
Balanced Models in Modelica 3.0 for Increased Model Quality
Hans Olsson1 Martin Otter2 Sven Erik Mattsson1 Hilding Elmqvist1

1Dynasim AB, Ideon Science Park, SE-223 70 Lund, Sweden
2German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen,

82234 Weßling, Germany
{Hans.Olsson, SvenErik.Mattsson, Hilding.Elmqvist}@3ds.com, Martin.Otter@dlr.de

Abstract

A Modelica model can only be simulated, if the
number of unknowns and the number of equations
are equal. In Modelica 3.0, restrictions have been
introduced into the language, in order that every
model must be “locally balanced”, which means that
the number of unknowns and equations must match
on every hierarchical level. It is then sufficient to
check every model locally only once, e.g., all models
in a library. Using these models (instantiating and
connecting them, redeclaring replaceable models
etc.) will then lead to a model where the total num-
ber of unknowns and equations are equal. Besides
this strong guarantee, it is possible to precisely pin-
point which submodels have too many equations or
lack equations in case of error. This paper gives the
rationale behind the Modelica 3.0 design choices
including proofs of the new guarantees, and dis-
cusses the limitations of this approach.

1 Background

In a causal modeling paradigm, where only in-
put/output blocks are used, it is straightforward to
verify that all input connectors have been connected,
and thus causal modeling naturally lead to a simple
plug and play metaphor for end-users. The goal is to
ensure that acausal Modelica model components are
as convenient to use for end-users.
The need for this is growing in importance with lar-
ger and more complex model libraries and with
companies expanding Modelica usage from research
to development. Furthermore, libraries with template
models, i.e., incomplete models with replaceable
components, like VehicleInterfaces, PowerTrain,
VehicleDynamics library, can easily lead to wrong
models in Modelica 2 when using the templates,
without being able to give reasonable diagnostics for
the source of the error. Shortened production cycles

imply that we want to verify correctness early, in
particular already for incomplete models where im-
plementation of the parts is left open. An example
below (sunken icons means partial replaceable com-
ponents) shows a driveline where the input torque
and compliance between the inertias are unspecified.

source torque

tau

inertia1

J=1

compliant

inertia2

J=2
The goal is that by separately verifying that the tem-
plate model is correct, and imposing restrictions on
the models we plug in, we can be certain that the
complete model is correct.
Without the restrictions, the tool would need to per-
form a global analysis, and if the complete model is
not balanced we would not know whether the im-
plementation of the part or the template model itself
was in error. Having to verify this for all combina-
tions of sources and gears (one is shown below) is
not practical:

source

freqHz=2

torque

tau

inertia1

J=1

compliant

c=1000

inertia2

J=2
The first possibility would be to improve the analysis
of structural singularities for Modelica 2 to find the
errors without requiring balancing, but instead use
other information including annotations and confi-
dence in different equations [2]. Similar techniques
are also useful at the lowest level to go from one
equation too many in the current model to pinpoint-
ing which equation is superfluous.
Previously there have been checks in Dymola [3]
(since Dymola 5.3 released in 2003) to determine in
case of an unbalanced simulation model which sub-
models are incorrect based on the actual use. That
was introduced to help users in finding errors, but it
did not always work satisfactorily since it was not
always possible to determine how many equations
should be present in each model (the best what could
be done in general was to determine a range for the

Balanced Models in Modelica 3.0 for Increased Model Quality

The Modelica Association 21 Modelica 2008, March 3rd − 4th, 2008

number of equations); thus for the complete model it
was not possible to determine whether the error was
in the template or in one of the implementations –
and if so which one. Thus without stricter language
rules no reliable diagnostics could be given to users
to pin-point the errors.
A related work [4] allows unbalanced classes, main-
tains the (un)balancing of connectors and models
when modified. The difference is that in Modelica
3.0, it is enforced that models are balanced from the
start and on all levels.

2 Number of equations in the model

In order to verify whether a component model is bal-
anced we must have a clear definition of how many
equations the model contains – and how many equa-
tions it should contain (both based on its interface).

2.1 Restrictions on physical connectors

The goal is that combining models having (physical)
connectors and connecting them (in legal ways) we
should get new balanced models; without imposing
additional restrictions on the models or requiring
adding equations.
Consider the simplest case of a model where the only
public part is one connector, and it is “physical”, i.e.
containing nf flow variables “Real f[nf]” and np
non-causal, non-flow, “potential” variables “Real
p[np]” (i.e., no connector variable has the input or
output prefix); and the model is balanced, i.e., the
model requires that externally a specific number of
equations (ne) is provided, in order that all unknowns
of the model can be uniquely computed together with
the internal equations in the model. We will call
these required equations in the sequel external equa-
tions of a model component. The number of external
equations has to be uniquely defined by the interface
of the model. The balancing is that the number of
unknown variables equals the number of equations
defined inside the model plus the number of external
equations.
The simplest use of a model m1 with connector c is
that the connector is unconnected.

The Modelica semantics does state that the flow-
variables are summed to zero, whereas the “poten-
tial” variables should be equal [1].

This leads to the external equations
m1.c.f = 0; // nf equations

Since m1 requires ne external equations and instanti-
ating the component gives nf equations, we have the
requirement: ne = nf.
The next case is to have two of such components not
being connected:

m2

c

m3

c

In this case we get the external equations
m2.c.f = 0; // nf equations
m3.c.f = 0; // nf equations

Since m2 requires ne equations and m3 requires ne
equations, we have the requirement: 2·ne = 2·nf
The next case is to have two of such components, but
being connected:

m4

c

m5

c

Here we get connection equations:
m4.c.f + m5.c.f = 0; // nf equations
m4.c.p = m5.c.p; // np equations

Since m4 requires ne equations and m5 requires ne
equations, we have the requirement: 2·ne = nf + np
The final case is to have N components that are con-
nected together:

M1

c

M2

c c

MN ...

Here we get one time the zero-sum equations for the
flow variables and N-1 identity equations for the
potential variables. Since every model requires ne
equations, we have the requirement:

N·ne = nf + (N-1)·np
To summarize, we get the following relations that all
have to be fulfilled, in order that instantiating and
optionally connecting components does not require
to add any more equations (= necessary and suffi-
cient conditions): m1

c
1st model (m1): ne = nf
2nd model (m2,m3): 2ne = 2nf
3rd model (m4, m5) 2ne = nf + np
4th model (M1, ...Mn) N·ne = nf + (N-1)· np

or equivalently

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 22 Modelica 2008, March 3rd − 4th, 2008

f e

p f

n n

n n

=

=

This leads to the conclusion that the number of flow
and non-causal, non-flow variables must match
(counting arrays as the number of elements of simple
types), and this must correspond to the number of
external equations for this connector.
Models may also have variables that are declared
with the input prefix, both in a declaration of a
model and in a (top-level) connector. These variables
are treated as unknowns in a model. It is natural to
require that for all these input variables external
equations must be provided.
In order to force the user that all missing equations
for a model are provided when instantiating the
model, it is required that all input variables declared
in a model are provided as modifiers and that all in-
puts in a (top level) connector are provided by con-
necting the connector. Since a connector must have
the same number of flow and potential variables (see
derivation above), the means that a connector with
an input variable A must be connected to another
connector where variable A has the output prefix (an
exception of this last rule will be discussed in the
next section).
According to these rules, it is no longer allowed to
provide modifiers for other variables (with exception
of variables declared with the input, parameter or
constant prefix) or add other equations for the com-
ponent externally, because all of these actions would
introduce superfluous equations.
To summarize, we have basically the following re-
quirements (for simplicity, not yet considering spe-
cial cases such as over-determined connectors, non-
causal variables with a declaration equation, partial
models, or connectors with input variables that are
not connected):
1. The number of flow variables in a connector

must be identical to the number of non-causal,
non-flow variables (variables that do not have a
flow, input, output, parameter, con-

stant prefix).
2. The number of equations in a model = number of

unknowns – number of inputs – number of flow
variables (of top-level public connector compo-
nents). For the equation count, components are
not taken into account, because this is taken into
account by the next rule 3.

3. When using a model, i.e., making an instance, all
missing equations of this component must be
provided to make the component “balanced” by:

a) Connecting connectors or by leaving “physi-
cal” connectors unconnected (since the miss-
ing equations are then automatically intro-
duced by setting all flow variables to zero).

b) Providing a modifier for every non-
connector component variable with an in-
put prefix. Besides parameters and con-
stants, modifiers on other variables are no
longer allowed.

The above rules shall be clarified with a few simple
examples (assuming a global definition
import SI=Modelica.SIunits;):

connector FluidPortA
 SI.Pressure p;
 flow SI.MassFlowRate m_flow;
 input SI.SpecificEnthalpy h_inflow;
 output SI.SpecificEnthalpy h_outflow
end FluidPortA;

connector FluidPortB
 SI.Pressure p;
 flow MassFlowRate m_flow;
 output SI.SpecificEnthalpy h_inflow;
 input SI.SpecificEnthalpy h_outflow
end FluidPortB;

The two connectors FluidPortA and FluidPortB are
valid, since they each have 1 flow and 1 non-causal,
non-flow variable and 2 causal variables. Note,
whenever input/output prefixes are present, there are
connection restrictions because the block diagram
semantics holds (e.g. an output cannot be connected
to an output). As a result FluidPortA can only be
connected to one FluidPortB, but not to another Flu-
idPortA.

connector WrongFlange // wrong connector
 SI.Angle angle;
 SI.AngularVelocity speed;
 flow SI.Torque torque;
end WrongFlange;

This connector is not valid, since the number of flow
and non-flow variables is not the same. This is a
typical situation of “old” connectors, such as the
connectors of the (obsolete) ModelicaAddi-
tions.MultiBody library. Both these “old” connec-
tors, as well as the “WrongFlange” connector above
can be made valid, by using the prefix input or out-
put for one of the non-flow variables (similarly to
FluidPortA and FluidPortB above).

model Pin
 SI.Voltage v;
 flow SI.Current i;
end Pin;

model Capacitor
 parameter SI.Capacitance C;
 SI.Voltage u;
 Pin p, n;
equation
 0 = p.i + n.i;
 u = p.v – n.v;

Balanced Models in Modelica 3.0 for Increased Model Quality

The Modelica Association 23 Modelica 2008, March 3rd − 4th, 2008

 C*der(u) = p.i;
end Capacitor;

The Capacitor model has 5 unknowns1 (u, p.v,
p.i, n.v, n.i) and 2 flow variables (p.i, n.i).
It is therefore required that this model has 5 – 2 = 3
equations, and the model fulfills this requirement.

model Test1
 Capacitor C1(C=1e-6); // o.k
 Capacitor C2(u=sin(time)); // wrong
end Test1;

The declaration of C1 is correct, because a modifier
for a parameter is given. The declaration of C2 is
wrong, because it is no longer allowed in Modelica 3
to provide a modifier for a variable that does not
have a constant, parameter or input prefix.

model VoltageSource
 input SI.Voltage u;
 Pin p, n;
equation
 u = p.v – n.v;
 0 = p.i + n.i;
end VoltageSource;

The VoltageSource model has 5 unknowns (u,
p.v, p.i, n.v, n.i), 2 flow variables (p.i,
n.i) and 1 input variable (u). It is therefore required
that this model has 5 – 2 – 1 = 2 equations and the
model fulfills this requirement.

model Test2
 ...
 VoltageSource V1(u=sin(time)); // o.k
 VoltageSource V2; // wrong
 ...

end Test2;

Component V1 is correct, because the missing exter-
nal equation for the unknown input u is given as
modifier.
Component V2 is not correct, because no modifier or
equation is provided for the missing unknown input
“u”.
The counting for non-connector inputs (such as u) is
defined as if they always had a declaration equation.
Thus the result would be the same for this modified
model:

model VoltageSource
 input SI.Voltage u=0; // Default
 Pin p, n;
equation
 u = p.v – n.v;
 0 = p.i + n.i;
end VoltageSource;

1 Alternatively, one could define „u“ as known (because it
is a potential state) and „der(u)“ as unknown. However,
this does not hold in general, since der(..) might have an
expression as argument. For this reason, der(..) is used as
operator that does not have an influence on the equation
counting.

This implies that we can add default values without
modifying the use of the model.

2.2 Correlations and non-connector inputs

Causal variables are not limited to connectors, but
there are also non-connector inputs and outputs –
which can be viewed as “time-dependent parame-
ters”. The non-connector outputs have no special
significance here (they are useful to indicate special
interesting variables). The non-connector inputs are
for the balancing always counted as having a binding
equation – and must have a binding equation in the
complete model. This simplifies the requirement for
counting equations such that modifiers are not
counted as providing external equations for the
model; since they are seen as replacing old declara-
tion equations with new ones of similar size. The
important aspect is that other alternatives, such as
giving normal equations for them – or modifying
some non-input would not preserve the balancing of
equations.
One example demonstrating this issue is correlations;
i.e., relations constraining a set of variables to be on
a hyper-plane of a certain dimension. The simplest is
a correlation involving two variables; in this case the
variables will simple be on a curve. We can arbitrar-
ily declare one as input, but the correlation normally
is written as just an equation relating the variables
(and the line could have straight segments in both x
and y direction). Note: This example is illegal in
Modelica 3.0.

partial model Correlation
 input Real x;
 Real y;
end Correlation;

model UseCorrelation
 // Wrong in Modelica 3
 replaceable Correlation corr;
equation
 corr.y=2+time;
 /* Same number of equations as
 modifying ”x”; could also be
 written as modifier for y */
end UseCorrelation;

model LineCorrelation
 extends Correlation(x=3);
equation
 x+y=0;
end LineCorrelation;

model Complete=UseCorrelation
 (redeclare LineCorrelation corr);
// model is not balanced since
// 2 unknowns (x,y), but 3 equations:
// x + y = 0;
// x = 3;
// y = 2 + time;

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 24 Modelica 2008, March 3rd − 4th, 2008

In practice we would have a set of correlations and a
set of uses of them, and what we want to verify is
that they are all correct without performing all the
tests (which would lead to a combinatorial explosion
in the number of tests). For Modelica 3.0 we wanted
to support the model Correlation and the use in
LineCorrelation and Complete – without the pos-
sibility of too many equations in the Complete
model. Since we would expect these models to be
developed by separate teams (and normally be part
of larger systems) it represents exactly the situation
to avoid – an unbalancing due to the interaction of
several correct models – and without a clear descrip-
tion of where the error is. The solution is in this case
to disallow the construct in UseCorrelation for
non-connector inputs, and find another way of pro-
viding the correlations: Component “corr” in Use-
Correlation has one input variable and it is re-
quired to provide a modifier for this variable in order
to make model “corr” balanced. This is not the case
above and therefore the model is not correct.
This restriction on modifiers to parameters, and non-
connector inputs is part of Modelica 3.0.
The ideal solution for modeling the correlation
would be that UseCorrelation, LineCorrelation
(except for ‘x=3’), and Complete would all be legal,
and rewrite Correlation to allow this. The first
attempt was to have some way to disable the balanc-
ing test for Correlation and derived classes; that
implied that only the class Complete could be
checked; and in case it failed it would be impossible
to determine whether UseCorrelation or Line-
Correlation should be modified. During the design
of Modelica 3.0 several attempts were made of in-
troducing a special syntax for stating that Correla-
tion is lacking a certain number of equations –
without defining ‘x’ as an input (because either x or
y shall be defined when using the component). This
requires the introduction of additional non-intuitive
syntax and the final decision was to change instead
‘x’ to a connector input and modify the language
rules to allow unconnected connector inputs and
provide the binding equation for the input connector
as equation. The example then becomes (the differ-
ences in Correlation are highlighted):

partial model Correlation
 InputReal x;
 Real y;
 connector InputReal=input Real;
end Correlation;

model UseCorrelation
 replaceable Correlation corr;
equation
 corr.y=2+time;
end UseCorrelation;

model LineCorrelation
 extends Correlation;
equation
 x+y=0;
end LineCorrelation;

model Complete=UseCorrelation
 (redeclare LineCorrelation corr);

In this case LineCorrelation may not use modifi-
ers for ‘x’, since ‘x’ is a connector, and we are thus
once more certain that the number of equations will
automatically balance. This is used for Mode-
lica.Media, and can be used in other cases for corre-
lations as well.
Note that UseCorrelation is exactly identical to the
original version, but is now legal due to the change
in the Correlation model (i.e. corr.y = 2 + time,
is the missing equation for the input connector x).
This approach was decided upon even though it has
the disadvantage that we allow unconnected input
connectors, and to count equations we thus have to
combine the normal equations and the equations for
missing input connections in the count of equation.
In this case ‘corr.x’ is not connected in the Use-
Correlation model; and instead a non-connect
equation is giving.
This can be compared to a causal paradigm, where
we would just require that ‘corr.x’ must be con-
nected. However, even if the use above is legal a tool
could still inform the user that ‘corr.x’ lacks a con-
nection if UseCorrelation or LineCorrelation
are not balanced or if the simulation model is struc-
turally singular, in order to help in pinpointing the
error.

3 Locally balanced models

In the previous chapter, the counting rules have been
sketched for the most important cases. We will now
formulate the exact rules and what guarantee can be
given:
A model or block is called “locally balanced” if the
local number of unknowns matches the local equa-
tion size (both terms are defined below). Note, that
all counts are performed after expanding all records
and arrays to a set of scalars of primitive types. We
will here ignore inner and outer components, as well
as over-determined connectors, to simplify the defi-
nitions and results – for complete definitions see the
Modelica 3.0 specification [1].
The local number of unknowns is the sum of:

Balanced Models in Modelica 3.0 for Increased Model Quality

The Modelica Association 25 Modelica 2008, March 3rd − 4th, 2008

• For each declared component of specialized
class type (Real, Integer, String, Boolean, enu-
meration and arrays of those, etc) or record it is
the “number of unknown variables” inside it
(i.e., excluding parameters and constants).

• For each declared connector component, it is the
“number of unknown variables” inside it (i.e.,
excluding parameters and constants).

• For each declared block or model component, it
is the “sum of the number of inputs and flow
variables” in the (top level) public connector
components of these components.

The local equation size is the sum of:
• The number of equations defined locally (i.e. not

in any model or block component), including
modifier equations, and equations generated
from connect-equations.

• The number of input and flow-variables present
in each (top-level) public connector component,
i.e. the externally needed equations.

• The number of (top level) public input variables
that neither are connectors nor have binding
equations, i.e., further externally needed equa-
tions.

The following restrictions are imposed in Modelica
3.0
• All non-partial model and block classes must

be locally balanced.
• In a non-partial model or block, all non-

connector inputs of model or block components
must have binding equations (i.e. they are de-
fined in a modifier).

• Modifiers for components shall only contain re-
declarations of replaceable elements and binding
equations for parameters, constants (that do not
yet have binding equations), inputs and variables
having a default binding equation.

• In a connect-equation the primitive components
of the two connectors must have the same primi-
tive types, and flow-variables may only connect
to other flow-variables, causal variables (in-
put/output) only to causal variables (in-
put/output).

• A connection set of causal variables (in-
put/output) may at most contain one inside out-
put connector or one public outside input con-
nector. [i.e., a connection set may at most con-
tain one source of a signal, which is the “usual”
semantics for block diagrams.]

• At least one of the following must hold for a
connection set containing causal variables:

(1) the model or block is partial,
 (2) the connection set includes variables from an

outside public expandable connector,
 (3) the set contains protected outside connectors,
 (4) it contains one inside output connector, or
 (5) one public outside input connector, or
 (6) the set is comprised solely of an inside input

connector that is not part of an expandable
connector.

i.e., a connection set must – unless the model or
block is partial – contain one source of a signal
(the last items covers the case where the input
connector of the block is unconnected and the
source is given as equation in the equation or al-
gorithm section).

• A protected outside connector must be part of a
connection set containing at least one inside
connector or one declared public outside connec-
tor (i.e., it may not be an implicitly defined part
of an expandable connector).

4 Plug and play

We will show that if a user uses locally balanced
classes and follow the language restrictions and
drags and drop components and connect them, they
will automatically build locally balanced classes as
shown below. We will go through this starting from
an even more restricted case; in the conclusion we
will explain why these rules are not present in the
language.

4.1 Only components and connections

Assume we build a non-partial model (or block)
composed solely of components of model and block
classes (with optional legal value modifiers applied)
and connections that satisfy all restrictions, as it is
the case in the following figure:

source torque

tau

inertia1

J=1

compliant

inertia2

J=2

speedSensor

w

Furthermore for connection sets involving causal
variables the connection set should satisfy case 4 in
the itemized lists above (=contain an inside output
connector generating the signal) – i.e. explicitly ex-
cluding case 6 (since cases 1, 2, 3, and 5 cannot ap-

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 26 Modelica 2008, March 3rd − 4th, 2008

ply here). The model or block is then automatically
locally balanced.
Note: The excluded case (6) would correspond to
removing the source-component above, and instead
write a textual equation for torque.tau. This also ap-
plies to case (3), which is less needed.
In this case the local number of unknowns corre-
sponds to the number of inputs and flow variables in
the public connectors of the components; and the
equations to the equations generated by connection
equations.
We can split the connectors into causal and non-
causal parts (due to the restriction that connection
sets may not mix the two; this restriction was added
in Modelica 3.0 to allow this analysis).
For the causal part we have the local number of un-
knowns corresponding to the number of inputs in the
public connectors of the components. Among these
variables we have ni inputs and no outputs, and the
number of equations is thus ni + no - 1; the case 4
above gives no = 1 yielding the local number of equa-
tions ni + no – 1 = ni + 1 – 1 = ni exactly matching
the local number of unknowns.
For the non-causal part we have the local number of
unknowns corresponding to the number of flow vari-
ables in the public connectors. Assume there are n
connectors in this set, and each connector has nf
flow-variables and np = nf non-causal, non-flow vari-
ables (“potential variables”). We have n·nf local
number of unknowns; one zero-sum equation for
flow variables and n – 1 equality equations for the
potential variables; in total this gives the size

fffpf nnnnnnnn ⋅=⋅−+=⋅−+)1()1(

which exactly matches the local number of un-
knowns.
This case is important for users combining models
from different libraries – and ensures that as long as
the user only combines correct models without intro-
ducing simple variables or equations, the model is
automatically balanced.

4.2 Connectors

Assume we extend the above list to include compo-
nents of connectors classes (without any value modi-
fiers), that cases 3 and 6 in the itemized list above
does not apply, and that each connector component
is connected (case 1 does still not apply since we
build a non-partial model or block). The cases are
indicated below.

5

2

torque

tau

inertia1

J=1 clutch

inertia2

J=2

speedSensor

w
4

tau
flange_b

controlBus

We will apply the split into causal and non-causal
part. For the non-causal part it seems that the previ-
ous proof goes through automatically – this is true
with one minor caveat: if a (public) outside connec-
tor had not been connected (the case we excluded) it
would not have been part of a connection set and
would have given 0 equations instead of the correct
number nf.
For the causal part it is more complex since we have
both protected and public causal variables. If we dis-
regard case expandable connectors and use super-
script i/o for inside/outside, and subscript n for nodes
(regardless of input/output).
The unknowns are given by the local connectors:

outside inputs, outside outputs, nodes (pro-

tected connectors), and the subcomponents: inside
inputs. The number of equations (n-1) is extended
with outside inputs. Thus for balancing we get the
requirement:

o
in o

on nn
i
in

o
in

o
i

i
o

i
i

o
o

o
in

i
in

o
o

o
i nnnnnnnnnn +−++++=+++)1(

Simple cancellations gives: , or stated
differently: either case (5) an outside input connec-
tor, or case (4) an inside output connector. The either
is due to the restriction about multiple sources in a
connection set. For expandable connectors (case 2)
the same rules apply after we have deduced the cau-
sality; this will also influence the number of un-
knowns.

1=+ i
o

o
i nn

4.3 Redeclare of components

When redeclaring a component, the missing equa-
tions for the component must be either provided via
modifier equations (parameters, inputs) or connec-
tors must be connected. When these restrictions are
fulfilled, the redeclared component is automatically
locally balanced.
One situation has to be treated specially: If the rede-
clared component introduces additional connectors
that are not defined in the constraining clause.
Unless the connectors are part of a redeclared inher-
ited top-level component, it is not possible that a user

Balanced Models in Modelica 3.0 for Increased Model Quality

The Modelica Association 27 Modelica 2008, March 3rd − 4th, 2008

can connect to these newly introduced connectors.
This is uncritical, if the not connected connectors do
not have input variables, since the default connection
semantic will set the flow variables to zero. Conse-
quently, the restriction is introduced in Modelica 3.0
that additional connectors that are not defined in the
constraining clause are default connectable, i.e. shall
not have input variables.
A record or connector component that is directly re-
placeable or more commonly declared using a con-
nector from a replaceable package also has a parame-
ter dependent size. In such a case a redeclaration
may add additional unknowns – which should also
be balanced with matching equations. This is a “pa-
rameter-dependent size” and can be handled using
the techniques in the next section – except that only
unknowns are added in this way – but no equations,
and at first it seems that this will inevitably lead to
unbalanced models. However, it is possible to handle
this correctly: by not using replaceable connectors
directly, but instead use a replaceable package con-
taining connectors and corresponding models (or
functions) – similarly as in the Modelica.Media
package.
This is a special case and we will not discuss the de-
tails. However, it has a direct relevance to a more
fundamental change introduce in Modelica 3.0. Pre-
viously a connector component of a replaceable
model component was implicitly replaceable, i.e. the
problem that a redeclare could introduce missing
equations was present for any replaceable model
component having connectors – even if the connec-
tors were not replaceable.

5 Parameter dependent sizes

An important aspect of the counting of equations is
that it holds not only for the current set of parame-
ters, but for any legal set of parameters values. The
restriction in Modelica 3.0 is formulated such that
even though the model should be balanced in all
cases, the tool does not have to verify this. The rea-
son was that at the time it was not possible to verify
that a given set of restrictions ensures that sub-
models will always be within the restrictions, and
that user libraries could be rewritten to conform to
this.
Dymola can perform this test in several cases as will
be outlined here; and in the remaining cases it is
verified for the actual parameter values and a warn-
ing given.

The number of scalar variables is obtained by recur-
sively symbolically adding the number of compo-
nents of each variable:

• A scalar variable has the size 1.
• An array v[n] has the size: n·<the size of its

elements>. Modelica implicitly assumes that
n ≥ 0. A multidimensional array is in Mode-
lica considered as a nested array. For exam-
ple, a matrix M[m, n] has the size m·n·<the
size of its elements>. If the size is declared
using the colon operator, v[:] = …, the size
is represented as size(v, 1)·<the size of its
elements>. The idea is to represent the size
expressions of arrays symbolically as de-
fined by the model developers.

• The size of a record is the sum of the size of
its components.

The current restrictions when counting variables are
evaluation of sizes of arrays of components and the
conditions of conditional components.
The number of components of an equation is counted
by traversing all its subexpressions and deducing the
dimensionality and the size of each dimension and
propagating this information upwards without any
evaluation. At the top level the number of compo-
nents is formed in a way analogous to that of vari-
ables. Also size constraints are collected for immedi-
ate or deferred checking. An interesting fact is that
the size of a for-loop equation can be formed as the
sum of the elements of an array constructor. One
restriction is that the instantiation procedure may
have evaluated some conditions.
The comparison of the number of variables and
equations is done in 3 steps:

• First all variables which bindings cannot be
modified (protect, final, constant) are substi-
tuted symbolically. If Dymola can symboli-
cally deduce that the problem is balanced the
check was successful in this respect. It
means that the model is balanced irrespec-
tive of how a user rebinds or sets parameters
that may be rebound or set.

• Otherwise, Dymola substitutes all non-literal
bindings. If Dymola now can show that the
problem is balanced, the comparison is fin-
ished. It means that the user can change pa-
rameter values that are literals, but not oth-
erwise rebind parameter values without risk-
ing making the problem non-balanced. A
remedy is to define critical parameter bind-
ings to be final.

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 28 Modelica 2008, March 3rd − 4th, 2008

• The third step is to force evaluation of all
size parameters and then compare. This is
what Dymola has done previously when
checking or translating a model.

As an example consider model Modelica.Blocks.-
Continuous.StateSpace. The essence is:

block StateSpace
 parameter Real A[:, size(A,1)];
 parameter Real B[size(A,1), :];
 parameter Real C[:, size(A,1)];
 parameter Real D[size(C,1), size(B,2)]
 =zeros(size(C, 1), size(B, 2));
 extends Interfaces.MIMO(
 final nin= size(B, 2),
 final nout=size(C, 1));
 output Real x[size(A, 1)];
equation
 der(x) = A*x + B*u;
 y = C*x + D*u;
end StateSpace;

Checking the model in Dymola 7.0 results in
Model having the same number of
unknowns and equations:
 size(A, 1) + size(B, 2) + size(C, 1)

The counting of the unknown variables which are x,
u and y, gives

size(A, 1) + nin + nout

The bindings for the parameters nin and nout are
final and can be used for substitution, which gives
the logged result. The counting of equations gives
first nin for the inputs. The size check of

der(x) = A*x + B*u;

has to check possible size constraints for each
subexpression. First, the matrix-vector multiplica-
tion, A*x requires size(A,2)=size(x,1). Explor-
ing the declarations of A and x shows that either side
is equal to size(A,1). The product A*x is a vector
with size(A*x,1)=size(A,1). The product B*u
requires size(B,2)=size(u,1). Exploring the
declaration of u gives size(u,1)=nin and the final
binding to nin gives nin=size(B,2). Thus the con-
straint is fulfilled. The product B*u is a vector with
size(B*u,1)=size(B,1). Next, the sizes of the
two terms A*x and B*u must be equal. They are both
vectors and the size constraint is size(A*x,1)=
size(B*u,1). Since size(A*x,1)=size(A,1) and
size(B*u,1)=size(B,1)and since the declaration
states size(B,1)=size(A,1), the constraint is ful-
filled. The resulting sum is a vector of size(A,1).
Since the declaration of x specifies size(x,1)=
size(A,1) all the size constraints of the equation
are fulfilled symbolically for all allowed A and B ma-
trices and it has size(A,1) components. Similarly
the equation y = C*x + D*u is type consistent and
has size(C,1) equations.

Dymola’s facility for checking that two symbolic
expressions are equal is rather elaborate. However, it
cannot handle all cases such as complicated for-
loop equations where there are, for example, condi-
tions on the loop iterator. Dymola then resorts to
numerical evaluation.

6 Limitations of the approach

The previous section shows that the rules in Mode-
lica 3.0 make it possible to provide early checks of
models that will avoid several hard to find errors
when completing large models. The early checks are
possible, since we only need the interface of sub-
components. However, some errors are still possible
when assembling sub-models and the natural ques-
tion is why these errors cannot be handled in a better
way.

6.1 Why are not all restrictions in the
language?

As noted above we can prove that models are auto-
matically balanced if built subject to certain restric-
tions, but not all of these restrictions are part of the
language. This might seem odd considering that we
want to ensure correctness early on, but it is neces-
sary to allow textual (non-connect) equations to be
given for low-level models. However, the check can
still be performed at the same level – and uses the
same description of balanced models; the only dif-
ference is that if the guidelines are followed the
check becomes even simpler. When the guide-lines
are not followed, a user would have to provide non-
connector equations as a replacement for connec-
tions; thus for a model with only connector equations
the simpler restrictions hold. This makes it straight-
forward to provide good diagnostics, while preserv-
ing the low-level openness of Modelica. Further-
more, a general recommendation is to avoid mixing
connections and textual equations (see e.g. [5]);
which makes it easier to separate the two cases.
The examples where this is necessary include writing
basic models such as a resistor where equations are
given for the connectors - instead of adding addi-
tional connections, and correlations for media-
models are built such that there are multiple potential
inputs (see section 2.2 Correlations and non-
connector inputs). Allowing equations for input con-
nectors is also convenient in some other cases (e.g.
when using table-lookup blocks); and by having the
semantics above we avoid introducing a special se-

Balanced Models in Modelica 3.0 for Increased Model Quality

The Modelica Association 29 Modelica 2008, March 3rd − 4th, 2008

mantic construct for defining the number of external
equations needed for the media-models.

6.2 Requirements beyond balanced?

Having a balanced model is only a necessary re-
quirement to be able to simulate it, but it is not suffi-
cient. Whether a non-linear system of differential-
algebraic equations has a solution is NP-hard in gen-
eral; imposing restrictions to ensure a solution would
impose such strict rules on the modeling (such as
convex equations) that it would be not practical in
general.
For the complete model a strong requirement is that
the system of equations is structurally regular (i.e. no
singularity when looking at the structure and ignor-
ing the actual values). Dymola can also perform this
check already for incomplete models and then use a
generic coupling for local (replaceable) components,
and for top-level connectors. This can provide useful
diagnostics for many cases.
However, structural regularity is not entire well-
defined, e.g. Dymola actually uses +/-1 from connec-
tions as well as zeros (finding more errors), and in
contrast to balanced models structurally singular
does not provide strong guarantees. Even plugging in
parameters might turn a structurally regular system
into a structurally singular one, since structurally
singular only ensures that the equations are non-
singular for “most” values of the non-zero elements.
Obviously this also applies to redeclarations, espe-
cially since one often uses simplified models as test-
cases. A simple example would be an electrical cir-
cuit testing different components with an ideal
source:

ground

load

so
ur

ce

+
-

This model (with an ideal voltage source) will be-
come structurally singular if we plug in a short-
circuit component as a load.

6.3 Restrictions on partial models?

Currently there are no balancing restrictions on par-
tial models in Modelica, and the contents of base-
classes are expanded prior to verifying the balancing.
This is the formal semantics; a tool may internally
handle this in a better way, taking special care of the
non-trivial handling of connection sets, and of multi-
ple inheritance of the same component.
The reason for the lack of restrictions is that the
number of equations needed in derived models de-
pend on whether the partial model is just an interface
(e.g. TwoFlanges in the Rotational library – this just
has two flange connectors), or contains an incom-
plete set of equations (e.g. Rigid in the Rotational
library – which also specifies that the angles are
identical). If we compare with e.g. Java this implies
that a partial class may be either an interface or an
abstract class.
A possible extension would be to have separate key-
word for pure interfaces, and restricted such that
only public connectors, parameters, and causal vari-
ables are present. The number of equations needed in
derived classes would be uniquely defined from the
interface. In that case it would not be necessary to
verify that the interface is “balanced”, since it would
follow automatically from the requirement on inter-
faces, and on connector classes.
A practical smaller extension would be to require
that partial models may only be locally underbal-
anced, i.e. lacking equations, but not have too many
equations.
These possible extensions have not yet been investi-
gated in details.

7 Conclusions

The new restrictions in Modelica 3.0 make it possi-
ble to provide diagnostics earlier in the development
process, while still maintaining the low-level open-
ness of Modelica. These early diagnostics both
shortens development time, and makes it possible to
provide an interface for end-users where certain er-
rors cannot occur – thus reducing the deployment
and training cost for these users.
In Dymola 7.0, the restrictions introduced in Mode-
lica 3.0 are supported, but are only imposed when
using the Modelica Standard Library 3 (or later).
This allows users to continue to run correct Modelica
2 models.

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 30 Modelica 2008, March 3rd − 4th, 2008

References

[1] Modelica 3.0 Language Specification, Modelica
Association, September 2007.
http://www.modelica.org/documents/ModelicaSp
ec30.pdf

[2] P. Bonus, P. Fritzson. Automated Static Analy-
sis of Equation-Based Components. SIMULA-
TION: Transactions of the Society for Modeling
and Simulation Internal. Special issue on Compo-
nent-based Modeling & Simulation. Vol 80:8,
2004.

[3] Dymola, by Dynasim AB, Sweden. See
www.dynasim.se for more information.

[4] D. Broman, K. Nyström, P. Fritzson: Determin-
ing Over- and Under-Constrained Systems of
Equations using Structural Constraint Delta.
In Proceedings of the 5th international conference
on Generative programming and component en-
gineering

[5] M. Tiller: Parsing and Semantic Analysis of
Modelica Code for Non-Simulation Applica-
tions. In Proceedings of Modelica’2003 confer-
ence.
http://www.modelica.org/events/Conference2003/
papers/h31_parser_Tiller.pdf

Appendix –
Over-determined connectors

Over-determined connectors have been introduced in
Modelica 2.1 to handle a certain class of consistently
over-determined set of differential-algebraic equa-
tions, for example 3-dim. mechanical systems: Since
a MultiBody connector contains the transformation
matrix between the world frame and the connector
frame, and there are constraints between the ele-
ments of a transformation matrix, connecting com-
ponents with such a connector can lead to an over-
determined (but consistent) set of unbalanced equa-
tions that have a mathematically well-defined solu-
tion. The over-determined connectors are defined
and used in such a way, that a Modelica tool is able
to remove the superfluous (consistent) equations ar-
riving at a balanced set of equations, based on a
graph analysis of the connection structure. For equa-
tion counting, it is of course important to take this
special treatment into account:
A type class with an equalityConstraint(..) function
declaration is called over-determined type. A record
class with an equalityConstraint(..) function defini-
tion is called over-determined record. The equality-
Constraint(R1,R2) functions are used to define the
minimal number of equations stating that over-
determined types or records R1 and R2 are identical.

A connector that contains instances of over-
determined type and/or record classes is called over-
determined connector.
Every instance Ri of an over-determined type or re-
cord in an over-determined connector is a node in a
virtual connection graph that is used to determine
when the standard equation "R1 = R2" or when the
equation "0 = equalityConstraint(R1,R2)" has to be
used for the generation of connect(...) equations. The
branches of the virtual connection graph are implic-
itly defined by "connect(..)" and explicitly by Con-
nections.branch(...) statements. Additionally, corre-
sponding nodes of the virtual connection graph have
to be defined as roots or as potential roots with built-
in functions Connections.root(...) and Connections.-
potentialRoot(...), respectively. Connections are
treated as “breakable” branches. By removing ap-
propriate breakable branches, the virtual connection
graph is transformed into a set of spanning trees,
each comprised of one root.
An example is given in the figure below, where all
“dotted” lines characterize “connect(...)” equations.
After building up the spanning trees, the connections
that have to be removed to arrive at a spanning tree,
are specially handled for the generation of the con-
nection equations (see below):

selected root
selected root

potential rootrootnode

nonbreakable branch
(Connections.branch)

breakable branch (connect)

removed breakable branch to get tree

For potential roots the model tests if the root is se-
lected, and then uses different equations. The flow-
variables always give the same equations as normal
connections, but for “potential” (=non-flow) vari-
ables this is different: If a connect(..) equation is

Balanced Models in Modelica 3.0 for Increased Model Quality

The Modelica Association 31 Modelica 2008, March 3rd − 4th, 2008

not “broken”, the standard equality equations hold. If
a connect(..) equation is marked as “removed” in
the virtual connection graph, less equations are pro-
vided by using the residual equations defined by the
type or record specific function equalityCon-

straint() (shorted to r() below – with number of
equations nr) taking the two “potential” variables of
the connected connectors as input arguments.
If we examine the same cases as in Figure 1 and con-
sider m1.c, m2.c, m3.c as unconditional roots we get
the same result for the left and for the right-case (the
connection must be a removed branch since two un-
conditional roots are connected):

0 = m2.c.f + m3.c.f; // nf equations
0 = r(m2.c.p, m3.c.p); // nr equations

and thus we get:

left model (m1): root
e fn n=

right model (m2,m3): 2 root
e fn n= + rn

p

f

or
root
e f

r f

n n

n n

=

=

If we instead have a potential root, we will in the left
(unconnected) case select a root. If connected to a
similar component one of them will get a root and
the other one not, and the connection will not be
broken (i.e. normal connection equations are intro-
duced). We then get the size-constraint:

left model (m1): root
e fn n=

right model (m2,m3): root non root
e e fn n n n−+ = +

Combing the two cases results in:

root
e f

r f

non root
e p

n n

n n

n n−

=

=

=

If there are several potential roots they should all
give the same external equation count. The require-
ment on the residual size (nr = nf) is included in the
Modelica specification [1], but additionally only the
rooted external equation count is included
() and not the non-rooted equation count. root

en n=

Thus the balancing rules in Modelica 3.0 for over-
determined connectors are incomplete and hold only
for a very special case (e.g. when a MultiBody com-
ponent is directly connected to the world object,
which is a definite “root” of the virtual connection
graph). This should be corrected in a future revision
of the Modelica Specification. In the remaining part

of this section, the non-rooted equation count is also
taken into account.
In a similar way as in section 2.1 “Restrictions on
physical connectors”, the above derivation is also
formulated in form of requirements on connectors
and models (the derivation requires extending the
above test models with a mixture of normal potential
variables and potential variables of over-determined
records or types):

1. The number of flow variables in a connector
must be equal to the number of (normal) non-
causal, non-flow variables + the number of re-
sidual equations of over-determined records and
types (in the set of non-flow variables, the over-
determined records and types are not included,
because they are included via the residual equa-
tions)

2. The number of equations in a model =
number of unknowns
– number of inputs
– number of flow variables
– ((for every Connections.Branch(R1,R2)) and
 (for every Connections.potentialRoot(R1,..)
 where Connections.isRoot(R1) = false):
 number of R1 variables –
 number of R1 residual equations,
 i.e., the number of R1 constraint equations)

3. When using a model with over-determined con-
nectors, i.e., making an instance, all missing
equations of this component must be provided
to make the component “balanced”. Besides the
standard rules, the only way to make over-
determined connectors balanced is to connect to
these connectors or by leaving them uncon-
nected.

These rules shall be demonstrated at hand of the
Modelica.Mechanics.MultiBody library:
The over-determined connector “Orientation” de-
scribes the transformation matrix from one frame to
another frame:

record Orientation
 Real T[3, 3] "Transformation matrix";

 encapsulated function equalityConstraint
 import M=Modelica.Mechanics.MultiBody;
 input M.Frames.Orientation R1
 input M.Frames.Orientation R2
 output Real residue[3]
 algorithm
 residue := { ... }
 end equalityConstraint ;
end Orientation;

The Orientation object has a residue function with
3 equations and is used in a MultiBody connector to

H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist

The Modelica Association 32 Modelica 2008, March 3rd − 4th, 2008

describe the rotation from the world frame to the
connector frame:

connector Frame
 import SI = Modelica.SIunits;
 import M=Modelica.Mechanics.MultiBody;
 SI.Position r_0[3] "Origin of frame"
 flow SI.Force f [3] "Cut-forces"

 M.Frames.Orientation R "Orientation"
 flow SI.Torque t[3] "Cut-torque";
end Frame;

Connector frame has 3+3 = 6 flow variables (f,t), 3
normal, non-flow variables (r_0) and 3 residual
equations (from R). Therefore, the connector fulfills
rule 1 above.
FixedTranslational is a MultiBody model that trans-
lates one frame along a given position vector:

model FixedTranslation
 import SI=Modelica.SIunits;
 import M=Modelica.Mechanics.MultiBody;
 M.Interfaces.Frame_a frame_a
 M.Interfaces.Frame_b frame_b
 parameter SI.Position r[3]
 "Vector from frame_a to frame_b";
equation
 Connections.branch
 (frame_a.R, frame_b.R);
 frame_b.r_0 = frame_a.r_0 +
 M.Frames.resolve1(frame_a.R, r);
 frame_b.R = frame_a.R;
 zeros(3) = frame_a.f + frame_b.f;
 zeros(3) = frame_a.t + frame_b.t +
 cross(r, frame_b.f);
end FixedTranslation;

The number of equations in FixedTranslation is
required to be:

= 2*(3+3+9+3) // 2*(r_0+f+R.T+t)
 - 2*(3+3) // 2*(f+t)
 - (9-3) // (R.T – R.residuals)
= 18 equations

and the model fulfils this requirement.
World is the MultiBody model that defines the iner-
tial frame as:

model World
 import M=Modelica.Mechanics.MultiBody;
 M.Interfaces.Frame_b frame_b;
equation
 Connections.root(frame_b.R);
 frame_b.r_0 = zeros(3);
 frame_b.R = M.Frames.nullRotation();
end World

The number of equations in World is required to be:
= 3+3+9+3 // r_0+f+R.T+t
 - (3+3) // (f+t)
= 12 equations

and the model fulfils this requirement.
LineForce is a MultiBody model that defines a
force along a line between two frames. The difficulty
is that if LineForce elements are directly coupled to

each other, then the transformation matrix between
two LineForce elements is arbitrary. This can be
made mathematically well-defined, by setting one of
the LineForce transformation matrices (= the se-
lected root) to an arbitrary value:

model LineForce
 import SI=Modelica.SIunits;
 import M=Modelica.Mechanics.MultiBody;
 M.Interfaces.Frame_a frame_a
 M.Interfaces.Frame_b frame_b
 ...
equation
 Connections.potentialRoot(frame_a.R,10);
 Connections.potentialRoot(frame_b.R,10);

 frame_b.f = ...; // force law
 0 = frame_a.f + frame_b.f;

 if isRoot(frame_a.R) then
 frame_a.R = Frames.nullRotation();
 else
 frame_a.t = zeros(3);
 end if;

 if isRoot(frame_b.R) then
 frame_b.R = Frames.nullRotation();
 else
 frame_b.t = zeros(3);
 end if;
end LineForce;

The number of equations in LineForce depends on
the selected roots. If isRoot(..) is false for both
frames the number of equations are required to be:

= 2*(3+3+9+3) // 2*(r_0+f+R.T+t)
 - 2*(3+3) // 2*(f+t)
 - 2*(9-3) // 2*(R.T – R.residuals)
= 12 equations

and the model fulfils this requirement.
If isRoot(..) is false for one and true for the other
frame, the number of equations are required to be:

= 2*(3+3+9+3) // 2*(r_0+f+R.T+t)
 - 2*(3+3) // 2*(f+t)
 - 1*(9-3) // 1*(R.T – R.residuals)
= 18 equations

and the model fulfils this requirement.

Balanced Models in Modelica 3.0 for Increased Model Quality

The Modelica Association 33 Modelica 2008, March 3rd − 4th, 2008

