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Abstract— A method is investigated for the motion estima-
tion and the model identification of a free-floating target in
space. Motion estimation relies on range data measurements,
which are here simulated for analyzing the method. The work
is motivated by the necessity to provide an efficient long-term
motion prediction algorithm, in the order of 100 seconds, to
support planning of complex maneuvers or tracking during
long phases without observation.

The method is evaluated for different scenarios of range
measurements and for a series of target motions, including
translation and rotation or pure rotation about different axes,
which may represent typical scenarios for tumbling objects
in orbit.

8th International Symposium on Artificial Intelligence, Ro-
botics and Automation in Space (iSAIRAS 2005).

I. INTRODUCTION

This work investigates a method for the motion estima-
tion and for the dynamic model identification of a free-
floating target in space. The motion parameter estimation
is performed from range data as may be measured by stereo
vision or a laser range sensor. The goal of this procedure is
to finally allow long-term motion prediction of the target,
in the order of 100 seconds, with the identified dynamic
model. In the estimation procedure, it is assumed that
nothing is initially known about the inertial properties, the
geometry, or the motion of the target.

The present study is distinct from others aiming at short-
term prediction to the next observation, parameter identi-
fication, where the goal is the accuracy of the identified
parameters, and pose estimation or tracking of a known
object, where high-level model knowledge can be used.

Long-term prediction is useful for the case in which
observation is not possible for a long time (e.g. occlusions,
limited communication to ground) or in which a task
which requires long-term planning is of interest (such as
autonomous grasping).

The task is divided into three subtasks: motion estimation
from range data, parameter identification from the motion
estimates, and prediction with the identified parameters.
Simulated range data will be used to analyze the method.
Different scenarios of range data measurements are con-
sidered. The computation time and the robustness to noise
and to parameter excitation of the method are addressed.
An empirical error statistics is also presented.

Fig. 1. TECSAS scenario: a robot mounted on a chaser satellite grasping
a target satellite

II. BIBLIOGRAPHY

Previous work on related problems includes that of [1],
[2], [3], and [4]. In the first, an extended Kalman filter is
used to track and predict the motion of a target with known
inertial parameters. The prediction of the target motion,
which is approximated to a constant linear and angular
velocity, is performed on-line, but only for a few seconds
of duration.

In [2] the inertial parameter identification problem is
also treated with a Kalman filter. The estimates, however,
are not validated for their suitability for long-term predic-
tion. Moreover, the assumptions made on the range data
available are rather strong, in that measurements from the
complete target surface are required at every observation
time.

In [3], which also aims at motion prediction, the analyt-
ical solution to the Euler equations is used. The predicted
time span, however, is still short compared to the obser-
vation time. Moreover, no treatment of translation and of
noise (except quantization noise) is included. Furthermore,
only the case of known point correspondences without
occlusion is considered.

Finally in [4], the authors investigate the Hough trans-
form for pose tracking with an emphasis on computational
speed rather than on estimation accuracy. No long-term
prediction can be based on their estimation results, and the



object is assumed to be geometrically known.

III. METHODS

In this section, the range-data generation for the purpose
of this study is addressed. Thereafter, the motion estimation
and prediction procedures are described. First, motion esti-
mation from the range data provides incremental translation
and rotation estimates of the target. These are then used as
input to the identification of a suitable set of parameters
for the dynamic model of the target. Finally, prediction of
target motion is performed with the dynamic model thus
identified.

In this section, time t often takes discrete values in
intervals of one second. For ease of reading, we then drop
the units and simply write t = 0, 1, 2, . . . in the equations.

A. Data generation

The target object that we have simulated for this study
is a geometrically abstracted version of a satellite that is
planned to be used in the TECSAS mission; see Fig. 1.
It is a box with sides 450×450×600 mm and two solar
panels attached to opposite sides of 560 mm length each.

We consider three different scenarios of range-data mea-
surements of the target.

1) The visible fraction of a set of 100 points, randomly
and uniformly distributed over the target surface,
are sensed at each observation time, with the point
correspondence across time known.

2) As above, but with the point correspondence across
time unknown.

3) The visible fraction of 10,000 points are sensed,
randomly and uniformly distributed over the target
surface, and without point correspondence across
time, that is, independently drawn at each observation
time.

Scenarios 1 and 2 could be realized by stereo processing of
at least two synchronous camera images. Special interest
points may then be tracked over time or local correspon-
dences may be searched across the images of two succes-
sive time frames. If inter-time correspondence is reliable,
the first scenario is realized. If inter-time correspondence
is unreliable and, hence, not enforced, the second scenario
is realized. In scenario 3, there are no corresponding points
in the data. It is then necessary for successful motion
estimation that the target surface is represented by a rather
dense set of points. This scenario may be realized by a
stereo camera system, a laser scanner, or any other range
sensor that is capable of producing dense measurements.

For each scenario of measurement, we have simulated
10 trajectories of the target over 100 seconds. Single-view
range data are generated from target poses at time intervals
of one second, taking occlusion and surface slant into
account. For our trajectories, between 20% and 60% of the
points were visible at each time. We added independent
isotropic Gaussian noise with a 5 mm standard deviation
to each visible point. This level of noise is rather high.
We have chosen it to emphasize the relative ability of the
measurement scenarios to cope with unreliable data.

B. Motion estimation

Scenario 1 requires estimation of a rotation R and a
translation t that match the data points {r1(t − 1), r2(t −
1), . . . , rN (t−1)} measured at time t−1 to the correspond-
ing data points {r1(t), r2(t), . . . , rN (t)} measured at time
t. That is, we seek a rotation R(t− 1, t) and a translation
t(t − 1, t) such that

ri(t) = R(t−1, t) ri(t−1)+t(t−1, t)+η(t−1, t) , (1)

i = 1, 2, . . . , N , where η(t − 1, t) describes the added
measurement errors (noise) at times t− 1 and t. We hence
have to minimize the match error

E1(R, t) =
N
∑

i=1

||ri(t) −Rri(t − 1) − t||2 (2)

for each time step t − 1 7→ t of one second, where || · ||
denotes the Euclidean norm. The minimizer of E1(R, t) is
the sought estimate of the rotation and translation for that
time step,

[R̂(t − 1, t), t̂(t − 1, t)] = arg min
[R,t]

E1(R, t) . (3)

Solving (3) is a linear least-squares problem that has a
closed-form solution. Different formulations of this prob-
lem exist [6]. We have decided for a formulation where the
rotations are represented by unit quaternions [5]. Briefly,
minimizing E1(R, t) can be shown to be equivalent to
maximizing the quadratic form

F (q) = qT Dq (4)

over the unit quaternions q, where D is a symmetric real
4×4 matrix that depends on the data. Let the data points
ri(t) = [ri

1(t), r
i
2(t), r

i
3(t)], i = 1, 2, . . . , N . Then

D =









S11 + S22 + S33 S23 − S32

S23 − S32 S11 − S22 − S33

S31 − S13 S12 + S21

S12 − S21 S31 + S13

S31 − S13 S12 − S21

S12 + S21 S31 + S13

−S11 + S22 − S33 S23 + S32

S23 + S32 −S11 − S22 + S33









, (5)

with

Sjk =

N
∑

i=1

ri
j(t − 1) ri

k(t) . (6)

The maximizer of (4),

q̂ = arg max
||q||=1

F (q) , (7)

is given by the normalized eigenvector corresponding to the
largest (most positive) eigenvalue of D.1 This eigenvector
may be obtained in closed form or through an iterative
procedure. The sought rotation estimate R̂(t − 1, t) is
represented by q̂. The sought translation estimate t̂(t−1, t)

1There are two such eigenvectors, one being the negative of the other.
Both represent the same rotation.



is then given by

t̂(t − 1, t) =
1

N

[

N
∑

i=1

ri(t) − R̂(t − 1, t)
N
∑

i=1

ri(t − 1)

]

,

(8)
i.e., it takes the rotated data centroid at time t− 1 into the
data centroid at time t.

If the point correspondences are unknown, as in scenario
2, things are slightly more complicated. In fact, every false
correspondence between a point at time t − 1 and a point
at time t is effectively an outlier that cannot be modeled
by the error function (2). If false correspondences are not
removed, the estimation error incurred from minimizing
E1(R, t) may be arbitrarily large. The least-squares solu-
tion above has thus to be made robust by a mechanism for
selecting pairs of corresponding points.

Selection of corresponding point candidates is simplified
here by the smoothness and limited speed of the target
motion. We have employed a robust M-estimator, that is,

[R̂(t − 1, t), t̂(t − 1, t)] = arg min
[R,t]

Er
1(R, t) , (9)

with the robust error function

Er
1(R, t) =

N(t−1)
∑

i=1

N(t)
∑

j=1

eij(R, t) , (10)

eij(R, t) =















||rj(t) −Rri(t − 1) − t||2

if ||rj(t) −Rri(t − 1) − t|| < s,
s2

else.
(11)

In (10), N(t − 1) and N(t) denote the number of data
points at times t − 1 and t, respectively. In (11), the
scale parameter s determines the range of correspondences
effectively made between points at successive time frames.
The minimization problem (9) is solved by an iteratively-
reweighted-least-squares (IRLS) procedure, with the scale s
decreasing with progressive iteration. At the start, s should
be equal to the expected motion distance of points on the
target surface. The final iterations should be performed with
s being equal to the expected measurement error. We have
set s to twice the error standard deviation for the final
iterations. The iteration may stop after a predefined number
of steps or according to a convergence criterion.

The IRLS procedure is here somewhat similar to the
iterative-closest-point (ICP) algorithm [7]. However, ICP
does not have a scale parameter to control the range of
point correspondences.

Scenario 3 is processed the same way as scenario 2, but
with a larger final value for the scale s. This is preferable
in the absence of true point correspondences, where the
final estimate must be based on averaging across accidental
point correspondences. In fact, s should be larger than
the minimum expected distance between data points on
the surface. Furthermore, there are some implementation
differences to scenario 2 in order to adapt the algorithm to
the higher number of data points. In particular, its run time

is only linear in the number of data points.

C. Dynamic parameter identification

The dynamic model consists of the equations of motion
of a single free-floating rigid body. The sought parameters
normally consist of the center-of-mass position and the
inertia matrix. However, due to the non-identifiability of
the latter for the present case of a non-actuated free-
floating body, these parameters are found with respect to an
arbitrary constant factor. Moreover, in the case of rotation
about a stationary axis, nothing can be inferred about the
inertia, and the center-of-mass position can be identified
only in the components orthogonal to the axis. However,
since the aim here is prediction of the trajectory, non-
identifiability of parameters is not a problem.

It is well known that the equations of motion of a free-
floating rigid body can be solved analytically. The solutions
for the angular velocities are periodic functions (when
neglecting energy dissipation) which can, in principle,
be approximated with a Fourier series expansion. The
drawback of this approach is that the observation time
must be at least as long as the period of the component
with the lowest frequency, which is typically very long.
This reason motivated resorting to the identification of a
dynamic model.

The identification problem is divided into two parts,
since the rotational motion is decoupled from the trans-
lational motion in the dynamic formulation.

1) Inertia and initial angular velocity: The differential
equations for the rotational motion of a torque-free rigid
body can be written as
Kinematics:

q̇ =









q̇0

q̇1

q̇2

q̇3









=
1

2









−ω1q1 − ω2q2 − ω3q3

ω1q0 + ω3q2 − ω2q3

ω2q0 − ω3q1 + ω1q3

ω3q0 + ω2q1 − ω1q2









, (12)

Dynamics:
I ω̇ + (ω × I ω) = 0 , (13)

having used the quaternion parameterization of the body ro-
tation, q = [q0, q1, q2, q3]

T . In equation (12), [ω1, ω2, ω3]
T

represent the components of the angular velocity in the
inertial frame; in equation (13), ω represents the angu-
lar velocity and I the inertia matrix in the body frame.
Note that for the free-floating case the actuation term on
the right-hand side is zero (orbital disturbances are here
neglected, although they can be included in the dynamic
model at a later stage).

The time integration of these equations for a time interval
of one second then provides the following outcome:

q(t − 1, t) =

∫ t

t−1

q̇ dt (14)

ω(t − 1, t) = −

∫ t

t−1

I−1 (ω × Iω) dt (15)

with initial conditions q(0), ω(0).



The unknowns in our identification procedure are the
six inertial parameters in the matrix I and the initial
conditions for the integration. However, for the quaternion
we can assume that the initial conditions are the identity
quaternion, with no loss of generality. The identification
procedure then consists in constructing a nonlinear error
function in the remaining nine unknown parameters,

p = [I11, I22, I33, I12, I13, I23, ω1(0), ω2(0), ω3(0)]T .
(16)

The error function is defined here as the Euclidean distance
in the three-dimensional space of the quaternion vector
components:

E2(p) =

100
∑

t=1

‖ qv(t − 1, t;p) − q̂v(t − 1, t) ‖ 2 , (17)

where qv = [q1, q2, q3] and q̂v = [q̂1, q̂2, q̂3] derives from
the rotation estimates computed as explained in sec. III-B.

A nonlinear optimization problem is then defined as

p̂ = argmin
p

E2(p) (18)

solved here by sequential quadratic programming. Note
that, for physical consistency, the inequality constraints

I11 + I22 > I33 , I22 + I33 > I11 , I33 + I11 > I22

(19)
must be enforced.

The inertial parameters, in fact, appear linearly in the
equations, such that one can also write the dynamic equa-
tions (13) as

Φ(ω, ω̇)plin = τ , (20)

where matrix Φ is generally termed the regressor matrix,
column matrix plin contains the unknown inertia parame-
ters, and column matrix τ the actuation to the system (zero
for the case of a free-floating body). Note that this linear
formulation of the estimation problem needs to be modified
to allow for the linear dependence of the six equations 2.
By setting one of the unknowns to some arbitrary constant,
the system can be reduced to five unknowns with a non-
zero right-hand side, allowing the rest of the parameters to
be found.

It is important to note, however, that in the formulation
(20) both angular velocity and acceleration measurements
are necessary in the regressor matrix Φ and in τ . Since
the observed visual data consists of displacements per time
frame, therefore an approximation to velocity, these would
have to be differentiated to provide the required acceler-
ations. In the nonlinear formulation, on the other hand,
the observed data are used directly. Furthermore, in (20),
both the regressor matrix Φ and actuation vector τ contain
data and therefore noise. As such, a resolution of equation
(20) does not lead to a true maximum-likelihood estimate.
For these reasons, the use of the nonlinear formulation is
thought to be more adequate for this problem.

2If the equations were not linearly dependent the only solution would
be the trivial one, plin = 0. This also shows that for this case the inertia
parameters can only be identified with respect to an arbitrary constant.

However, an analytical estimate of uncertainty cannot
be provided for the nonlinear formulation. We have thus
resorted to a purely empirical statistical analysis, as shown
in the section on experimental results.

The proposed method is further developed to treat out-
liers in the motion estimates as follows. A first identifi-
cation run is performed on the untreated estimates. The
latter are then scanned through and compared at each time
step to the outcome of the first identification run. The 5
worst motion estimates are then removed and the dynamic
parameters identified based on the remaining estimates.

The initial guess used for the parameters is

pinit = [1000 kgm2, 1000 kgm2, 1000 kgm2,

10 kgm2, 10 kgm2, 10 kgm2,

ω∗
1 , ω

∗
2 , ω∗

3 ]T . (21)

Five different initial guesses are taken for the last three
parameters (angular velocity initial condition ω

∗) from
the first five motion estimates in each trajectory. The best
identification result, as judged by the residual error, is
then selected for the prediction which follows. The method
normally converges to a solution in a few seconds.

2) Center-of-mass velocity and initial position: The
translational motion of the target is described by the motion
of its center of mass. In this study, we assume no external
force and, therefore, a constant translational velocity for
the center of mass.3 Its position in time is given by

c(t) = tv + c(0) , (22)

with the center-of-mass velocity v and position at time zero
c(0), which are the unknowns of the problem. Since the
center of mass is a point on the rigidly moving target, its
motion must also follow the target rotation and translation,
that is,

c(t) = R(t − 1, t) c(t − 1) + t(t − 1, t) . (23)

Plugging in the rotation and translation estimates for each
time step t − 1 7→ t computed as described in sec. III-B,
we arrive at

tv + c(0) = R̂(t − 1, t) [(t − 1)v + c(0)] + t̂(t − 1, t) .
(24)

This equation is obtained for each of the 100 observation
time steps, leading to an over-determined system for the
unknowns v and c(0). Treating it as a linear least-squares
problem, we have to solve

[v̂, ĉ(0)] = arg min
[v,c(0)]

E3(v, c(0)) , (25)

with the error function

E3(v, c(0)) =

100
∑

t=1

||tv + c(0) − t̂(t − 1, t)

− R̂(t − 1, t) [(t − 1)v + c(0)] ||2 . (26)

3The general formulation of the problem, however, can be extended to
cover other motions.



The minimizer is given by

[

v̂
ĉ(0)

]

= Φ+











t̂(0, 1)

t̂(1, 2)
...

t̂(99, 100)











, (27)

where Φ+ is the pseudo-inverse of the 300×6 regressor
matrix Φ.

In a somewhat more rigorous treatment, one would
formulate the joint nonlinear least-squares problem for
the inertial and center-of-mass parameters. However, this
higher-dimensional, nonlinear optimization problem may
in practice yield less accurate results, due to the increasing
problems with local minima of the cost function.

D. Motion prediction

As stated above, the final goal of this procedure is to
perform motion prediction of a given point on the target
(this point may be chosen by an operator or by some
intelligent algorithm). For this we need to integrate the
equations of motion with the parameter estimates:

q̃(t) =

∫ t

0

q̇ dt (28)

ω̃(t) = −

∫ t

0

Î−1 (ω × Îω) dt (29)

with initial conditions q(0), ω̂(0) and then arrive at the
position of the chosen point from the equation:

r̃p(t) = t v̂ + R(q̃(t))(rp(0) − ĉ(0)) + ĉ(0) (30)

where R(q̃(t)) is given by the integration in equation (28)
and v̂ and ĉ(0) by the identification procedure in sec. III-
C.2 respectively.

IV. EXPERIMENTS

A. Sample trajectories

The trajectories were chosen to cover different possible
target motions, typical of free-floating bodies in orbit.
These were chosen to have a maximum rotational velocity
of 4 deg/s and a maximum translational velocity of 1
cm/s in any of the three orthogonal directions of Euclidean
space.4 Furthermore, the motions range between pure ro-
tation about a stationary axis and rotation about time-
varying axes, as well as with zero or nonzero translational
velocities. Finally, two different sets of inertial parameters
were selected, as shown in table I.

B. Motion estimation

In Fig. 2, we show a sample trajectory of the target
together with the associated motion estimates. Plotted are
rotations R(t − 1, t) and translations t(t − 1, t) for the
observation time intervals t − 1 7→ t of one second.
The rotations are given in canonical coordinates α =

4Note that the velocities are taken relative to the orbital frame of
reference, which rotates with the orbital angular velocity, which also
equals the observation frame.

[α1, α2, α3] ∈ R
3. Their relation to a rotation R is given

by
R = exp(α1 Λ1 + α2 Λ2 + α3 Λ3) , (31)

with Λ1,Λ2,Λ3 being infinitesimal rotations about the
world x-, y-, and z-axes, respectively. In fact, ||α|| is the
angle and α/||α|| the (oriented) axis of the rotation R. The
translations are given in vector components t = [t1, t2, t3]
along the world x-, y-, and z-axes. We have computed
error measures for the rotation estimates R̂(t−1, t) and the
translation estimates t̂(t−1, t) at each time step t−1 7→ t.
Since the temporal dependence is irrelevant in this section,
we here drop the temporal arguments for simplicity.

For the errors of rotation estimates, we have computed
the Euclidean distance in the space of canonical coordinates
between estimated rotation R̂ and true rotation R,

erot(R̂,R) = ||α(R̂) − α(R)|| . (32)

It is interesting to note that, for the small rotations here
encountered, the distance (32) gives to a good approxima-
tion the angle of the rotation difference RR̂−1 between R̂
and R. The errors of translation estimates t̂ are measured
by the Euclidean distance to the true translation vector t,

etrans(t̂, t) = ||t̂ − t|| . (33)

Note, however, that the translation errors depend upon the
rotation errors through eq. (8).

From 10 runs through each of the 10 trajectories with
100 frames per trajectory we have obtained a total of
10,000 motion estimates for each of the three scenarios.
Figures 3, 4, and 5 show frequency histograms of the
rotation and translation errors. The size of rotations and
translations present in the data sequences may be measured
by erot(Id,R) = ||α|| and etrans(0, t) = ||t||, respectively.
The corresponding histograms are shown in Fig. 6. Note
that these histograms would be the error distributions, if
we had simply guessed that the target is not moving at all.

One may compare the probability density of rotation
estimates to an isotropic Gaussian in the space of canonical
coordinates centered on the true rotation, that is,

prot(R̂) ∝ exp

(

−
erot(R̂,R)2

2 σ2
rot

)

. (34)

Note that isotropy is a reasonable assumption, if the density
should describe all kinds of motion of the target relative to
the observer. Likewise, the density of translation estimates
may be compared to

ptrans(t̂) ∝ exp

(

−
etrans(t̂, t)

2

2 σ2
trans

)

. (35)

The corresponding histograms for erot and etrans in Figs.
3, 4, and 5 should then compare to the error densities

ρ(e) ∝ e2 exp

(

−
e2

2 σ2

)

. (36)

The standard deviations σ = σrot, σtrans are estimated from
the rotation errors e = erot and the translation errors e =



Trajectory Inertia Center-of-mass velocity Angular velocity
1 I1 v1 ω1

2 I1 v1 ω2

3 I1 v1 ω3

4 I1 v1 ω4

5 I1 v1 ω5

6 I1 v1 ω6

7 I2 v1 ω3

8 I2 v1 ω4

9 I1 v2 ω5

10 I2 v2 ω6

Inertia [kg m2] I1 =





5665.46 54.24 145.11
54.24 3032.99 −123.19
145.11 −123.19 7067.23



 I2 =





700.0 0.0 0.0
0.0 900.0 0.0
0.0 0.0 500.0





Center-of-mass velocity [cm/s] v1 = (0.005, 0.010, 0.0032) v2 = (0.0, 0.0, 0.0)
ω1 = (0.04, 0.04, 0.04) ω2 = (0.0, 0.04, 0.0)

Angular velocity [rad/s] ω3 = (0.0, 0.0, 0.04) ω4 = (0.001, 0.005, 0.04)
ω5 = (0.01, 0.001, 0.02) ω6 = (0.002, 0.01, 0.001)

TABLE I

TRAJECTORY SET DEFINITION

0 20 40 60 80 100
0

0.01
0.02
0.03
0.04
0.05
0.06

0 20 40 60 80 100-0.01

0

0.01

0.02

0 20 40 60 80 100

-0.03
-0.02
-0.01

0
0.01

0 20 40 60 80 100

0.02
0.03
0.04
0.05
0.06

0 20 40 60 80 100
0

0.01
0.02
0.03
0.04
0.05

0 20 40 60 80 100

0.04

0.05

0.06

0.07

t zt yt x

αzαx αy

[s] [s] [s]

[m] [m]
[s][s][s]

[rad]

[m]

[rad] [rad]

time time time

timetimetime

Fig. 2. Sample trajectory (trajectory 1 of table I, blue dots) and associated motion estimates (black dots). The rotations (top row) are plotted in
canonical coordinates, the translations (bottom row) in vector components.

etrans, respectively, as

σ =

√

n
∑n

i=1 1/e2
i

, (37)

assuming a sample of n estimates. These standard devia-
tions are given in Figs. 7, 8, and 9 for the three scenarios,
along with a graph showing the quality of the Gaussian fit.

As one would have expected, scenario 1 produces the
highest accuracy. In fact, it represents the optimum achiev-
able for motion estimation given the data distribution. The
rotation-estimate errors are seen to be Gaussian, while
the translation-estimate errors have a longer tail than a
Gaussian with the same standard deviation. In scenario
2, the rotation-estimate error is Gaussian as well, with
a roughly 3/2-fold increase in σrot. The distribution of
translation-estimate errors broadens by roughly the same
factor, again decaying slower than a Gaussian. Scenario 3 is

the most difficult one. The main change is in the quality of
rotation estimates, whose error distribution now exhibits a
non-Gaussian tail as well. The translation-error distribution
is even longer-tailed than in scenario 2.

A deviation of an error distribution from a Gaussian may
compromise assumptions implicitly made in formulating a
cost function for parameter identification; cf. eqs. (17) and
(26). Indeed, a cost function that is quadratic in the errors
of motion estimates is justified by the maximum-likelihood
criterion of parameter estimation only for Gaussian errors.

On a Pentium 4 at 2.4 GHz running under Linux,
processing of a single observation step took around 5 ms
for scenario 1, 25 ms for scenario 2, and 3 s for scenario
3.



0 0.005 0.01 0.015 0.02

0 0.005 0.01 0.015 0.02
erot

etrans

[rad]

[m]

fr
eq

ue
nc

y
fr

eq
ue

nc
y

Fig. 3. Histograms of estimation error for rotation (top) and translation
(bottom) for the test-data sequences and scenario 1.
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Fig. 4. Histograms of estimation error for rotation (top) and translation
(bottom) for the test-data sequences and scenario 2.
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Fig. 5. Histograms of estimation error for rotation (top) and translation
(bottom) for the test-data sequences and scenario 3.
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Fig. 6. Histograms of size of rotations (top) and translations (bottom)
in the test-data sequences.
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Fig. 7. Gaussian fits of estimation error for rotation (top) and translation
(bottom) for the test-data sequences and scenario 1.
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Fig. 8. Gaussian fits of estimation error for rotation (top) and translation
(bottom) for the test-data sequences and scenario 2.
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Fig. 9. Gaussian fits of estimation error for rotation (top) and translation
(bottom) for the test-data sequences and scenario 3.

C. Motion prediction

Due to the prediction objective of this study, the error
statistics for the identified dynamic parameters is not
provided, but rather that of prediction errors. The error
measure that is relevant to planning tasks such as grasping
an object is the maximal pose error within the predicted
time span. We have chosen a prediction time of 200
seconds, where the first 100 seconds coincide with the
observation time.

The error for the predicted attitude is defined as

eatt = max
t∈[0,200]

||α̃(t) − α(t)|| , (38)

where α(t) is the canonical parameter vector of the abso-
lute target orientation at time t ∈ [0, 200] seconds, and α̃(t)
is the predicted orientation; cf. eq. (32). We also consider
the error of the predicted center-of-mass position,

ecm = max
t∈[0,200]

||c̃(t) − c(t)|| . (39)

From 10 runs through each of the 10 trajectories we have
obtained 100 samples of prediction errors for each of the
three scenarios. Figures 10, 11, and 12 show frequency
histograms of the attitude and center-of-mass errors.

The relation between the three sets of prediction errors
reflects the relative results on motion estimation; cf. sec.
IV-B. In particular, for scenario 1, 73% of the predictions
are accurate within 20 deg and 10 cm for 100 seconds. For
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Fig. 10. Histograms of prediction error of target attitude (top) and center-
of-mass position (bottom) for the test trajectories and scenario 1.
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Fig. 11. Histograms of prediction error of target attitude (top) and center-
of-mass position (bottom) for the test trajectories and scenario 2.
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Fig. 12. Histograms of prediction error of target attitude (top) and center-
of-mass position (bottom) for the test trajectories and scenario 3.

scenario 2, this proportion is still 52%, while for scenario
3, it drops to 13%.

In each scenario, there are some cases of dramatically
wrong predictions, especially with regard to attitude. This
has to do with the nonlinear dynamics of a rotating body,
where trajectories may transiently pass through regimes
with poor excitation of some of the rotational degrees of
freedom. When observing the target in a phase of poor
excitation, not all the inertial parameters may be well
identifiable. If such parameters become influential for the
observed or predicted trajectory at a later time, accurate
prediction cannot be guaranteed. Figures 13 and 14 present
a typical example of a successful prediction and a failure,
respectively. Note that the prediction shown in Fig. 14
fails although, during the observation phase, the model
matches as accurately as in the successful case of Fig.
13. The prediction fails because only one of the rotational
degrees of freedom is significantly excited for the observed
trajectory.

V. CONCLUSIONS

The method investigated for motion estimation proves
able to track small motions with high precision. It turns out
that the loss in estimation accuracy, brought about by not
knowing point correspondences, is not dramatic. However,
the case without point correspondences in the data proves a
lot less suitable for long-term prediction, even with a 100-
fold increase in data density. Moreover, the computation
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Fig. 13. Prediction example trajectory 1 (cf. table I); error = 0.2053; true
motion: solid blue line; motion estimates: black dots; predicted motion:
dashed black line.

time increases at least linearly with the number of data
points, such that scenarios that can rely on few points are
preferable.

The method investigated for the identification of dy-
namic model parameters has a computation time acceptable
for a long-term prediction scenario and generally gives
a reasonable output for motion prediction. However, due
to the nonlinearity of the rotational dynamics, cases of
insufficient prediction accuracy do occur. They are related
to transiently poorly excited degrees of freedom in either
observed or predicted trajectories. A principled approach to
detecting a breakdown of prediction is to repeat the identifi-
cation procedure many times, varying the initial guess, and
checking the variation entailed for the predicted trajectory.
In practice, however, the natural energy dissipation in the
target structure (arising from flexible appendages etc.) is
known to bring the target into a rotation about a stationary
axis. Hence, a prediction such as shown in Fig. 14 can be
rejected based on the sudden change of the angular velocity
after the observation phase.

The procedure as a whole may prove valid to support
predictive simulation for coarse planning of complex ma-
neuvers such as autonomous grasping in many practical
situations. Further analysis, including dependence on sam-
pling rate or observation time, will allow to determine a
minimum observation time which may ensure a desired
statistical prediction accuracy for a given robotic task.
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Fig. 14. Prediction example trajectory 2 (cf. table I); error = 1.9426; true
motion: solid blue line; motion estimates: black dots; predicted motion:
dashed black line.

Furthermore, using a range sensor with a better accuracy
than 5 mm, will yield a higher prediction accuracy.

Evidently, the motion estimation procedure presented
also yields a 3D reconstruction of the target (compare [2])
by accumulating the observed data in its body frame. Such
a geometric model may be used subsequently for estimation
of absolute pose and for contact planning.
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