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Abstract— In this work a novel type of impedance controllers
for flexible joint robots is proposed. As a target impedance a
desired stiffness and damping are considered without inertia
shaping. For this problem two controllers of different complexity
are proposed. Both have a cascaded structure with an inner
torque feedback loop and an outer impedance controller. For
the torque feedback, a physical interpretation as a scalingof the
motor inertia is given, which allows to incorporate the torque
feedback into a passivity based analysis. The outer impedance
control law is then designed differently for the two controllers.
In the first approach the stiffness and damping terms and the
gravity compensation term are designed separately. This outer
control loop uses only the motor position and velocity, but no non-
collocated feedback of the joint torques or link side positions. In
combination with the physical interpretation of torque feedback,
this allows us to give a proof of the asymptotic stability of the
closed-loop system based on the passivity properties of thesystem.
The second control law is a refinement of this approach, in which
the gravity compensation and the stiffness implementationare
designed in a combined way. Thereby, a desired static stiffness
relationship is obtained exactly. Additionally, some extensions of
the controller to visco-elastic joints and to Cartesian impedance
control are given. Finally, some experiments with the DLR
lightweight robots verify the developed controllers and show the
efficiency of the proposed control approach.

Index Terms— Impedance Control, Compliance Control, Flex-
ible Joint Robots, Passivity Based Control.

I. I NTRODUCTION

Impedance control certainly is one of the core techniques
in the design of modern robot systems, especially for the
growing field of service robotics. The basic control objective
of impedance control as formulated in the seminal work of
Hogan [1] is the achievement of a desired dynamical relation
between external forces and robot movement.
The classical approach to impedance control concentrates on
robotic systems in which the joint elasticity is neglected.Con-
sequently, a straightforward application of these techniques to
a flexible joint robot usually will not lead to a satisfactory
performance1. In fact the importance of joint elasticity for the
design of position and tracking controllers has widely been
discussed in the literature [2], [3], [4], [5], [6], [7], [8], [9].
In this paper an impedance control law is proposed which
is designed for flexible joint robots. The desired impedance
is assumed to be a mass-spring-damper system. Furthermore,
only the achievement of stiffness and damping is considered
herein, while the inertial behavior is left unchanged. In case of
a robot with rigid joints, such a stiffness and damping behavior
could in principle be implemented quite easily with a PD-like

1In terms of damping out the oscillations due to the flexibility in the joint
as well as absolute positioning accuracy.

controller (formulated in the relevant coordinates). In [10] it
was proven that a motor position based PD-controller leads to
a stable closed-loop system also in case of a robot with flexible
joints. Furthermore, in [11] a stability analysis of a hybrid
position/force controller for a flexible joint robot without
gravitational effects was presented. However, it has been
shown that in practice often only quite limited performance
can be achieved with a restriction to purely motor position
(and velocity) based feedback controllers (without additional
non-collocated feedback) for the case of a flexible joint robot.
In some works a controller structure based on a feedback of the
joint torques as well as the link side positions was considered
and it was shown that this leads to an increase of performance
(see, e.g., [12]). This has also already been verified experimen-
tally with the DLR lightweight robots [13]. From a theoretical
point of view this approach usually is justified (for sufficiently
high joint stiffness values) by an approximate analysis based
on the singular perturbation theory. The feedback of the joint
torques is therein considered as the control action of a fast
inner control loop which receives its setpoint values from an
outer impedance controller. Furthermore, an integral manifold
approach for designing force and impedance controllers for
flexible joint robots was presented in [14].
In [15], [16] a controller with a complete static state feedback
(position and torque as well as their first derivatives) was in-
troduced, for which (analogously to [10]) asymptotic stability
was shown based on the passivity properties of the controller.
In contrast to the classical PD-controller the motor inertia and
the joint stiffness are included in the same passive block as
the state feedback controller such that an effective damping of
the joint oscillations could be achieved.
In the present paper a physical interpretation of the torque
feedback is given, which allows to include the inner loop
torque controller into a passivity based analysis of the com-
plete closed-loop system. It is important to notice that the
controller being presented is itself not passive due to the
feedback of the joint torque, but it will be shown that the
controlled motor dynamics in combination with the torque
feedback are passive. Together with the passive (link side)
rigid body dynamics the closed-loop system can therefore be
represented as a feedback interconnection of passive subsys-
tems.
Furthermore, in [10], [15] a gravity compensation term based
on the desired configuration was used. In case of an impedance
controller this is not appropriate due to the possibly large
deviations from the desired configuration which may occur
here in case of a low desired stiffness. In this work a gravity
compensation term will be designed which is based on the
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measurement of the motor position and is better suited for
the use in connection with impedance control. The problem
of gravity compensation for flexible joint robots in case of
impedance control was also addressed in some recent papers
[17], [18]. However, in contrast to our approach the gravity
compensation term in [17], [18] led to additional lower bounds
on the admissible desired stiffness.
Since the controller uses an inner torque feedback loop, a
measurement of the joint torques is needed for the imple-
mentation. This can be achieved either directly by a joint
torque sensor or indirectly by an additional measurement of
the link side position. The DLR lightweight robots [19], [20]
(Fig. 1) are equipped with joint torque sensors in order to
enable fine manipulation and to enhance the performance when
the robot is in interaction with the environment. Therefore,
they are ideally suited for the implementation of the presented
controllers.
This paper is organized as follows: In Section II the design
idea is described based on a simplified one-dimensional model.
The generalization of the design idea to the complete model
of a flexible joint robot is then presented in Section III.
Some details on the gravity model are given in Section IV.
In Section V an impedance controller based on a separate
design of stiffness implementation and gravity compensation
is presented. Based on the line of argumentation of the gravity
compensation design an improved controller, which realizes
the desired stiffness relation exactly, is presented in Section VI.
For the sake of simplicity the complete controller design and
analysis is treated in joint coordinates. The solution, however,
is constructed in such a way that the extension to the Cartesian
impedance control problem is rather straightforward. Section
VII is devoted to some further extensions of the controller,
namely the case of visco-elastic joints and the generalization to
Cartesian impedance control. Finally, Section VIII and Section
IX contain experimental results and conclusions.

II. D ESIGN IDEA

In this section the basic idea of the proposed controller
design method is described. It is motivated by some simple
considerations for a one-dimensional model.
Consider at first the model of a single flexible joint as it
is sketched in Fig. 1 for the second joint of the DLR-
Lightweight-Robot-III. The motor torqueτm acts here on the
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Fig. 1. Sketch of the model for a flexible joint robot.

rotor inertiaB of the motor2. The elasticity of the transmission
between the rotor and the following link3 of the robot is
modeled in form of a linear spring with stiffnessK.
The goal of the impedance controller is to achieve a desired
dynamical behavior with respect to an external forceFext

acting on the link side. In the following it is assumed that
this dynamical behavior is given by a differential equation
of second order representing a mass-spring-damper system
with massM , desired stiffnessKθ, and desired dampingDθ.
For a robot with rigid joints this behavior could be realized
by a simple PD-controller with proportional and derivative
controller gains set toKc = Kθ and Dc = Dθ, respectively.
For a robot with elastic joints instead, no control law can
force the (fourth order) closed-loop behavior exactly intosuch
a second order impedance, since for every joint four state
variables (motor angleθ, link side angleq, as well as their
first derivatives) are present. If one uses a motor position based
PD-controller in case of a robot with elastic joints, as shown
in Fig. 2 for the one-dimensional case, then the resulting
dynamics will clearly be influenced also by the joint elasticity
and the motor inertia. Intuitively speaking, the deviationfrom
the desired behavior will be less significant when the rotor
inertia B becomes smaller and the joint stiffnessK becomes
larger.
At this point it should be mentioned that the joint stiffness
values of atypical flexible joint robot are indeed quite large4

but cannot be considered as infinite and thus elasticity is not
negligible. By a negative feedback of the joint torqueτ the
apparent inertia (of the rotor) can now be scaled down such
that the closed-loop system reacts to external forcesFext

as if the rotor inertia were smaller. The desired dynamical
behavior can then be approximated the better, the smaller the
apparent rotor inertia is. This approach will be put in concrete
terms in the following section for the model of a flexible
joint robot. Furthermore, a method for compensating the static
influence of the springK will also be presented. Notice that
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Fig. 2. Motor position based PD-control of a single joint. Using torque
feedback the effective motor inertia is scaled down (dashedline).

the design approach presented in this paper thus does not allow
to implement a general second order impedance with arbitrary
inertia, but refers to impedance relations with unchanged link
side inertia. Its robustness properties due to the passivity based

2The current controlled motors are modeled as ideal torque sources since
the dynamics of the electrical drives are negligible.

3In Fig. 1 represented in a simplified form with a constant inertia M .
4For the lower joints of the DLR lightweight robots these values lie in the

range10.000 − 15.000 Nm/rad.
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design make the controller suitable especially for autonomous
manipulation tasks in contact with unknown environments.
However, for application fields like teleoperation or haptics
the restriction to an unchanged link side inertia may be more
troublesome of course.

III. T HE EFFECTS OFTORQUE FEEDBACK ON THE

FLEXIBLE JOINT MODEL

In this work the so-calledreducedflexible joint robot model
is assumed as proposed by Spong [2]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (1)

Bθ̈ + K(θ − q) = τm . (2)

Herein q ∈ R
n represents the vector of then link side joint

angles andθ ∈ R
n the vector of the corresponding motor

angles. The joint torquesτ ∈ R
n are determined by the linear

relationshipτ = K(θ−q), in whichK ∈ R
n×n is a diagonal

matrix containing the individual joint stiffness valuesKi as
diagonal elements, i.e.K = diag(Ki). The diagonal matrix
B ∈ R

n×n consists of the rotor inertiasBi. Furthermore,
M(q) ∈ R

n×n is the (link side) inertia matrix andC(q, q̇)q̇
represents the centrifugal and Coriolis-terms of the model. The
vector of gravity torquesg(q) ∈ R

n is given by the differential
of a potential functionVg(q), i.e. g(q) = (∂Vg(q)/∂q)T .
The motor torquesτm ∈ R

n are considered as the control
inputs. Finally, the external torques which act on the robotare
summarized in the vectorτ ext ∈ R

n.
At this point also two well known properties of the robot
model shall be mentioned which will be utilized in the
following sections:

Property 1: The inertia matrix is symmetric and positive
definite:

M (q) = M(q)T > 0 ∀q ∈ R
n .

Property 2: The matrixṀ(q)− 2C(q, q̇) fulfills the con-
dition:

q̇T (Ṁ (q) − 2C(q, q̇))q̇ = 0 ∀q, q̇ ∈ R
n .

As already described intuitively in the last section, the apparent
motor inertia can be reduced fromB to Bθ by feeding back
the joint torqueτ = K(θ−q). This is realized by the feedback
law

τm = BB−1
θ u + (I − BB−1

θ )τ , (3)

whereu serves as a new control input. The resulting system
dynamics are given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (4)

Bθθ̈ + K(θ − q) = u . (5)

These equations of motion will be the basis for the design
of two joint level impedance control laws. The design in
Section V treats the gravity compensation and the stiffness
implementation separately, and is a consequent realization of
the design idea described in Section II. But beforehand, some
properties of the gravity potential are exposed in the next
section.

IV. PROPERTIES OF THEGRAVITY POTENTIAL

The gravity termg(q) corresponds to the differential of
the gravity potentialVg(q), i.e. g(q) = (∂Vg(q)/∂q)T . It is
well known that the HessianH(q) := ∂2Vg(q)/∂q2 of the
gravity potential has an upper bound if the robot has only
rotational joints5 [21]. In case that the manipulator instead has
also prismatic joints, it is useful to consider a subsetQp of the
configuration spaceRn in which all the prismatic joints are
bounded by their respective workspace boundaries6. In this
subsetQp the existence of an upper bound of the gravity
Hessian is guaranteed. From a physical point of view this
bound is a-priori not well defined since it clearly depends on
the chosen physical units for the translational and rotational
coordinates. In order to overcome this problem particular
matrix and vector norms are defined in the following by a
scaling with the joint stiffness matrix.

Remark 1:The design of the gravity compensation in Sec-
tion V-B does not involve the complete dynamics of the
manipulator, but refers rather to the static case. Therefore,
in this case the stiffness matrix is the appropriate choice for
defining a metric rather than the inertia matrix.
Let R ∈ R

n×n be the square root of the joint stiffness matrix7

K, i.e. K = RT R. Then a vector norm|| · ||K : R
n → R

+

for a vectorv ∈ R
n can be defined via the Euclidean vector

norm || · ||2 as

||v||K := ||Rv||2 =
(

vT Kv
)1/2

.

The matrixR, respectivelyK, is used herein as a normaliza-
tion of the chosen physical units. Corresponding to this vector
norm the matrix norm|| · ||K : R

n×n → R
+ for a matrix

A ∈ R
n×n is defined in the following via the spectral norm8

|| · ||i2. In this section we are interested in the Hessian of the
gravity potential. Consequently, it is reasonable to consider the
quadratic formvT Av for a matrix A. For the vector norm
|| · ||K as defined above the following inequality holds

|vT Av| ≤ ||R−T AR−1||i2||v||
2
K .

This motivates the choice

||A||K := ||R−T AR−1||i2

for the definition of the matrix norm|| · ||K .
Remark 2:Notice that the termR−T AR−1 corresponds to

the coordinate transformation of a covariant tensorA of rank
two whenR is the Jacobian of the coordinate transformation.
A linear transformation (i.e. a mixed tensor), instead, would
be transformed asRAR−1.
Applied to the joint stiffness matrixK this norm clearly gives
||K||K = 1. Based on this definition of the matrix norm, one
further assumption on the gravity potential is formulated next.
This assumption will be useful for the design of the gravity
compensation.

5In this case the gravity potential can be written as the sum oftrigonometric
terms of the joint angles.

6For a robot with rotational joints only one hasQp = R
n instead.

7SinceK is a diagonal matrix, the matrixR is given byR = diag(
√

Ki).
8The spectral norm is the matrix norm induced by the Euclideanvector

norm, and thus in our case corresponds to the largest eigenvalue.
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Assumption 1:The HessianH(q) :=
∂2Vg(q)

∂q2 of the gravity
potentialVg(q) satisfies the condition

αg := sup
∀q∈Qp

||H(q)||K < ||K||K = 1 . (6)

Notice that this assumption is not restrictive at all. Intuitively
speaking it states nothing else than the fact that the ma-
nipulator should be designed properly, in the sense that the
joint stiffness is sufficiently high such that, for a fixed motor
position, it can prevent the manipulator from falling down
under the load of its own weight.
It should also be mentioned that the quantityαg is dimen-
sionless, since it is defined via the norm|| · ||K . Notice also
that the existence of this boundαg < 1 implies the following
property for the gravity potential which will be useful in the
stability analysis in Section V-E.

Property 3: Let αg (as defined in (6)) be an upper bound
for the Hessian of the gravity potentialVg(q) with respect to
the K-norm. Then the inequality

|Vg(q1) − Vg(q2) + g(q1)
T (q2 − q1)| ≤

1

2
αg||q2 − q1||

2
K

holds for allq1, q2 ∈ Qp.
A proof of this statement can be found in [22].

V. SEPARATE DESIGN OFCOMPLIANCE AND GRAVITY

COMPENSATION

In this section a joint level impedance controller for the
model (4)-(5) is proposed. Let the desired impedance at the
(constant) virtual equilibrium pointqd be specified by a
symmetric and positive definite joint stiffness matrixKθ, and
a positive definite joint damping matrixDθ. Therefore, the
target dynamics of the impedance controller can be written as
a mass-spring-damper system of the form

M(q)q̈ + (C(q, q̇) + Dθ)q̇ + Kθ(q − qd) = τ ext , (7)

in which the link side inertia of the robot is the same as in (1).
Consequently, also the corresponding centrifugal and Coriolis-
terms are present in the target dynamics.

Remark 3:Note that the flexible joint robot model is a
4n-dimensional underactuated system in which every joint is
represented by four state variables(θi, θ̇i, qi, q̇i), i = 1...n.
Therefore, the desired target dynamics (7) of order 2n can
never be achieved exactly by any controller.
Our design approach for approximating this impedance rela-
tion follows the ideas described in Section II. The inner loop
torque feedback reduces the effect of the motor inertia on the
closed-loop dynamics as described in Section III. In addition
we must eliminate the effects of gravity and implement the
compliance according to the desired stiffness and damping
matricesKθ andDθ.
The input variableu is thus split up into one termuimp, which
actually implements the stiffness and damping, and another
term ug, which acts as a gravity compensation

u = uimp + ug . (8)

A. Implementation of the Compliance Behavior

According to the design philosophy outlined in Section III
the control inputuimp is simply chosen as a joint space PD-
controller for the motor angles

uimp = −Kc(θ − θd) − Dθθ̇ , (9)

where the controller gain matrixKc and the virtual equilib-
rium position on the motor sideθd are given by

Kc = (K−1
θ − K−1)−1 , (10)

θd = qd + K−1g(qd) . (11)

Equation (10) makes allowance for the fact that the controller
gain matrixKc acts in series interconnection with the joint
spring K (see Fig. 2). The particular form ofKc in (10)
ensures that in the gravity-free steady state(θ0, q0) the
demanded stiffness relationτ ext = Kθ(q0 − qd) is satisfied
exactly.
For the analysis in Section V-D it is required that not only
Kθ but also the controller gain matrixKc is positive definite.
Therefore, the following assumption is made which implies
that the controller can implement no joint level stiffness larger
thanK.

Assumption 2:The desired stiffness matrixKθ is assumed
to be symmetric and positive definite, and satisfies the condi-
tion

(

K−1
θ − K−1

)−1
> 0.

So far, the controller (3), (9) leads to the following closed-loop
equations

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (12)

Bθθ̈ + Dθθ̇ + Kc(θ − θd) + τ = ug . (13)

B. Gravity Compensation

In [10] it has been shown that for a motor position based
PD-controller a feedforward term of the gravity torques in
the desired steady stateqd can be used in order to achieve
asymptotic stability. This indeed leads for a position controller
usually to good performance because the deviations from the
desired position can be kept small. For an impedance con-
troller, however, this is not the case. Here a pure feedforward
action for the gravity compensation does not give satisfactory
results because large deviations from the virtual equilibrium
position may occur in the case of a small desired stiffnessKθ.
The problem of constructing an online gravity compensation
term for a flexible joint robot based solely on the motor
position was first treated in [17]. The solution in [17], however,
still leads to lower bounds onKθ, limiting the generality of the
impedance controller. In contrast to this the solution presented
herein does not require such additional constraints [23], [24].
In the following a compensation for the static effects of
the gravity termg(q) is constructed. This compensation is
solely based on the motor position and can compensate for
the link side gravity torques in aquasi-stationaryfashion.
Consider first the setΩ := {(q, θ) | K(θ − q) = g(q)} of
stationary points (forτ ext = 0) for which the torque due to
the joint elasticity counterbalances the link side gravitytorque.
The goal of the gravity compensation is now to construct
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a compensation term̄g(θ) such that inΩ the equilibrium
condition

ḡ(θ) = g(q) ∀(q, θ) ∈ Ω (14)

holds. This means that the gravity compensation term coun-
terbalances the link side gravity torque in all stationary points.
The equation

K(θ − q) = g(q) , (15)

which describes the setΩ, motivates the definition of a func-
tion q̄(θ) which can be understood as a quasi-static estimate of
the link side position. Notice, therefore, that (15) can obviously
be solved uniquely for the motor positionθ. Let us denote this
solution by

hg(q) := q + K−1g(q) . (16)

Furthermore, by the use of the contraction mapping theorem
(see Proposition 1 below for more details on this) it can be
shown that the inverse function tohg(q) exists. Then

q̄(θ) := h−1
g (θ) , (17)

which is the solution of (15) forq, can be used for the
construction of a gravity compensation term of the form

ug = ḡ(θ) := g(q̄(θ)) . (18)

It is important to notice that, while (14) clearly holds only
in Ω, the functionq̄(θ) by construction fulfills the equation
K(θ − q̄(θ)) = g(q̄(θ)) for any θ and independently ofq.
Finally, the question about the existence of the functionq̄(θ)
is answered by the following proposition.

Proposition 1: If (6) from Assumption 1 holds globally
(i.e. for Qp = R

n), the inverse functionh−1
g (θ) = q̄(θ) of

hg(q) = q +K−1g(q) : R
n → R

n exists globally. Moreover,
the iteration

q̂n+1 = T g(q̂n) (19)

with T g(q) := θ−K−1g(q) converges for every fixedθ and
for every starting point̂q0 to q̄(θ).

Proof: The proposition can be proven by showing first
that the mappingT g(q) : R

n → R
n is a globalcontraction

(see [25]) for the vector norm|| · ||K . Since the vector space
R

n together with the norm|| · ||K is a Banach space one must
only show that there exists aρ < 1, such thatT g(q) satisfies
the condition

||T g(q2) − T g(q1)||K ≤ ρ||q2 − q1||K ∀q1, q2 ∈ R
n .

As shown in [22] this is ensured by (6) from Assumption 1.
By thecontraction mapping theorem(also calledBanach fixed
point theorem) one can therefore conclude that the mapping
T g(q) has a unique fixed pointq∗ = T g(q

∗) and that the
iteration of (19) converges to this fixed point:

lim
n→∞

q̂n = q∗ .

By comparingT g(q) with hg(q) one can easily see that (for
each particular value ofθ) this fixed pointq∗ corresponds to
q̄(θ).

While in general the inverse functionh−1
g (θ) cannot be com-

puted directly in practice, it is thus possible to approximate
it with arbitrary accuracy by iteration. From a practical point
of view one or two iteration steps lead to quite satisfactory
results in this approximation. Notice also that by a first order
approximation withq̂0 = qd one obtains the online gravity
compensation term of [17].
In the following analysis it is therefore assumed that the
inverse functionh−1

g (θ) is known exactly, although it can only
be approximated in practice.
Another remark about the range in which Proposition 1 holds
is important. The assumptionQp = R

n, which holds for
instance when the robot has only rotational joints, was needed
to ensure thatT g(q) is a global contraction. If insteadQp ⊂
R

n, then one must additionally ensure that the pointsq̂i of the
iteration (19) stay in an area in which||H(q)||K < ||K||K =
1 holds. While this is not a critical issue from a practical point
of view, it is difficult to be proven in general.
Since ḡ(θ) is the motor torque needed (statically) to prevent
the robot from falling down under the action of its own weight,
one can see that̄g(θ) must be connected with a potential
functionVḡ(θ) which is related to the potential energy (gravity
plus joint stiffness) of the robot. This potential functionwill
be of interest for the passivity and stability analysis in the
next section. A detailed derivation ofVḡ(θ) is given in the
appendix. Therein it is shown thatVḡ(θ) can be written as

Vḡ(θ) = Vg(q̄(θ)) +
1

2
g(q̄(θ))T K−1g(q̄(θ))

= Vg(q̄(θ)) +
1

2
(q̄(θ) − θ)T K(q̄(θ) − θ).

C. Controller Formulation

The complete control law with gravity compensation is
summarized as, cf. (3),(8),(9),(18)

τm = BB−1
θ u + (I − BB−1

θ )τ , (20)

u = −Kc(θ − θd) − Dθθ̇ + ḡ(θ) . (21)

This leads to the closed-loop system

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext , (22)

Bθθ̈ + Dθθ̇ + Kc(θ − θd) + τ = ḡ(θ) . (23)

D. Passivity

For the passivity analysis it is assumed that there exists a
real β > 0, such that

|Vg(q)| < β ∀q ∈ R
n (24)

holds. This is for instance satisfied for all robots with rotational
joints only (i.e. without prismatic joints). Then also the gravity
torque vectorg(q) is globally bounded. Furthermore, (24) also
implies the boundedness ofVḡ(θ) and ḡ(θ). Notice that the
requirement of a bounded gravity potential is only needed
for the passivity analysis, while the proof of the asymptotic
stability in Section V-E will also be valid for a general
potential.
According to [26], [27], a sufficient condition for a system
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(with input u and outputy) to be passive is given by the
existence of a continuous storage functionS which is bounded
from below and for which the derivative with respect to
time along the solutions of the system satisfies the inequality
Ṡ ≤ yT u.
In the following it will be shown that the system (22)-(23),
as outlined in Figure 3, consists of two passive subsystems
in feedback interconnection. Notice that in connection with
impedance control it is often assumed that also the environ-
ment of the robot can be described by a passive mapping (q̇ →
−τ ext). The passivity of (22), as a mapping(τ + τ ext) → q̇,

−τ

−u

−τ ext

q̇

θ̇

(22)

Environment

(21)

(5)

(23)

Fig. 3. System representation as an interconnection of passive subsystems.

is well known due to physical reasons and can be shown with
the storage function

Sq(q, q̇) =
1

2
q̇T M(q)q̇ + Vg(q) (25)

for which (due to Property 2) the derivative along the solutions
of (22) is given by

Ṡq(q, q̇) = q̇T (τ + τ ext) . (26)

In a similar way the passivity of (23), as a mappingq̇ → −τ ,
can be shown with the storage function

Sθ(q, θ, θ̇) =
1

2
θ̇

T
Bθθ̇ +

1

2
(θ − q)T K(θ − q)

+
1

2
(θ − θd)

T Kc(θ − θd) − Vḡ(θ) .

The derivative ofSθ(q, θ, θ̇) along the solutions of (23) is
then given by

Ṡθ(q, θ, θ̇) = −θ̇
T
Dθθ̇ − q̇T τ . (27)

The passivity of the closed-loop system follows directly from
(26) and (27) and the fact that the feedback interconnectionof
passive systems is again passive. It should also be mentioned
that these passivity properties are still valid if the PD-controller
in (21) is replaced by any other passive (with respect toθ̇ →
−u) controller. This structure of a feedback interconnection
of passive subsystems, as depicted in Fig. 3, brings along very
advantageous robustness properties for the closed-loop system.

E. Stability Analysis

Next it will be shown that the closed-loop system is asymp-
totically stable for the case of free motion (i.e.τ ext = 0).

1) Determination of the steady state:For τ ext = 0, the
steady state conditions of the system (22)-(23) are given by

K(θ0 − q0) = g(q0) , (28)

K(θ0 − q0) + Kc(θ0 − θd) = ḡ(θ0) . (29)

From (14) it follows that

Kc(θ0 − θd) = 0 (30)

must be satisfied in the steady state. Due to Assumption 2 the
matrix Kc is positive definite and hence the steady state is
given by:

θ0 = θd ,

q0 = h−1
g (θ0) = qd ,

q̇0 = θ̇0 = 0 .

2) Lyapunov-Function:Consider the sum of the storage
functions of the subsystems as a Lyapunov function candidate

V (q, q̇, θ, θ̇) = Sq(q, q̇) + Sθ(q, θ, θ̇) . (31)

First, it is shown that this function is positive definite. Notice
that, due to (63) from the Appendix,V (q0,0, θ0,0) = 0
holds.
By extracting the kinetic part ofV (q, q̇, θ, θ̇)

Vkin(q, q̇, θ̇) =
1

2
q̇T M(q)q̇ +

1

2
θ̇

T
Bθθ̇

one can see thatV (q, q̇, θ, θ̇) is positive definite with respect
to q̇ and θ̇ because the inertia matrices are positive definite
(Property 1). In order to show thatV (q, q̇, θ, θ̇) is positive
definite with respect to the complete state, it is then sufficient
to show that the potential part

Vpot(q, θ) = V (q, q̇, θ, θ̇) − Vkin(q, q̇, θ̇) (32)

is positive definite with respect toq andθ.
Consider first only the part of the potential energy due toK.
In order to simplify the notation, in the remaining part of this
section the function̄q(θ) is written asq̄.

Vk(q, θ) =
1

2
(θ − q)T K(θ − q) (33)

=
1

2
(θ − q̄ + q̄ − q)T K(θ − q̄ + q̄ − q)

=
1

2
g(q̄)T K−1g(q̄) +

1

2
(q̄ − q)T K(q̄ − q)

+(q̄ − q)T g(q̄)

Herein the relationshipK(θ − q̄) = g(q̄) was used which
follows directly from the definition of̄q(θ) in (17). In order
to simplify the notation, the deviation of the motor angle from
its steady state value will be denoted byθ̃ = (θ − θd) in the
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following. The potential energy can then be written (with (63)
from the Appendix) as follows

Vpot(q, θ) = Vk(q, θ) +
1

2
θ̃

T
Kcθ̃ + Vg(q) − Vḡ(θ)

= Vk(q, θ) +
1

2
θ̃

T
Kcθ̃ + Vg(q) − Vg(q̄)

−
1

2
g(q̄)T K−1g(q̄) .

Due to Property 3 the following inequality holds

Vpot(q, θ) ≥
1

2
(q̄ − q)T K(q̄ − q) +

1

2
θ̃

T
Kcθ̃

−|Vg(q) − Vg(q̄) + (q̄ − q)T g(q̄)|

≥
1

2
(1 − αg)||q̄ − q||2K +

1

2
θ̃

T
Kcθ̃ .

The right hand side of the last inequality is nonnegative for
all (q, θ) ∈ Qp, since by Assumption 1 the boundαg satisfies
the inequality conditionαg < 1. Therefore, one can conclude
that the considered candidate Lyapunov function is positive
definite inQp.

3) Derivative of the Lyapunov-Function:The change of
V (q, q̇, θ, θ̇) along the solutions of the system (22)-(23) (for
τ ext = 0) is given by

V̇ (q, q̇, θ, θ̇) = Ṡq(q, q̇) + Ṡθ(q, θ, θ̇) = −θ̇
T
Dθθ̇ .

Due to the fact that the matrixDθ is positive definite, it can
be concluded that the equilibrium point is stable. Furthermore,
asymptotic stability can be shown by the use of the invariance
principle of LaSalle [25]. According to this theorem the system
state will converge to the largest positively invariant setfor
which θ̇ = 0 holds. From the system equations it follows that
there does not exist any trajectory for whichθ̇ = 0 holds for
all times t > 0 except for the restriction to the equilibrium
point. Therefore, the following proposition can be concluded.

Proposition 2: Under the Assumptions 1 and 2 the system
(22)-(23) is asymptotically stable for the case of free motion
(i.e. for τ ext = 0). Moreover, if Assumption 1 holds globally
(i.e. for Qp = R

n), then the system is even globally asymp-
totically stable.

F. Controller Discussion

The passivity analysis in Section V-D shows that the closed-
loop system can be seen as a feedback interconnection of
passive subsystems. In many applications the environment
can also be treated as a passive system with respect to the
input q̇ and the output−τ ext. Therefore, one can conclude
very advantageous robustness properties of the whole system.
Stability is for instance also guaranteed forarbitrary errors in
the dynamical parameters of the inertia matricesM (q) and
B as long as these matrices remain positive definite andB

remains a diagonal matrix.
Concerning the formulation of the gravity compensation term
it should be mentioned that, in contrast to any related previous
works, no lower bounds are imposed on the positive definite
matrix Kθ for stability reasons, meaning that the desired
stiffnessKθ can be chosen arbitrarily close to zero.
At this point it is illustrative to evaluate up to which extent

the controller approximates the desired impedance behavior
from (7). Therefore, a small simulation of the seven-degrees-
of-freedom DLR-Lightweight-Robot-II ([19], see also Fig.6 in
Section VIII) will be shown. In this simulation the closed-loop
response for a step-wise excitation using an external torque of
10 Nm at joint 2 is evaluated. The simulation was performed
with different values forBθ in order to demonstrate the role
of the torque feedback in the controller. The desired stiffness
and damping matrices are set to diagonal matrices with an
overall stiffness of1000 Nm/rad and the desired damping is
set toDθ = diag{100, 100, 100, 100, 1, 1, 1} corresponding to
the different effective inertia for the lower and upper joints.
In the following only the motion of joint 2, onto which the
external force is exerted, will be analyzed in detail. In Figure
4 the link side joint angle of this axis is shown. First, the dash-
dotted line shows the step response of the desired impedance
(7). Secondly, the dotted line shows the control action for the
controller without any torque feedback, i.e. withBθ set to
B. One can see some higher frequency oscillations and also a
rather huge overshoot. Next, the same step response is shown
with Bθ = B/3 (solid line) and withBθ = B/10 (dashed
line). The former corresponds to a moderate torque feedback
while the latter is in the range of the highest gains which
could be implemented for this robot in practice considering
the noise of the torque sensor. One can see that for higher
torque feedback gains the desired dynamics is approximated
better. In order to have a closer look at the oscillation damping
performance, Figure 5 shows the simulated joint torque. One
can see that the torque oscillations, observed for the case of
Bθ = B (dotted line), are already damped out quite effectively
by the lower gainBθ = B/3 (solid line) and cannot be
observed any more for the higher gainBθ = B/10 (dashed
line).

0 0.2 0.4 0.6 0.8

0

0.002

0.004

0.006

0.008

0.01

0.012

time [s]

q 2
[r

a
d
]

Fig. 4. Simulated joint angle for a step wise excitation of 10Nm (dash-dotted
line: desired impedance, dotted line:Bθ = B, solid line:Bθ = B/3, dashed
line: Bθ = B/10).

The solution presented so far, however, has one disadvantage.
The stiffness and damping termuimp and the gravity com-
pensation termug were designed separately. While the term
uimp guarantees the correct stiffness relation (statically) for
the gravity-free case, the termug was designed for the case
of free motion, i.e. forτ ext = 0. In the above analysis is was
shown that these two terms can indeed be combined without
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Fig. 5. Simulated joint torque for a step wise excitation of 10Nm (dotted
line: Bθ = B, solid line: Bθ = B/3, dashed line:Bθ = B/10).

jeopardizing the passivity and stability of the system. Butit
is not guaranteed any more that the desired static relation
τ ext = Kθ(q0−qd) holds exactly for allτ ext 6= 0. In fact, a
small steady state error can also be observed for the simulation
shown in Figure 4.
Therefore, a different impedance controller will be formulated
in the next section which removes this drawback.

VI. COMBINED DESIGN OFCOMPLIANCE AND GRAVITY

COMPENSATION

In this section, the design idea for the gravity compensation
from Section V-B is generalized by simultaneously taking
account of the desired stiffness. This will result in an improved
impedance control law which implements the desired static
stiffness relation exactly.

A. Controller Design

Consider the case that a constant torqueτ ext acts on the
robot (4)-(5). The equilibrium conditions for this case are

K(θ0 − q0) = g(q0) − τ ext , (34)

K(θ0 − q0) = u0 , (35)

whereu0 is the static value ofu. In the following the desired
stiffness relation

Kθ(q0 − qd) = τ ext (36)

shall be achieved statically. By combining (36) with (34), one
gets the condition

K(θ0 − q0) = g(q0) − Kθ(q0 − qd) . (37)

This condition can be seen as a relationship between the static
motor side positionθ0 and the static link side positionq0. In
order to stress the similarity of the following derivation to the
derivation of the gravity compensation term in Section V-B
the functionl(q) is defined as

l(q) := g(q) − Kθ(q − qd) . (38)

The following procedure is then completely analogous to the
design of the gravity compensation term in Section V-B. The

function l(q) plays now the same role as the gravity function
g(q) previously. Notice that the equation (37) can also be
written asK(θ0 − q0) = l(q0) and by defining the function

hl(q) := q + K−1l(q) , (39)

the static motor side positionθ0 can be expressed asθ0 =
hl(q0). At this point it is assumed that the inverse function
of hl(q) exists and it will be denoted by

q̄l(θ) := h−1
l (θ) . (40)

A sufficient condition for the existence of this inverse function
as well as an iterative computation procedure will be given
later in Proposition 3. By means of̄ql(θ) a control law
combining the gravity compensation with a statically exact
stiffness design can be designed in the form

u = l(q̄l(θ)) − Dθθ̇ (41)

= g(q̄l(θ)) − Kθ(q̄l(θ) − qd) − Dθθ̇ .

The functionl(q), as defined in (38), is the differential of the
potential function

Vl(q) = Vg(q) −
1

2
(q − qd)

T Kθ(q − qd) , (42)

i.e. l(q) = (∂Vl(q)/∂q)T . Instead of the Assumptions 1, 2
the following assumption is needed now.

Assumption 3:The HessianH l(q) = ∂2Vl(q)
∂q2 of the poten-

tial function Vl(q) satisfies the condition

αl := sup
∀q∈Qp

||H l(q)||K < ||K||K = 1 . (43)

Notice that this assumption implicitly contains an upper bound
on the desired stiffnessKθ, similar to Assumption 2 for the
previous controller. This is not surprising since, again, the
controller basically implements a stiffness which is in series
interconnection to the joint stiffnessK. The stiffnessKθ

therefore must besmaller than K. Assumption 3, however,
ensures the existence of the inverse functionh

−1
l (θ) as

formulated in the following proposition which is analogous
to Proposition 1.

Proposition 3: If Assumption 3 holds globally (i.e. for
Qp = R

n) then the inverse functionh−1
l (θ) := q̄l(θ) of

hl(q) = q + K−1l(q) : R
n → R

n exists globally. Moreover,
the iteration

q̂l,n+1 = T l(q̂l,n) (44)

with T l(q) := θ − K−1l(q) converges for every fixedθ and
for every starting point̂ql,0 to q̄l(θ).
Furthermore, by following the same derivation as in the
Appendix (with l(q) instead ofg(q)), one can show that the
controller terml(q̄l(θ)) can be written as the differential of
the potential function

Vl̄(θ) = Vl(q̄l(θ)) +
1

2
l(q̄l(θ))T K−1l(q̄l(θ)) , (45)

i.e. l(q̄l(θ)) = (∂Vl̄(θ)/∂θ)T .
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B. Stability Analysis

The closed-loop system for the controller (41) together with
(3) is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) + τ ext , (46)

Bθθ̈ + K(θ − q) = l(q̄l(θ)) − Dθθ̇ . (47)

Following the same line of argumentation as in the previous
section, one can prove the asymptotic stability also for this
system by using the Lyapunov function

Ve(q, q̇, θ, θ̇) =
1

2
q̇T M (q)q̇ +

1

2
θ̇

T
Bθθ̇ +

Vg(q) + Vk(q, θ) − Vl̄(θ) ,

with Vk(q, θ) and Vl̄(θ) given in (33) and (45). This is
summarized in the following proposition.

Proposition 4: Under the Assumption 3 the system (46)-
(47) is asymptotically stable for the case of free motion (i.e.
for τ ext = 0). Moreover, if Assumption 3 holds globally (i.e.
for Qp = R

n), then the system is even globally asymptotically
stable. Considering interaction with the environment, i.e. for
τ ext 6= 0, the closed-loop system represents a passive mapping
τ ext → q̇.

C. Controller Discussion

Notice that also the control law presented in this section
does not exactly implement the desired impedance (7), cf.
Remark 3. However, this yields a good approximation which
is the better the higher the inner loop torque feedback is.
In the experimental part in Section VIII some comparisons
with a simulation of the desired impedance are presented,
which give an impression how well the desired impedance
is approximated. But in contrast to the previous solution from
Section V this controller fulfills now the required steady state
condition exactly. This can be seen by computing the steady
state for a constant external torqueτ ext, which leads to

K(θ0 − q0) = g(q0) − τ ext ,

K(θ0 − q0) = g(q̄l(θ0)) − Kθ(q̄l(θ0) − qd) .

Since q̄l(θ) (by construction) satisfies (37), it follows that
q̄l(θ0) = q0 must hold. This implies, as desired,Kθ(q0 −
qd) = τ ext.
At first glance it might be somehow surprising that the
controller is formulated in the coordinatesq̄l(θ) but does not
require the Jacobian matrix∂q̄l(θ)/∂θ explicitly. Notice that
the reason for this is that the functionl(q̄l(θ)) is already the
differential of the potential functionVl̄(θ).

VII. G ENERALIZATIONS

In the previous sections two joint level impedance con-
trollers were presented. Several extensions of these controllers
are possible. Some of them are discussed in the following.

A. Visco-Elastic Joints

Since the analysis of the controller was based on a physical
interpretation of the torque feedback it is also possible to
include joint damping, i.e. gear damping, very easily. The
considered model with joint damping is given by

M(q)q̈ + C(q, q̇)q̇ + g(q) = K(θ − q) +

D(θ̇ − q̇) + τ ext ,

Bθ̈ + K(θ − q) + D(θ̇ − q̇) = τm ,

where the matrixD ∈ R
n×n is a diagonal and positive definite

damping matrix. For this model the same type of controller
as in the last section can be used, when the control law (3) is
replaced by

τm = BB−1
θ u + (I − BB−1

θ )
(

τ + DK−1τ̇
)

, (48)

with τ = K(θ − q). This leads to the closed-loop system

M (q)q̈ + C(q, q̇)q̇ + g(q) =

τ ext + K(θ − q) + D(θ̇ − q̇)

Bθθ̈ + K(θ − q) + D(θ̇ − q̇) = u

for which the intermediate control inputu can be chosen in
the same way as in the previous sections. All the passivity and
stability statements given in this work also hold for a model
with visco-elastic joints.

B. Cartesian Impedance Control

In many applications the desired impedance behavior is
defined with respect to the end-effector motion rather than
in joint coordinates. In this section it is shown that the
controller from Section VI can easily be generalized to the
implementation of a desired Cartesian impedance controller. In
the Cartesian case, however, the singularities of the Jacobian
matrix clearly pose a limitation on the achievable region
of attraction. Also, for a Cartesian controller applied to a
redundant robot, stability can only be achieved if the desired
Cartesian behavior is augmented by some nullspace behavior.
Despite these general differences between joint level control
and Cartesian control, the generalization of the impedance
controller to the Cartesian case can follow the same line of
argumentation as in Section VI.
In the following it is assumed that the forward kinematics
mapping from the joint space coordinatesq to the Cartesian
coordinatesx = f(q) ∈ R

6 as well as the Jacobian matrix
J(q) = ∂f(q)

∂q
∈ R

6×n are known. The desired impedance
behavior is specified in terms of a Cartesian virtual equilibrium
positionxd, a symmetric and positive definite stiffness matrix
Kx ∈ R

6×6, and a positive definite damping matrixDx ∈
R

6×6. Based on this one can formulate a desired Cartesian
stiffness potential in the form

Vx =
1

2
(x − xd)

T Kx(x − xd) . (49)

Consider the case that a constant generalized external force
F ext acts on the robot. In steady state at a positionq0

the generalized external forceF ext is related to the external
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torquesτ ext via τ ext = J(q0)
T F ext. The desired static

equilibrium condition for this case is

F ext = Kx(x0 − xd) =

(

∂Vx(x)

∂x

)T

x=x0

, (50)

which can be equivalently expressed in joint coordinates as

τ ext =

(

dVx(f(q))

dq

)T

q=q
0

, (51)

as long as the Jacobian matrix remains non-singular. By
combining this desired steady state condition with (34) one
gets (instead of (37)) now the equation

K(θ0 − q0) = g(q0) −

(

dVx(f (q))

dq

)T

q=q
0

. (52)

The terms on the right hand side of this equation motivate the
definition of the function

c(q) := g(q) −

(

dVx(f (q))

dq

)T

. (53)

which replacesl(q) from Section VI. For completing the
controller design one can then repeat the procedure from
the joint level case usingc(q) instead of l(q) as well as
Vc(q) = Vg(q) − Vx(q) instead ofVl(q). Consequently, the
controller can be formulated as

u = c(q̄c(θ)) + Dc(θ)θ̇ , (54)

= g(q̄c(θ)) −

(

dVc(f(q))

dq

)T

q=q̄c(θ)

+ Dc(θ)θ̇ ,

where q̄c(θ) corresponds to the solution of the equation
K(θ − q) = c(q) for q andDc(θ) is a joint level damping
matrix chosen as

Dc(θ) = J(q̄c(θ))T DxJ(q̄c(θ)) , (55)

which is positive definite as long as the Jacobian matrix is
non-singular. For ensuring the existence and uniqueness of
q̄c(θ) the following assumption is needed representing an
upper bound of the achievable Cartesian stiffness.

Assumption 4:The HessianHc(q) = ∂2Vc(q)
∂q2 of the po-

tential functionVc(q) satisfies the condition

αc := sup
∀q∈Qp

||Hc(q)||K < ||K||K = 1 . (56)

This assumption implicitly represents an upper bound for the
Cartesian stiffnessKx with respect to the joint stiffnessK and
is analogous to Assumption 3 from the joint level controller.
It ensures the existence ofq̄c(θ) according to the following
proposition.

Proposition 5: If Assumption 4 holds globally (i.e. for
Qp = R

n) then the functionq̄c(θ), i.e. the solution of
K(θ−q) = c(q) for q, exists globally. Moreover, the iteration

q̂c,n+1 = T c(q̂c,n) (57)

with T c(q) := θ−K−1c(q) converges for every fixedθ and
for every starting point̂qc,0 to q̄c(θ).
The above description presents the implementation of the
controller so far. Notice that for the implementation neither

singularities of the Jacobian nor the redundant case are prob-
lematic since no inversion of the Jacobian is needed for
the controller computation. The potential function for the
controller is given by

Vc̄(θ) = Vc(q̄c(θ)) +
1

2
c(q̄c(θ))T K−1c(q̄c(θ)) , (58)

for which c(q̄c(θ)) = (∂Vc̄(θ)/∂θ)T holds. The control law
again ensures passivity of the closed-loop system. This canbe
seen by using the positive semi-definite9 function

Vf (q, q̇, θ, θ̇) =
1

2
q̇T M(q)q̇ +

1

2
θ̇

T
Bθθ̇ +

Vg(q) + Vk(q, θ) − Vc̄(θ) , (59)

as a storage function.
For proving stability, however, one must distinguish between
the redundant and the non-redundant case. While (59) becomes
positive definite for a non-redundant robot and can be used for
proving (local10) asymptotic stability, an additional nullspace
control is needed in the redundant case.
Regarding singularities of the orientation representation in the
Cartesian coordinatesf (q) it should be mentioned that the
potential function (49) could also be replaced by the potential
of one of the singularity-free spatial springs proposed by,e.g.,
Fasse or Natale (see e.g. [28], [29]).

VIII. E XPERIMENTS

In this section some experiments are reported for evaluating
the proposed controllers. The first two experiments were con-
ducted with the seven-degrees-of-freedom DLR-Lightweight-
Robot-II, while the second two were performed with the newer
DLR-Lightweight-Robot-III. These robots are equipped with
joint torque sensors additionally to the motor position sensors
and thus are ideally suited for the implementation of the
proposed controllers. For the experiments the Cartesian control
law from Section VII-B was chosen because it is the most
complex controller from the paper and the interaction with
the human user is then more intuitive. For the evaluation
additionally a force-torque sensor was mounted on the tip of
the robots.
Figure 6 shows the initial configuration of the robots for the
experiments. In the first experiment the achieved compliance is
evaluated. The Cartesian impedance from Section VII-B was
implemented with diagonal stiffness and damping matrices
with the values given in Table I. The three translational
coordinates are denoted byex, ey, andez. For the orientation
representation RPY Euler angles were used. The orientational
coordinates are denoted byφx, φy, andφz .
In the experiment a human user exerts (generalized) forces on
the robot end-effector by pulling and pushing, mainly in the
horizontal (x- and y-coordinates) directions. The interaction
forces are measured by a six-degrees-of-freedom force-torque-
sensor11 mounted on the end-effector. Notice that this sensor
was not used in the implementation of the impedance con-
troller but is used only for evaluation purposes. The applied

9which is positive definite only in the non-redundant case
10The global case is obstructed by the singularities of the Jacobian.
11A JR3 sensor was used.
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Fig. 6. Initial configuration of the DLR lightweight robots (LWR-II left,
LWR-III right) for the experiments.

Coord. ex ey ez φx φy φz

Stiffness 700 4000 4000 200 200 200
N
m

N
m

N
m

Nm
rad

Nm
rad

Nm
rad

Damping 70 400 400 5 5 5
Ns
m

Ns
m

Ns
m

Nms
rad

Nms
rad

Nms
rad

TABLE I

STIFFNESS AND DAMPING VALUES FOR THE FIRST EXPERIMENT.

forces in x- and y-direction over time are shown in Figure
7. In order to evaluate the resulting stiffness and damping,
the force and displacement inx- andy-direction are shown in
Figure 8 and Figure 9, respectively. The corresponding static
characteristic line according to the relevant stiffness value
from Table I is shown by the dashed line. Notice that the
hysteresis-like deviation from the static value is caused by
the Cartesian damping. The dotted line shows additionally
the result of a simple simulation of the desired Cartesian
impedance. In this simulation the measured contact force is
used as an input and the Cartesian motion is the output. This
simulation contains some further simplifications12. Notice that
the simulation shows only the desired compliance and no joint
elasticity is included. One can see that the experimental results
fit quite well the simulation of the desired compliance for low
(Figure 8) and high (Figure 9) Cartesian stiffness values.
In a second experiment an impact with a wooden surface was
performed using the controller from Section VII-B with the pa-
rameters from Table II. This experiment shows the robustness
of the controller in contact with a passive environment. The
initial configuration is shown in Fig. 6. Figure 10 displays the
desired and the measured end-effector motion in the vertical
z−direction during the impact. Additionally, Fig. 11 depicts

Coord. ex ey ez φx φy φz

Stiffness 4000 4000 4000 200 200 200
N
m

N
m

N
m

Nm
rad

Nm
rad

Nm
rad

Damping 400 400 400 5 5 5
Ns
m

Ns
m

Ns
m

Nms
rad

Nms
rad

Nms
rad

TABLE II

STIFFNESS AND DAMPING VALUES FOR THE IMPACT EXPERIMENT.

12The inertia matrix was considered constant and accordinglyno centrifugal
and Coriolis-terms were included.
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Fig. 7. Applied forces inx-direction (solid line) andy-direction (dashed
line) in the first experiment.
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Fig. 8. Applied force vs. end-effector deviation inx-direction (solid line).
The dashed line corresponds to the desired stiffness. The dotted line shows a
(simplified) simulation result.

the impact force. The measured static end-effector deviation
and contact force give a stiffness value of∼ 3882 N/m which
corresponds very well to the desired value of4000 N/m. The
peak of the contact force results mainly from the velocity at
the impact. One can see that the closed-loop system keeps
stable also in contact with this environment having quite a high
stiffness and that also high impact velocities can be handled.
Two additional experiments with the DLR-Lightweight-Robot-
III were performed in order to analyze the step response of the
Cartesian controller as well as the effects of uncertainties in the
end-effector load. The stiffness values for these experiments
were chosen smaller than in the first two experiments and
are given in Tab. III. In this experiment a heavy load of about

Coord. ex ey ez φx φy φz

Stiffness 2000 2000 2000 100 100 100
N
m

N
m

N
m

Nm
rad

Nm
rad

Nm
rad

Damping 110 110 110 14 14 14
Ns
m

Ns
m

Ns
m

Nms
rad

Nms
rad

Nms
rad

TABLE III

STIFFNESS AND DAMPING VALUES FOR THE STEP RESPONSE EXPERIMENT.

4.5 kg was attached to the end-effector. In this evaluation only
the Cartesian position will be analyzed. In Fig. 12 the step
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Fig. 9. Applied force vs. end-effector deviation iny-direction (solid line).
The dashed line corresponds to the desired stiffness. The dotted line shows a
(simplified) simulation result.
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Fig. 10. End-effector height in the impact experiment. The dashed line shows
the end-effector height of the virtual equilibrium position and the solid line
the measured end-effector position.

response for a step of30 mm in verticalz-direction is shown
with and without the load attached. In both cases the exact load
was known for the controller computation. Since the controller
does not shape the effective inertia but implements stiffness
and damping, the step response changes accordingly. The
remaining end-effector deviation is in the range of the known
friction effects for this robot. Next, the effects of uncertainties
in the load shall be analyzed. Notice that the controller does
only contain the gravity model, while it does not require
the computation of the inertia matrix or the centrifugal and
Coriolis-terms. Again, the load of∼ 4.5 kg was attached
to the end-effector. At the beginning of the experiment the
load is included in the computation of the controller. Then,at
time stept = 0.26 s the load in the controller computation
is set to zero simulating a huge model uncertainty for the
gravity compensation. Figure 13 shows the Cartesian position
deviations for the case of the known (time period A) and
unknown (time period B) load. One can see that the deviation
in time period B corresponds very well to the commanded
stiffness of2000 N/m with an external force resulting from
the unknown load. While uncertainties in the load thus clearly
affect the position accuracy according to the desired stiffness
behavior, the stability of the system is not affected by thislarge
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Fig. 11. Measured force in the impact experiment.
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Fig. 12. Step response for the Cartesian impedance controller. The dashed
line shows the commanded step. The step response with and without load are
shown by the dotted and solid line, respectively.

model error. This goes in accordance with the theoretically
proven (passivity-based) robustness properties.

IX. SUMMARY

In this paper we propose two impedance controllers for flex-
ible joint robots. In both controllers an inner torque feedback
loop is used in combination with an outer impedance control
loop. For the torque feedback a physical interpretation is given,
such that the complete controllers could be analyzed based on
passivity theory.
The first controller combines a motor position based gravity
compensation term with a stiffness and damping term. In the
second controller these parts instead are merged such that
at steady state the desired equilibrium condition could be
satisfied exactly. It is shown that both controllers can easily
be adapted to the case of visco-elastic joints. Furthermore, the
generalization to Cartesian impedance control has been out-
lined. Finally, the efficiency of the proposed control approach
was verified in several experiments with the DLR lightweight
robots.

APPENDIX

In this appendix the potential functionVḡ(θ) for the grav-
ity compensation term̄g(θ) is derived such that̄g(θ) =
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Fig. 13. Effect of uncertainties in the gravity model. In time period A the
load (∼ 4.5 kg) of the end-effector is known and considered in the controller,
while in time period B this information is not included.

(∂Vḡ(θ)/∂θ)T holds. Remember that for the construction of
ḡ(θ) = g(q̄(θ)) in Section V-B the function̄q(θ) = h−1

g (θ),
i.e. the inverse of the functionhg(q) = q + K−1g(q), was
used. Existence and uniqueness ofh−1

g (θ) were established
in Proposition 1 by the use of Assumption 1.
In the following the Jacobian matrix∂q̄(θ)/∂θ will be needed.
Consider first the Jacobian matrix of the functionhg(q)

∂hg(q)

∂q
=

(

I + K−1 ∂g(q)

∂q

)

. (60)

Due tohg(q̄(θ)) = θ one has

∂hg(q̄(θ))

∂θ
=

∂hg(q̄)

∂q̄

∂q̄(θ)

∂θ
= I ,

and therefore the Jacobian matrix∂q̄(θ)
∂θ

is given by

∂q̄(θ)

∂θ
=

(

I + K−1 ∂g(q̄)

∂q̄

)−1

q̄=q̄(θ)

. (61)

The potential functionVḡ(θ) clearly can be written in the form

Vḡ(θ) = Vḡ(hg(q̄(θ))) =: Vḡh(q̄(θ)) .

For the differential∂Vḡ(θ)/∂θ one obtains

∂Vḡ(θ)

∂θ
=

(

∂Vḡh(q̄)

∂q̄

)

q̄=q̄(θ)

∂q̄(θ)

∂θ
.

By substituting∂Vḡ(θ)
∂θ

= ḡ(q) = g(q̄(θ))T and ∂q̄(θ)
∂θ

from
(61), one gets

∂Vḡh(q̄)

∂q̄
= g(q̄)T

(

I + K−1 ∂g(q̄)

∂q̄

)

,

= g(q̄)T + g(q̄)T K−1 ∂g(q̄)

∂q̄
.

This differential can be integrated toVḡh(q̄) = Vg(q̄) +
1
2g(q̄)T K−1g(q̄) + c, with an arbitrary constantc ∈ R

n and
the gravity potentialVg(q) from Section IV. Settingc = 0

leads to the gravity compensation potential

Vḡ(θ) = Vḡh(q̄(θ))

= Vg(q̄(θ)) +
1

2
g(q̄(θ))T K−1g(q̄(θ)) .

Notice also that for all stationary points the potential energy
of the manipulatorVpot(q, θ) = Vk(q, θ) + Vg(q), with
Vk(q, θ) = 1

2 (θ − q)T K(θ − q) as the potential of the joint
stiffness, is identical to the gravity compensation potential, i.e.

Vpot(q, θ) = Vḡ(θ) ∀ (q, θ) ∈ Ω . (62)

From this it follows thatVḡ(θ) can also be written as

Vḡ(θ) = Vpot(q̄(θ), θ) = Vg(q̄(θ)) + Vk(q̄(θ), θ) . (63)
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“On a new generation of torque controlled light-weight robots.” in IEEE
Int. Conference on Robotics and Automation, 2001, pp. 3356–3363.

[20] G. Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn,
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