Effective thermal conductivity of sintered metal foams: Experiments and a model proposal

Jörg Sauerhering, Stefan Brendelberger, Thomas Fend, Robert Pitz-Paal

DLR, Linder Hoehe, 51147 Köln, Germany, Contact: +49 2203 6012905, stefan.brendelberger@dlr.de

The foams investigated are intended to be used in advanced high efficiency gas turbines as actively cooled wall elements of the combustion chamber (effusion cooling, Fig. 1). Since critical temperatures must not be exceeded, temperatures inside the foam must be precisely calculated. For this, thermophysical data of this new material is required at temperatures of up to 1000°C. Here, thermal conductivity (TC) data is presented. Since the various pore size level heat transfer effects contribute to the overall thermal transport, an effective thermal conductivity (eTC) is considered to describe these effects by volume averaging.

The investigated metal foams (Fig. 2 top) have heterogeneous open porosities ranging from 0.55 to 0.85. They are manufactured with a powder metallurgical method called Sinter Reaction Foam Sintering (SRFS). In this process, a fine metal powder with grain sizes of up to 150 µm and a slurry-stabilizing dispersant is mixed with a solvent and a certain amount of acid. The metal acid reaction generates gaseous hydrogen, which causes the slurry to foam (Angel et al. 2005). Various porosities are possible (Fig. 2 bottom). There are large pores (primary pores, ∅ 1- 3 mm) caused by the foaming process and secondary pores (∅ 10- 50 µm) as the natural cavities between the adjacent metal powder particles. For comparison, samples with only secondary pores were manufactured. Inconel 625, Hastelloy and Iron were used as powders.

For the determination of the eTC the Transient Plane Source Technique, also known as Hot Disk was employed (Gustavsson et al. 1994). It is based on a theory, which assumes that a flat, circular sensor, which acts as a heat source as well as a thermometer, is placed between two half-infinite heat sinks consisting of sample material (Fig. 3 top). The sensor itself consists of an electrical heated nickel double spiral. The sensor temperature is collected by exploiting the temperature-dependent electrical resistance of nickel. For temperatures up to 200°C, the nickel spiral is Kapton insulated. Above 200°C, Mica insulation is applied (Fig. 3 bottom). The maximum application temperature is 700°C. Measurements at temperatures higher than room temperature are carried out in a furnace with precise temperature control.

The eTC is determined for a large number of materials with various porosities. Fig 4 shows the eTC at room temperature as a function of primary porosity. The validity of a simple rule of mixture using the eTC of the matrix material is shown. To explain the eTC of the matrix material itself, a model from Hsu was adapted (Fig 5, Fig 6). Additionally, the high temperature eTC of various foam materials was determined. For the temperatures considered the radiative contribution to the eTC may be neglected. Therefore these results can be explained with the modified rule of mixture as well.

ACKNOWLEDGEMENTS
This study has been funded by the German Research Foundation. We gratefully acknowledge the support.

REFERENCES