
PlanarMultiBody
A Modelica Library for Planar Multi-Body Systems

Mathias Höbinger1, Martin Otter2

1Vienna University of Technology, Austria
2German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Germany

mathias.hoebinger@gmx.at, martin.otter@dlr.de

Abstract

A new Modelica library for the modeling and simu-
lation of 2-dimensional mechanical systems has been
developed. It is based on the existing Mode-
lica.Mechanics.MultiBody library and implements a
number of simplifications and optimizations for 2-
dimensional environments, which bring the advan-
tages of a reduced complexity of the modeling proc-
ess as well as a reduced computational effort. Addi-
tionally, new components are present for joints with
curve-curve contact (e.g. cam follower joints). The
basic approach is, to have a 1:1 mapping of pack-
ages, models and functions, if this makes sense, and
specialising them to 2 dimensions.
Keywords:
Modelica, planar multi-body, contact mechanics.

1 Introduction

The PlanarMultiBody library is a Modelica package
providing 2-dimensional mechanical components to
model in a convenient way planar mechanical sys-
tems. The main design goal of the library was to util-
ize the fact that in such systems coordinates, direc-
tions and rotations can be expressed and computed in
a much simpler way than in 3-dimensional systems.
A typical example of this library is a mechanism
with 2 kinematic loops as shown in the Figure 1.

Figure 1: A planar mechanical system containing

2 coupled kinematic loops

The PlananMultiBody library,
see screenshot to the right, has
the following main features:
• In 2-dimensional systems, the

orientation of any object with
respect to another one can be
described by a single angle.
This simplifies the notation for
orientation of objects consid-
erably. The use of the “orien-
tation objects” from the Mode-
lica.Me
brary can be dropped com-
pletely, as well as the special
handling of the orientation ob-
ject with Connections.Root
(..), Connections.Branch(..) operators to define the
connected network of coordinate systems in order
to handle over-determined DAEs. The require-
ments for a Modelica translator to process models
of this library are therefore much less as for the 3-
dim. Modelica.Mechanics.MultiBody library.
The visualizer objects used in the Multi

chanics.MultiBody li-

• Body li-

• del joints based on two

brary for the animation of objects have been al-
tered to achieve two aims: Firstly, all animation
objects can be addressed as 2D objects, e.g., the
bars used to animate a fixed translation have a
length and a width, no height. The Visualiz-
ers.Advanced.Shape object, as well as the objects
used for animating all kinds of arrows, includes
input values for length, width and position. Sec-
ondly, because the actual animated shapes are still
3D-objects, the height is automatically set to a
very low value which gives the animation a
“pseudo-planar” look.
The possibility to mo
curves sliding along each other. In model Planar-
Multibody.Joints.CurveCurveJoint, different
curve objects can be selected. They all contain
functions used to compute three vectors depend-
ing on a curve parameter s: the curvePosition,, the
curveTangent and the curveNormal. The Planar-

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 549 Modelica 2008, March 3rd − 4th, 2008

MultiBody.Joints.CurveCurveJoint object in-
cludes two instances of arbitrary curve objects,
each connected to a frame. This joint constrains
the movement of its two frames by requiring
proper contact conditions for the two curves.
These are computed using the two curve parame-
ters s1 and s2. Additional curves needed by a user
can easily be added by just providing the neces-
sary equations of the curve and its normal and
tangent vectors.

2 Describing Orientation

The simplified way of describing absolute and rela-

3 PlanarMultiBody

The “Frame” connector is used to connect planar

ctor r that is directed from the ori-

• the

It is agram is constructed,

elica.SIunits;

on vector";

 x-axis world to frame";

n world frame";

in world frame";

As usual, if velocities or accelerations are needed,

4 Elementary Components

Using the “Frame” connector and the utility func-

4.1 PlanarMultiBody.World

This model represents a global coordinate system

tive orientation of objects is the most significant im-
provement for modeling planar systems compared to
model the same system using the 3-dimensional
MultiBody library. For notational convenience the
word “frame” is used in the sequel as a synonym for
“coordinate system”. Instead of using three orthogo-
nal unit vectors to define a specific frame we can do
that with a single angle φ that describes the rotation
of that frame with respect to the global coordinate
system around the only possible axis of rotation, the
z-axis. To define the position and rotation of a sec-
ond frame relative to the first one is equally simple: a
two-dimensional vector r_rel and a relative angle
φ_rel are everything that is needed. Given the abso-
lute angles φ_a and φ_b of two different frames, the
relative angle can be computed by simply stating
φ_rel= φ_b − φ_a .

Frame Connector

multibody components together. It is rigidly fixed at
an attachment point of a mechanical part. A frame
“frame a” is described with respect to the world
frame using the
• 2-element ve

gin of the world frame to the origin of frame a
and is resolved in the world frame and by the
angle φ between the x-axis of the frame and
x-axis of the world-frame.
 assumed that a free body di

i.e. that a cut is performed between mechanical parts
that shall be connected together at frame a. In the cut
plane a resultant cut force fa and resultant cut torque
τa act on frame a. Since in planar multi-body systems
there are no advantages to express vectors in local
frames, all vectors, and especially fa, are expressed in

the world-frame. The resultant cut torque is a scalar
along the z-axis of the world-frame. To summarize,
the connector is defined as:

connector Frame
 import SI = Mod
 SI.Position r[2]
 "Absolute positi
 SI.Angle phi
 "Angle from
 flow SI.Force f[2]
 "Constraint force i
 flow SI.Torque t
 "Constraint torque
end Frame;

they can be obtained by applying the derivative op-
erator der(...). This also holds for the angular veloc-
ity which is simply der(phi), where as in the Mode-
lica.Mechanics.MultiBody library the computation of
the angular velocity is complicated and is performed
with a function.

tions in PlanarMultiBody.Frames, it is straightfor-
ward to implement the elementary components that
are usually available in multi-body programs. The
PlanarMultiBody library has about 40 components.
The most important ones are shown in Table 1. Ex-
actly like in the Modelica.Mechanics.MultiBody li-
brary, equations are only defined on “position” level.

fixed in ground. It is used as inertial system in which
the equations of all elements of the PlanarMultiBody
library are defined and is the world frame of an ani-
mation window in which all elements of the Planar-
MultiBody library are visualized. Furthermore, the
gravity field of the multi-body model is defined here.
Default is a uniform gravity field; a point gravity
field can also be selected. The world object is also
used to define default settings of animation proper-
ties (e.g. the width of the rectangles representing a
revolute joint). The world object itself is animated as
a coordinate system with 2 axes and labels.

M. Höbinger, M. Otter

The Modelica Association 550 Modelica 2008, March 3rd − 4th, 2008

Abbreviations:
 ra,ϕa,fa,τa := frame_a.r, .phi, .f, .t
 rb,ϕb,fb,τb := frame_b.r, .phi, .f, .t
 resolve1(..) := Frames.resolve1(..)
grav := world.gravityAcceleration(..)

World

rb = 0
ϕb = 0

Parts.Fixed
Translation

rb = ra + resolve1(ϕa, rrel)
ϕb = ϕa
0 = fa + fb
0 = τa + τb + rrel × fb

Joints.Revolute

rb = ra
ϕb = ϕa + ϕrel
0 = fa + fb
0 = τa + τb

Joints.JointRR

rrel0 = rb - ra
L*L = rrel0* rrel0
0 = fa + fb
fa = frod * rrel0 / L
0 = τa
0 = τb

Parts.Body

w = der(ϕa)
z = der(w)
rCM0 = resolve1(ϕa, rCM)
rabsCM0 = ra + rCM0
g = grav(rabsCM0)
v = der(rabsCM0)
a = der(v)
fa = m * (a – g)
I * z = τa – rCM0 × fa

Table 1: Elementary components of PlanarMultiBody.

4.2 PlanarMultiBody.Parts.FixedTranslation

This component defines a fixed translation of a
frame. It is, e.g., used to define frames for several
attachment points on a body. The equations state that
the position vector of frame_b is defined from the
position vector of frame_a and the relative position
vector rrel from frame_a to frame_b (rrel is defined as
parameter “r”). Since frames are translated, the an-
gles in the two frames are set equal. Finally, a force

and torque balance of this massless part is present in
the Modelica model.

4.3 PlanarMultiBody.Joints.Revolute

In planar systems, the only possible axis of rotation
is the z-axis, so this component always defines such
a rotation using a vector φrel. When φrel = 0, frame_a
and frame_b coincide. Unlike in the Mode-
lica.Mechanics.MultiBody library, the absolute ori-
entation vector of frame_b, frame_b.phi, can easily
be obtained by stating

frame_b.phi = frame_a.phi + φ_rel.
As with most other joints, the generalized coordi-
nates (here: φ_rel and its derivative ω_rel) have the
attribute stateSelect = StateSelect.prefer in order that
they are selected as states if possible. The position
vectors of the two frames are identical and there is a
force and torque balance present. Instead of imple-
menting an additional model “ActuatedRevolute”, a
conditional 1-dim. flange connector is present onto
which a drive train can be attached driving the revo-
lute joint, e.g, with components from the Mode-
lica.Mechanics.Rotational library. There is a Boolean
parameter drivenFlange present to activate or deacti-
vate the additional flange.

4.4 PlanarMultiBody.Parts.Body

This component defines the mass and inertia proper-
ties of a body. They are defined using the following
parameters: m for the mass, the position vector r_CM
from the origin of frame_a to the center of mass (re-
solved in frame_a) and the inertia value I. There is a
Boolean parameter enforceStates present which de-
fines if the positon vector r and orientation angle φ
of frame_a should be use as states. These variables
have the attribute stateSelect = if enforceStates then
StateSelect.always else StateSelect.avoid. The fea-
ture to have potential states both in joints and in bod-
ies makes it easier to model systems with bodies
which are connected to the environment without us-
ing a joint or freely moving bodies.

4.5 PlanarMultiBody.Joints.JointRR

This component fixes the distance between its two
frames to parameter L, but does not constrain the
orientation angles of any of them. Therefore it can be
used as a replacement for two revolute joints con-
nected by a fixed translation. Using this component
reduces the order of the nonlinear equation system
and helps avoiding problems with non-linear equa-
tion systems caused by kinematic loops. The cut
force is constrained to act only along the vector be-

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 551 Modelica 2008, March 3rd − 4th, 2008

tween the origins of the two frames. Finally, a force
and torque balance is present in this component.
There is an additional object called PlanarMulti-
Body.Joints.JointRRWithMass present which in-
cludes a mass fixed relative to the two frames of the
joint.

Figure 2: The diagram level of the model animated in

Figure 1 using two instances of JointRRWithMass

5 Force Elements

Force elements exert forces and torques between two
frames. Because these elements, although they have
obviously been altered to fit into the different orien-
tation setup of this new library, are virtually identical
in their functionality and structure to the ones in the
MultiBody library, we will not discuss them here in
great detail. For a more detailed description of the
most important force elements, see [1].

6 Animation

The animation environment in Dymola [2] is native-
ly a 3-dimensional one, and all animated objects
therefore have to be programmed in that way. How-
ever, the Modelica.Mechanics.MultiBody library

utilizes a single model to realize virtually of all its
animations, MultiBody.Visualizers.Advanced.Shape.
The following features were implemented into the
PlanarMultiBody animation engine:
• Having a user-interface with purely 2-

dimensional animation parameters gives the user
the convenience of not having to deal with a z-
coordinate that only exists in the animation and
has nothing to do with the planar system being
modeled.

• To provide users with a maximum of freedom of
design, either side of a 3d-object displayed by
the “FixedFrame” component of the library can
be used as a “pseudo-2d” object. E.g. a cylinder
can be used as a circle or a rectangle. For this
purpose, a boolean parameter “zDirection” was
added to the Shape object which rotates the
animated object by 90° around the y-axis.

• To avoid overlapping of objects in the “pseudo-
2D” animation, it is possible to shift an object
along the z-axis of the animation using the
parameter “heigthShift”.

• The heigth of all objects is automatically set to a
low value which results in the desired “pseudo-
2D” look of the animation.

Table 2 shows all the parameters of the
PlanarMultiBody.Visualizers.Advanced.Shape object
with their default values and a short description of
their functionality.

Table 2: Parameters of the PlanarMultiBody.Visualizers.Advanced.Shape object

M. Höbinger, M. Otter

The Modelica Association 552 Modelica 2008, March 3rd − 4th, 2008

7 Curve-Curve Contact

With Joints.CurveCurveJoint, the PlanarMultiBody
library includes a new joint making it possible to
simulate two surfaces having to remain in contact
with each other. In every instance of this joint, the
user can choose two out of a library of curves used to
simulate the connected surfaces. Each curve is fixed
to one frame of the joint, in the sequel we will use
the name curve_1 for the curve object connected to
frame_a and curve_2 for the one connected to
frame_b. The main idea is to have two variables s1

and s2, one for each curve, in the CurveCurveJoint
model, which stand for the path parameter of the re-
spective curve, describing the current contact point
on the curve with respect to a fixed starting point.
Usually “s”is the arc-length along the curve, but this
need not to be the case in general. For a given value
of their respective curve-variables, curve_1 returns a
relative position vector from frame_a to the point of
contact as well as the normal and tangent vector at
that point on the curve.

7.1 Joints.CurveCurveJoint

As mentioned above, this mod-
el includes two frames as well
as two instances of a “curve
object”. The possibility of
choosing the curves inside the

actual instance of the joint is realized by including
them as “replaceable” objects:

In the equation section of the CurveCurveJoint
model, position, normal and tangent variables are

connected to the respective variables in the curve
objects.

r1_rel = curve1.position(s1);
r2_rel = curve2.position(s2);
r1 = Frames.resolve1(frame_a.phi,r1_rel);
r2 = Frames.resolve1(frame_b.phi,r2_rel);
normal1 = Frames.resolve1(frame_a.phi,
 curve1.normal(s1));

normal2 = Frames.resolve1(frame_b.phi,
 curve2.normal(s2));

tangent2 = Frames.resolve1(frame_b.phi,
 curve2.tangent(s2));

More importantly, the kinematic constraint equations
as well as the force and torque balances of the joint
and the curves are defined here:
First, the distance between the contact point on
curve_1 and the one on curve_2 is set to zero:

{0,} = frame_b.r + r2 - (frame_a.r + r1);

Then, additional equations ensure that the contact
point is actually an osculation point of the two
curves, meaning that their standard normal vectors
point in the same direction with different signs:

0 = Modelica.Math.atan2(
 normal1*tangent2, -normal1*normal2);

tangent1

tangent2

normal1

normal2

curve_1

curve_2

The formulation of this condition is from Hans Ols-
son [3] and requires some explanation: The contact
conditions on the normal could be formulated as
“normal1*normal2=0”. However, this equation has a
singular Jacobian and therefore every solver would
have severe difficulties. The condition could also be
formulated as “normal1*tangent2 = 0”, as often sug-
gested in literature. Here, we have the problem that a
contact where normal1 and normal2 are directed in
the same direction, will also fulfill this equation and
therefore it can happen that during simulation sud-
denly a wrong contact appears. The formulation used
in the CurveCurveJoint is basically using the “nor-
mal1*tangent2 = 0” formulation, but uses this as the
first argument to the “atan2(..)” function. As second
argument “-normal1*normal2” is used. The
“atan2(..)” function has the property that the signs of
the two arguments determine the quadrant of the so-
lution. Especially, only if the second argument is
positive, -π/2 <= atan2(x,y) <= π/2. Therefore, in the
solution point “0 = atan2(x,y)”, the second argument
“-normal1*normal2” must be positive which means
that the two normal’s have to be directed in opposite
direction.

Figure 3: Normal and tangent definition of
curve-curve contact

replaceable Joints.Internal.Circle
 curve1(phi=frame_a.phi,r_0=frame_a.r)
 extends
 PlanarMultiBody.Interfaces.BaseCurve
 (phi=frame_a.phi, r_0=frame_a.r)

Finally, force and torque balances are included:

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 553 Modelica 2008, March 3rd − 4th, 2008

7.2 Predefined Contact Curves

The package PlanarMulti-
Body.-Joints.Internal in-
cludes the models which are
predefined in the
CurveCurveJoint object. Ad-
ditional curves can easily be
added by a user. We will use
the Ellipse model to explain
the functionality of these
objects. All curve-definition
models extend a model
called PlanarMultiBody.Interfaces.BaseCurve which
defines the basic input variables r_0 and phi which
are the absolute position vector and orientation angle
of the frame to which the curve is attached.
The BaseCurve model also establishes the three
functions position, normal and tangent and their ba-
sic input and output variables. The input variable s is
the curve parameter; the 2-dimensional output vector
is called r, n or t depending on the function. To en-
able the different curve-definition models to have
different versions of these functions, they are defined
as “replaceable encapsulated partial functions” in
BaseCurve.

Every curve model has its own set of parameters
used to adjust the actual curve surface In case of the
ellipse there are two of them: a and b, defining the
length of the two ellipse-axis.
Furthermore, there is always at least one parameter
defining the path parameter of the animated curve. In
case of the ellipse, the final parameter C is the ap-
proximated circumference of the Ellipse computed
from the given parameters a and b. In the models
which define non-closed curves, e.g. “StraightLine”,
there is an input parameter instead of this final pa-
rameter allowing the user to define how long a part
of the curve should be animated.

Additionally, there are the usual animation-
concerned parameters animation, switching the ani-
mation of the curve on or off, and color, defining the
color of the animated curve. Finally, the parameter
ns defines how many points should be used to inter-
polate the animated curve and the SwitchSide pa-
rameter defines on which side of the curve the con-
tact should occur.

// Force and torque balance of joint
zeros(2) = frame_a.f + frame_b.f;

0 = frame_a.t + frame_b.t +
 Frames.cross(frame_b.r - frame_a.r,
 frame_b.f)

// Force and torque balance of curve1
f_contact1 = -normal1*f_N;
 zeros(2) = frame_a.f + f_contact1;
 0 = frame_a.t +
 Frames.cross(r1, f_contact1); The most important part of a curve-definition model

are of course the three functions actually defining the
shape of the curve: curvePosition, curveNormal and
curveTangent. They extend the respective functions
in the BaseCurve model by including the necessary
additional parameters and adding an “algorithm”
section with the statement computing their output
variable. Here we present the CurvePosition function
from the Ellipse model as an example:

Finally, the model includes an algorithm computing
the points used to animate the curve in its current
position defined through the curve parameter. This is
done by filling three coordinate vectors with length
ns. These vectors are actually realized as ns*2 matri-
ces, the second columns being filled with slightly
shifted values to ensure better visibility of the ani-
mated curve. The animation is performed with Dy-
mola’s built-in support for parameterized surfaces.

model Ellipse "Ellipse contact curve"
 extends
 PlanarMultiBody.Interfaces.BaseCurve(
 redeclare final function position =
 curvePosition(a=a,b=b,C=C),
 redeclare final function normal =
 curveNormal(a=a,b=b,C=C,sw=sw),
 redeclare final function tangent =
 curveTangent(a=a,b=b,C=C));
protected
 function curvePosition
 extends PlanarMultiBody.Interfaces.
 BaseCurve.position;
 input Modelica.SIunits.Length a
 "Length of a-axis of ellipse";
 input Modelica.SIunits.Length b
 "Length of b-axis of ellipse";
 input Modelica.SIunits.Length C
 "Approximated circumference";
 algorithm
 r := { a*sin(s*2*pi/C),
 -b*cos(s*2*pi/C)};
 end curvePosition;
...
end Ellipse; replaceable encapsulated partial

 function normal
 input Real s "Curve parameter";
 output Real n[2] "Normal to curve";
end normal;

M. Höbinger, M. Otter

The Modelica Association 554 Modelica 2008, March 3rd − 4th, 2008

7.3 Examples

Package PlanarMultiBody.Examples.CurveCurve-
Joint includes a number of examples demonstrating
the use of this new joint. The most obvious example
is probably the classic Cam-Follower setup. In this
model, an elliptic object driven by gravity acting
upon a body attached to it turns on a revolute joint
fixed to the ground. It is connected to an object with
a straight surface being attached to a prismatic joint
and forced into movement by the ellipsoid (see
model schematic und animation in next Figure 4).

It it realized by connecting frame_a of a CurveCur-
veJoint to the world frame through a revolute joint

joint. Then the appropriate curves have to be selected
by double clicking on the joint and selecting them
from a dropdown menu (see next Figure 5).

 final parameter Real s_min=0
 "Minimum value of s";

 final parameter Real s_max=C
 "Maximum value of s";
algorithm
 for i in 1:ns loop
 s := s_min + (i - 1)*
 (s_max - s_min)/(ns - 1);
 r := Frames.resolve1(phi,
 position(s));
 x[i,1] := r_0[1] + r[1];
 x[i,2] := r_0[1] + r[1] + 0.01;
 y[i,1] := r_0[2] + r[2];
 y[i,2] := r_0[2] + r[2] + 0.01;
 z[i,1] := 0;
 z[i,2] := 0.01;
 end for;

and doing the same with frame_b using a prismatic

 demonstrates the

The th ssibil-

Finally, a body is attached to frame_a of the joint

Figure 5: Selecting a curve in the
CurveCurveJoint menu

and the start value of the ellipses curve parameter is
set to an appropriate value to ensure that the system
is not in an idle position at time 0.
Another example from this package
effect of the switchSide parameter, see Figure 6. Two
CurveCurveJoint objects are present, both describing
the contact between two circles. In the upper circle-
circle contact, switchSide = true, whereas in the
lower circle-circle contact, the default switchSide =
false is used. The effect can be seen in Figure 6.

Figure 4: Model and animation of CamFollower

Figure 6: Example CurveCurveJoi SwitchSides nt

demonstrating the switchSide parameter

ird example, see Figure 7, shows the po
ity of more complex curves by using an ellipse dis-
torted by a sinus wave. This curve has amplitude and
frequency of the wave as additional parameters.
Here, a very small circle attached to a small body
runs along the distorted ellipse. It is connected to the
world frame using a prismatic joint.

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 555 Modelica 2008, March 3rd − 4th, 2008

Figure 7: Example SinusEllipse demonstrating more

complicated curve-curve contacts

8 Conclusions

The PlanarMultiBody library is a mechanical library
to model planar mechanical systems. The main ad-
vantage is its simplicity and that no special symbolic
manipulation features of the Modelica simulation
environment is needed, contrary to the Mode-
lica.Mechanics.MultiBody library that describes 3-
dim. mechanical systems. Therefore, the PlanarMul-
tiBody library is well suited for teaching, but also for
a quite large class of technical problems that are 2-
dim. in nature. Besides standard joints, the Planar-
MultiBody library allows the definition of curve-
curve contacts, especially to describe cam-follower
types of contact. The non-standard formulation [3] of
the contact condition with the atan2(..) function has
proven to result in reliable solutions of the occurring
non-linear algebraic equation systems.
It is planned to include this library as free package in
the Modelica Standard Library after an evaluation
phase. Currently, there is also an Interpolation pack-
age under development. Once available, it is planned
that the curve descriptions in the curve-curve contact
description can be optionally described by splines of
this package.

References

[1] Otter M., Elmqvist H., Mattson S.E. The new
Modelica Multibody Library. Proc. of the 3rd
International Modelica Conference, pp. 311-330,
2003.
http://www.modelica.org/Conference2003/papers/
h37_Otter_multibody.pdf

[2] Dynasim. Dymola Users Guide, Version 6.0,
http://www.dynasim.se.

[3] Olsson H.: Formulation of contact conditions.
Personal communication to M. Otter, Sept. 2007.

M. Höbinger, M. Otter

The Modelica Association 556 Modelica 2008, March 3rd − 4th, 2008

