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ABSTRACT

A novel object-based quality measure, which contains three distinct components that consider aspects of
the structure (S), amplitude (A), and location (L) of the precipitation field in a prespecified domain (e.g.,
a river catchment) is introduced for the verification of quantitative precipitation forecasts (QPF). This
quality measure is referred to as SAL. The amplitude component A measures the relative deviation of the
domain-averaged QPF from observations. Positive values of A indicate an overestimation of total precipi-
tation; negative values indicate an underestimation. For the components S and L, coherent precipitation
objects are separately identified in the forecast and observations; however, no matching is performed of the
objects in the two datasets. The location component L combines information about the displacement of the
predicted (compared to the observed) precipitation field’s center of mass and about the error in the
weighted-average distance of the precipitation objects from the total field’s center of mass. The structure
component S is constructed in such a way that positive values occur if precipitation objects are too large
and/or too flat, and negative values if the objects are too small and/or too peaked. Perfect QPFs are
characterized by zero values for all components of SAL. Examples with both synthetic precipitation fields
and real data are shown to illustrate the concept and characteristics of SAL. SAL is applied to 4 yr of daily
accumulated QPFs from a global and finer-scale regional model for a German river catchment, and the SAL
diagram is introduced as a compact means of visualizing the results. SAL reveals meaningful information
about the systematic differences in the performance of the two models. While the median of the S com-
ponent is close to zero for the regional model, it is strongly positive for the coarser-scale global model.
Consideration is given to the strengths and limitations of the novel quality measure and to possible future
applications, in particular, for the verification of QPFs from convection-resolving weather prediction mod-
els on short time scales.
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1. Introduction

Verification of numerical forecasts is an essential
part of the numerical weather prediction (NWP) enter-
prise. On the one hand, it helps identify model short-
comings and systematic errors; on the other hand, it is
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key for a quantitative assessment of the improvement
with time of current forecasting systems and of their
predictability limits. Quality measures like the root-
mean-square (RMS) difference or anomaly correlations
are simple in terms of implementation and are there-
fore routinely used to monitor and compare general
forecast quality at operational prediction centers (e.g.,
Simmons and Hollingsworth 2002). The quality of
quantitative precipitation forecasts (QPF) is typically
measured in terms of categorical verification scores
(Jolliffe and Stephenson 2003), a process that requires
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Fi1G. 1. A schematic example of various forecast and observation combinations, modified from Davis et al.
(2006a). For the qualitative application of SAL, it was assumed that precipitation rates are uniform and the same

in all objects.

the specification of a precipitation threshold. Examples
for this category of QPF verification studies can be
found, for instance, in Damrath et al. (2000) for Ger-
many and Ebert et al. (2003) for the United States,
Australia, and Germany.

Gridpoint-based error measures are appropriate for
the verification of fields dominated by synoptic-scale
structures (e.g., the 500-hPa geopotential height field),
but for parameters like precipitation, which are char-
acterized by complex structures on scales of less than
100 km, these measures are regarded as problematic
and several new approaches have been suggested and
developed during the last decade (e.g., Ebert and
McBride 2000; Casati et al. 2004; Davis et al. 2006a, and
references therein). The classical example to illustrate
the limitations of gridpoint-based error measures is the
“double penalty problem”: a prediction of a precipita-
tion structure that is correct in terms of amplitude, size,
and timing but (maybe only slightly) incorrect concern-
ing position is very poorly rated by categorical error
scores and the RMSE. In such a situation, the hit rate of
the forecast with the misplaced precipitation structure
is as bad as that of a forecast that totally missed the
event, and the RMSE is even worse. Also, hit rate and
RMSE are equally bad for forecasts that misplaced the
event, independent of the degree of the misplacement
(see Figs. 1a,b, modified from Davis et al. 2006a), and
therefore the verification result does not pinpoint the
nature of the error (i.e., the displacement). These issues
become even more important with the advent of very-

high-resolution numerical models (with horizontal grid
spacings of 1-4 km), which produce precipitation fields
that are comparable to radar information in terms of
complexity and variety of structures.

The novel approaches of QPF verification try to
avoid the double penalty problem and aim to provide
useful information about the characteristics and scales
of the identified prediction error. They can be catego-
rized into “fuzzy” scores, techniques that focus on spa-
tial scales, and object-based approaches. Different
fuzzy scores have been proposed (e.g., Theis et al. 2005;
Roberts and Lean 2008) that consider neighboring grid
points when comparing simulated and observed fields
to account for spatial and temporal uncertainty in the
forecast. In the second category, the approach of Casati
et al. (2004) using a two-dimensional wavelet decom-
position yields useful skill information on different spa-
tial scales. A typical result is that the loss of forecast
skill is due to relatively intense events on scales smaller
than 40 km. A pioneering study for the object-based
category is the one by Ebert and McBride (2000), who
decomposed the total mean squared error into compo-
nents associated with the location, rain volume, and
pattern of identified precipitation objects (referred to
as “contiguous rain areas”). For the identification of
such objects in daily accumulated precipitation fields in
Australia, a fixed threshold of 5 mm day~! has been
used. It was found that the volume error is typically
smallest, except for intense events where underestima-
tion of rainfall amounts becomes an issue. Another ob-
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ject-based technique has been introduced by Davis et
al. (2006a), who used a convolution, smoothing, and
thresholding procedure to define meaningful objects. A
matching algorithm served to find object pairs in the
forecast and observations. For hourly forecasts pro-
duced by the Weather Research and Forecasting
(WRF) model with a horizontal resolution of 22 km
over the United States, one of the interesting results
was that the model overestimated the size of the ob-
jects, in particular during the later afternoon. Also, it
turned out that object matching was increasingly diffi-
cult for smaller-scale objects. In a companion study
(Davis et al. 2006b), the technique was applied to con-
vection-resolving WRF simulations, again revealing
valuable information about the model’s QPF perfor-
mance that could not be obtained with standard verifi-
cation approaches. An alternative object-based ap-
proach has been proposed by Marzban and Sandgathe
(2006), based on a cluster analysis technique. Finally,
the study by Keil and Craig (2007) is mentioned, who
focused on the forecasts’ displacement error, which has
been calculated with a pyramid matching algorithm,
without specifying individual objects.

It is important to note that the current efforts to
define alternative error measures are not only moti-
vated by practical and technical issues (i.e., by the fact
that gridpoint-based error measures do not provide
enough useful information, and that they suffer from
the double penalty problem) but they are also rooted in
our current understanding of atmospheric predictabili-
ty. Theoretical and model studies on error propagation
(e.g., Zhang et al. 2002, 2003, 2006; Walser et al. 2004;
Walser and Schir 2004; Hohenegger et al. 2006) indi-
cate that the predictability limit falls off rapidly toward
small scales (1-100 km) mainly due to upscale error
propagation associated with individual convective cells.
However, several of these studies also emphasize that
predictability of QPFs strongly depends on the weather
situation and the underlying topography. The presence
of convection alone does not necessarily limit predict-
ability, at least in mountainous regions (Walser and
Schir 2004), and strongly organized convective systems
tend to be characterized by increased predictability
(Fritsch and Carbone 2004).

In this study, a novel three-dimensional quality mea-
sure is proposed, which separately considers aspects of
the structure (S), amplitude (A), and location (L) of a
QPF in a certain region of interest (e.g., a major river
catchment). This quality measure, referred to as SAL,
aims to address the following issues:

1) it measures quantitatively three distinct aspects of
the quality of an individual precipitation forecast in
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a previously specified area, integrated over time pe-
riods ranging from 1 to 24 h;

2) it takes into account the “structure” of the precipi-
tation event (e.g., scattered convective cells, convec-
tive complex, frontal rain system), which is regarded
as a direct fingerprint of the physical nature of the
event;

3) it does not require a one-to-one matching between
the identified objects in the observed and simulated
precipitation fields; and

4) it is close to a subjective visual judgment of the ac-
curacy of a regional QPF.

To accomplish these tasks, simple measures are
specified to characterize the forecast quality in terms of
structure, amplitude, and location. For the structure
and location components, it will be necessary to iden-
tify coherent objects in the observed and predicted pre-
cipitation fields. The definition of the three compo-
nents and some technical details are given in the next
section. In section 3, idealized examples are presented
to illustrate the functioning of SAL. A first application
of SAL to daily accumulated precipitation forecasts for
a German river catchment is presented in section 4 for
a global and limited-area NWP model, respectively.

2. Definition of the three components of SAL

Consider a domain 2 (e.g., a catchment area) repre-
sented by a set of N grid points in both the observa-
tional and model datasets. The precipitation field is de-
noted as R, and where a distinction between observed
and simulated precipitation is necessary, the symbols
R and R, .4 are used (see also Table 1 for an over-
view on the notation).The order in which the compo-
nents of SAL are described is guided by their degree of
complexity and goes from A to L and finally to S. But
first, the issue of the identification of objects is briefly
discussed.

a. The identification of objects

The computation of the location and structure com-
ponents (as defined later) requires first the identifica-
tion of individual precipitation objects within the con-
sidered domain, separately for the observed and fore-
cast precipitation fields. Several possibilities exist to
perform this task, for instance, the method introduced
by Davis et al. (2006a). Here we use a simple (and
subjective) approach, where a threshold value

R* = fRM™™ (1)

is specified to identify coherent objects enclosed by
the threshold contour. R™* denotes the maximum



NOVEMBER 2008

TABLE 1. Notation used in this study.

Considered domain for verification (set of grid
points in domain)

Number of grid points in domain

Largest distance of two grid points in domain

Precipitation field

Precipitation value at grid point (i, j)

Center of mass of precipitation field in domain

Maximum precipitation value in domain

Threshold value to identify objects

R, Precipitation object with index n (set of grid points

that belong to object)

M Number of precipitation objects in domain

Maximum precipitation value in object n

Area-integrated precipitation in object n

Center of mass of precipitation object n

Scaled precipitation volume of object n

Weighted average of the scaled precipitation
volumes of all objects in the domain

Weighted averaged distance between individual
objects and x

~

value of precipitation that occurs within the domain .
Grid points belonging to an object are selected using an
algorithm developed previously for the identification of
coherent potential vorticity features (Wernli and
Sprenger 2007). Starting from a grid point that corre-
sponds to a local precipitation maximum exceeding the
threshold R*, neighboring grid points are included in
the object as long as the grid point values R;; are larger
than R*. The objects are denoted as R, n =1,..., M,
where M corresponds to the number of objects in D.
The choice of the factor fin Eq. (1) is not based on
objective criteria. Our choice used throughout this
study (f = 1/15) was motivated by the fact that for most
considered cases (like the examples shown in Fig. 6),
this contour separates features of the precipitation field
that correspond reasonably well to distinct objects that
can be identified by eye. When discussing the results of
SAL in section 4, consideration will be given to their
sensitivity to the choice of the threshold factor.

b. The amplitude component A

The amplitude component of SAL corresponds to
the normalized difference of the domain-averaged pre-
cipitation values:

D(Rmod) - D(Robs)

= . 2
05ID(Rpno) + DRy @
Here, D(R) denotes the domain average of R:
1
D(R)=v 2 Ry 3)

(i.j)e D

where Rj; are the gridpoint values. This provides a
simple measure of the quantitative accuracy of the total
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amount of precipitation in a specified region D, ignor-
ing the field’s subregional structure. The values of A
are within [-2 ... +2] and 0 denotes perfect forecasts
in terms of amplitude. The value of A = +1 indicates
that the model overestimates the domain-averaged pre-
cipitation by a factor of 3; a value of A = —1 goes along
with an underestimation by a factor of 3. Overestima-
tions by factors of 1.5 and 2 lead to values of A = 0.4
and 0.67, respectively.

c¢. The location component L

The location component of SAL consists of two
parts: L = L, + L,. The first one measures the nor-
malized distance between the centers of mass of the
modeled and observed precipitation fields,

_ |X(Rm0d) - X(Robs)|
d 9

L, 4)
where d is the largest distance between two boundary
points of the considered domain 9 and x(R) denotes
the center of mass of the precipitation field R within D.
According to Eq. (4), the values of L, are in the range
[0...1]. The term L, gives a first-order indication of
the accuracy of the precipitation distribution within the
domain. In case of L, = 0, the centers of mass of the
predicted and observed precipitation fields are identi-
cal. However, many different precipitation fields can
have the same center of mass, and therefore L; = 0
does not necessarily indicate a perfect forecast. For in-
stance, a forecast with two precipitation events on op-
posite sides in the considered domain can have the
same center of mass as an observed precipitation field
with one event located in between the two predicted
events (see also discussion in section 3a).

The second part, L,, aims to distinguish such situa-
tions and considers the averaged distance between the
center of mass of the total precipitation fields and in-
dividual precipitation objects. After identifying the ob-
jects separately in the observations and the forecast (as
outlined in section 2a), the integrated amount of pre-
cipitation is calculated for every object as

R,= >, R;.
(i,))€ Rn

The weighted averaged distance between the centers of
mass of the individual objects, x,,, and the center of
mass of the total precipitation field, x, is then given by

M
D R,x—x,
n=1

— )
>R,

r =
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The maximum value of r is d/2 (i.e., half the maximum
distance between two grid points in the domain). In the
case of a single object in the domain, Eq. (5) yields r =
0. As an aside, it is noted that the denominator in Eq.
(5) is not equal to the sum involved in the computation
of D(R) [see Eq. (3)], because the latter includes all
grid points whereas =¥ R, extends only over grid
points with R;; = R* Now, L, can be calculated as the
difference of r calculated for the observed and fore-

casted precipitation fields:

|(Rm0)_ (Ro s)l
Lzzz[r “‘dr b]

This quantity can only differ from zero if at least one of
the datasets contains more than one object in the con-
sidered domain. The factor of 2 is used to scale L, to
the range [0 ... 1] (i.e., the same range as for L,).
Hence, the total location component L can reach values
between 0 and 2, and the value of 0 can be obtained
only for a forecast, where both the center of mass as
well as the averaged distance between the objects and
the center of mass agree with the observations. As a
caveat, it is mentioned that despite the consideration of
L,, different situations can still yield the same value of
L, + L,. In particular, the definition of L is not sensi-
tive to rotation around the center of mass.

(6)

d. The structure component S

Finally, for the structure component S, the basic idea
is to compare the volume of the normalized precipita-
tion objects. As will be shown in several examples, such
a measure captures information about the size and
shape of precipitation objects. Technically, for every
object a “scaled volume” V,, is calculated as

V,= >, Ry/R™ =R/R™, )
(i-))€ Rn

where R)'®* denotes the maximum precipitation value
within the object (i.e., R;™ = R™*). The scaling with
R;'** is necessary to make S distinct from the amplitude
component A (see examples in next section). The
scaled volume V/,, is calculated separately for all objects
in the observational and forecast datasets. Then, the
weighted mean of all objects’ scaled precipitation vol-
ume, referred to as V, is determined for both datasets.
As in Eq. (5), the weights are proportional to the ob-
jects’ integrated amount of precipitation R,;

M

R,V,

n’"n
1

V(R) = ——. 8)
2R,

n=1
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Note that V(R) is proportional to the second moment
of the precipitation field [V(R) « =RZ], whereas D(R)
(used for the computation of the A component) is pro-
portional to the first moment. The component S is then
defined as the normalized difference in V, analogous to
the A component [cf. Eq. (2)]:

_ V(Rmod) - V(Robs)
OS[V(RmOd) + V(Robs)] '

)

Here, S becomes large if the model predicts, for in-
stance, widespread precipitation in a situation of small
convective events. The possibility to identify these
kinds of errors is one of the key characteristics of SAL.
Negative values of S occur for too small precipitation
objects, too peaked objects, or a combination of these
factors (see examples in sections 3 and 4).

3. Idealized examples

To illustrate the characteristics of the precipitation
field captured by the SAL components, it is useful to
apply their definitions to synthetic precipitation objects
with highly idealized, simple shapes. First, a few ex-
amples are considered in a qualitative way, and then
SAL is applied quantitatively to a set of synthetic fields.

a. Qualitative considerations

For simplicity, it is assumed that the observations
contain only one object in the considered domain, with
a right circular conelike shape (Fig. 2). The left panel
shows a contour plot of the object with a maximum
value of R3i%* and a threshold R* defining the border of
the object. The center panel provides a section across
the center of the object, and the right panel shows the
same cross section, after applying the scaling with R5;2X.
For the calculation of V,, [Eq. (7)], only the grid points
of the circular cone where R, > R* are considered
(see gray shaded area).

SAL is now qualitatively determined for different
forecast examples (Figs. 3, 4), which are also character-
ized by circularly symmetric objects, however differing
in amplitude, size, shape, or number. For single-object
situations (examples 1-3), the calculation and interpre-
tation of the L component is straightforward and the
discussion therefore focuses on A and S.

obs

1) ExampLE 1

For the first example (Fig. 3a), the forecast object has
the same base area but a reduced amplitude compared
to the observed object (Fig. 2; i.e., Rmag < Roi). The
object identification threshold R* does not play a role
for the calculation of A, and therefore A simply de-
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F1G. 2. Idealized precipitation object with the shape of a right circular cone (assumed to represent the obser-
vations). (left) Contour plot of the object with a maximum value of R™** (denoted briefly as R” in the figure) and
a threshold R* defining the border of the object. (center) Section across the center of the object. (right): Same cross
section after applying the scaling with R™**. The volume V is marked by gray shading.

pends on the ratio of the maximum values. For the jects (cf. right-hand sides of Figs. 2, 3a), and therefore
situation shown in Fig. 3a, area-integrated precipitation  the structure component S becomes zero. The interpre-
is underestimated by the model, yielding a negative tation is, according to SAL, that the simulated precipi-
value for A. The independent scaling with the maxi- tation field has the correct structure (S = 0) while un-
mum value in both datasets leads to two identical ob- derestimating the total amount of precipitation (A < 0).

R/RM A

1

X X

FIG. 3. Same as Fig. 2, but now for three forecast objects: (a) a right circular cone with reduced amplitude
(compared to Fig. 2); (b) a right circular cone with reduced amplitude and larger base area (but with the same total
precipitation amount as the object in Fig. 2); and (c) a peaked circular cone with the same base area as in Fig. 2.
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Note that application of the so-called contiguous rain
areas (CRA) technique introduced by Ebert and
McBride (2000) would lead to a different result: for the
considered example, their error decomposition yields
both a volume and a pattern error. Also, the volume
error would be positive and not point to the underes-
timation of the precipitation amplitude in the forecast.

2) EXAMPLE 2

We now consider a case (Fig. 3b) in which the errors
in the amplitude and base area of the simulated circular
conelike object compensate for each other, such that
the domain-integrated precipitation value is the same
as in the observations (Fig. 2). Consequently, there is
no amplitude error (A = 0). However, because the base
area of the precipitation object is overestimated by the
model, the scaling in the calculation of S [Eq. (7)] leads
to a larger scaled precipitation volume in the simula-
tion and to a positive value for S. In this case, the fore-
cast has no amplitude error but rather a positive struc-
ture error due to the too large base area of the object.
Again, as for the first example, the CRA error decom-
position would lead to both a volume and a pattern
error.

From these two examples it becomes obvious that A
and S are distinct components of SAL—and that they
differ significantly from the volume and pattern com-
ponents of the Ebert and McBride (2000) decomposi-
tion of the mean squared error. The scaling involved in
the calculation of V [Eq. (7)] is essential to allow for
S = 0 in the presence of an amplitude error (first ex-
ample) and for identifying a structure error also in case
of a correct total precipitation amount (second ex-
ample). Also note that for these examples, a simpler
definition of S that considers only the objects’ base area
would lead to the same results as the more complex
definition applied here [Eq. (9)]. The next example il-
lustrates the additional distinction that is possible when
considering the scaled volume instead of the base area
for the calculation of S.

3) EXAMPLE 3

Figure 3c shows a circular object that has the same
base area but is more peaked than the right circular
cone (Fig. 2). To focus on S, we can assume that the
amplitudes of the two objects are such that they yield
the same domain-averaged precipitation values. How-
ever, scaling with R™** leads to a smaller value of V for
the peaked object and therefore to a negative value of
S. Similarly, a flat object with a concave shape would
lead to a positive value of S, if compared with the right
circular cone (Fig. 2). This example shows that SAL
[with the S component as defined in Eq. (9)] is able to

MONTHLY WEATHER REVIEW

VOLUME 136

distinguish between peaked and flat objects, even if
they provide the same total amount of precipitation.
The usefulness of this distinction stems from the as-
sumption that widespread stratiform precipitation typi-
cally leads to flat objects, whereas in convective situa-
tions, objects tend to be much more peaked. It is in this
sense that SAL is sensitive to the physical nature of the
precipitation event.

Now we consider a few examples in which the simu-
lated precipitation field contains more than one object
in the considered domain. For simplicity, we still as-
sume that the observed precipitation is given by the
single object shown in Fig. 2.

4) EXAMPLE 4

If the simulated field has two objects like the one
shown in Fig. 2, then the total amount of precipitation
is overestimated by a factor of 2, leading to a value of
A = 2/3 [Eq. (2)]. The component S is zero, because
both objects have the correct scaled volume V,, (recall
that for the calculation of S, the averaged value of all V,,
is considered). The component L depends on the loca-
tion of the two simulated objects relative to the ob-
served one. This is discussed in more detail in the next
example.

5) EXAMPLE 5

If the simulated field has two objects, like the one
shown in Fig. 3a, that are right circular cones with half
the amplitude compared to the single observed object,
then both A and § are zero. In the special situation in
which the two objects are displaced by the same dis-
tance relative to the observed object but exactly in the
opposite direction, then the two centers of mass are
identical and the component L, is zero. It is for this
reason that we introduced the second component L,,
which is positive in this situation and avoids a nonper-
fect forecast yielding zero values for all components of
SAL. Clearly, if the two objects are located in a differ-
ent way relative to the observed object, then L, is also
positive leading to a larger location error L. These con-
siderations are equally valid for example 4.

6) EXAMPLE 6

As a last example, consider the situation in which the
simulated field has a large object (as shown in Fig. 3b)
and a peaked object with a (much) smaller base area (as
shown in Fig. 3c). The component A is most likely posi-
tive in this case, unless both objects have a much
smaller amplitude than the observed one. As discussed
above, V (R, ,.q) (the scaled volume of the large object)
is larger, and V,(R,,.q) (the scaled volume of the small
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F1G. 4. Example of a precipitation structure with two local maxima to illustrate the camel effect. In the top right
situation, one object is identified, whereas two objects are found in the bottom right situation. The two situations
depicted on the right differ only in terms of R™", the minimum precipitation value along a straight line that

connects the two local maxima.

object) is smaller than the scaled volume of the ob-
served object (Fig. 2). Because according to Eq. (8), the
resulting V(R,,.4) depends on the objects’ total precipi-
tation, § can be either positive or negative. If the
peaked object has a small base area and/or amplitude,
then the large object dominates the calculation of
V(R,,0q) and S will be positive. In contrast, if the large
object has a much smaller amplitude than the peaked
one, then the latter might dominate (in the sense of
having a larger weight R,,) and S turns out to be nega-
tive. This example shows that due to the weighting of
the objects’ scaled volumes V,, with their contribution
R, to the total precipitation, the structure component S
yields information primarily about the most relevant
objects.

Before we turn to a quantitative application of SAL,
an important caveat associated with the choice of
threshold R* used for the identification of objects
should be discussed. In certain situations in which the
precipitation field in a given domain contains several
local maxima, the identification of objects can be am-
biguous, in the sense that a small change of the thresh-
old can lead to a different number and size of objects,
and therefore to different values of S and L, (note that
A and L, are independent of the object identification).
We refer to this effect as the “camel effect” because it

can be illustrated in a simple way with a double-hump
precipitation structure (see Fig. 4). Depending on the
minimum amplitude R™" along a line connecting the
two maxima, the structure will be identified as a single
object (R™" > R*) or as two objects (R™" < R*). This
has a large effect on S: assuming the two humps to be
equal in size and amplitude, then V is larger by about a
factor of 2 for the single object. This means that in a
situation in which both observations and simulation
yield a camel-like object, a relatively large (positive or
negative) S value can occur if the minimum R™" is
(slightly) above the threshold in one of the two fields
and (slightly) below in the other. For such precipitation
fields, a slight change of the threshold can significantly
influence the values of SAL—which is not a desired
property of object-oriented error measures. However,
such situations are relatively rare and do not influence
the results of a climatological evaluation of precipi-
tation forecasts with SAL, as further discussed in sec-
tion 4.

It is also possible to use SAL to reconsider the sche-
matic examples of observed and forecasted precipita-
tion objects discussed by Davis et al. (2006a; see Fig. 1).
Assuming uniform precipitation rates, forecasts shown
in Figs. 1a,b,d yield no amplitude and no structure error
(A = § = 0). However, they differ in terms of L, with
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D E

F1G. 5. Contour plots of idealized precipitation objects used for a quantitative evaluation of SAL. The objects are referred to as B,
C, D, etc. (from top left to bottom right). The scale is arbitrary, with dark gray denoting more intense precipitation. Compared to the
right circular cone (object B), the objects differ as follows: C has a larger base area; D is shifted; E has a reduced amplitude; F and G
consist of two right circular cones, each with the same amplitude as E, which overlap in the case of F and don’t overlap in the case of

G; H is a flat and I a peaked cone.

the smallest location error associated with Fig. 1a. Be-
cause SAL does not consider the orientation of objects,
it is not able to distinguish between predictions shown
in Figs. 1b,d. The too-large precipitation objects in Figs.
1c,e lead to positive values of S and A. Note that the
example shown in Fig. 1e, which scores best in terms of
the hit rate, is regarded as a very poor prediction in
terms of SAL, whereas the example in Fig. 1a is re-
garded as the best.

b. A quantitative evaluation

Figure 5 shows eight idealized precipitation fields on
a quadratic grid with 99 X 99 grid points. They are
labeled as fields B to I (the label A has been omitted to
avoid confusion with the amplitude component A).
Here, B-E are single right circular cones (cf. Figure 2),
and when compared to B, C has a larger base area;in D,
the object is shifted toward the lower right corner, and
E has a reduced amplitude (by a factor of 2). The F and
G are precipitation fields with two local maxima (of
equal amplitude) that are farther apart in G compared
to F. The object in H is convex (or flat) with a large
plateau, whereas the object in I is peaked (cf. Figure
3c). A threshold factor of f = 1/15 is used [cf. Eq. (1)]
and with this threshold two objects are identified in G
and only one in all other situations (including F).

SAL has been applied quantitatively to all possible
pairs of these fields, and the results are summarized in
Table 2. The entries in the row B and column C, for
instance, indicate the SAL values in the situation in
which B represents the forecast and C the observations.
All diagonal elements are zero, which shows that all
components of SAL are zero if the observed and pre-
dicted fields are identical. No values are given to the
left of the diagonal because the table obviously is anti-
symmetric for S and A, but symmetric for L.

Results from the quantitative evaluation (Table 2)
agree with the qualitative considerations in the previ-
ous subsection. First, situations are discussed where
only one of the three components are non zero. BE
only yields an amplitude error. BD and BG only yield
a location error, however for different reasons: for BD,
the component L, is positive (D is shifted relative to B),
whereas for BG, L, is responsible for the location error.
Consequently, DG yields a location error that corre-
sponds to the sum of the L components of BD and BG.
BF is the only situation with only a structure error (that
arises mainly because the precipitation object F is
larger than B).

Now considering situations in which at least two com-
ponents of SAL are nonzero, there are several ex-
amples in which the components S and A have the same




NOVEMBER 2008

WERNLI ET AL.

4479

TABLE 2. SAL values (format S/A/L) for all possible pairs of precipitation structures B-I as shown in Fig. 5. The matrix is antisym-
metric for A and S, but symmetric for L. To enhance readability only values above the diagonal are given. Columns denote observations,

and rows denote forecasts.

B C D E F G H I

B 0/0/0 —0.88/-0.88/0 0/0/0.14 0/0.67/0 —0.67/0/0 0/0/0.18 —0.68/—0.67/0 0.40/0.38/0
C 0/0/0 0.88/0.88/0.14  0.88/1.35/0 0.24/0.88/0 0.88/0.88/0.18 0.23/0.25/0 1.17/1.16/0
D 0/0/0 0/0.67/0.14 —0.67/0/0.14 0/0/0.32 —0.68/—0.67/0.14  0.40/0.38/0.14
E 0/0/0 —0.67/-0.67/0 0/-0.67/0.18 —0.68/—1.20/0 0.40/-0.31/0
F 0/0/0 0.67/0/0.18 —0.01/-0.67/0 1.00/0.38/0
G 0/0/0 —0.68/—0.67/0.18  0.40/0.38/0.18
H 0/0/0 1.01/0.98/0
1 0/0/0

sign (e.g., BC and CE) and only one where the signs
differ (EI). This indicates that in most of these idealized
situations, an underestimation of the amplitude goes
along with a negative structure error (e.g., BC) and an
overestimation of the amplitude with a positive value of
S (e.g., CI). It is important to note that this is not a
consequence of the mathematical design of the SAL
components but rather due to the chosen examples.
Consider, for instance, forecast B and observations C,
and increase the amplitude of B continuously: this
would not change S < 0, but it would increase the A
component until it eventually becomes positive. Inter-
esting is the comparison EI in which the simulated right
circular cone underestimates the amplitude of the ob-
served peaked object, along with a positive structure
error. This can occur if a forecast misses the high-
amplitude localized nature of a convective precipitation
event.

Also of interest is FG, in which two seemingly similar
precipitation fields are compared. However, in F the
two local maxima are close to each other and only one
object is identified. Compared to G with two well-
separated objects, this yields a positive structure error
(the object in F is too large) and a nonzero location
error (due to L,).

A caveat of SAL can be noticed for CD and CG:
here, the error components are very similar, however
the fields D and G, which both score poorly compared
to C, are rather different. This shows that SAL might
indicate similar errors for differently shaped precipita-
tion fields—a direct consequence of trying to capture
the essential aspects of complex precipitation fields
with three scalar parameters only.

4. Application to precipitation forecasts for the
German part of the Elbe catchment

In this section, operational QPFs from the regional
model Consortium for Small-Scale Modeling-Alpine

Model (COSMO-al.Mo) and the global European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
model will be considered for the summer seasons 2001-
04. Results of the application of SAL will be presented,
first for four selected examples (section 4a), and then
for a climatological analysis of the entire time period
(section 4b). Also, to assess these results statistically,
they will be compared with SAL calculations for per-
sistence and random forecasts in section 4c.

COSMO-al.Mo is a version of the nonhydrostatic
limited-area model developed by COSMO (Steppeler
et al. 2003) and operated at Meteo Swiss. Its horizontal
resolution is 7 km on a rotated stereographic grid. The
model has 40 vertical levels, subgrid-scale convection is
parameterized with the Tiedtke scheme, and a single-
moment bulk microphysical scheme is used that consid-
ers cloud water and cloud ice (since September 2003).
Advection of precipitating hydrometeors is neglected
until the implementation of a so-called prognostic pre-
cipitation scheme in November 2004 for the hydrome-
teor classes of rain and snow. Initial and boundary con-
ditions were provided by the global model of the Ger-
man Weather Service (GME), until September 2003,
and by the ECMWF thereafter. Here, COSMO-alL.Mo
forecasts that were started at 0000 UTC are used, and
daily precipitation totals were taken as the accumulated
precipitation between forecast times 6 and 30 h.

For the time period considered, operational
ECMWEF forecasts have a spectral resolution of T511,
corresponding to about 0.4° latitude—longitude. To per-
form the comparison on the same grid, ECMWF fore-
casts have been interpolated onto the COSMO-alLMo
grid with 7-km resolution. Also here, daily totals cor-
respond to accumulated precipitation between forecast
steps 6 and 30 h from simulations started at 0000 UTC.

The observational dataset of 24-h accumulated pre-
cipitation is based on rain gauge measurements, which
are recorded daily at 0630 UTC. About 3500 stations in
Germany are operated by the German Weather Ser-
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vice, and the average distance between the stations is
~10 km. Using the gridding technique of Frei and Schir
(1998), the observations have been interpolated to the
COSMO-alLMo grid. Further details of this gridded ob-
servational dataset for Germany can by found in Paulat
(2007).

In summary, all three datasets of daily precipitation
used in this study are available during four summer
seasons on the same grid with a horizontal resolution of
7 km covering Germany. To illustrate the application of
SAL, this study focuses on the summer season, which
presents the largest variability in terms of precipitation
structures, from small convective cells to widespread
stratiform rain. The region considered is the German
part of the catchment of the Elbe River, with an area of
97 175 km?. The Elbe originates in the Czech Republic,
flows across eastern Germany, and has a total length of
1165 km. As a side remark, it is noted that in August
2002 (i.e., within the considered time period) a three-
week flooding of the Elbe River saw water levels reach
150-yr highs (Rudolf and Rapp 2002). Large areas were
inundated and the resulting insurance claims were in
the multimillion Euro range.

a. Selected examples

Four days have been selected during summer 2001
for a detailed consideration of the application of SAL.
They differ in terms of meteorological conditions and
the resulting daily total precipitation patterns.

e Case 1 (2 June 2001): An intense low-pressure system
was located over Denmark; warm and cold fronts
moved over Germany, leading to widespread precipi-
tation in the Elbe catchment (Fig. 6a). Maximum
temperatures in the catchment were below 17°C.

e Case 2 (6 June 2001): Maximum temperatures were
again rather low (< 18°C). A developing depression
over the North Sea led to scattered showers in the
Elbe area (Fig. 6¢).

e Case 3 (7 July 2001): A mesoscale cyclone with a
pronounced warm sector crossed Germany, leading
to very intense precipitation (Fig. 6e). Maximum
temperatures were up to 32°C.

e Case 4 (29 July 2001): A large-scale high-pressure
system was situated over western and central Europe
and maximum temperatures were again up to 32°C.
Localized convection occurred in parts of the Elbe
catchment (Fig. 6g).

Table 3 presents the SAL values for these examples.
In the first example (Figs. 6a,b), the precipitation dis-
tribution is fairly homogeneous, and therefore at al-
most all grid points R; exceeds the threshold R*. In
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both datasets there is just one large object. All compo-
nents of SAL are fairly small, indicating a high-quality
forecast.! The largest error occurs in terms of amplitude
(A = 0.312), which is mainly due to an overestimation
of precipitation in the northwest part of the domain.
The two centers of mass nearly coincide, and therefore
L is essentially zero.

In the second example (Figs. 6¢,d), the precipitation
distribution is more variable, in particular in the obser-
vations. Four larger (and several very small) objects are
found in the observations and one dominant large one
in the forecast. The large positive value of S indicates
that the forecast does not capture the localized and
rather peaked character of the observed precipitation.
Also, there is a general overestimation of the precipi-
tation amount (A = 0.88). The location error is much
larger than in the first example (but still moderate). The
main contribution to L stems from the second compo-
nent, L,, because the model does not capture the dis-
tribution of the objects relative to the center of mass.
The latter, however, is very well predicted in the west-
ern part of the catchment and hence L, is almost zero.

Very intense precipitation is observed and simulated
in the third example (Figs. 6e,f). Both observations and
forecasts are dominated by one large object. The am-
plitude component A is essentially zero. The compo-
nent S is negative (but in absolute numbers much
smaller than the positive S values for examples 2 and 4),
indicating that the model object is not flat enough. In
the forecast, there are too-steep gradients between the
heavy rain area and the surroundings, which are af-
fected only by light rain. The location error is almost
identical as in the second example, however with re-
versed importance of the two components. Here, the
contribution of L, can be neglected (as expected if most
of the precipitation occurs in single objects), and the
fairly large value of L; corresponds to the significant
eastward shift of the precipitation area in the forecast.

Finally, the fourth example presents a rather poor
forecast as indicated by the large values of S, A, and L.
The model predicts one large object with intense rain-
fall in the southern part, whereas the observations re-
veal several small objects and showerlike precipitation
in the central part of the catchment. Consequently, all
three components of SAL are positive, indicating an
overestimation of the total precipitation in the catch-
ment, a failure in capturing the rather small-scale and
peaked character of the precipitation objects, and a sig-
nificant southwestward shift of the rainfall area.

! Here, an SAL component is termed “small” if it is much
smaller than typical values of a random reference forecast, as
discussed in section 4c.
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TABLE 3. SAL values for the four example cases shown in Fig.
6. Also shown are the two parts L, and L, that contribute to the
L component. For the definition of objects a threshold of R* =
1/15 - R™* has been chosen.

Case N A L L, L,
1 0.119 0.312 0.033 0.033 0.000
2 1.597 0.877 0.202 0.026 0.176
3 —0.430 —0.057 0.196 0.191 0.005
4 1.598 1.325 0.303 0.174 0.129

It is instructive to consider the sensitivity of the S and
L components to the subjective choice of the object
identification threshold [Eq. (1)] for these real data ex-
amples. In addition to the standard value f = 1/15, four
different threshold factors between 1/17 and 1/13 have
been used for the calculation of SAL. For three ex-
amples (1, 2, and 4) the variability of S and L is fairly
small: S varies by less than 1.5% (which is negligible),
and L by 2%-3% for examples 2 and 4, and by 10% for
example 1 (note that for this example L is almost zero
anyway). For example 3, the values are also almost con-
stant for 1/14 = f =< 1/17. However, the camel effect
(see discussion toward the end of section 3a) occurs if
the threshold factor is further increased to f = 1/13: S
jumps from —0.430 to —0.830, and L from 0.196 to
0.366. The reason is that in this example, similar to the
idealized situation shown in Fig. 4, two almost equally
large objects are identified in the forecast (Fig. 6f) when
using this larger threshold, instead of one object with
the slightly lower thresholds. The two objects in the
forecast compare even less favorably with the observa-
tions than the single object identified with the standard
threshold factor f = 1/15, and therefore § attains a more
negative value and L increases due to an additional
contribution from L,. All in all, this brief sensitivity
analysis indicates that the SAL values are robust, ex-
cept for the well-understood situations where the camel
effect occurs.

b. Comparison of global and mesoscale model
forecasts

Here we perform a climatological SAL analysis of
the QPF capabilities of the global model ECMWF and
the limited-area model COSMO-alLMo in the German
part of the Elbe catchment for the four summers 2001-
04. The main goals are (i) to introduce the compact
SAL diagram, (ii) to quantify SAL values of QPFs from
state-of-the-art NWP models, and (iii) to identify sys-
tematic differences in terms of SAL performance be-
tween coarser and finer-scale models. A threshold of
0.1 mm (corresponding about to the observational de-
tection limit) is used for the maximum gridpoint value
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of precipitation in the domain to distinguish between
days with rain (wet days) and without rain (dry days).
In case of a dry forecast and/or dry observations, no
SAL values can be computed, because, for instance, the
center of mass of the precipitation distribution is not
defined in such a situation.

Figure 7 shows SAL diagrams for the COSMO-
alLMo (Fig. 7a) and ECMWF (Fig. 7b) models, respec-
tively. The small contingency table in the bottom right-
hand corner of the SAL diagram provides information
about the number of dry and wet days in the observa-
tions and forecasts, respectively. Only one day was dry
according to both observations and COSMO-alL.Mo
(Fig. 7a). On 18 days, the model missed the precipita-
tion event, and on 13 days, the model produced a false
alarm. It is important to consider the number of these
cases, because they correspond to particular categories
of poor forecasts but are not accessible to the SAL
technique. Accordingly, they do not appear in the SAL
diagram. During the majority of days (334), both ob-
servations and forecasts were characterized by rain, and
all these days contribute with one entry to the SAL
diagram. Abscissa and ordinate correspond to the S and
A components, respectively, and the color of the dots
represents the L component (see grayscale in the top
left). Excellent forecasts (small values of all three com-
ponents) are found as white and light gray dots in the
center of the diagram. Dashed lines indicate the median
values of § and A, and the gray-shaded box denotes the
25th and 75th percentiles of the two components. The
median and the 25th and 75th percentiles of L are in-
dicated by the thick and thinner white lines plotted in
the grayscale.

For COSMO-alLMo (Fig. 7a), most forecasts are
found in the first (top right) and third (bottom left)
quadrant of the diagram. In the first quadrant, forecasts
overestimate both the amplitude and the structure com-
ponents of SAL. In the third quadrant, both compo-
nents are underestimated. The high density of entries
along the main diagonal indicates that the model typi-
cally tends to overestimate the precipitation amount in
the considered area by producing too-large and/or flat
precipitation objects. Analogously, underestimations of
the amount go typically along with too-small and/or
peaked objects. Particularly notable is the cluster of
dark gray dots in the top right-hand corner of the dia-
gram. Further analysis shows that in these cases fairly
little precipitation was observed, but the model pre-
dicted significant precipitation both in terms of ampli-
tude and extension. These cases can also be regarded as
false alarms. In comparison, the lower density of dots in
the bottom left-hand corner indicates that the model
rarely missed a significant precipitation event (values of
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SAL: ECMWF, 24h, 2001-2004, Summer, Elbe
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F1G. 7. SAL diagrams for the daily precipitation forecasts of the (a) COSMO-aLLMo and (b) ECMWF models
during the summer seasons 2001-04 in the German part of the Elbe catchment. Every dot shows the values of the
three components of SAL for a particular day. The L component is indicated by the color of the dots (see grayscale
in top left). Median values for the S and A components are shown as dashed lines, and the gray box extends from
the 25th to the 75th percentile of the distribution of S and A, respectively. See section 4b for more details.

A < —1.5 are relatively rare). The second (top left) and
fourth (bottom right) quadrant contain only few SAL
entries. Forecasts in the second quadrant produce too
much rain, however, with objects that are too small
and/or too peaked. This could occur, for instance, if
intense showers are predicted in a situation with rather
weak stratiform precipitation. Predictions in the fourth
quadrant underestimate the amplitude of precipitation
and simultaneously produce objects that are too large
and/or flat. A possible scenario here is an erroneous
forecast of stratiform rain in a situation with intense
localized showers. It is notable that no forecasts are
situated in the top left-hand and bottom right-hand cor-
ners of the diagram, indicating that it is difficult to pro-
duce for instance a strong overestimation of precipita-
tion amplitude with much too small objects. The L com-
ponent does not show a systematic behavior with the
other two components. Light and dark dots (i.e., fore-
casts with a small and large location error, respectively)
occur in all quadrants. A slight concentration of white
dots occurs near the center, and darker dots are more
frequent in the left and right part of the diagram (i.e.,
for large absolute values of S). The median values of S
and A are positive (both about 0.3), whereas the inter-
quartile distance is about 1.2 for A and 1.5 for S. These
values of the interquartile distances are relatively large
and indicate that frequently COSMO-alLMo forecasts
score poorly in terms of one of the two or both com-
ponents.

As for the four examples in section 4a, sensitivity
calculations have been performed to assess the fre-
quency of the camel effect. Comparison of § and L
values computed with f = 1/13 and 1/17 (recall that our
standard value is f = 1/15) for the 334 COSMO-al.LMo
forecasts in the Elbe catchment yielded for S an abso-
lute difference of more than 0.1 in 10% and of more
than 0.3 in 3% of the cases. For L, a difference of more
than 0.1 occurred in 5% and of more than 0.3 in 2% of
the cases. This indicates that the sensitivity of the SAL
values with respect to the threshold factor f'is typically
small and that the camel effect, which is associated with
a large sensitivity to f, occurs in about 3% of the cases.
Note that for a more complete analysis of the uncer-
tainties of the resulting SAL values, it would be impor-
tant to also consider the uncertainties associated with
the observational dataset, for instance, through proba-
bilistic upscaling by ensembles of stochastic simulations
conditioned to the available observations (Ahrens and
Beck 2008).

Now considering the performance of the global
ECMWEF model (Fig. 7b), a striking difference occurs.
Almost all forecasts are characterized by positive val-
ues of S. Compared to the results for COSMO-alLMo,
the entire distribution is shifted toward the right, indi-
cating that the global model produces too large and/or
too flat precipitation objects. This is not surprising,
given the coarser model resolution; however, unlike
classical error scores, SAL is able to identify and quan-
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FiG. 8. SAL diagrams for (a) persistence and (b) random forecasts. Plot conventions as in Fig. 7. See section 4c
for details.

tify this specific characteristic of the forecasts. Consid-
ering the two other aspects (A and L components), the
two models perform similarly, except that strongly
negative values of A occur less frequently for the global
model. Note also that the number of missed events and
false alarms is slightly larger for the regional model. In
summary, SAL indicates that in the considered area,
summertime QPFs from the higher-resolution regional
model are superior to the ones from the global model,
because they are superior in capturing the structure of
the precipitation objects.

c¢. Comparison with persistence and random
forecasts

For a statistical investigation of the SAL results pre-
sented in the previous subsections, the SAL technique
has also been applied to sets of persistence and random
forecasts, respectively. This is important to assess the
quality of NWP model predictions relative to standard
reference forecasts. Both reference forecasts are based
on the observational dataset described in section 4a and
therefore independent of a particular NWP model. For
the persistence forecasts, observations from a given day
are used as predictions for the next day. For the random
forecasts, for every day, a forecast field has been ran-
domly chosen among the set of observed fields, in such
a way that every observed field is chosen once as a
forecast. In other words, every observed field is consid-
ered once as the observations and once as the forecast.

The results of these experiments are shown in Fig. 8.
Clearly, in both cases there are much fewer SAL values

in the center of the diagrams. The median values of A
and § are close to zero, which should be expected be-
cause of the symmetry in the construction of the ex-
periments. The median values of L are about 0.3 for the
persistence and almost 0.5 for the random forecasts,
respectively. They are both larger than the correspond-
ing values for the NWP model forecasts (see Fig. 7).
The interquartile distances of A and S (i.e., the gray
boxes) are much larger than in Fig. 7, which statistically
corroborates the quality of the QPFs from the numeri-
cal models, at least for a significant portion of the fore-
casts. Table 4 provides quantitative information on this
issue. The radius p of a sphere in the three-dimensional
space spanned by the components of SAL has been
calculated, which contains the best 5%, 10%, 20%, and
50% of the forecasts. The values reveal that at least
20% of the COSMO-alLMo forecasts are better than
the 5% best random forecasts, and 50% of the
COSMO-alL.Mo forecasts are better than the best about
25% of the random forecasts. Comparing with the
SAL values of the examples discussed in section 4a

TABLE 4. Radius p of the sphere in SAL space that contains the
best 5%, 10%, 20%, and 50% of the forecasts, for the NWP model
COSMO-alLMo and for the persistence and random forecasts.

p for best forecasts

Forecast 5% 10% 20% 50%
COSMO-alLMo 0.30 0.40 0.55 1.05
Persistence 0.35 0.55 0.85 1.45
Random 0.55 0.70 0.95 1.65
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(cf. Table 3) indicates that example 1 belongs to the 5%
best COSMO-alLMo forecasts, and example 3 to the
best 15%. These forecasts are better than random fore-
casts with a statistical significance of more than 95%. In
contrast, the QPFs shown in examples 2 and 4 score
rather poorly (S > 1.5) and have a quality that is met
also by about 50% of the persistence or random fore-
casts.

Note that similar to the results for the COSMO-
alLMo model (Fig. 7a), the SAL values for the persis-
tence and random forecasts are rarely in the second and
forth quadrants of the diagram (Fig. 8). This indicates
that the predominance of SAL values in the first and
third quadrants, found for COSMO-alLMo, is not a par-
ticular feature of the model but a rather intrinsic char-
acteristic of SAL. It reflects the fact that it is difficult to
strongly overestimate the amount of precipitation with
too-small objects (and vice versa). In contrast, the shift
toward positive values of S for the ECMWF model (Fig.
7b) points to a systematic deficiency of the coarser-
scale global model in realistically capturing the struc-
ture of precipitation events.

5. Discussion

A novel quality measure, SAL, has been introduced
for the verification of QPFs. It can be categorized as an
object-oriented verification approach, with the specific
characteristics outlined at the end of section 1. The
three components of SAL quantify distinct aspects of
the quality of a QPF, which are associated with the
structure, amplitude, and location of the precipitation
field. These three components describe aspects of QPF
quality that are directly relevant to forecast users. Con-
sider, for example, the hydrological modeling for a river
catchment: the A component is based on the catchment
mean precipitation and hence describes the overall bias
in the precipitation input to the hydrological model.
Obviously, errors in A can be expected to result in
systematic runoff biases. On the other hand, the L com-
ponent describes the accuracy with which precipitation
is located/distributed between several subcatchments.
Forecasts with nonzero L would give rise to random
errors in the resulting river runoff. Finally, the § com-
ponent specifically addresses the effect of QPF errors in
connection with the nonlinear processes at the soil sur-
face. The spatial intensity distribution is critical for the
repartitioning of precipitation water between surface
runoff and infiltration into soils. A nonzero value of §
in the time mean will affect the soil water balance even
when the domain mean value is correct (i.e., A = 0).
Moreover, it has consequences on the frequency statis-
tics of runoff, unless compensated for by other errors.
Altogether, SAL is a quality measure that helps the

WERNLI ET AL.

4485

user to anticipate effects of QPF limitations in a hydro-
logical application.

The SAL technique has been tested with synthetic
fields and applied to forecasts from a regional and glob-
al NWP model, as well as to persistence and random
forecasts. To this end, it was important to have all
datasets (observations and forecasts) available on the
same grid. It was shown that for case studies, SAL can
provide meaningful and quantitative information about
QPF errors. When applied to a large set of QPFs, it
pinpointed the generally more realistic structure of pre-
cipitation events as one of the major advantages of
QPFs from high-resolution models. It was also shown
that the COSMO-alLMo model performed significantly
better than random forecasts that are not based on a
NWP model.

In the following paragraphs, a few aspects will be
discussed in more detail, related to the choice of the
threshold for the definition of objects, absolute versus
relative quality measures, and alternative definitions of
the components § and L. Also, possibilities for future
extensions and applications of SAL are mentioned
briefly.

In contrast to other object-oriented verification ap-
proaches (e.g., Ebert and McBride 2000; Davis et al.
2006a), no fixed precipitation threshold is used to iden-
tify the objects. The advantage of a fixed threshold is
that verification can focus on a particular category, for
instance, of intense events, and the statistical results are
not blurred by (very) weak events that might be of less
interest. However, specification of a fixed threshold ex-
cludes poor forecasts from an object-oriented verifica-
tion in situations in which the threshold is not exceeded
in either the model (“missed events”) or the observa-
tions (“false alarms”). This leads to a positive bias in
the object-oriented evaluation of a model’s QPF per-
formance, because only reasonably good forecasts en-
ter the statistics. It is for this reason that we adopted an
alternative approach and used a flexible threshold for
the identification of objects, which in general differs in
the forecast and observations. With this approach, very
few days are excluded from the analysis (only when one
of the two datasets contained no precipitation in the
entire domain). The possibility still exists to stratify the
results according to the observed intensity of the events
and thereby to learn more about the QPF performance
for weak, medium, and intense events. Such an analysis
is documented in Paulat (2007).

Another difference, for instance, to the CRA method
by Ebert and McBride (2000) is that the three compo-
nents of SAL are not absolute but relative (dimension-
less) measures. The motivation for the use of relative
measures is that they potentially allow a direct com-



4486

parison of the QPF performance during weak and in-
tense precipitation events.

A third and important difference is that our defini-
tions of the three components do not follow from a
mathematical decomposition of a well-known error
measure (like the mean-squared error in case of the
CRA technique). This renders the definition of the
components subjective, at least to a certain degree. The
advantage, however, is that the components can be tai-
lored such that they become close to a subjective visual
judgment. In any case, other definitions would be pos-
sible and could be regarded as variants of the SAL
technique proposed here. For instance, instead of an
absolute displacement component L,, a vector location
error L; would provide additional information about
the direction of the displacement. Alternatively, the
Hausdorff distance metric could serve as a more sophis-
ticated approach to define a location error component
(Venugopal et al. 2005). For the structure component,
the volume of the scaled precipitation objects has been
used as the key parameter. A simpler possibility would
be to use the objects’ base area. However, this would
lead to a loss of information, because no distinction
would be possible between peaked and flat objects. In
contrast, a more refined alternative would be to use the
surface of the objects instead of their volume. This
would allow to additionally distinguish, for instance,
between right circular cones and right elliptic cones
with the same base area, because these objects have the
same volume but not the same surface. Such an exten-
sion of § would be desirable; however, the accurate
computation of the surface of complex-shaped precipi-
tation objects is not straightforward and for this reason
has not been pursued in this study.

In the future, SAL will be applied to assess the QPF
performance of several models on daily and hourly time
scales. Currently, several forecasting centers are about
to introduce operational short-range forecasts with
high-resolution, convection-resolving model versions
(e.g., at the German Weather Service, the 21-h
COSMO-DE forecasts with a horizontal resolution of
2.8 km). There are considerable expectations that this
new model generation can significantly advance QPF
quality and overcome some of the inherent problems
with the parameterization of deep convection (Ebert et
al. 2003; Fritsch and Carbone 2004). Model case studies
without parameterized convection (e.g., Steppeler et al.
2003; Done et al. 2004; Trentmann et al. 2007) indicate
that this new category of NWP models provides a more
accurate depiction of the physics of convective systems
(e.g., cold pool formation and the organization of the
systems). However, for single cases, this does not nec-
essarily imply an improved QPF performance (Zhang
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et al. 2006). First statistical investigations indicate an
improved prediction of larger accumulations when us-
ing convection-resolving models compared to coarser-
scale models with parameterized convection (Mitter-
maier 2006, using the technique introduced by Casati et
al. 2004). Also, as found by Davis et al. (2006b), a con-
vection-resolving version of WRF tends to delay the
onset of precipitation systems, which then last too long
and are characterized by a too-broad intensity distribu-
tion. It will be interesting to compare QPFs from the
two categories of NWP models with the SAL tech-
nique.

Another application of SAL will be to quantitatively
analyze QPF differences in case study sensitivity ex-
periments, where model numerics, physical parameter-
izations, or the initial and boundary data are varied to
assess the importance of this NWP component for QPF
accuracy. Here, SAL might be useful to categorize the
simulation differences in terms of key aspects of the
precipitation field. Along the same lines, forecasts from
an ensemble prediction system could be compared to
observations and the ensemble spread of the precipita-
tion forecast expressed in terms of the three compo-
nents of SAL. Also, SAL can be used to compare the
characteristics of different climatological precipitation
datasets, for instance, provided by regional climate
models and satellite retrieval methods (Friih et al.
2007).
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