F_{act} is reduced, for increasing cloud gaps IPA results get even worse.

• Smoothing helps to improve the wavelength dependency of simulated F_{act} fields.

• Strong reduction of CPU time by the new algorithm (>90 % of a 3D simulation)

• The treatment of "true" 3D transport effects (cf. photon channeling) needs additional considerations.

References