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Figure 1: Dust storms over the Sahara domain on 08.03.2006. Large image: BMDI values, small
image: „dust“ RGB composite with [R,G,B]=[T12.0-T10.8,T10.8-T8.7,T10.8(inv)].

Figure 3: Comparison between AERONET AOD 
(11-12 UTC average) and BMDI values (3x3 
pixel average centered at the station‘s
location)  for eight AERONET stations during
2006. α indicates different Ångström
exponent classes.

Introduction

Remote sensing of mineral dust optical depth from passive satellite instruments is quite

well established over dark surfaces as ocean or vegetation. Over bright reflecting

surfaces like deserts radiance observations in shortwave (blue to ultraviolet) and thermal 

infrared wavelength bands can be used to infer information about airborne mineral 

dust. In most existing dust detection strategies for thermal infrared observations

assumptions of clearsky brightness temperatures are made from prior observations with

a time lag of days to weeks. In contrast to this approach the presented new method for

dust detection with Meteosat Second Generation (MSG) thermal infrared observations

uses the differences in day and night observations in two split-window wavelength

bands between dusty and dustfree conditions for the detection of airborne dust. The

magnitude of this new dust index can be regarded as an indicator of the atmospheric

dust load.

Bitemporal Mineral Dust Index

From daily MSG-SEVIRI T10.8 and T12.0 brightness temperatures at 03:00 UTC (night) and 

12:00 UTC (day) the Bitemporal Mineral Dust Index (Klüser and Schepanski, 2008, 

subm. to ACPD) is derived for cloudfree scenes (cloud screening by the Avhrr Processing

scheme Over Land, cLouds and Ocean, APOLLO, Kriebel et al., 2003) by the following

steps:

BTD(t1,2) = T10.8 (t1,2) - T12.0 (t1,2) (1)

ΔT   = T10.8(day) - T10.8(night) (2)

ΔBTD = BTD(day) - BTD(night) (3)

Fig.5 shows BMDI values (a and b) and 

mineral dust AOD (c and d) from

simulations of the Model of 

Atmospheric Transport and Chemistry

(MATCH) in combination with the Dust

Entrainment And Deposition (DEAD) 

model (Zender et al., 2003) on a 1.9°

grid for two subsequent days with dust

storms (04./05.03.2004). Those images

emphasize the ability to observe dust

plume propagation across the Sahara 

domain with the BMDI.
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Summary and conclusions

A new method for the detection of airborne mineral dust from MSG thermal infrared

observation is presented. Several lines of evaluation show good results regarding the

dust detection ability of this Bitemporal Mineral Dust Index. The BMDI is sensitive to 

the atmospheric dust load as well. Daily maps of mineral dust load in terms of BMDI 

can be produced either on the MSG pixel resolution or mapped onto a 0.5° grid. The

BMDI method uses the day-night contrast of split-window brightness temperatures

and thus is independent from clearsky assumptions inferred from prior observations, 

which might be affected by different weather conditions or surface temperatures.

In contrast to AOD retrievals from solar radiation observations, the BMDI is insensitive

to small-particle aerosols such as from biomass burning.
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BTD < 1K
at 03:00

BMDI = ΔBTD + ΔT10.8/7

NAPOLLO=0
Θv < 60°

T10.8 ≥ 273K
at 03:00, 12:00

BTD < 0K
at 12:00

Low BMDI values correspond to high atmospheric dust load, besides the particle

concentrations the BMDI is also assumed to depend on dust layer height, dust particle

size distributions and the chemical composition of the transported dust.

Fig.1 shows the detection of dust storms on 08.03.2006 with the BMDI. For 

comparison a RGB composite image from MSG infrared observations with

[R,G,B]=[T12.0-T10.8, T10.8-T8.7, T10.8(inv)] is also shown.
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Figure 2: Mean values (a) and temporal variance (b) of BMDI observations for the year 2006 
mapped onto a 0.5° grid.

r=-0.796

Spearman rank correlations (90% significance) between BMDI and the Terra satellite‘s

MODerate resolution Imaging Spectro-radiometer (MODIS) „Deep Blue“ AOD (Hsu et 

al., 2004), shown in Fig.4a, show good agreement in dust detection between BMDI 

and Deep Blue (anticorrelated) in the southern part of the Sahara and the main source

regions, while in mountainous terrain correlation magnitudes are low (partly due to 

very small sample sizes). Correlations between BMDI and the Aura satellite‘s Ozone 

Monitoring Instrument Absorbing Aerosol Index (OMI AI, Torres et al., 1998) with 1.0°

spatial resolution (Fig.4b) show similar patterns, but with overall lower magnitudes

due to different height dependence of BMDI and OMI AI and AI sensitivity to biomass

burning aerosols.
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Figure 4: Rank correlations between BMDI and Terra-MODIS Deep Blue AOD (a) and between
BMDI and OMI AI (b).
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Evaluation of the BMDI

In Fig.2 BMDI mean values (a) and 

temporal variance (b) of 0.5° gridboxes

are shown for the year 2006. Mean

values are especially high in dust source

regions, while variance is highest at the

southern end of the Sahara, where

heavy northerly dust storms episodically

occur.

Fig. 3 shows the comparison of BMDI 

values with the AERosol RObotic

NETwork AERONET (Holben et al.,1998) 

Aerosol Optical Depth (AOD) for eight

stations around the Sahara. The

correlation between BMDI and AOD is

r=-0.796, symbol colours indicate

Ångström exponents as inferred from

AERONET observations.
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Figure 5: BMDI (a and b) and MATCH-DEAD 
model AOD (c and d) for the 04./05.03.2004 
dust storm.

AOD

0

1

2

3


