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The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency: Overview

@ Optimal order error estimates in the L?-norm
only for adjoint consistent discretizations
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Adjoint consistency: Overview

@ Optimal order error estimates in the L?-norm
only for adjoint consistent discretizations
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@ Optimal order error estimates in target quantities J(-)
only for adjoint consistent discretizations

Up to now:

@ Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation
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Adjoint consistency: Overview

@ Optimal order error estimates in the L?-norm
only for adjoint consistent discretizations

We will see:

@ Optimal order error estimates in target quantities J(-)
only for adjoint consistent discretizations

Up to now:

@ Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation
In the following:

@ Adjoint consistency analysis for DG discretizations of linear problems
with inhomogeneous boundary conditions (e.g. Dirichlet-Neumann)
in connection with target quantities J(-)
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The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency: Overview

@ Optimal order error estimates in the L?-norm
only for adjoint consistent discretizations

We will see:
@ Optimal order error estimates in target quantities J(-)
only for adjoint consistent discretizations

Up to now:

@ Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation

In the following:

@ Adjoint consistency analysis for DG discretizations of linear problems
with inhomogeneous boundary conditions (e.g. Dirichlet-Neumann)
in connection with target quantities J(-)

Later:

@ Adjoint consistency analysis for DG discretizations of nonlinear problems
in connection with target quantities J(-)

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 4 /45



The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency, Preview: We will see that ...

@ Adjoint consistency involves the discretization

e of element terms

e of interior faces terms

e of boundary conditions

e and of the target functionals J(-)
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Adjoint consistency, Preview: We will see that ...

@ Adjoint consistency involves the discretization

e of element terms

e of interior faces terms

e of boundary conditions

e and of the target functionals J(-)

@ Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.
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The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency, Preview: We will see that ...

@ Adjoint consistency involves the discretization

of element terms
of interior faces terms
of boundary conditions

]
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e and of the target functionals J(-)

@ Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.
@ An adjoint consistent DG(p) discretization of the linear advection equ.

o The error measured in terms of J(-) behaves like O(h?P+1)
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Adjoint consistency, Preview: We will see that ...

@ Adjoint consistency involves the discretization

e of element terms

e of interior faces terms

e of boundary conditions

e and of the target functionals J(-)

@ Adjoint consistency and thus optimal order estimates can be obtained

only for target functionals which are compatible with the primal equations.

@ An adjoint consistent DG(p) discretization of the linear advection equ.

o The error measured in terms of J(-) behaves like O(h?P+1)
@ An adjoint consistent DG(p) discretization of Poisson’s equation

o The error measured in terms of J(-) behaves like O(hP)
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The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency, Preview: We will see that ...

@ Adjoint consistency involves the discretization

of element terms
of interior faces terms
of boundary conditions

]
"]
]
e and of the target functionals J(-)

Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.

@ An adjoint consistent DG(p) discretization of the linear advection equ.

o The error measured in terms of J(-) behaves like O(h?P+1)

An adjoint consistent DG(p) discretization of Poisson’s equation

o The error measured in terms of J(-) behaves like O(hP)

An adjoint inconsistent DG(p) discretization of Poisson’s equation

o The error measured in terms of J(-) behaves like O(h”)
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J(u)-J(u_h)

The consistency and adjoint consistency analysis Overview and preview
Preview example 1: Model problem

Dirichlet problem of Poisson's equation on (0,1)2. Consider the target quantity
H(up) = /jQ up dx, with jo(x) = sin(mx1) sin(mx2)  on Q
Q

This target quantity is compatible with the model problem.
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J(u)-J(u_h)

The consistency and adjoint consistency analysis Overview and preview

Preview example 2: Model problem

Dirichlet problem of Poisson's equation on (0,1)2. Consider the target quantity

J(up) = /jD n-Vyupds,
r

with jp=1 onlp=T

This target quantity is also compatible with the model problem.
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@ Definition of consistency and adjoint consistency
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The consistency and adjoint consistency analysis Definition of consistency and adjoint consistency
Definition of consistency and adjoint consistency for linear problems
Primal problem: Lu=f inQ, Bu=g onT,

Target quantity: J(u) = /jQ udx 4 /jr Cuds = (jo, u)a + (jr, Cu)r
Q r
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The consistency and adjoint consistency analysis Definition of consistency and adjoint consistency
Definition of consistency and adjoint consistency for linear problems
Primal problem: Lu=f inQ, Bu=g onT,

T t tity: . . . .
arget quantity J(u) = /_]Q udx + /jr Cuds = (jo, u)a + (i, Cu)r
Q r
Compatibility condition: J(-) is compatible to the primal problem if

(Lu,z)q + (Bu, C*z)r = (u, L*2)q + (Cu, B*2)r.
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Definition of consistency and adjoint consistency for linear problems

Primal problem: Lu=f inQ, Bu=g onT,

J(u) = /jQ udx + /Jr Cuds = (an U)Q =+ (.jrv Cu)r
Q r

Compatibility condition: J(-) is compatible to the primal problem if

Target quantity:

(Lu,z)q + (Bu, C*z)r = (u, L*2)q + (Cu, B*2)r.

Adjoint problem: L*z=jo inQ, B*z=jr onT.
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The consistency and adjoint consistency analysis Definition of consistency and adjoint consistency

Definition of consistency and adjoint consistency for linear problems
Primal problem: Lu=f inQ, Bu=g onT,

Target quantity: J(u) = /jQ udx + /jr Cuds = (jo, u)a + (r, Cu)r
Q r

Compatibility condition: J(-) is compatible to the primal problem if
(Lu,z)q + (Bu, C*z)r = (u, L*2)q + (Cu, B*2)r.
Adjoint problem: L*z=jq inQ, B*z=jr onT.
Let the primal problem be discretized: Find uj, € V), such that
Bn(up, vi) = Fp(vy) Vv eV,
Consistency: The exact solution u to the primal problem satisfies:
Bh(u,v) = Fp(v) VYveV
Adjoint consistency: The exact solution z to the adjoint problem satisfies:

Bh(w,z) = J(w) YweV
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(+)

Outline

e The consistency and adjoint consistency analysis

@ A priori error estimates for target functionals J(-)
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(+)

Theorem 7a) A priori error estimates for target functionals J(-)

Given a discretization which in combination with a compatible target functional
J(-) is consistent and adjoint consistent. Assume that

Bo(w,v) < Callwll VIl Yw,v e V.
Furthermore, assume that there are constants C > 0 and r = r(p) > 0 such that
lu = upll| < Ch'|u|porriq)y Yu € HPTH(Q).
and there are constants C > 0 and ¥ = F(p) > 0 such that
v = PRVl < CH V() Vv € HPPH(Q).

Let z € V be the solution to the adjoint problem. Due to adjoint consistency we
have Bp(w,z) = J(w) for all w € V. Thus, for |J(u) — J(up)| = |J(€)| we have

J(e)| = Bale,2)| = |Bu(u — up,z — Pyz)| < Clllu— uplll [z — Pozll
< Chrl“'H"“(Q)Ch;|Z‘HP+1(Q) = Chr+F|u|Hp+1(Q)|Z|Hp+1(Q) Yu e HP+I(Q)

l.e. the error |J(u) — J(up)| is of order O(h"*T).
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(+)

Theorem 7b) A priori error estimates for target functionals J(-)

Same situation as before. But now consider a discretization which in combination
with a specific target functional J(-) is adjoint inconsistent.

Then the solution z to the adjoint problem does not satisfy

Bp(w, z) = J(w) Yw e V.
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(+)

Theorem 7b) A priori error estimates for target functionals J(-)

Same situation as before. But now consider a discretization which in combination
with a specific target functional J(-) is adjoint inconsistent.

Then the solution z to the adjoint problem does not satisfy

Bp(w, z) = J(w) Yw e V.

Instead define the solution ¢ to following mesh-dependent adjoint problem:
Bh(w,9) = J(w) VYwe V.
1) is mesh-dependent and not smooth. We obtain

[J(e)l = [Bn(e, )| = [Bn(u = un, ¥ — Pwp)| < Clllu — unlll [[¥ — Prel]
< Chr|U|Hp+1(Q)

l.e. the error |J(u) — J(up)| is of order O(h").
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(+)

Example: A priori error estimates for target functionals J(-)

For T p Uy =T and 'p # () consider the Dirichlet-Neumann problem
—Au=1f inQQ, u=gp onlp, n-Vu=gy only,
For the NIPG and the SIPG discretization we have continuity of Bp:
Bn(w,v) < CalllwllsllIvllls ~ Yw,veV,
the a priori error estimate: Nl — s < Chp|u|Hp+1(Q) Vu e Hp+1(Q)’
and the approximation estimate:
[lv — P,‘,’,pv|||5 < ChP|v ey Vv e HPTH(Q),

Thus r=pand 7 = p.

Adjoint consistent discretization: |J(u) — J(up)| is of order O(h™T) = O(h?P)
Adjoint inconsistent discretization: |J(u) — J(up)| is of order O(h") = O(hP)
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@ The consistency and adjoint consistency analysis
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The consistency and adjoint consistency analysis The consistency and adjoint consistency analysis

Derivation of the adjoint problem

Given the primal problem
Lu=1f inQ, Bu=g onT,

and the target quantity

J(u) = /_jQ udx + /jr Cuds = (jo, u)a + (r, Cu)r.
Q r
Find the adjoint operators L*, B* and C* via the compatibility condition

(Lu,z)q + (Bu, C*z)r = (u, L*2)q + (Cu, B*2)r.

Then the adjoint problem is given by

L*z=jo inQ, B*z=jr onT.
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The consistency and adjoint consistency analysis ~ The consistency and adjoint consistency analysis
Consistency analysis of the discrete primal problem
Rewrite the discrete problem: Find uj, € V), such that
Bh(uh, Vh) = Fh(vh) Yv € Vh
in following element-based primal residual form: Find u, € V), such that

/QR(U;,)V;, dx + Z

/ r(up)vh + p(up) - Vivyds
= Or\Il

+ / rr(uh)vh + pr(uh) -Vpvpds =0 Vv, € Vp,
r

The discretization is consistent
if the exact solution u to the primal problem satisfies

R(u) =0 in k,k € 7Tp,
r(u) =0, p(u)=0 on I\ T,k € Tp,
rr(u) =0, pr(u)=0 onT.
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The consistency and adjoint consistency analysis The consistency and adjoint consistency analysis

Adjoint consistency of element, interior face and boundary terms

Rewrite the discrete adjoint problem: find z, € V), such that
Bh(Wh,Zh) = J(Wh) Ywy, € V/—,,

in following element-based adjoint residual form: find z, € V}, such that

/WhR Zh dX—|— Z

/ wh r*(zp) + Vwy - p*(2z) ds
r€Ty K\r

+/Wh it (zn) +Vwy, - pi(zn)ds =0 Vw, € V.
.

The discrete adjoint problem is a consistent discretization of the adjoint problem
if the exact solution z to the adjoint problem satisfies

R*(z) =0 in K,k € Tp,
r*(z) =0, p*(z)=0 on Ok \ T,k € Tp,
rf(z) =0, pr(z)=0 onT.

Then we say: The primal discrete problem is an adjoint consistent discretization,
Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 17 / 45



The consistency and adjoint consistency analysis The consistency and adjoint consistency analysis

Target functional modifications

Sometimes the target functional must be modified in order to obtain an adjoint
consistent discretization. Example:

J(up) = J(i(up)) + / ry(up)ds, (1)

r

Definition: J(up) is a consistent modification of the target functional J(up) if
the true (exact) value is unchanged, i.e. if

holds for the exact solution u.

In particular, J(uy) in (1) is a consistent modification of J(uj) if

i(u) =u and ry(u)=0
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization
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e The consistency and adjoint consistency analysis

@ Adjoint consistency analysis of the IP discretization
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The consistency and adjoint consistency analysis  Adjoint consistency analysis of the IP discretization
The continuous adjoint problem to Poisson’s equation
For T p Uy =T and I'p # () consider the Dirichlet-Neumann problem
—Au=f inQ, u=gp onlp, n-Vu=gy only,
Multiply left hand side by z and integrate by parts twice

(-Au,2)q = (Vu,Vz)g—(n-Vu,z)r = (u,—Az)g+ (u,n-Vz)r —(n-Vu, z)r.
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The consistency and adjoint consistency analysis  Adjoint consistency analysis of the IP discretization

The continuous adjoint problem to Poisson’s equation
For T p Uy =T and I'p # () consider the Dirichlet-Neumann problem

—Au=f inQ, u=gp onlp, n-Vu=gy only,
Multiply left hand side by z and integrate by parts twice
(-Au,2)q = (Vu,Vz)g—(n-Vu,z)r = (u,—Az)g+ (u,n-Vz)r —(n-Vu, z)r.
After splitting the boundary terms according to ' = ['p U 'y and shuffling terms
(-Au, 2)o+(u, —n-V2)r,+(n-Vu, 2)r, = (u, —Az)o+(n-Vu, —2)r,+(u,n-Vz)r,.
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The consistency and adjoint consistency analysis  Adjoint consistency analysis of the IP discretization
The continuous adjoint problem to Poisson’s equation
For T p Uy =T and I'p # () consider the Dirichlet-Neumann problem
—Au=f inQ, u=gp onlp, n-Vu=gy only,
Multiply left hand side by z and integrate by parts twice

(-Au,2)q = (Vu,Vz)g—(n-Vu,z)r = (u,—Az)g+ (u,n-Vz)r —(n-Vu, z)r.
After splitting the boundary terms according to ' = ['p U 'y and shuffling terms
(-Au, 2)o+(u, —n-V2)r,+(n-Vu, 2)r, = (u, —Az)o+(n-Vu, —2)r,+(u,n-Vz)r,.

Comparing with the compatibility condition
(Lu,z)q + (Bu, C*z)r = (u, L*z)q + (Cu, B*2)r.

we see that for Lu = —Au in Q and

Bu = u, Cu=n-Vu on Ip,

Bu=n-Vu, Cu=u on Iy,
the adjoint operators are given by L*z = —Az on Q and

B*z = —z, C*'z=-n-Vz on Ip,

B*z=n-Vz, C'z=z on y.
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The consistency and adjoint consistency analysis

The continuous adjoint problem to Poisson’s equation
Primal problem:

—Au="f inQ, u=gp onlp,

For the operators Lu = —Auw in Q and

Bu = u, Cu=n-Vu
Bu=n-Vu, Cu=u
the adjoint operators are given by L*z = —Az on Q and
B*z = —2z, C*z=-n-Vz
B*z=n-Vz, Cz=z

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods

Adjoint consistency analysis of the IP discretization

n-Vu=gy only,

on FD,

on I'N,

on[p,

on FN.

14. Oct. 2008
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

The continuous adjoint problem to Poisson’s equation

Primal problem:

—Au=f inQ, u=gp onlp, n-Vu=gy only,
For the operators Lu = —Auw in Q and
Bu = u, Cu=n-Vu on p,
Bu=n-Vu, Cu=u on Ny,
the adjoint operators are given by L*z = —Az on Q and
B*z = —2z, C*z=-n-Vz on Ip,
B*z=n-Vz, C'z=z on y.

In particular, J(u) = /jQudx+/jr Cuds
Q r

:/jQUdX+/ an~Vuds+/ Jn uds,
Q Mo T

is compatible and the continuous adjoint problem is given by

—Az=jg in £, —z=Jjp onlp, n-Vz=jy only.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Primal residual form of the interior penalty DG discretization
We rewrite the discrete primal problem: find uy € V), such that

Bh(uh, Vh) = Fh(vh) VV}, S Vh,

in element-based primal residual form: find u, € V), such that

/ R(uh)vhdx—|— Z / r(uh)vh+p(uh).vhvhds
Q Or\l

~€Th
+ / rr(uh)vh + pr(uh) -Vpvpds =0 Vv, € Vp,
r

where the primal residuals are given by R(up) = f + Apup, on Q, and

r(un) = =3[Vhun] = 6[un],  p(un) = —360[us] on 0k \ T,k € Th,
rr(un) = 0(gp — un), pr(up) =0(gp — up)n on Ip,
rr(un) = gn — N - Vi, pr(up) =0 on .
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Consistency of the interior penalty DG discretization

The primal residuals are given by R(uy) = f + Apup on Q, and

r(up) = —%[thh]l — O[un), plup) = —%9|[uh]] on I\ T,k € Ty,
rr(up) = 6(gp — up), pr(up) =0(gp — up)n  onlp,
I’r(uh) =8Ny — N thh, pr(uh) =0 on F,\,.

The exact solution u € H?(Q) to the primal problem:

—Au="f inQQ, u=gp onlp, n-Vu=gy only,
satisfies
R(u)=0 in K,k € Tp,
r(u) =0, p(u)=0 on Ok \ T,k € Tp,
rr(u) =0, pr(u)=0 onT.

Thereby, the interior penalty DG discretization (NIPG and SIPG) are consistent.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Adjoint residual form of the interior penalty DG discretization

We rewrite the discrete adjoint problem: find z, € V}, such that

Bh(Wh,Zh) = J(Wh) Ywy € Vp,

in following element-based adjoint residual form: find z; € V}, such that

/WhR*zh dx+Z/ wh r*(zn) + Vwy, - p*(2z) ds
Or\l

KET)
+ / wh 1t (zn) + Vwy - pi(zp)ds =0 Ywy, € V.
r
where the adjoint residuals are given by R*(zy) = jo + Apz, on Q, by
r(zn) = —3[Vhze]l = (L +0)n - {Viz} —0[z],  p*(2n) = 3[z],
on interior faces Ok \ ', k € Tp, and by

i (zn) = —(L+0)n - Vyzy — 2z, pr(zn) = (p + zp)n onlp,
1t (zn) = jn — - Vizp, pr(zn) =

o

on FN.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Adjoint consistency of the interior penalty DG discretization

The adjoint residuals are given by R*(z,) = jo + Apz, on Q, by
r*(zn) = —5[Vaze] = (L +0)n- {Vaz} — d[zs], p*(z) = 3[z].
on interior faces Ok \ ', k € Tp, and by

it(zn) = —(1+0)n-Vyz, — bzp, pr(zn) = (p + zp)n onlp,

rt(zn) = jn — N - Vipzp, pr(zn) =0 on Iy.
The exact solution z € H?(Q) to the continuous adjoint problem:
—Az=jg in £, —z=jp onlp, n-Vz=jy only.

satisfies R*(z) =0o0n Q, r*(z) = —2n-Vz#0for § =1 on I\ T,k € Tp,

r*(z) =0, provided § = p(z)=0 ondk\l keT
rf(z) =0, pr(z) =0 onTy
rt(z) = djp, provided § = —1 pi(z)=0 onTlp

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008

25 / 45



The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Adjoint consistency of the interior penalty DG discretization

The exact solution z € H?(Q) to the adjoint problem satisfies R*(z) = 0 on Q,

r*(z) =0, provided 6 = —1, p(z)=0 ondk\l keT,
(z) =0, pi(z)=0 on Ty
rt(z) = djp, provided § = —1 pi(z)=0 onTp

SIPG is adjoint consistent on interior faces Ok \ ',k € Tj,

SIPG is adjoint consistent on the Neumann boundary Iy

SIPG in combination with J(-) and jp # 0 is adjoint inconsistent

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008

From r*(z) = —2n-Vz # 0 for # = 1: NIPG is adjoint inconsistent.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization
Modification of the target functional

SIPG in combination with  j(,) = / jon-Vaupds

)
and jp # 0 is adjoint inconsistent. Modify J(up) as follows:

J(un) = I(up) — i 6(up — gp)jp ds

Then the corresponding discrete adjoint problem is: find z, € V}, such that

Bh(Wh,Zh) = j’[uh](wh) Ywy, € Vh,

where jl[Uh](Wh):Jl[Uh](Wh)_/ thSdes:J(Wh)—/ wh djp ds.

>} )

Thereby, t(zp) = -1 +0)n-Vyz, — 52;, onlp

and the solution z to the adjoint problem:

—Az=jg inQ, —z=jp onlp, n-Vz=jy only.

satisfies r*(z) = 0 provided 6 = —1.
Thereby, SIPG in combination with J(up) is adjoint consistent.
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The consistency and adjoint consistency analysis Numerical results

Outline

e The consistency and adjoint consistency analysis

@ Numerical results
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J(u)-J(u_h)

The consistency and adjoint consistency analysis Numerical results

Example 1: Model problem with SIPG

Dirichlet problem of Poisson's equation on (0,1)2. Consider the target quantity
H(up) = /jQ up dx, with jo(x) = sin(mx1) sin(mx2)  on Q
Q

This target quantity is compatible with the model problem.
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J(u)-J(u_h)

The consistency and adjoint consistency analysis Numerical results

Example 1: Model problem with NIPG

Dirichlet problem of Poisson's equation on (0,1)2. Consider the target quantity
H(up) = /jQ up dx, with jo(x) = sin(mx1) sin(mx2)  on Q
Q

This target quantity is compatible with the model problem.
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J(u)-J(u_h)

The consistency and adjoint consistency analysis Numerical results

Example 2: Model problem with SIPG but adjoint inconsistent

Dirichlet problem of Poisson's equation on (0,1)2. Consider the target quantity

J(up) = /jD n-Vyupds,
r

with jp=1

onFD:F

This target quantity is also compatible with the model problem.
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J(u)-td(u_h)

The consistency and adjoint consistency analysis Numerical results

Example 2: Model problem with SIPG and adjoint consistent

Dirichlet problem of Poisson's equation on (0,1)2. Consider the target quantity

jz(uh) = /jD n- thh ds — 5(uh — gD)jD ds with jD =1 on FD =T
r o

is a consistent modification of J(up).

SIPG,p=1 ——
' SPEES T3 . L
' SIPG discretization of
0ot |- 1 Poisson's equation:

0.0001 |

1 The error |Ja(u) — Jo(up)]
of the DG(p), p=1,...,3,
discretization

behaves like O(h(P+1)

adjoint consistent
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The consistency and adjoint consistency analysis ~ Numerical results
Example 2: Smoothness of the discrete adjoint solution
The exact solution to the adjoint problem

—Az=0 inQ, —z=jp onlp
with jp = 1 is given by z = —1 on Q.
Using the SIPG discretization in combination with Jy(up) and Ja(up):

2_hfor J_2, adjoint inconsistent

LL 5656 coo
ivskaavonas

discrete adjoint solution z,
connected to J(up)
adjoint inconsistent
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The consistency and adjoint consistency analysis ~ Numerical results
Example 2: Smoothness of the discrete adjoint solution
The exact solution to the adjoint problem

—Az=0 inQ, —z=jp onlp
with jp = 1 is given by z = —1 on Q.
Using the SIPG discretization in combination with Jy(up) and Ja(up):

2_hfor J_2, adjoint inconsistent 2_hfor tiide J_2, adjoint consistent

LL 5656 coo
ivskaavonas

discrete adjoint solution z, discrete adjoint solution z,
connected to J(up) connected to J(up)
adjoint inconsistent adjoint consistent
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The consistency and adjoint consistency analysis Numerical results

Example 3: Another Dirichlet problem

Consider 2 = (0,1) x (0.1,1) and Poisson’s equation with forcing function f such

that
u(x) = 3(1 4 x1)?sin(2mxx0).

Dirichlet boundary conditions are based on the exact solution v.

Consider the target quantity J3(up) and its consistent modification J3(up):

J(up) = /an'vhUhd57
r

Toun) = Jsun) — /r 5(un — go)jio ds.

and choose jp € L%(T) to be given by

1

exp (4 — &((a — %)2 — %)_2) for x €
exp (4 — 35((a —3)* —

(0
. _ )*2) for x € (3,1) x (0.1, 1),
o) =194 forx e (1,2) x (0.1,1),
0 elsewhere on I.
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J(u)-J(u_h)

The consistency and adjoint consistency analysis Numerical results

Example 3: Another Dirichlet problem

Using the SIPG discretization in combination with Js(us) and Js(up):
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The consistency and adjoint consistency analysis

Numerical results

Example 3: Another Dirichlet problem

Using the SIPG discretization

in combination with Js(us) and J5(up):
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The consistency and adjoint consistency analysis Numerical results

Example 3: Smoothness of the discrete adjoint solution

Using the SIPG discretization in combination with Jy(us) and Jo(up):

2_h for J_3, adjoint inconsistent
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discrete adjoint solution zj,
connected to J3(up)
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The consistency and adjoint consistency analysis

Numerical results

Example 3: Smoothness of the discrete adjoint solution

Using the SIPG discretization in combination with Jy(us) and Jo(up):

2_h for J_3, adjoint inconsistent

discrete adjoint solution zj,
connected to J3(up)
adjoint inconsistent
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Outline

e The consistency and adjoint consistency analysis

@ Adjoint consistency analysis of the upwind DG discretization
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

The continuous adjoint problem to the linear advection equation
Consider the linear advection equation
Lu:=V-(bu)+cu=f inQ, u=g onl_={xel,b(x) n(x)<O0}.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

The continuous adjoint problem to the linear advection equation
Consider the linear advection equation

Lu:=V-(bu)+cu=f inQ, u=g onl_={xerl, b(x) n(x)<0}.
Multiply by z € H®(7},), integrate over Q and integrate by parts
Jo (V- (bu) 4+ cu) zdx = — [ (bu) - Vzdx + [, cuzdx + [ b-nuzds.
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The consistency and adjoint consistency analysis ~ Adjoint consistency analysis of the upwind DG discretization

The continuous adjoint problem to the linear advection equation
Consider the linear advection equation

Lu:=V-(bu)+cu=f inQ, u=g onl_={xerl, b(x) n(x)<0}.
Multiply by z € H®(7},), integrate over Q and integrate by parts
Jo (V- (bu) 4+ cu) zdx = — [ (bu) - Vzdx + [, cuzdx + [ b-nuzds.
After splitting the boundary ' = T_ U T} we obtain:

(V- (bu)+cu,z)qg+ (u,=b-nz)r = (u,~b-Vz+cz)g+(u,b-nz) .
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

The continuous adjoint problem to the linear advection equation
Consider the linear advection equation

Lu:=V-(bu)+cu=f inQ, u=g onl_={xerl, b(x) n(x)<0}.
Multiply by z € H®(7},), integrate over Q and integrate by parts
Jo (V- (bu) 4+ cu) zdx = — [ (bu) - Vzdx + [, cuzdx + [ b-nuzds.
After splitting the boundary ' = T_ U T} we obtain:

(V- (bu)+cu,z)qg+ (u,=b-nz)r = (u,~b-Vz+cz)g+(u,b-nz) .
Comparing with the compatibility condition

(Lu,z)q + (Bu, C*z)r = (u,L*z)q + (Cu, B*2)r,

we see that for Lu =V - (bu) + cu in Q and

Bu = u, Cu=0 onl_,
Bu =0, Cu=u on [,
the adjoint operators are given by L*z = —b - Vz 4 cz in Q and
B*z =0, C'z=-b-nz onl_,
B*z=b-nz, Cz=0 on .
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

The continuous adjoint problem to the linear advection equation

Primal problem:

Lu:=V-(bu)+cu=f inQ, u=g onl_.
For the operators Lu =V - (bu) + cu in Q and
Bu = u, Cu=0 onl_,
Bu =0, Cu=u on [y,
the adjoint operators are given by L*z = —b - Vz + cz in Q and
B*z =0, C'z=-b-nz onl_,
B*z=b-nz, C'z=0 on .
In particular,

J(U):/jQUdX+/jrCUd5:/jQUdX+/ Jruds,
Q r Q r,

is compatible the continuous adjoint problem is given by
—b-Vz4+cz=jg inQ, b-nz=j onl,.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Primal residual form of the upwind DG discretization

We rewrite the discrete primal problem: find uy € V}, such that
Bh(uh, Vh) = Fh(vh) VVh c Vh,
in element-based primal residual form: find u, € V), such that

/R up)vp dx + Z/ r(up vhds+/rr(uh)vhd5:0 Yvy € Vh,
Or\l r

KET)

where the primal residuals are given by R(up) = f — Vj, - (bup) — cup on Q, and
r(up) =b-n(uf —u;)

on Ok_\T,k € Tp,
rr(up) = b - n(up — g)

onl_.
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The consistency and adjoint consistency analysis ~ Adjoint consistency analysis of the upwind DG discretization
Primal residual form of the upwind DG discretization
We rewrite the discrete primal problem: find uy € V}, such that
Bu(up, vh) = Fn(vh) Vv, € WV,
in element-based primal residual form: find u, € V), such that
/ (up)vhdx + Z / r(up)v ds+/rr(uh)vh ds=0 Vv, €V,
neT, ) OR\T r

where the primal residuals are given by R(up) = f — Vj, - (bup) — cup on Q, and

r(up) =b-n(uf —u;) on dk_\ T,k € T,
rr(up) =b - n(up — g) onl_.
The exact solution u € H®(Q) to the primal problem:
V(bu)+cu=Ff inQ, u=g onl_,
satisfies R(u)=0 in K,k € Tp,
r(u)=0 on I\ T,k € Ty,
rr(u) =0 onT.

Thereby, the upwind DG discretization is consistent.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Adjoint residual form of the upwind DG discretization

We rewrite the discrete adjoint problem: find z, € V}, such that

Bh(Wh,Zh) = _/(Wh) Yw, € \//,7

in following element-based adjoint residual form: find z, € V}, such that

/ wp, R*(zp) dx + Z / wWh r*(zh)ds+/wh rf(zn)ds =0 Vwy € Vj,
Q weT, Or\I r

where the adjoint residuals are given by

R*(zn) = ja+b-Vpzy — czp on
I’*(Zh) =-b-n [Zh]

on Ok \ T,k € Tp,
rF(Zh):jr—b-nZh

on r+.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Adjoint residual form of the upwind DG discretization

The adjoint residuals are given by

R*(Zh):jQ-l-b'thh—CZh on
r*(zp) = —b - n[z)] on I\ T,k € Ty,
rf(zn) =jr —b-nz, onl,.

The exact solution z € HP(Q) to the continuous adjoint problem:

—b-Vz4+cz=jo5 inQQ, b-nz=j onlg
satisfies
R*(z)=0 on Q
r*(z)=0 on Ok \ T,k € Ty,
rf(z)=0 on .

Thereby, the upwind DG discretization is adjoint consistent.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Example: A priori error estimates for target functionals J(-)
For the linear advection equation
Lu:=V-(bu)+cu="f inQ, u=g onl_,
we have the a priori error estimate:
l[u = unlllsy < CHPT?[ulppn(q)  Yu € HPTH(Q),
and the approximation estimate:
v = Pg vl < CHPT2 v oy Vv € HPPH(Q).
If we now had continuity
| Bn(u, v)| < Clllullleo V][5

we could employ the error estimate: |J(u) — J(uy)| is of order O(h™*T).
Here for r=p+1/2and ¥ =p+1/2.
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The consistency and adjoint consistency analysis ~ Adjoint consistency analysis of the upwind DG discretization
Example: A priori error estimates for target functionals J(-)
For the linear advection equation
Lu:=V-(bu)+cu="f inQ, u=g onl_,
we have the a priori error estimate:
l[u = unlllsy < CHPT?[ulppn(q)  Yu € HPTH(Q),
and the approximation estimate:
v = Pg vl < CHPT2 v oy Vv € HPPH(Q).
If we now had continuity
| Bn(u, v)| < Clllullleo V][5

we could employ the error estimate: |J(u) — J(uy)| is of order O(h™*T).
Here for r=p+1/2and ¥ =p+1/2.

The error |J(u) — J(up)| for the upwind DG discretization is of O(h?P*1) [35,23].
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The consistency and adjoint consistency analysis Summary

Outline

e The consistency and adjoint consistency analysis

@ Summary
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The consistency and adjoint consistency analysis Summary

A priori error estimates for target functionals J(-): Summary

@ A discretization is adjoint consistent if the corresponding discrete adjoint
problem is a consistent discretization of the continuous adjoint problem.

@ Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.
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The consistency and adjoint consistency analysis Summary

A priori error estimates for target functionals J(-): Summary

@ A discretization is adjoint consistent if the corresponding discrete adjoint
problem is a consistent discretization of the continuous adjoint problem.

@ Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.

@ The upwind DG(p) discretization of the linear advection equation in
combination with compatible target quantities is adjoint consistent:

o The error measured in terms of J(-) behaves like O(h?P*1)

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 45 / 45



The consistency and adjoint consistency analysis Summary

A priori error estimates for target functionals J(-): Summary

A discretization is adjoint consistent if the corresponding discrete adjoint
problem is a consistent discretization of the continuous adjoint problem.

@ Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.

@ The upwind DG(p) discretization of the linear advection equation in
combination with compatible target quantities is adjoint consistent:

o The error measured in terms of J(-) behaves like O(h?P*1)
@ For an adjoint consistent DG(p) discretization of Poisson’s equation:

o The error measured in terms of J(-) behaves like O(h?P)
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The consistency and adjoint consistency analysis Summary

A priori error estimates for target functionals J(-): Summary

A discretization is adjoint consistent if the corresponding discrete adjoint
problem is a consistent discretization of the continuous adjoint problem.

@ Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.

@ The upwind DG(p) discretization of the linear advection equation in
combination with compatible target quantities is adjoint consistent:

o The error measured in terms of J(-) behaves like O(h?P*1)
@ For an adjoint consistent DG(p) discretization of Poisson’s equation:
o The error measured in terms of J(-) behaves like O(h?P)

@ For an adjoint inconsistent DG(p) discretization of Poisson’s equation:

o The error measured in terms of J(-) behaves like O(hP)
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