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The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency: Overview

Optimal order error estimates in the L2-norm
only for adjoint consistent discretizations

We will see:

Optimal order error estimates in target quantities J(·)
only for adjoint consistent discretizations

Up to now:

Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation

In the following:

Adjoint consistency analysis for DG discretizations of linear problems
with inhomogeneous boundary conditions (e.g. Dirichlet-Neumann)
in connection with target quantities J(·)

Later:

Adjoint consistency analysis for DG discretizations of nonlinear problems
in connection with target quantities J(·)

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 4 / 45



The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency: Overview

Optimal order error estimates in the L2-norm
only for adjoint consistent discretizations

We will see:

Optimal order error estimates in target quantities J(·)
only for adjoint consistent discretizations

Up to now:

Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation

In the following:

Adjoint consistency analysis for DG discretizations of linear problems
with inhomogeneous boundary conditions (e.g. Dirichlet-Neumann)
in connection with target quantities J(·)

Later:

Adjoint consistency analysis for DG discretizations of nonlinear problems
in connection with target quantities J(·)

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 4 / 45



The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency: Overview

Optimal order error estimates in the L2-norm
only for adjoint consistent discretizations

We will see:

Optimal order error estimates in target quantities J(·)
only for adjoint consistent discretizations

Up to now:

Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation

In the following:

Adjoint consistency analysis for DG discretizations of linear problems
with inhomogeneous boundary conditions (e.g. Dirichlet-Neumann)
in connection with target quantities J(·)

Later:

Adjoint consistency analysis for DG discretizations of nonlinear problems
in connection with target quantities J(·)

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 4 / 45



The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency: Overview

Optimal order error estimates in the L2-norm
only for adjoint consistent discretizations

We will see:

Optimal order error estimates in target quantities J(·)
only for adjoint consistent discretizations

Up to now:

Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation

In the following:

Adjoint consistency analysis for DG discretizations of linear problems
with inhomogeneous boundary conditions (e.g. Dirichlet-Neumann)
in connection with target quantities J(·)

Later:

Adjoint consistency analysis for DG discretizations of nonlinear problems
in connection with target quantities J(·)

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 4 / 45



The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency: Overview

Optimal order error estimates in the L2-norm
only for adjoint consistent discretizations

We will see:

Optimal order error estimates in target quantities J(·)
only for adjoint consistent discretizations

Up to now:

Adjoint consistency analysis for DG discretizations of
the homogeneous Dirichlet problem of Poisson’s equation

In the following:

Adjoint consistency analysis for DG discretizations of linear problems
with inhomogeneous boundary conditions (e.g. Dirichlet-Neumann)
in connection with target quantities J(·)

Later:

Adjoint consistency analysis for DG discretizations of nonlinear problems
in connection with target quantities J(·)

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 4 / 45



The consistency and adjoint consistency analysis Overview and preview

Adjoint consistency, Preview: We will see that ...

Adjoint consistency involves the discretization

of element terms
of interior faces terms
of boundary conditions
and of the target functionals J(·)

Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.

An adjoint consistent DG(p) discretization of the linear advection equ.

The error measured in terms of J(·) behaves like O(h2p+1)

An adjoint consistent DG(p) discretization of Poisson’s equation

The error measured in terms of J(·) behaves like O(h2p)

An adjoint inconsistent DG(p) discretization of Poisson’s equation

The error measured in terms of J(·) behaves like O(hp)
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The consistency and adjoint consistency analysis Overview and preview

Preview example 1: Model problem

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J1(uh) =

∫
Ω

jΩ uh dx, with jΩ(x) = sin(πx1) sin(πx2) on Ω

This target quantity is compatible with the model problem.
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The consistency and adjoint consistency analysis Overview and preview

Preview example 2: Model problem

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J2(uh) =

∫
Γ

jD n · ∇huh ds, with jD ≡ 1 on ΓD = Γ

This target quantity is also compatible with the model problem.
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The consistency and adjoint consistency analysis Definition of consistency and adjoint consistency

Definition of consistency and adjoint consistency for linear problems

Primal problem: Lu = f in Ω, Bu = g on Γ,

Target quantity:
J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds = (jΩ, u)Ω + (jΓ,Cu)Γ

Compatibility condition: J(·) is compatible to the primal problem if

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ.

Adjoint problem: L∗z = jΩ in Ω, B∗z = jΓ on Γ.

Let the primal problem be discretized: Find uh ∈ Vh such that

Bh(uh, vh) = Fh(vh) ∀v ∈ Vh

Consistency: The exact solution u to the primal problem satisfies:

Bh(u, v) = Fh(v) ∀v ∈ V

Adjoint consistency: The exact solution z to the adjoint problem satisfies:

Bh(w , z) = J(w) ∀w ∈ V
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(·)

Theorem 7a) A priori error estimates for target functionals J(·)
Given a discretization which in combination with a compatible target functional
J(·) is consistent and adjoint consistent. Assume that

Bh(w , v) ≤ CB |‖w‖| |‖v‖| ∀w , v ∈ V .

Furthermore, assume that there are constants C > 0 and r = r(p) > 0 such that

|‖u − uh‖| ≤ Chr |u|Hp+1(Ω) ∀u ∈ Hp+1(Ω).

and there are constants C > 0 and r̃ = r̃(p) > 0 such that

|‖v − Pd
h,pv‖| ≤ Chr̃ |v |Hp+1(Ω) ∀v ∈ Hp+1(Ω).

Let z ∈ V be the solution to the adjoint problem. Due to adjoint consistency we
have Bh(w , z) = J(w) for all w ∈ V . Thus, for |J(u)− J(uh)| = |J(e)| we have

|J(e)| = |Bh(e, z)| = |Bh(u − uh, z − Phz)| ≤ C |‖u − uh‖| |‖z − Phz‖|
≤ Chr |u|Hp+1(Ω)Chr̃ |z |Hp+1(Ω) = Chr+r̃ |u|Hp+1(Ω)|z |Hp+1(Ω) ∀u ∈ Hp+1(Ω)

I.e. the error |J(u)− J(uh)| is of order O(hr+r̃ ).
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(·)

Theorem 7b) A priori error estimates for target functionals J(·)

Same situation as before. But now consider a discretization which in combination
with a specific target functional J(·) is adjoint inconsistent.

Then the solution z to the adjoint problem does not satisfy

Bh(w , z) = J(w) ∀w ∈ V .

Instead define the solution ψ to following mesh-dependent adjoint problem:

Bh(w , ψ) = J(w) ∀w ∈ V .

ψ is mesh-dependent and not smooth. We obtain

|J(e)| = |Bh(e, ψ)| = |Bh(u − uh, ψ − Phψ)| ≤ C |‖u − uh‖| |‖ψ − Phψ‖|
≤ Chr |u|Hp+1(Ω)

I.e. the error |J(u)− J(uh)| is of order O(hr ).
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The consistency and adjoint consistency analysis A priori error estimates for target functionals J(·)

Example: A priori error estimates for target functionals J(·)

For ΓD ∪ ΓN = Γ and ΓD 6= ∅ consider the Dirichlet-Neumann problem

−∆u = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN ,

For the NIPG and the SIPG discretization we have continuity of Bh:

Bh(w , v) ≤ CB |‖w‖|δ| ‖v‖|δ ∀w , v ∈ V ,

the a priori error estimate: |‖u − uh‖|δ ≤ Chp|u|Hp+1(Ω) ∀u ∈ Hp+1(Ω),

and the approximation estimate:

|‖v − Pd
h,pv‖|δ ≤ Chp|v |Hp+1(Ω) ∀v ∈ Hp+1(Ω),

Thus r = p and r̃ = p.

Adjoint consistent discretization: |J(u)− J(uh)| is of order O(hr+r̃ ) = O(h2p)
Adjoint inconsistent discretization: |J(u)− J(uh)| is of order O(hr ) = O(hp)
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The consistency and adjoint consistency analysis The consistency and adjoint consistency analysis

Derivation of the adjoint problem

Given the primal problem

Lu = f in Ω, Bu = g on Γ,

and the target quantity

J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds = (jΩ, u)Ω + (jΓ,Cu)Γ.

Find the adjoint operators L∗, B∗ and C∗ via the compatibility condition

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ.

Then the adjoint problem is given by

L∗z = jΩ in Ω, B∗z = jΓ on Γ.
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The consistency and adjoint consistency analysis The consistency and adjoint consistency analysis

Consistency analysis of the discrete primal problem

Rewrite the discrete problem: Find uh ∈ Vh such that

Bh(uh, vh) = Fh(vh) ∀v ∈ Vh

in following element-based primal residual form: Find uh ∈ Vh such that∫
Ω

R(uh)vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)vh + ρ(uh) · ∇hvh ds

+

∫
Γ

rΓ(uh)vh + ρΓ(uh) · ∇hvh ds = 0 ∀vh ∈ Vh,

The discretization is consistent
if the exact solution u to the primal problem satisfies

R(u) = 0 in κ, κ ∈ Th,

r(u) = 0, ρ(u) = 0 on ∂κ \ Γ, κ ∈ Th,

rΓ(u) = 0, ρΓ(u) = 0 on Γ.
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The consistency and adjoint consistency analysis The consistency and adjoint consistency analysis

Adjoint consistency of element, interior face and boundary terms

Rewrite the discrete adjoint problem: find zh ∈ Vh such that

Bh(wh, zh) = J(wh) ∀wh ∈ Vh,

in following element-based adjoint residual form: find zh ∈ Vh such that∫
Ω

wh R∗(zh) dx +
∑
κ∈Th

∫
∂κ\Γ

wh r∗(zh) +∇wh · ρ∗(zh) ds

+

∫
Γ

wh r∗Γ (zh) +∇wh · ρ∗Γ(zh) ds = 0 ∀wh ∈ Vh.

The discrete adjoint problem is a consistent discretization of the adjoint problem
if the exact solution z to the adjoint problem satisfies

R∗(z) = 0 in κ, κ ∈ Th,

r∗(z) = 0, ρ∗(z) = 0 on ∂κ \ Γ, κ ∈ Th,

r∗Γ (z) = 0, ρ∗Γ(z) = 0 on Γ.

Then we say: The primal discrete problem is an adjoint consistent discretization.
Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 17 / 45



The consistency and adjoint consistency analysis The consistency and adjoint consistency analysis

Target functional modifications

Sometimes the target functional must be modified in order to obtain an adjoint
consistent discretization. Example:

J̃(uh) = J(i(uh)) +

∫
Γ

rJ(uh) ds, (1)

Definition: J̃(uh) is a consistent modification of the target functional J(uh) if
the true (exact) value is unchanged, i.e. if

J̃(u) = J(u)

holds for the exact solution u.

In particular, J̃(uh) in (1) is a consistent modification of J(uh) if

i(u) = u and rJ(u) = 0
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

The continuous adjoint problem to Poisson’s equation

For ΓD ∪ ΓN = Γ and ΓD 6= ∅ consider the Dirichlet-Neumann problem

−∆u = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN ,

Multiply left hand side by z and integrate by parts twice

(−∆u, z)Ω = (∇u,∇z)Ω − (n · ∇u, z)Γ = (u,−∆z)Ω + (u,n · ∇z)Γ − (n · ∇u, z)Γ.

After splitting the boundary terms according to Γ = ΓD ∪ ΓN and shuffling terms

(−∆u, z)Ω+(u,−n·∇z)ΓD
+(n·∇u, z)ΓN

= (u,−∆z)Ω+(n·∇u,−z)ΓD
+(u,n·∇z)ΓN

.

Comparing with the compatibility condition

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ.

we see that for Lu = −∆u in Ω and

Bu = u, Cu = n · ∇u on ΓD ,

Bu = n · ∇u, Cu = u on ΓN ,

the adjoint operators are given by L∗z = −∆z on Ω and

B∗z = −z , C∗z = −n · ∇z on ΓD ,

B∗z = n · ∇z , C∗z = z on ΓN .
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the adjoint operators are given by L∗z = −∆z on Ω and

B∗z = −z , C∗z = −n · ∇z on ΓD ,

B∗z = n · ∇z , C∗z = z on ΓN .

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 20 / 45



The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

The continuous adjoint problem to Poisson’s equation

For ΓD ∪ ΓN = Γ and ΓD 6= ∅ consider the Dirichlet-Neumann problem

−∆u = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN ,

Multiply left hand side by z and integrate by parts twice

(−∆u, z)Ω = (∇u,∇z)Ω − (n · ∇u, z)Γ = (u,−∆z)Ω + (u,n · ∇z)Γ − (n · ∇u, z)Γ.

After splitting the boundary terms according to Γ = ΓD ∪ ΓN and shuffling terms
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Bu = u, Cu = n · ∇u on ΓD ,
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

The continuous adjoint problem to Poisson’s equation

Primal problem:

−∆u = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN ,

For the operators Lu = −∆u in Ω and

Bu = u, Cu = n · ∇u on ΓD ,

Bu = n · ∇u, Cu = u on ΓN ,

the adjoint operators are given by L∗z = −∆z on Ω and

B∗z = −z , C∗z = −n · ∇z on ΓD ,

B∗z = n · ∇z , C∗z = z on ΓN .

In particular, J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds

=

∫
Ω

jΩ u dx +

∫
ΓD

jD n · ∇u ds +

∫
ΓN

jN u ds,

is compatible and the continuous adjoint problem is given by

−∆z = jΩ in Ω, −z = jD on ΓD , n · ∇z = jN on ΓN .
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Primal residual form of the interior penalty DG discretization

We rewrite the discrete primal problem: find uh ∈ Vh such that

Bh(uh, vh) = Fh(vh) ∀vh ∈ Vh,

in element-based primal residual form: find uh ∈ Vh such that∫
Ω

R(uh)vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)vh + ρ(uh) · ∇hvh ds

+

∫
Γ

rΓ(uh)vh + ρΓ(uh) · ∇hvh ds = 0 ∀vh ∈ Vh,

where the primal residuals are given by R(uh) = f + ∆huh on Ω, and

r(uh) = − 1
2 [[∇huh]]− δ[uh], ρ(uh) = − 1

2θ[[uh]] on ∂κ \ Γ, κ ∈ Th,

rΓ(uh) = δ(gD − uh), ρΓ(uh) = θ(gD − uh)n on ΓD ,

rΓ(uh) = gN − n · ∇huh, ρΓ(uh) = 0 on ΓN .
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Consistency of the interior penalty DG discretization

The primal residuals are given by R(uh) = f + ∆huh on Ω, and

r(uh) = − 1
2 [[∇huh]]− δ[uh], ρ(uh) = − 1

2θ[[uh]] on ∂κ \ Γ, κ ∈ Th,

rΓ(uh) = δ(gD − uh), ρΓ(uh) = θ(gD − uh)n on ΓD ,

rΓ(uh) = gN − n · ∇huh, ρΓ(uh) = 0 on ΓN .

The exact solution u ∈ H2(Ω) to the primal problem:

−∆u = f in Ω, u = gD on ΓD , n · ∇u = gN on ΓN ,

satisfies

R(u) = 0 in κ, κ ∈ Th,

r(u) = 0, ρ(u) = 0 on ∂κ \ Γ, κ ∈ Th,

rΓ(u) = 0, ρΓ(u) = 0 on Γ.

Thereby, the interior penalty DG discretization (NIPG and SIPG) are consistent.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Adjoint residual form of the interior penalty DG discretization

We rewrite the discrete adjoint problem: find zh ∈ Vh such that

Bh(wh, zh) = J(wh) ∀wh ∈ Vh,

in following element-based adjoint residual form: find zh ∈ Vh such that∫
Ω

wh R∗(zh) dx +
∑
κ∈Th

∫
∂κ\Γ

wh r∗(zh) +∇wh · ρ∗(zh) ds

+

∫
Γ

wh r∗Γ (zh) +∇wh · ρ∗Γ(zh) ds = 0 ∀wh ∈ Vh.

where the adjoint residuals are given by R∗(zh) = jΩ + ∆hzh on Ω, by

r∗(zh) = − 1
2 [[∇hzh]]− (1 + θ)n · {{∇hz}} − δ[zh], ρ∗(zh) = 1

2 [[zh]],

on interior faces ∂κ \ Γ, κ ∈ Th, and by

r∗Γ (zh) = −(1 + θ)n · ∇hzh − δzh, ρ∗Γ(zh) = (jD + zh)n on ΓD ,

r∗Γ (zh) = jN − n · ∇hzh, ρ∗Γ(zh) = 0 on ΓN .
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Adjoint consistency of the interior penalty DG discretization

The adjoint residuals are given by R∗(zh) = jΩ + ∆hzh on Ω, by

r∗(zh) = − 1
2 [[∇hzh]]− (1 + θ)n · {{∇hz}} − δ[zh], ρ∗(zh) = 1

2 [[zh]],

on interior faces ∂κ \ Γ, κ ∈ Th, and by

r∗Γ (zh) = −(1 + θ)n · ∇hzh − δzh, ρ∗Γ(zh) = (jD + zh)n on ΓD ,

r∗Γ (zh) = jN − n · ∇hzh, ρ∗Γ(zh) = 0 on ΓN .

The exact solution z ∈ H2(Ω) to the continuous adjoint problem:

−∆z = jΩ in Ω, −z = jD on ΓD , n · ∇z = jN on ΓN .

satisfies R∗(z) = 0 on Ω, r∗(z) = −2n · ∇z 6≡ 0 for θ = 1 on ∂κ \ Γ, κ ∈ Th,

r∗(z) = 0, provided θ = −1, ρ∗(z) = 0 on ∂κ \ Γ, κ ∈ Th

r∗Γ (z) = 0, ρ∗Γ(z) = 0 on ΓN

r∗Γ (z) = δjD , provided θ = −1 ρ∗Γ(z) = 0 on ΓD
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Adjoint consistency of the interior penalty DG discretization

The exact solution z ∈ H2(Ω) to the adjoint problem satisfies R∗(z) = 0 on Ω,

r∗(z) = 0, provided θ = −1, ρ∗(z) = 0 on ∂κ \ Γ, κ ∈ Th

r∗Γ (z) = 0, ρ∗Γ(z) = 0 on ΓN

r∗Γ (z) = δjD , provided θ = −1 ρ∗Γ(z) = 0 on ΓD

From r∗(z) = −2n · ∇z 6≡ 0 for θ = 1: NIPG is adjoint inconsistent.

SIPG is adjoint consistent on interior faces ∂κ \ Γ, κ ∈ Th

SIPG is adjoint consistent on the Neumann boundary ΓN

SIPG in combination with J(·) and jD 6= 0 is adjoint inconsistent
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the IP discretization

Modification of the target functional

SIPG in combination with J(uh) =

∫
ΓD

jD n · ∇huh ds

and jD 6= 0 is adjoint inconsistent. Modify J(uh) as follows:

J̃(uh) = J(uh)−
∫

ΓD

δ(uh − gD)jD ds

Then the corresponding discrete adjoint problem is: find zh ∈ Vh such that

Bh(wh, zh) = J̃ ′[uh](wh) ∀wh ∈ Vh,

where J̃ ′[uh](wh) = J ′[uh](wh)−
∫

ΓD

wh δjD ds = J(wh)−
∫

ΓD

wh δjD ds.

Thereby, r∗Γ (zh) = −(1 + θ)n · ∇hzh − δzh −δjD on ΓD

and the solution z to the adjoint problem:

−∆z = jΩ in Ω, −z = jD on ΓD , n · ∇z = jN on ΓN .

satisfies r∗(z) = 0 provided θ = −1.

Thereby, SIPG in combination with J̃(uh) is adjoint consistent.
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The consistency and adjoint consistency analysis Numerical results
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The consistency and adjoint consistency analysis Numerical results

Example 1: Model problem with SIPG

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J1(uh) =

∫
Ω

jΩ uh dx, with jΩ(x) = sin(πx1) sin(πx2) on Ω

This target quantity is compatible with the model problem.
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The consistency and adjoint consistency analysis Numerical results

Example 1: Model problem with NIPG

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J1(uh) =

∫
Ω
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The consistency and adjoint consistency analysis Numerical results

Example 2: Model problem with SIPG but adjoint inconsistent

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J2(uh) =

∫
Γ

jD n · ∇huh ds, with jD ≡ 1 on ΓD = Γ

This target quantity is also compatible with the model problem.
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The consistency and adjoint consistency analysis Numerical results

Example 2: Model problem with SIPG and adjoint consistent

Dirichlet problem of Poisson’s equation on (0, 1)2. Consider the target quantity

J̃2(uh) =

∫
Γ

jD n · ∇huh ds −
∫

ΓD

δ(uh − gD)jD ds with jD ≡ 1 on ΓD = Γ

is a consistent modification of J2(uh).
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of even higher order than
the expected O(h2p)
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The consistency and adjoint consistency analysis Numerical results

Example 2: Smoothness of the discrete adjoint solution

The exact solution to the adjoint problem

−∆z = 0 in Ω, −z = jD on ΓD

with jD ≡ 1 is given by z ≡ −1 on Ω.

Using the SIPG discretization in combination with J2(uh) and J̃2(uh):

z_h for J_2, adjoint inconsistent
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The consistency and adjoint consistency analysis Numerical results

Example 3: Another Dirichlet problem

Consider Ω = (0, 1)× (0.1, 1) and Poisson’s equation with forcing function f such
that

u(x) = 1
4 (1 + x1)

2 sin(2πx1x2).

Dirichlet boundary conditions are based on the exact solution u.
Consider the target quantity J3(uh) and its consistent modification J̃3(uh):

J3(uh) =

∫
Γ

jD n · ∇huh ds,

J̃3(uh) = J3(uh)−
∫

Γ

δ(uh − gD)jD ds.

and choose jD ∈ L2(Γ) to be given by

jD(x) =


exp

(
4− 1

16 ((x1 − 1
4 )2 − 1

8 )−2
)

for x ∈ (0, 1
4 )× (0.1, 1),

exp
(
4− 1

16 ((x1 − 3
4 )2 − 1

8 )−2
)

for x ∈ ( 3
4 , 1)× (0.1, 1),

1 for x ∈ ( 1
4 ,

3
4 )× (0.1, 1),

0 elsewhere on Γ.
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The consistency and adjoint consistency analysis Numerical results

Example 3: Another Dirichlet problem

Using the SIPG discretization in combination with J3(uh) and J̃3(uh):
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The consistency and adjoint consistency analysis Numerical results

Example 3: Smoothness of the discrete adjoint solution

Using the SIPG discretization in combination with J2(uh) and J̃2(uh):

z_h for J_3, adjoint inconsistent
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The consistency and adjoint consistency analysis Numerical results
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

The continuous adjoint problem to the linear advection equation

Consider the linear advection equation

Lu := ∇ · (bu) + cu = f in Ω, u = g on Γ− = {x ∈ Γ,b(x) · n(x) < 0}.

Multiply by z ∈ H1,b(Th), integrate over Ω and integrate by parts∫
Ω

(∇ · (bu) + cu) z dx = −
∫
Ω

(bu) · ∇z dx +
∫
Ω

cuz dx +
∫
Γ
b · n uz ds.

After splitting the boundary Γ = Γ− ∪ Γ+ we obtain:

(∇ · (bu) + cu, z)Ω + (u,−b · n z)Γ− = (u,−b · ∇z + cz)Ω + (u,b · n z)Γ+
.

Comparing with the compatibility condition

(Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ,

we see that for Lu = ∇ · (bu) + cu in Ω and

Bu = u, Cu = 0 on Γ−,

Bu = 0, Cu = u on Γ+,

the adjoint operators are given by L∗z = −b · ∇z + cz in Ω and

B∗z = 0, C∗z = −b · n z on Γ−,

B∗z = b · n z , C∗z = 0 on Γ+.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

The continuous adjoint problem to the linear advection equation

Primal problem:

Lu := ∇ · (bu) + cu = f in Ω, u = g on Γ−.

For the operators Lu = ∇ · (bu) + cu in Ω and

Bu = u, Cu = 0 on Γ−,

Bu = 0, Cu = u on Γ+,

the adjoint operators are given by L∗z = −b · ∇z + cz in Ω and

B∗z = 0, C∗z = −b · n z on Γ−,

B∗z = b · n z , C∗z = 0 on Γ+.

In particular,

J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds =

∫
Ω

jΩ u dx +

∫
Γ+

jΓ u ds,

is compatible the continuous adjoint problem is given by

−b · ∇z + cz = jΩ in Ω, b · n z = jΓ on Γ+.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Primal residual form of the upwind DG discretization

We rewrite the discrete primal problem: find uh ∈ Vh such that

Bh(uh, vh) = Fh(vh) ∀vh ∈ Vh,

in element-based primal residual form: find uh ∈ Vh such that∫
Ω

R(uh)vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)vh ds +

∫
Γ

rΓ(uh)vh ds = 0 ∀vh ∈ Vh,

where the primal residuals are given by R(uh) = f −∇h · (buh)− cuh on Ω, and

r(uh) = b · n (u+
h − u−h ) on ∂κ− \ Γ, κ ∈ Th,

rΓ(uh) = b · n(uh − g) on Γ−.

The exact solution u ∈ H1,b(Ω) to the primal problem:

∇ · (bu) + cu = f in Ω, u = g on Γ−,

satisfies R(u) = 0 in κ, κ ∈ Th,

r(u) = 0 on ∂κ \ Γ, κ ∈ Th,

rΓ(u) = 0 on Γ.

Thereby, the upwind DG discretization is consistent.

Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 40 / 45



The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Primal residual form of the upwind DG discretization

We rewrite the discrete primal problem: find uh ∈ Vh such that

Bh(uh, vh) = Fh(vh) ∀vh ∈ Vh,

in element-based primal residual form: find uh ∈ Vh such that∫
Ω

R(uh)vh dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)vh ds +

∫
Γ

rΓ(uh)vh ds = 0 ∀vh ∈ Vh,

where the primal residuals are given by R(uh) = f −∇h · (buh)− cuh on Ω, and

r(uh) = b · n (u+
h − u−h ) on ∂κ− \ Γ, κ ∈ Th,

rΓ(uh) = b · n(uh − g) on Γ−.

The exact solution u ∈ H1,b(Ω) to the primal problem:

∇ · (bu) + cu = f in Ω, u = g on Γ−,

satisfies R(u) = 0 in κ, κ ∈ Th,

r(u) = 0 on ∂κ \ Γ, κ ∈ Th,

rΓ(u) = 0 on Γ.

Thereby, the upwind DG discretization is consistent.
Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 40 / 45



The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Adjoint residual form of the upwind DG discretization

We rewrite the discrete adjoint problem: find zh ∈ Vh such that

Bh(wh, zh) = J(wh) ∀wh ∈ Vh,

in following element-based adjoint residual form: find zh ∈ Vh such that∫
Ω

wh R∗(zh) dx +
∑
κ∈Th

∫
∂κ\Γ

wh r∗(zh) ds +

∫
Γ

wh r∗Γ (zh) ds = 0 ∀wh ∈ Vh,

where the adjoint residuals are given by

R∗(zh) = jΩ + b · ∇hzh − czh on Ω

r∗(zh) = −b · n [zh] on ∂κ \ Γ, κ ∈ Th,

r∗Γ (zh) = jΓ − b · n zh on Γ+.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Adjoint residual form of the upwind DG discretization

The adjoint residuals are given by

R∗(zh) = jΩ + b · ∇hzh − czh on Ω

r∗(zh) = −b · n [zh] on ∂κ \ Γ, κ ∈ Th,

r∗Γ (zh) = jΓ − b · n zh on Γ+.

The exact solution z ∈ H1,b(Ω) to the continuous adjoint problem:

−b · ∇z + cz = jΩ in Ω, b · n z = jΓ on Γ+,

satisfies

R∗(z) = 0 on Ω

r∗(z) = 0 on ∂κ \ Γ, κ ∈ Th,

r∗Γ (z) = 0 on Γ+.

Thereby, the upwind DG discretization is adjoint consistent.
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The consistency and adjoint consistency analysis Adjoint consistency analysis of the upwind DG discretization

Example: A priori error estimates for target functionals J(·)

For the linear advection equation

Lu := ∇ · (bu) + cu = f in Ω, u = g on Γ−,

we have the a priori error estimate:

|‖u − uh‖|b0 ≤ Chp+1/2|u|Hp+1(Ω) ∀u ∈ Hp+1(Ω),

and the approximation estimate:

|‖v − Pd
h,pv‖|b0 ≤ Chp+1/2|v |Hp+1(Ω) ∀v ∈ Hp+1(Ω).

If we now had continuity

|Bh(u, v)| ≤ C |‖u‖|b0 |‖v‖|b0

we could employ the error estimate: |J(u)− J(uh)| is of order O(hr+r̃ ).
Here for r = p + 1/2 and r̃ = p + 1/2.

The error |J(u)− J(uh)| for the upwind DG discretization is of O(h2p+1) [35,23].
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The consistency and adjoint consistency analysis Summary

A priori error estimates for target functionals J(·): Summary

A discretization is adjoint consistent if the corresponding discrete adjoint
problem is a consistent discretization of the continuous adjoint problem.

Adjoint consistency and thus optimal order estimates can be obtained
only for target functionals which are compatible with the primal equations.

The upwind DG(p) discretization of the linear advection equation in
combination with compatible target quantities is adjoint consistent:

The error measured in terms of J(·) behaves like O(h2p+1)

For an adjoint consistent DG(p) discretization of Poisson’s equation:

The error measured in terms of J(·) behaves like O(h2p)

For an adjoint inconsistent DG(p) discretization of Poisson’s equation:

The error measured in terms of J(·) behaves like O(hp)
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