Numerical Analysis of Higher Order Discontinuous Galerkin Finite Element methods

Ralf Hartmann

Institute of Aerodynamic and Flow Technology DLR (German Aerospace Center)

14. Oct. 2008

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008

1 / 45

Outline

The consistency and adjoint consistency analysis

- Overview and preview
- Definition of consistency and adjoint consistency
- A priori error estimates for target functionals $J(\cdot)$
- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008

2 / 45

(人間) システン イラン

Outline

Outline

The consistency and adjoint consistency analysis

Overview and preview

- Definition of consistency and adjoint consistency
- A priori error estimates for target functionals $J(\cdot)$
- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008

3 / 45

▲□→ ▲ □→ ▲ □→

• Optimal order error estimates in the *L*²-norm only for **adjoint consistent** discretizations

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008

• Optimal order error estimates in the *L*²-norm only for **adjoint consistent** discretizations

We will see:

• Optimal order error estimates in target quantities $J(\cdot)$ only for **adjoint consistent** discretizations

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

• Optimal order error estimates in the *L*²-norm only for **adjoint consistent** discretizations

We will see:

• Optimal order error estimates in target quantities $J(\cdot)$ only for **adjoint consistent** discretizations

Up to now:

• Adjoint consistency analysis for DG discretizations of the homogeneous Dirichlet problem of Poisson's equation

イロト 不得 とくまとう ほう

• Optimal order error estimates in the L²-norm only for adjoint consistent discretizations

We will see:

• Optimal order error estimates in target quantities $J(\cdot)$ only for adjoint consistent discretizations

Up to now:

 Adjoint consistency analysis for DG discretizations of the homogeneous Dirichlet problem of Poisson's equation

In the following:

 Adjoint consistency analysis for DG discretizations of linear problems with **inhomogeneous** boundary conditions (e.g. Dirichlet-Neumann) in connection with target quantities $J(\cdot)$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙ 14. Oct. 2008

• Optimal order error estimates in the *L*²-norm only for **adjoint consistent** discretizations

We will see:

• Optimal order error estimates in target quantities $J(\cdot)$ only for **adjoint consistent** discretizations

Up to now:

• Adjoint consistency analysis for DG discretizations of the homogeneous Dirichlet problem of Poisson's equation

In the following:

• Adjoint consistency analysis for DG discretizations of **linear problems** with **inhomogeneous** boundary conditions (e.g. Dirichlet-Neumann) in connection with **target quantities** $J(\cdot)$

Later:

 Adjoint consistency analysis for DG discretizations of nonlinear problems in connection with target quantities J(·)

Ralf Hartmann (DLR)

14. Oct. 2008 4 / 45

- Adjoint consistency involves the discretization
 - of element terms
 - of interior faces terms
 - of boundary conditions
 - and of the **target functionals** $J(\cdot)$

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - ○ ○ ○ ○

- Adjoint consistency involves the discretization
 - of element terms
 - of interior faces terms
 - of boundary conditions
 - and of the target functionals $J(\cdot)$
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are **compatible** with the primal equations.

- Adjoint consistency involves the discretization
 - of element terms
 - of interior faces terms
 - of boundary conditions
 - and of the target functionals $J(\cdot)$
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are **compatible** with the primal equations.
- An adjoint consistent DG(p) discretization of the linear advection equ.
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p+1})$

- Adjoint consistency involves the discretization
 - of element terms
 - of interior faces terms
 - of boundary conditions
 - and of the target functionals $J(\cdot)$
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are **compatible** with the primal equations.
- An adjoint consistent DG(p) discretization of the linear advection equ.
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p+1})$
- An adjoint consistent DG(p) discretization of Poisson's equation
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p})$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 5 / 45

- Adjoint consistency involves the discretization
 - of element terms
 - of interior faces terms
 - of boundary conditions
 - and of the target functionals $J(\cdot)$
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are **compatible** with the primal equations.
- An adjoint consistent DG(p) discretization of the linear advection equ.
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p+1})$
- An adjoint consistent DG(p) discretization of Poisson's equation
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p})$
- An adjoint **in**consistent DG(p) discretization of Poisson's equation
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^p)$

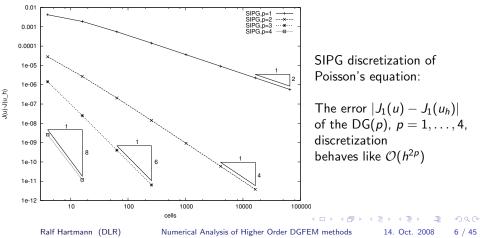
Ralf Hartmann (DLR)

Preview example 1: Model problem

Dirichlet problem of Poisson's equation on $(0,1)^2$. Consider the target quantity

$$J_1(u_h) = \int_{\Omega} j_{\Omega} u_h \, \mathrm{d}\mathbf{x}, \qquad \text{with} \quad j_{\Omega}(\mathbf{x}) = \sin(\pi x_1) \sin(\pi x_2) \quad \text{on } \Omega$$

This target quantity is **compatible** with the model problem.

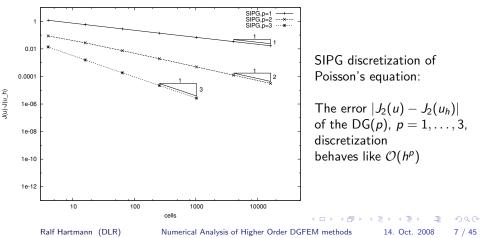


Preview example 2: Model problem

Dirichlet problem of Poisson's equation on $(0,1)^2$. Consider the target quantity

$$J_2(u_h) = \int_{\Gamma} j_D \, \mathbf{n} \cdot \nabla_h u_h \, \mathrm{d}s, \qquad \text{with} \quad j_D \equiv 1 \quad \text{on } \Gamma_D = \Gamma$$

This target quantity is also **compatible** with the model problem.



Outline

Outline

The consistency and adjoint consistency analysis

Overview and preview

• Definition of consistency and adjoint consistency

- A priori error estimates for target functionals $J(\cdot)$
- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008

イロト イポト イヨト イヨト

Definition of consistency and adjoint consistency for linear problems **Primal problem:** Lu = f in Ω , Bu = g on Γ , $J(u) = \int_{\Omega} j_{\Omega} u \, \mathrm{d} \mathbf{x} + \int_{\Gamma} J_{\Gamma} C u \, \mathrm{d} s = (j_{\Omega}, u)_{\Omega} + (j_{\Gamma}, C u)_{\Gamma}$ Target quantity:

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - ○ ○ ○ ○ 14. Oct. 2008

Definition of consistency and adjoint consistency for linear problems **Primal problem:** Lu = f in Ω , Bu = g on Γ , $J(u) = \int_{\Omega} j_{\Omega} u \, \mathrm{d} \mathbf{x} + \int_{\Gamma} J_{\Gamma} C u \, \mathrm{d} s = (j_{\Omega}, u)_{\Omega} + (j_{\Gamma}, C u)_{\Gamma}$ Target quantity:

Compatibility condition: $J(\cdot)$ is compatible to the primal problem if

$$(Lu,z)_{\Omega}+(Bu,C^*z)_{\Gamma}=(u,L^*z)_{\Omega}+(Cu,B^*z)_{\Gamma}.$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - ○ ○ ○ ○ 14. Oct. 2008

Definition of consistency and adjoint consistency for linear problems **Primal problem:** Lu = f in Ω , Bu = g on Γ , $J(u) = \int_{\Omega} j_{\Omega} u \, \mathrm{d} \mathbf{x} + \int_{\Gamma} J_{\Gamma} C u \, \mathrm{d} s = (j_{\Omega}, u)_{\Omega} + (j_{\Gamma}, C u)_{\Gamma}$ Target quantity:

Compatibility condition: $J(\cdot)$ is compatible to the primal problem if

$$(Lu,z)_{\Omega}+(Bu,C^*z)_{\Gamma}=(u,L^*z)_{\Omega}+(Cu,B^*z)_{\Gamma}.$$

Adjoint problem: $L^*z = i_{\Omega}$ in Ω , $B^*z = i_{\Gamma}$ on Γ .

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008

(日) (日) (日) (日) (日) (日) (日) (日)

Definition of consistency and adjoint consistency for linear problems **Primal problem:** Lu = f in Ω , Bu = g on Γ , $J(u) = \int_{\Omega} j_{\Omega} u \, \mathrm{d} \mathbf{x} + \int_{\Gamma} j_{\Gamma} C u \, \mathrm{d} s = (j_{\Omega}, u)_{\Omega} + (j_{\Gamma}, C u)_{\Gamma}$ Target quantity:

Compatibility condition: $J(\cdot)$ is compatible to the primal problem if

$$(Lu,z)_{\Omega}+(Bu,C^*z)_{\Gamma}=(u,L^*z)_{\Omega}+(Cu,B^*z)_{\Gamma}.$$

Adjoint problem: $L^*z = i_{\Omega}$ in Ω , $B^*z = i_{\Gamma}$ on Γ .

Let the primal problem be discretized: Find $u_h \in V_h$ such that

$$B_h(u_h, v_h) = F_h(v_h) \quad \forall v \in V_h$$

Consistency: The exact solution *u* to the primal problem satisfies:

$$B_h(u,v) = F_h(v) \quad \forall v \in V$$

Adjoint consistency: The exact solution z to the adjoint problem satisfies:

$$B_h(w,z) = J(w) \quad \forall w \in V$$

Ralf Hartmann (DLR)

Outline

Outline

The consistency and adjoint consistency analysis

- Overview and preview
- Definition of consistency and adjoint consistency

• A priori error estimates for target functionals $J(\cdot)$

- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 10 / 45

(a)

Theorem 7a) A priori error estimates for target functionals $J(\cdot)$

Given a discretization which in combination with a **compatible** target functional $J(\cdot)$ is **consistent** and **adjoint consistent**. Assume that

$$B_h(w,v) \leq C_B |||w||| |||v||| \quad \forall w,v \in V.$$

Furthermore, assume that there are constants C > 0 and r = r(p) > 0 such that

$$|||u-u_h||| \leq Ch^r |u|_{H^{p+1}(\Omega)} \quad \forall u \in H^{p+1}(\Omega).$$

and there are constants C > 0 and $\tilde{r} = \tilde{r}(p) > 0$ such that

$$|\|v - P^d_{h,p}v\|| \leq Ch^{\widetilde{r}}|v|_{H^{p+1}(\Omega)} \qquad \forall v \in H^{p+1}(\Omega).$$

Let $z \in V$ be the solution to the adjoint problem. Due to adjoint consistency we have $B_h(w, z) = J(w)$ for all $w \in V$. Thus, for $|J(u) - J(u_h)| = |J(e)|$ we have

$$\begin{aligned} |J(e)| &= |B_{h}(e,z)| = |B_{h}(u-u_{h},z-P_{h}z)| \leq C |||u-u_{h}||| |||z-P_{h}z||| \\ &\leq Ch^{r}|u|_{H^{p+1}(\Omega)}Ch^{\tilde{r}}|z|_{H^{p+1}(\Omega)} = Ch^{r+\tilde{r}}|u|_{H^{p+1}(\Omega)}|z|_{H^{p+1}(\Omega)} \quad \forall u \in H^{p+1}(\Omega) \end{aligned}$$

 $\begin{array}{c|c} \text{I.e. the error } |J(u) - J(u_h)| \text{ is of order } \mathcal{O}(h^{r+\tilde{r}}). \\ & \text{Ralf Hartmann (DLR)} \\ & \text{Numerical Analysis of Higher Order DGFEM methods} \\ \end{array} \begin{array}{c} \text{II} & \text{II} & \text{II} \\ \text{II} \\ \text{II} & \text{II} \\ \text{II} & \text{II} \\ \text{II} \\ \text{II} & \text{II} \\ \text{I$

Theorem 7b) A priori error estimates for target functionals $J(\cdot)$

Same situation as before. But now consider a discretization which in combination with a specific target functional $J(\cdot)$ is **adjoint inconsistent**.

Then the solution z to the adjoint problem does **not** satisfy

$$B_h(w,z) = J(w) \qquad \forall w \in V.$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 7b) A priori error estimates for target functionals $J(\cdot)$

Same situation as before. But now consider a discretization which in combination with a specific target functional $J(\cdot)$ is **adjoint inconsistent**.

Then the solution z to the adjoint problem does **not** satisfy

$$B_h(w,z) = J(w) \qquad \forall w \in V.$$

Instead define the solution ψ to following **mesh-dependent adjoint problem**:

$$B_h(w,\psi) = J(w) \quad \forall w \in V.$$

 ψ is mesh-dependent and not smooth. We obtain

$$|J(e)| = |B_h(e, \psi)| = |B_h(u - u_h, \psi - P_h\psi)| \le C|||u - u_h|| |||\psi - P_h\psi||| \le Ch'|u|_{H^{p+1}(\Omega)}$$

I.e. the error $|J(u) - J(u_h)|$ is of order $\mathcal{O}(h^r)$.

Ralf Hartmann (DLR)

14. Oct. 2008 12 / 45

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example: A priori error estimates for target functionals $J(\cdot)$

For $\Gamma_D \cup \Gamma_N = \Gamma$ and $\Gamma_D \neq \emptyset$ consider the Dirichlet-Neumann problem

 $-\Delta u = f$ in Ω , $u = g_D$ on Γ_D , $\mathbf{n} \cdot \nabla u = g_N$ on Γ_N ,

For the NIPG and the SIPG discretization we have continuity of B_h :

$$B_h(w,v) \leq C_B |||w|||_{\delta} |||v|||_{\delta} \quad \forall w,v \in V,$$

the a priori error estimate: $\|\|u-u_h\||_{\delta} \leq Ch^p |u|_{H^{p+1}(\Omega)} \quad \forall u \in H^{p+1}(\Omega),$

and the approximation estimate:

$$\|\|v-P^d_{h,p}v\||_\delta\leq Ch^p|v|_{H^{p+1}(\Omega)}\quad orall v\in H^{p+1}(\Omega),$$

Thus r = p and $\tilde{r} = p$.

Adjoint consistent discretization: $|J(u) - J(u_h)|$ is of order $\mathcal{O}(h^{r+\tilde{r}}) = \mathcal{O}(h^{2p})$ **Adjoint inconsistent** discretization: $|J(u) - J(u_h)|$ is of order $\mathcal{O}(h^r) = \mathcal{O}(h^p)$

Ralf Hartmann (DLR)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Outline

The consistency and adjoint consistency analysis

- Overview and preview
- Definition of consistency and adjoint consistency
- A priori error estimates for target functionals $J(\cdot)$

• The consistency and adjoint consistency analysis

- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 1

(a)

The consistency and adjoint consistency analysis

The consistency and adjoint consistency analysis

Derivation of the adjoint problem

Given the primal problem

$$Lu = f$$
 in Ω , $Bu = g$ on Γ ,

and the target quantity

$$J(u) = \int_{\Omega} j_{\Omega} u \, \mathrm{d} \mathbf{x} + \int_{\Gamma} j_{\Gamma} \, C u \, \mathrm{d} s = (j_{\Omega}, u)_{\Omega} + (j_{\Gamma}, C u)_{\Gamma}.$$

Find the adjoint operators L^* , B^* and C^* via the compatibility condition

$$(Lu,z)_{\Omega}+(Bu,C^*z)_{\Gamma}=(u,L^*z)_{\Omega}+(Cu,B^*z)_{\Gamma}.$$

Then the adjoint problem is given by

$$L^* z = j_{\Omega}$$
 in Ω , $B^* z = j_{\Gamma}$ on Γ .

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 15 / 45

Consistency analysis of the discrete primal problem

Rewrite the discrete problem: Find $u_h \in V_h$ such that

$$B_h(u_h, v_h) = F_h(v_h) \quad \forall v \in V_h$$

in following element-based **primal residual form**: Find $u_h \in V_h$ such that

$$\begin{split} \int_{\Omega} R(u_h) v_h \, \mathrm{d}\mathbf{x} + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa \setminus \Gamma} r(u_h) v_h + \rho(u_h) \cdot \nabla_h v_h \, \mathrm{d}s \\ &+ \int_{\Gamma} r_{\Gamma}(u_h) v_h + \rho_{\Gamma}(u_h) \cdot \nabla_h v_h \, \mathrm{d}s = 0 \quad \forall v_h \in V_h, \end{split}$$

The discretization is **consistent**

if the exact solution u to the primal problem satisfies

R(u) = 0in $\kappa, \kappa \in \mathcal{T}_{h}$. $r(u) = 0, \qquad \rho(u) = 0$ on $\partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h$, $r_{\Gamma}(u) = 0, \qquad \rho_{\Gamma}(u) = 0$ on Γ.

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008

Adjoint consistency of element, interior face and boundary terms Rewrite the discrete adjoint problem: find $z_h \in V_h$ such that

$$B_h(w_h, z_h) = J(w_h) \quad \forall w_h \in V_h,$$

in following element-based **adjoint residual form**: find $z_h \in V_h$ such that

$$\begin{split} \int_{\Omega} w_h \, R^*(z_h) \, \mathrm{d}\mathbf{x} + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa \setminus \Gamma} w_h \, r^*(z_h) + \nabla w_h \cdot \boldsymbol{\rho}^*(z_h) \, \mathrm{d}s \\ &+ \int_{\Gamma} w_h \, r^*_{\Gamma}(z_h) + \nabla w_h \cdot \boldsymbol{\rho}^*_{\Gamma}(z_h) \, \mathrm{d}s = 0 \quad \forall w_h \in V_h. \end{split}$$

The discrete adjoint problem is a **consistent** discretization of the adjoint problem if the exact solution z to the adjoint problem satisfies

$$\begin{aligned} R^*(z) &= 0 & \text{ in } \kappa, \kappa \in \mathcal{T}_h, \\ r^*(z) &= 0, & \boldsymbol{\rho}^*(z) &= 0 & \text{ on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h, \\ r^*_{\Gamma}(z) &= 0, & \boldsymbol{\rho}^*_{\Gamma}(z) &= 0 & \text{ on } \Gamma. \end{aligned}$$

Then we say: The primal discrete problem is an adjoint consistent discretization.

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 17 / 45

Target functional modifications

Sometimes the target functional must be modified in order to obtain an adjoint consistent discretization. Example:

$$\widetilde{J}(u_h) = J(i(u_h)) + \int_{\Gamma} r_J(u_h) \,\mathrm{d}s, \qquad (1)$$

Definition: $\tilde{J}(u_h)$ is a **consistent** modification of the target functional $J(u_h)$ if the true (exact) value is unchanged, i.e. if

$$\widetilde{J}(u) = J(u)$$

holds for the exact solution u.

In particular, $J(u_h)$ in (1) is a consistent modification of $J(u_h)$ if

i(u) = u and $r_J(u) = 0$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods 1

14. Oct. 2008 18 / 45

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Outline

The consistency and adjoint consistency analysis

- Overview and preview
- Definition of consistency and adjoint consistency
- A priori error estimates for target functionals $J(\cdot)$
- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 19 / 45

(a)

The continuous adjoint problem to Poisson's equation

For $\Gamma_D \cup \Gamma_N = \Gamma$ and $\Gamma_D \neq \emptyset$ consider the Dirichlet-Neumann problem

 $-\Delta u = f$ in Ω , $u = g_D$ on Γ_D , $\mathbf{n} \cdot \nabla u = g_N$ on Γ_N ,

Multiply left hand side by z and integrate by parts twice

 $(-\Delta u, z)_{\Omega} = (\nabla u, \nabla z)_{\Omega} - (\mathbf{n} \cdot \nabla u, z)_{\Gamma} = (u, -\Delta z)_{\Omega} + (u, \mathbf{n} \cdot \nabla z)_{\Gamma} - (\mathbf{n} \cdot \nabla u, z)_{\Gamma}.$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 20 / 45

< □ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ 少へで Minethods 14 Oct 2008 20 / 45

The continuous adjoint problem to Poisson's equation

For $\Gamma_D \cup \Gamma_N = \Gamma$ and $\Gamma_D \neq \emptyset$ consider the Dirichlet-Neumann problem

 $-\Delta u = f$ in Ω , $u = g_D$ on Γ_D , $\mathbf{n} \cdot \nabla u = g_N$ on Γ_N ,

Multiply left hand side by z and integrate by parts twice

 $(-\Delta u, z)_{\Omega} = (\nabla u, \nabla z)_{\Omega} - (\mathbf{n} \cdot \nabla u, z)_{\Gamma} = (u, -\Delta z)_{\Omega} + (u, \mathbf{n} \cdot \nabla z)_{\Gamma} - (\mathbf{n} \cdot \nabla u, z)_{\Gamma}.$ After splitting the boundary terms according to $\Gamma = \Gamma_D \cup \Gamma_N$ and shuffling terms $(-\Delta u, z)_{\Omega} + (u, -\mathbf{n} \cdot \nabla z)_{\Gamma_D} + (\mathbf{n} \cdot \nabla u, z)_{\Gamma_N} = (u, -\Delta z)_{\Omega} + (\mathbf{n} \cdot \nabla u, -z)_{\Gamma_D} + (u, \mathbf{n} \cdot \nabla z)_{\Gamma_N}.$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

The continuous adjoint problem to Poisson's equation

For $\Gamma_D \cup \Gamma_N = \Gamma$ and $\Gamma_D \neq \emptyset$ consider the Dirichlet-Neumann problem

$$-\Delta u = f$$
 in Ω , $u = g_D$ on Γ_D , $\mathbf{n} \cdot \nabla u = g_N$ on Γ_N ,

Multiply left hand side by z and integrate by parts twice

 $(-\Delta u, z)_{\Omega} = (\nabla u, \nabla z)_{\Omega} - (\mathbf{n} \cdot \nabla u, z)_{\Gamma} = (u, -\Delta z)_{\Omega} + (u, \mathbf{n} \cdot \nabla z)_{\Gamma} - (\mathbf{n} \cdot \nabla u, z)_{\Gamma}.$ After splitting the boundary terms according to $\Gamma = \Gamma_D \cup \Gamma_N$ and shuffling terms $(-\Delta u, z)_{\Omega} + (u, -\mathbf{n} \cdot \nabla z)_{\Gamma_{\Omega}} + (\mathbf{n} \cdot \nabla u, z)_{\Gamma_{N}} = (u, -\Delta z)_{\Omega} + (\mathbf{n} \cdot \nabla u, -z)_{\Gamma_{\Omega}} + (u, \mathbf{n} \cdot \nabla z)_{\Gamma_{N}}.$ Comparing with the compatibility condition

$$(Lu,z)_{\Omega}+(Bu,C^*z)_{\Gamma}=(u,L^*z)_{\Omega}+(Cu,B^*z)_{\Gamma}.$$

we see that for $Lu = -\Delta u$ in Ω and

$$Bu = u,$$
 $Cu = \mathbf{n} \cdot \nabla u$ on Γ_D ,

$$Bu = \mathbf{n} \cdot \nabla u,$$
 $Cu = u$ on Γ_N ,

the adjoint operators are given by $L^*z = -\Delta z$ on Ω and

 $B^*z = -z$, $C^* z = -\mathbf{n} \cdot \nabla z$ on Γ_D , 14. Oct. 2008 20 / 45

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

The continuous adjoint problem to Poisson's equation Primal problem:

 $-\Delta u = f$ in Ω , $u = g_D$ on Γ_D , $\mathbf{n} \cdot \nabla u = g_N$ on Γ_N , For the operators $Lu = -\Delta u$ in Ω and

$$Bu = u,$$
 $Cu = \mathbf{n} \cdot \nabla u$ on Γ_D ,

$$Bu = \mathbf{n} \cdot \nabla u,$$
 $Cu = u$ on Γ_N ,

the adjoint operators are given by ${\it L}^{*}z=-\Delta z$ on Ω and

$$B^* z = -z, \qquad C^* z = -\mathbf{n} \cdot \nabla z \qquad \text{on } \Gamma_D, \\ B^* z = \mathbf{n} \cdot \nabla z, \qquad C^* z = z \qquad \text{on } \Gamma_N.$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 21 / 45

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The continuous adjoint problem to Poisson's equation **Primal problem:**

 $-\Delta u = f$ in Ω , $u = g_D$ on Γ_D , $\mathbf{n} \cdot \nabla u = g_N$ on Γ_N , For the operators $Lu = -\Delta u$ in Ω and

$$Bu = u,$$
 $Cu = \mathbf{n} \cdot \nabla u$ on Γ_D ,

$$Bu = \mathbf{n} \cdot \nabla u,$$
 $Cu = u$ on Γ_N ,

the adjoint operators are given by $L^*z = -\Delta z$ on Ω and

$$B^* z = -z, \qquad C^* z = -\mathbf{n} \cdot \nabla z \qquad \text{on } \Gamma_D,$$

$$B^* z = \mathbf{n} \cdot \nabla z, \qquad C^* z = z \qquad \text{on } \Gamma_N.$$

In particular

In particular,
$$J(u) = \int_{\Omega} j_{\Omega} u \, \mathrm{d}\mathbf{x} + \int_{\Gamma} j_{\Gamma} C u \, \mathrm{d}s$$
$$= \int_{\Omega} j_{\Omega} u \, \mathrm{d}\mathbf{x} + \int_{\Gamma_{D}} j_{D} \, \mathbf{n} \cdot \nabla u \, \mathrm{d}s + \int_{\Gamma_{N}} j_{N} u \, \mathrm{d}s,$$

is **compatible** and the continuous **adjoint problem** is given by

$$-\Delta z = j_{\Omega} \quad \text{in } \Omega, \qquad -z = j_D \quad \text{on } \Gamma_D, \qquad \mathbf{n} \cdot \nabla z = j_N \quad \text{on } \Gamma_N.$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 21 / 45

Primal residual form of the interior penalty DG discretization

We rewrite the **discrete primal problem:** find $u_h \in V_h$ such that

$$B_h(u_h, v_h) = F_h(v_h) \quad \forall v_h \in V_h,$$

in element-based **primal residual form:** find $u_h \in V_h$ such that

$$\begin{split} \int_{\Omega} R(u_h) v_h \, \mathrm{d}\mathbf{x} + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa \setminus \Gamma} r(u_h) v_h + \boldsymbol{\rho}(u_h) \cdot \nabla_h v_h \, \mathrm{d}s \\ &+ \int_{\Gamma} r_{\Gamma}(u_h) v_h + \boldsymbol{\rho}_{\Gamma}(u_h) \cdot \nabla_h v_h \, \mathrm{d}s = 0 \quad \forall v_h \in V_h, \end{split}$$

where the **primal residuals** are given by $R(u_h) = f + \Delta_h u_h$ on Ω , and

$$\begin{split} r(u_h) &= -\frac{1}{2} \llbracket \nabla_h u_h \rrbracket - \delta[u_h], \quad \rho(u_h) = -\frac{1}{2} \theta \llbracket u_h \rrbracket \quad \text{on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h, \\ r_{\Gamma}(u_h) &= \delta(g_D - u_h), \quad \rho_{\Gamma}(u_h) = \theta(g_D - u_h) \mathbf{n} \quad \text{on } \Gamma_D, \\ r_{\Gamma}(u_h) &= g_N - \mathbf{n} \cdot \nabla_h u_h, \quad \rho_{\Gamma}(u_h) = 0 \quad \text{on } \Gamma_N. \end{split}$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

(日)、(型)、(E)、(E)、(E)、(D)、(C) 14. Oct. 2008

22 / 45

Consistency of the interior penalty DG discretization

The **primal residuals** are given by $R(u_h) = f + \Delta_h u_h$ on Ω , and

$$\begin{aligned} r(u_h) &= -\frac{1}{2} \llbracket \nabla_h u_h \rrbracket - \delta[u_h], \quad \rho(u_h) &= -\frac{1}{2} \theta \llbracket u_h \rrbracket & \text{ on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h, \\ r_{\Gamma}(u_h) &= \delta(g_D - u_h), \qquad \rho_{\Gamma}(u_h) &= \theta(g_D - u_h) \mathbf{n} & \text{ on } \Gamma_D, \\ r_{\Gamma}(u_h) &= g_N - \mathbf{n} \cdot \nabla_h u_h, \qquad \rho_{\Gamma}(u_h) &= 0 & \text{ on } \Gamma_N. \end{aligned}$$

The exact solution $u \in H^2(\Omega)$ to the **primal problem**:

$$-\Delta u = f$$
 in Ω , $u = g_D$ on Γ_D , $\mathbf{n} \cdot \nabla u = g_N$ on Γ_N ,

satisfies

$$\begin{aligned} R(u) &= 0 & & \text{in } \kappa, \kappa \in \mathcal{T}_h, \\ r(u) &= 0, & \rho(u) &= 0 & & \text{on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h, \\ r_{\Gamma}(u) &= 0, & \rho_{\Gamma}(u) &= 0 & & \text{on } \Gamma. \end{aligned}$$

Thereby, the interior penalty DG discretization (NIPG and SIPG) are consistent.

Ralf Hartmann (DLR)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

23 / 45

Adjoint residual form of the interior penalty DG discretization We rewrite the discrete adjoint problem: find $z_h \in V_h$ such that

$$B_h(w_h, z_h) = J(w_h) \quad \forall w_h \in V_h,$$

in following element-based **adjoint residual form**: find $z_h \in V_h$ such that

$$\begin{split} \int_{\Omega} w_h \, R^*(z_h) \, \mathrm{d}\mathbf{x} + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa \setminus \Gamma} w_h \, r^*(z_h) + \nabla w_h \cdot \boldsymbol{\rho}^*(z_h) \, \mathrm{d}s \\ &+ \int_{\Gamma} w_h \, r^*_{\Gamma}(z_h) + \nabla w_h \cdot \boldsymbol{\rho}^*_{\Gamma}(z_h) \, \mathrm{d}s = 0 \quad \forall w_h \in V_h. \end{split}$$

where the **adjoint residuals** are given by $R^*(z_h) = j_{\Omega} + \Delta_h z_h$ on Ω , by

$$r^*(z_h) = -\frac{1}{2} \llbracket
abla_h z_h
rbracket - (1+ heta) \mathbf{n} \cdot \{\!\!\{
abla_h z_h
rbracket \}\!\!\} - \delta[z_h], \qquad oldsymbol{
ho}^*(z_h) = \frac{1}{2} \llbracket z_h
rbracket_h,$$

on interior faces $\partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h$, and by

$$r_{\Gamma}^{*}(z_{h}) = -(1+\theta)\mathbf{n} \cdot \nabla_{h} z_{h} - \delta z_{h}, \qquad \rho_{\Gamma}^{*}(z_{h}) = (j_{D} + z_{h})\mathbf{n} \qquad \text{on } \Gamma_{D},$$

$$r_{\Gamma}^{*}(z_{h}) = j_{N} - \mathbf{n} \cdot \nabla_{h} z_{h}, \qquad \rho_{\Gamma}^{*}(z_{h}) = 0 \qquad \text{on } \Gamma_{N}.$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 24 / 45

Adjoint consistency of the interior penalty DG discretization

The **adjoint residuals** are given by $R^*(z_h) = j_{\Omega} + \Delta_h z_h$ on Ω , by

$$r^{*}(z_{h}) = -\frac{1}{2} \llbracket \nabla_{h} z_{h} \rrbracket - (1+\theta) \mathbf{n} \cdot \{\!\!\{\nabla_{h} z\}\!\!\} - \delta[z_{h}], \qquad \rho^{*}(z_{h}) = \frac{1}{2} \llbracket z_{h} \rrbracket,$$

on interior faces $\partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h$, and by

$$\begin{aligned} r_{\Gamma}^{*}(z_{h}) &= -(1+\theta)\mathbf{n} \cdot \nabla_{h} z_{h} - \delta z_{h}, \qquad \boldsymbol{\rho}_{\Gamma}^{*}(z_{h}) &= (j_{D}+z_{h})\mathbf{n} \qquad \text{on } \Gamma_{D}, \\ r_{\Gamma}^{*}(z_{h}) &= j_{N} - \mathbf{n} \cdot \nabla_{h} z_{h}, \qquad \boldsymbol{\rho}_{\Gamma}^{*}(z_{h}) &= 0 \qquad \text{on } \Gamma_{N}. \end{aligned}$$

The exact solution $z \in H^2(\Omega)$ to the continuous adjoint problem:

$$-\Delta z = j_{\Omega}$$
 in Ω , $-z = j_D$ on Γ_D , $\mathbf{n} \cdot \nabla z = j_N$ on Γ_N .

satisfies $R^*(z) = 0$ on Ω , $r^*(z) = -2\mathbf{n} \cdot \nabla z \not\equiv 0$ for $\theta = 1$ on $\partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h$,

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 25 / 45

Adjoint consistency of the interior penalty DG discretization

The exact solution $z \in H^2(\Omega)$ to the adjoint problem satisfies $R^*(z) = 0$ on Ω ,

- $r^*(z) = 0$, provided $\theta = -1$, $\rho^*(z) = 0$ on $\partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h$ $r_{\Gamma}^{*}(z) = 0,$ $\rho_{\Gamma}^{*}(z) = 0$ on Γ_{N} $r_{\Gamma}^{*}(z) = \delta j_{D}$, provided $\theta = -1$ $\rho_{\Gamma}^{*}(z) = 0$ on Γ_{D}
- From $r^*(z) = -2\mathbf{n} \cdot \nabla z \neq 0$ for $\theta = 1$: NIPG is adjoint inconsistent.
- SIPG is adjoint consistent on interior faces $\partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h$
- SIPG is adjoint consistent on the Neumann boundary Γ_N
- SIPG in combination with $J(\cdot)$ and $j_D \neq 0$ is **adjoint inconsistent**

Ralf Hartmann (DLR)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Modification of the target functional

SIPG in combination with
$$J(u_h) = \int_{\Gamma_D} j_D \, \mathbf{n} \cdot
abla_h \, \mathrm{d}s$$

and $j_D \neq 0$ is **adjoint inconsistent**. Modify $J(u_h)$ as follows:

$$\widetilde{J}(u_h) = J(u_h) - \int_{\Gamma_D} \delta(u_h - g_D) j_D \,\mathrm{d}s$$

Then the corresponding discrete adjoint problem is: find $z_h \in V_h$ such that

$$B_h(w_h, z_h) = \widetilde{J}'[u_h](w_h) \quad \forall w_h \in V_h,$$

where $\widetilde{J}'[u_h](w_h) = J'[u_h](w_h) - \int_{\Gamma_D} w_h \, \delta j_D \, \mathrm{d}s = J(w_h) - \int_{\Gamma_D} w_h \, \delta j_D \, \mathrm{d}s.$
Thereby, $r_{\Gamma}^*(z_h) = -(1+\theta)\mathbf{n} \cdot \nabla_h z_h - \delta z_h \boxed{-\delta j_D}$ on Γ_D

and the solution z to the adjoint problem:

$$-\Delta z = j_{\Omega}$$
 in Ω , $-z = j_D$ on Γ_D , $\mathbf{n} \cdot \nabla z = j_N$ on Γ_N .

satisfies $r^*(z) = 0$ provided $\theta = -1$. Thereby, SIPG in combination with $\tilde{J}(u_h)$ is adjoint consistent, $\tilde{J}(u_h) = 0.000$ 14. Oct. 2008 27 / 45

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

Outline

Outline

The consistency and adjoint consistency analysis

- Overview and preview
- Definition of consistency and adjoint consistency
- A priori error estimates for target functionals $J(\cdot)$
- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization

Numerical results

- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 28 / 45

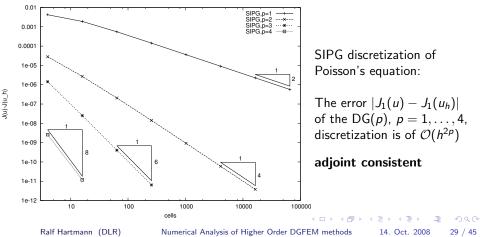
(a)

Example 1: Model problem with SIPG

Dirichlet problem of Poisson's equation on $(0,1)^2$. Consider the target quantity

$$J_1(u_h) = \int_{\Omega} j_{\Omega} u_h \, \mathrm{d}\mathbf{x}, \qquad \text{with} \quad j_{\Omega}(\mathbf{x}) = \sin(\pi x_1) \sin(\pi x_2) \quad \text{on } \Omega$$

This target quantity is **compatible** with the model problem.

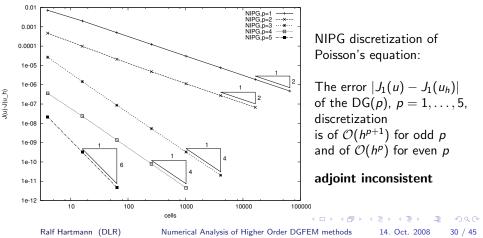


Example 1: Model problem with NIPG

Dirichlet problem of Poisson's equation on $(0,1)^2$. Consider the target quantity

$$J_1(u_h) = \int_{\Omega} j_{\Omega} u_h \, \mathrm{d}\mathbf{x}, \qquad \text{with} \quad j_{\Omega}(\mathbf{x}) = \sin(\pi x_1) \sin(\pi x_2) \quad \text{on } \Omega$$

This target quantity is **compatible** with the model problem.



Example 2: Model problem with SIPG but adjoint inconsistent

Dirichlet problem of Poisson's equation on $(0,1)^2$. Consider the target quantity

$$J_2(u_h) = \int_{\Gamma} j_D \, \mathbf{n} \cdot \nabla_h u_h \, \mathrm{d}s, \qquad \text{with} \quad j_D \equiv 1 \quad \text{on } \Gamma_D = \Gamma$$

This target quantity is also **compatible** with the model problem.

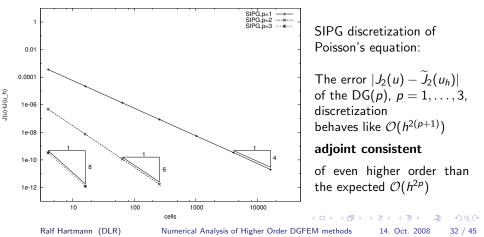


Example 2: Model problem with SIPG and adjoint consistent

Dirichlet problem of Poisson's equation on $(0,1)^2$. Consider the target quantity

$$\widetilde{J}_2(u_h) = \int_{\Gamma} j_D \, \mathbf{n} \cdot \nabla_h u_h \, \mathrm{d}s - \int_{\Gamma_D} \delta(u_h - g_D) j_D \, \mathrm{d}s \quad \text{with} \quad j_D \equiv 1 \quad \text{ on } \Gamma_D = \Gamma$$

is a consistent modification of $J_2(u_h)$.



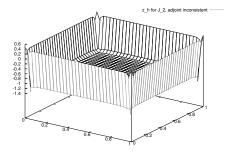
Example 2: Smoothness of the discrete adjoint solution

The exact solution to the adjoint problem

$$-\Delta z = 0$$
 in Ω , $-z = j_D$ on Γ_D

with $j_D \equiv 1$ is given by $z \equiv -1$ on Ω .

Using the SIPG discretization in combination with $J_2(u_h)$ and $J_2(u_h)$:



discrete adjoint solution z_h connected to $J_2(u_h)$ adjoint inconsistent

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

s 14. Oct. 2008

33 / 45

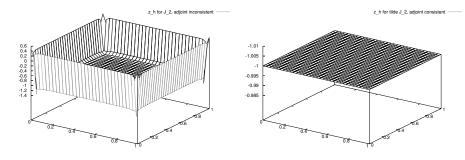
Example 2: Smoothness of the discrete adjoint solution

The exact solution to the adjoint problem

$$-\Delta z = 0$$
 in Ω , $-z = j_D$ on Γ_D

with $j_D \equiv 1$ is given by $z \equiv -1$ on Ω .

Using the SIPG discretization in combination with $J_2(u_h)$ and $\tilde{J}_2(u_h)$:



discrete adjoint solution z_h connected to $J_2(u_h)$ adjoint inconsistent discrete adjoint solution z_h connected to $\tilde{J}_2(u_h)$ adjoint consistent.

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 33 / 45

Example 3: Another Dirichlet problem

Consider $\Omega = (0,1) \times (0.1,1)$ and Poisson's equation with forcing function f such that

$$u(\mathbf{x}) = \frac{1}{4}(1+x_1)^2 \sin(2\pi x_1 x_2).$$

Dirichlet boundary conditions are based on the exact solution u. Consider the target quantity $J_3(u_h)$ and its consistent modification $\tilde{J}_3(u_h)$:

$$J_3(u_h) = \int_{\Gamma} j_D \mathbf{n} \cdot \nabla_h u_h \, \mathrm{d}s,$$

$$\widetilde{J}_3(u_h) = J_3(u_h) - \int_{\Gamma} \delta(u_h - g_D) j_D \, \mathrm{d}s.$$

and choose $j_D \in L^2(\Gamma)$ to be given by

$$j_{D}(\mathbf{x}) = \begin{cases} \exp\left(4 - \frac{1}{16}((x_{1} - \frac{1}{4})^{2} - \frac{1}{8})^{-2}\right) & \text{for } \mathbf{x} \in (0, \frac{1}{4}) \times (0.1, 1), \\ \exp\left(4 - \frac{1}{16}((x_{1} - \frac{3}{4})^{2} - \frac{1}{8})^{-2}\right) & \text{for } \mathbf{x} \in (\frac{3}{4}, 1) \times (0.1, 1), \\ 1 & \text{for } \mathbf{x} \in (\frac{1}{4}, \frac{3}{4}) \times (0.1, 1), \\ 0 & \text{elsewhere on } \Gamma. \end{cases}$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

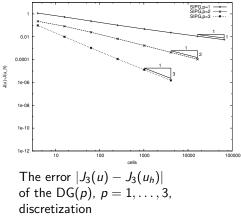
14. Oct. 2008 34 / 45

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

The consistency and adjoint consistency analysis Numerical results

Example 3: Another Dirichlet problem

Using the SIPG discretization in combination with $J_3(u_h)$ and $J_3(u_h)$:



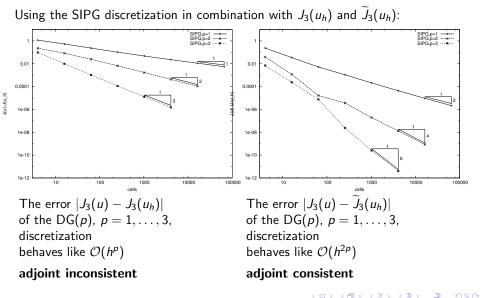
behaves like $\mathcal{O}(h^p)$

adjoint inconsistent

Ralf Hartmann (DLR)

14. Oct. 2008 35 / 45

Example 3: Another Dirichlet problem



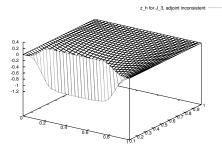
Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 35 / 45

Example 3: Smoothness of the discrete adjoint solution

Using the SIPG discretization in combination with $J_2(u_h)$ and $\tilde{J}_2(u_h)$:



discrete adjoint solution z_h connected to $J_3(u_h)$ adjoint inconsistent

Ralf Hartmann (DLR)

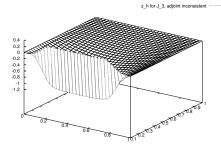
Numerical Analysis of Higher Order DGFEM methods

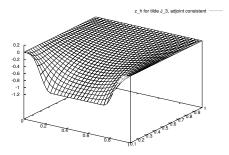
14. Oct. 2008

36 / 45

Example 3: Smoothness of the discrete adjoint solution

Using the SIPG discretization in combination with $J_2(u_h)$ and $\tilde{J}_2(u_h)$:





discrete adjoint solution z_h connected to $J_3(u_h)$ adjoint inconsistent discrete adjoint solution z_h connected to $\tilde{J}_3(u_h)$ adjoint consistent

Outline

The consistency and adjoint consistency analysis

- Overview and preview
- Definition of consistency and adjoint consistency
- A priori error estimates for target functionals $J(\cdot)$
- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 37 / 45

(a)

Consider the linear advection equation

 $Lu := \nabla \cdot (\mathbf{b}u) + cu = f$ in Ω , u = g on $\Gamma_{-} = {\mathbf{x} \in \Gamma, \mathbf{b}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) < 0}$.

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008

<□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>
EM methods
14. Oct. 2008
38 / 45

Consider the linear advection equation

 $Lu := \nabla \cdot (\mathbf{b}u) + cu = f \quad \text{in } \Omega, \quad u = g \quad \text{on } \Gamma_- = \{\mathbf{x} \in \Gamma, \mathbf{b}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) < 0\}.$

Multiply by $z \in H^{1,b}(\mathcal{T}_h)$, integrate over Ω and integrate by parts

 $\int_{\Omega} \left(\nabla \cdot (\mathbf{b}u) + cu \right) z \, \mathrm{d} \mathbf{x} = - \int_{\Omega} \left(\mathbf{b}u \right) \cdot \nabla z \, \mathrm{d} \mathbf{x} + \int_{\Omega} cuz \, \mathrm{d} \mathbf{x} + \int_{\Gamma} \mathbf{b} \cdot \mathbf{n} \, uz \, \mathrm{d} s.$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008

Consider the linear advection equation

 $Lu := \nabla \cdot (\mathbf{b}u) + cu = f \text{ in } \Omega, \quad u = g \text{ on } \Gamma_{-} = \{\mathbf{x} \in \Gamma, \mathbf{b}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) < 0\}.$

Multiply by $z \in H^{1,\mathbf{b}}(\mathcal{T}_h)$, integrate over Ω and integrate by parts

 $\int_{\Omega} (\nabla \cdot (\mathbf{b}u) + cu) z \, \mathrm{d}\mathbf{x} = -\int_{\Omega} (\mathbf{b}u) \cdot \nabla z \, \mathrm{d}\mathbf{x} + \int_{\Omega} cuz \, \mathrm{d}\mathbf{x} + \int_{\Gamma} \mathbf{b} \cdot \mathbf{n} \, uz \, \mathrm{d}s.$ After splitting the boundary $\Gamma = \Gamma_{-} \cup \Gamma_{+}$ we obtain:

 $(\nabla \cdot (\mathbf{b}u) + cu, z)_{\Omega} + (u, -\mathbf{b} \cdot \mathbf{n} z)_{\Gamma_{-}} = (u, -\mathbf{b} \cdot \nabla z + cz)_{\Omega} + (u, \mathbf{b} \cdot \mathbf{n} z)_{\Gamma_{+}}.$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the linear advection equation

 $Lu := \nabla \cdot (\mathbf{b}u) + cu = f \quad \text{in } \Omega, \quad u = g \quad \text{on } \Gamma_{-} = \{\mathbf{x} \in \Gamma, \mathbf{b}(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) < 0\}.$

Multiply by $z \in H^{1,\mathbf{b}}(\mathcal{T}_h)$, integrate over Ω and integrate by parts $\int_{\Omega} (\nabla \cdot (\mathbf{b}u) + cu) z \, d\mathbf{x} = -\int_{\Omega} (\mathbf{b}u) \cdot \nabla z \, d\mathbf{x} + \int_{\Omega} cuz \, d\mathbf{x} + \int_{\Gamma} \mathbf{b} \cdot \mathbf{n} \, uz \, ds.$ After splitting the boundary $\Gamma = \Gamma_- \cup \Gamma_+$ we obtain:

$$(\nabla \cdot (\mathbf{b}u) + cu, z)_{\Omega} + (u, -\mathbf{b} \cdot \mathbf{n} z)_{\Gamma_{-}} = (u, -\mathbf{b} \cdot \nabla z + cz)_{\Omega} + (u, \mathbf{b} \cdot \mathbf{n} z)_{\Gamma_{+}}$$

Comparing with the compatibility condition

$$(Lu,z)_{\Omega}+(Bu,C^*z)_{\Gamma}=(u,L^*z)_{\Omega}+(Cu,B^*z)_{\Gamma},$$

we see that for $Lu = \nabla \cdot (\mathbf{b}u) + cu$ in Ω and

$$Bu = u,$$
 $Cu = 0$ on $\Gamma_-,$

$$Bu = 0,$$
 $Cu = u$ on $\Gamma_+,$

the adjoint operators are given by $L^*z = -\mathbf{b} \cdot \nabla z + cz$ in Ω and

$$B^*z = 0, \qquad C^*z = -\mathbf{b} \cdot \mathbf{n} z \qquad \text{on } \Gamma_-, \\ B^*z = \mathbf{b} \cdot \mathbf{n} z, \qquad C^*z = 0 \qquad \text{on } \Gamma_+, \text{ is } n = 0$$

14. Oct. 2008

38 / 45

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

The continuous adjoint problem to the linear advection equation **Primal problem:**

$$Lu := \nabla \cdot (\mathbf{b}u) + cu = f \text{ in } \Omega, \qquad u = g \text{ on } \Gamma_{-}.$$

For the operators $Lu = \nabla \cdot (\mathbf{b}u) + cu$ in Ω and

$$\begin{array}{ll} Bu = u, & Cu = 0 & \text{on } \Gamma_-, \\ Bu = 0, & Cu = u & \text{on } \Gamma_+, \end{array}$$

the adjoint operators are given by $L^*z = -\mathbf{b} \cdot \nabla z + cz$ in Ω and

$$\begin{aligned} B^*z &= 0, & C^*z &= -\mathbf{b} \cdot \mathbf{n} z & \text{on } \Gamma_-, \\ B^*z &= \mathbf{b} \cdot \mathbf{n} z, & C^*z &= 0 & \text{on } \Gamma_+. \end{aligned}$$

In particular,

$$J(u) = \int_{\Omega} j_{\Omega} u \, \mathrm{d}\mathbf{x} + \int_{\Gamma} j_{\Gamma} C u \, \mathrm{d}s = \int_{\Omega} j_{\Omega} u \, \mathrm{d}\mathbf{x} + \int_{\Gamma_{+}} j_{\Gamma} u \, \mathrm{d}s,$$

is **compatible** the continuous adjoint problem is given by

 $-\mathbf{b} \cdot \nabla z + cz = j_{\Omega}$ in Ω , $\mathbf{b} \cdot \mathbf{n} z = i_{\Gamma}$ on Γ_{+} .

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 39 / 45

Primal residual form of the upwind DG discretization

We rewrite the **discrete primal problem**: find $u_h \in V_h$ such that

$$B_h(u_h,v_h)=F_h(v_h) \quad \forall v_h\in V_h,$$

in element-based **primal residual form:** find $u_h \in V_h$ such that

$$\int_{\Omega} R(u_h) v_h \, \mathrm{d} \mathbf{x} + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa \setminus \Gamma} r(u_h) v_h \, \mathrm{d} s + \int_{\Gamma} r_{\Gamma}(u_h) v_h \, \mathrm{d} s = 0 \quad \forall v_h \in V_h,$$

where the **primal residuals** are given by $R(u_h) = f - \nabla_h \cdot (\mathbf{b}u_h) - cu_h$ on Ω , and

$$r(u_h) = \mathbf{b} \cdot \mathbf{n} (u_h^+ - u_h^-) \qquad \text{on } \partial \kappa_- \setminus \Gamma, \kappa \in \mathcal{T}_h,$$

$$r_{\Gamma}(u_h) = \mathbf{b} \cdot \mathbf{n} (u_h - g) \qquad \text{on } \Gamma_-.$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008

40 / 45

Primal residual form of the upwind DG discretization

We rewrite the **discrete primal problem:** find $u_h \in V_h$ such that

$$B_h(u_h,v_h)=F_h(v_h) \quad \forall v_h\in V_h,$$

in element-based **primal residual form:** find $u_h \in V_h$ such that

$$\int_{\Omega} R(u_h) v_h \, \mathrm{d} \mathbf{x} + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa \setminus \Gamma} r(u_h) v_h \, \mathrm{d} s + \int_{\Gamma} r_{\Gamma}(u_h) v_h \, \mathrm{d} s = 0 \quad \forall v_h \in V_h,$$

where the **primal residuals** are given by $R(u_h) = f - \nabla_h \cdot (\mathbf{b}u_h) - cu_h$ on Ω , and

$$r(u_h) = \mathbf{b} \cdot \mathbf{n} (u_h^+ - u_h^-) \qquad \text{on } \partial \kappa_- \setminus \Gamma, \kappa \in \mathcal{T}_h$$

$$r_{\Gamma}(u_h) = \mathbf{b} \cdot \mathbf{n} (u_h - g) \qquad \text{on } \Gamma_-.$$

The exact solution $u \in H^{1,\mathbf{b}}(\Omega)$ to the **primal problem**:

$$\nabla \cdot (\mathbf{b}u) + cu = f \quad \text{in } \Omega, \qquad u = g \quad \text{on } \Gamma_-,$$

$$R(u) = 0 \qquad \qquad \text{in } \kappa, \kappa \in \mathcal{T}_h,$$

$$r(u) = 0 \qquad \qquad \text{on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h,$$

$$r_{\Gamma}(u) = 0 \qquad \qquad \text{on } \Gamma.$$

Thereby, the upwind DG discretization is **consistent**.

Ralf Hartmann (DLR)

satisfies

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 40 / 45

Adjoint residual form of the upwind DG discretization

We rewrite the **discrete adjoint problem**: find $z_h \in V_h$ such that

$$B_h(w_h, z_h) = J(w_h) \quad \forall w_h \in V_h,$$

in following element-based adjoint residual form: find $z_h \in V_h$ such that

$$\int_{\Omega} w_h R^*(z_h) \, \mathrm{d} \mathbf{x} + \sum_{\kappa \in \mathcal{T}_h} \int_{\partial \kappa \setminus \Gamma} w_h \, r^*(z_h) \, \mathrm{d} s + \int_{\Gamma} w_h \, r^*_{\Gamma}(z_h) \, \mathrm{d} s = 0 \quad \forall w_h \in V_h,$$

where the adjoint residuals are given by

$$\begin{aligned} R^*(z_h) &= j_{\Omega} + \mathbf{b} \cdot \nabla_h z_h - c z_h & \text{on } \Omega \\ r^*(z_h) &= -\mathbf{b} \cdot \mathbf{n} [z_h] & \text{on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h, \\ r_{\Gamma}^*(z_h) &= j_{\Gamma} - \mathbf{b} \cdot \mathbf{n} z_h & \text{on } \Gamma_+. \end{aligned}$$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 41 / 45

Adjoint residual form of the upwind DG discretization

The **adjoint residuals** are given by

$$\begin{aligned} R^*(z_h) &= j_{\Omega} + \mathbf{b} \cdot \nabla_h z_h - c z_h & \text{on } \Omega \\ r^*(z_h) &= -\mathbf{b} \cdot \mathbf{n} [z_h] & \text{on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h, \\ r^*_{\Gamma}(z_h) &= j_{\Gamma} - \mathbf{b} \cdot \mathbf{n} z_h & \text{on } \Gamma_+. \end{aligned}$$

The exact solution $z \in H^{1,\mathbf{b}}(\Omega)$ to the continuous **adjoint problem**:

$$-\mathbf{b} \cdot \nabla z + cz = j_{\Omega} \quad \text{in } \Omega, \qquad \qquad \mathbf{b} \cdot \mathbf{n} \, z = j_{\Gamma} \quad \text{on } \Gamma_+,$$

satisfies

$$\begin{aligned} R^*(z) &= 0 & \text{on } \Omega \\ r^*(z) &= 0 & \text{on } \partial \kappa \setminus \Gamma, \kappa \in \mathcal{T}_h, \\ r^*_{\Gamma}(z) &= 0 & \text{on } \Gamma_+. \end{aligned}$$

Thereby, the upwind DG discretization is **adjoint consistent**.

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 42 / 45

Example: A priori error estimates for target functionals $J(\cdot)$

For the linear advection equation

$$Lu := \nabla \cdot (\mathbf{b}u) + cu = f \text{ in } \Omega, \qquad u = g \text{ on } \Gamma_-,$$

we have the *a priori* error estimate:

$$|||u-u_h|||_{b_0} \leq Ch^{p+1/2}|u|_{H^{p+1}(\Omega)} \qquad \forall u \in H^{p+1}(\Omega),$$

and the approximation estimate:

$$|\|v-P^d_{h,p}v\||_{b_0}\leq Ch^{p+1/2}|v|_{H^{p+1}(\Omega)}\qquad \forall v\in H^{p+1}(\Omega).$$

If we now had continuity

$$|B_h(u,v)| \leq C |||u|||_{b_0} |||v|||_{b_0}$$

we could employ the error estimate: $|J(u) - J(u_h)|$ is of order $\mathcal{O}(h^{r+\tilde{r}})$. Here for r = p + 1/2 and $\tilde{r} = p + 1/2$.

Ralf Hartmann (DLR)

14. Oct. 2008 43 / 45

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Example: A priori error estimates for target functionals $J(\cdot)$

For the linear advection equation

$$Lu := \nabla \cdot (\mathbf{b}u) + cu = f \text{ in } \Omega, \qquad u = g \text{ on } \Gamma_-,$$

we have the *a priori* error estimate:

$$|||u - u_h|||_{b_0} \le Ch^{p+1/2} |u|_{H^{p+1}(\Omega)} \qquad \forall u \in H^{p+1}(\Omega),$$

and the approximation estimate:

$$\|\|v - P^d_{h,p}v\||_{b_0} \le Ch^{p+1/2} |v|_{H^{p+1}(\Omega)} \qquad \forall v \in H^{p+1}(\Omega).$$

If we now had continuity

$$|B_h(u,v)| \leq C |||u|||_{b_0} |||v|||_{b_0}$$

we could employ the error estimate: $|J(u) - J(u_h)|$ is of order $\mathcal{O}(h^{r+\tilde{r}})$. Here for r = p + 1/2 and $\tilde{r} = p + 1/2$.

The error $|J(u) - J(u_h)|$ for the upwind DG discretization is of $\mathcal{O}(h^{2p+1})$ [35,23]. Ralf Hartmann (DLR) Numerical Analysis of Higher Order DGFEM methods 14. Oct. 2008 43 / 45

Outline

Outline

The consistency and adjoint consistency analysis

- Overview and preview
- Definition of consistency and adjoint consistency
- A priori error estimates for target functionals $J(\cdot)$
- The consistency and adjoint consistency analysis
- Adjoint consistency analysis of the IP discretization
- Numerical results
- Adjoint consistency analysis of the upwind DG discretization
- Summary

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 44 / 45

(a)

- A discretization is adjoint consistent if the corresponding discrete adjoint problem is a consistent discretization of the continuous adjoint problem.
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are compatible with the primal equations.

イロト 不得下 イヨト イヨト 二日

- A discretization is adjoint consistent if the corresponding discrete adjoint problem is a consistent discretization of the continuous adjoint problem.
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are compatible with the primal equations.
- The upwind DG(p) discretization of the linear advection equation in combination with **compatible** target quantities is **adjoint consistent**:
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p+1})$

- A discretization is adjoint consistent if the corresponding discrete adjoint problem is a consistent discretization of the continuous adjoint problem.
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are compatible with the primal equations.
- The upwind DG(p) discretization of the linear advection equation in combination with **compatible** target quantities is **adjoint consistent**:
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p+1})$
- For an **adjoint consistent** DG(*p*) discretization of Poisson's equation:
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p})$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 45 / 45

- A discretization is adjoint consistent if the corresponding discrete adjoint problem is a consistent discretization of the continuous adjoint problem.
- Adjoint consistency and thus optimal order estimates can be obtained only for target functionals which are compatible with the primal equations.
- The upwind DG(p) discretization of the linear advection equation in combination with **compatible** target quantities is **adjoint consistent**:
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p+1})$
- For an **adjoint consistent** DG(p) discretization of Poisson's equation:
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^{2p})$
- For an **adjoint inconsistent** DG(p) discretization of Poisson's equation:
 - The error measured in terms of $J(\cdot)$ behaves like $\mathcal{O}(h^p)$

Ralf Hartmann (DLR)

Numerical Analysis of Higher Order DGFEM methods

14. Oct. 2008 45 / 45

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙