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Abstract Compliance in robot mounted force/torque sensors is usefulfor soft mat-
ing of parts in many assembly tasks. Nevertheless, it generates nearly undamped
oscillations when moving a heavy end-effector in free space. In this paper, input
shaping control is investigated to damp such unwanted flexible modes. However,
the conventional method presents a major drawback: To eliminate the oscillatory
dynamics, the desired motion profiles have to be shaped and thus modified. This
means that although the unwanted vibrations are damped, therobot motion does not
meet the desired one. In this paper we first review the conventional input shaping
technique. Second we show how the mentioned problem may be fixed in the design
phase by discretizing the filter and by using a predictive approach that compensates
the shaped signals time delay and minimizes the resulting control error. Simulation
results are presented.

1 Introduction

Compliant force /torque sensors are frequently used in robot assisted assembly tasks.
They don’t only perform measurements, but also inhibit highfrequency-motions
that commonly occur in the contact phase. This advantage drops into a drawback
if the end-effector is moved in free space. In fact, due to thesensor compliance,
poorly damped oscillations emerge which lead to unprecise motion of the tool. Such
oscillatory behavior is critical in many applications withhigh speed and precision
requirements. In this paper we address the problem of wheel assembly to a contin-
uously moved car (Fig. 1). A camera is mounted at the tool to correct the motion
profiles when needed and to detect the car hub. Undamped oscillations inhibit this
process and have hence to be eliminated.
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(a) Setup for wheel assembly
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(b) Compliant end-effector with force/torque sen-
sor in the center of the springs

Fig. 1

Input shaping also known ascommand preshaping is one of the easiest success-
fully applied feedforward control techniques that have been designed to suppress
residual vibrations occurring within speedy maneuvers. Some pre-knowledge about
the plant is used to generate commands which move the system without vibrations.
The first form of input shaping, also calledposicast control, was presented 1957 by
Smith [1]. It consists in generating two transient oscillations that cancel each other
and lead to a vibrationless response. The first paper of the conventional input shap-
ing was presented by Singer and Seering [2]. Desired system inputs were convolved
with an impulse train. The resulting commands move the system without residual
vibration. Very good estimations of the plant parameters were essential to eliminate
the oscillatory dynamics. Many researchers addressed thisproblem and developed
robust input shapers by adding more impulses to the filter. Singhose [3] presented a
design method to add any desired order of robustness to the filter.

To suite input shaping to industrial robots, three major matters have to be dis-
cussed:

1- Filtering the inputs induces some time delay which leads to system performance
degradation. In the task presented above, positional rampsare commonly com-
manded to move the tool from a given Cartesian position to another. Hence the
ramp response time delay has to be compensated.

2- The conventional theory of input shaping has been primarily developed in the
continuous time domain. Hence the application to systems with long sampling
period leads to implementation problems. This can be fixed bydigitizing the
shaper.

3- An input shaper modifies slightly the reference signals todamp the vibrations
of the end-effector. This means, although the oscillationsare eliminated, the tool
will not move as desired since modified trajectories are commanded! Hence, an
exact tracking of the desired path and a total vibrations damping seem to be
two contradictory goals that cannot be simultaneously fully fulfilled. However
a tradeoff can be reached by minimizing the sum of the sensor deflection and
the deviation between the desired and commanded signals. A formulation and a
computationally efficient solution of such optimization problems are presented
in this paper.
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2 Review of the Conventional Input Shaping

The original method has been primarily developed for linearsecond order systems
with the transfer function:

G(s) =
y(s)
u(s)

= K
ω2

0

s2 +2Dω0s+ ω2
0

(1)

g(t) =
Kω0√
1−D2

e−ω0Dt sin(ωdt) (2)

With a static gainK, a positive damping ratioD smaller than 1, a natural frequency
ω0 and a damped natural frequencyωd = ω0

√
1−D2. u(s) andy(s) denote respec-

tively the system input and output.
It’s known that applying an impulseA0δ (t − t0) to such a plant will result in an

oscillating responseg0(t). However a well chosen second impulseA1δ (t − t1) can
excite a second oscillationg1(t) that totally cancels the first one fort ≥ t1. This idea
can be extended to an impulse sequence withn impulses

fδ (t) =
n−1

∑
i=0

Aiδ (t − ti); ti < ti+1; i ∈ {0,1, ...,n−1} (3)

which compensates any oscillation immediately after applying the last impulse. By
convolving this sequence with any desired command signal, new control inputs are
generated which move the system without vibration. This command generation pro-
cess is called input shaping. To eliminate the oscillations, the filter has to satisfy the
following conditions (see [2])

C (ω0,D) =
n−1

∑
i=0

Aie
ω0Dti cos(ωdti) = 0 (4)

S (ω0,D) =
n−1

∑
i=0

Aie
ω0Dti sin(ωdti) = 0 (5)

The constraints (4) and (5) can be satisfied by setting all theamplitudesAi to zero
or by allowing them to have infinite values. Such trivial solutions are uninteresting
for practical sakes and have to be eliminated. Therefore we require that:

n−1

∑
i=0

Ai = 1 (6)

This condition makes sure that the filter has a unity static gain. Thus, the steady state
values of the references and the commands will be the same. Since the range of the
commands is dependent on the actuators, we can set constraints to the actuators’
limitations and then solve for positive and negative amplitudes which satisfy them
(Singhose [7]). A general form of these constraints is:
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Aimin ≤ Ai ≤ Aimax and ∆Aimin ≤ ∆Ai ≤ ∆Aimax (7)

TherebyAimin/max
and∆Aimin/max

are the respective minimal/maximal allowed ampli-
tude and increments values.

For a first order robustness, also the derivatives of (4) and (5) with respect toω0

are constrained to zero (Singer and Seering [2]).

n−1

∑
i=0

Aitie
ω0Dti cos(ωdti) = 0 (8)

n−1

∑
i=0

Aitie
ω0Dti sin(ωdti) = 0 (9)

Equations (4), (5), (6), (8), (9) and the restrictions (7) define a constrained set of
nonlinear equations (CSNE) that can be numerically solved for amplitudesAi and
time instantsti to get a zero vibration robust input shaper.

3 Ramp Time Delay Compensation

Long sequences of impulses afford many design degrees of freedom and allow to
accommodate the input shaper to complex and demanding constraints. However, the
longer the sequence is, the bigger is the filtering time delay. In this section we focus
on the ramp time delay compensation since positional ramps are common for the
task presented above.

Let τ be the ramp response time delay when applying input shaping.Kamel et al.
described in [9] the dependency ofτ from the input shaper parameters and the plant
parameters:

τ =
2D
ω0

+
n−1

∑
i=0

Aiti (10)

2D
ω0

describes the delay caused by the plant (1) whereas∑n−1
i=0 Aiti is the shaping delay.

By settingτ to zero, the dead time will be totally compensated:

n−1

∑
i=0

Aiti = −2D
ω0

(11)

Notice that the statement (11) compensates not only the input shaping time delay
but the one of the plant too! This feature may now be included into the filter design
by adding (11) to the CSNE as an additional constraint.

However requiring a total dead-time elimination leads often to huge amplitude
values within short sequences of impulses. This can be avoided either by lengthen-
ing the sequence or by using predictive path scheduling within a known time delay
(backward time shifting): When the desired trajectory is a priori known, then the



An Industrial-Robots Suited Input Shaping Control Scheme 5

control inputs may be time advanced (Lange and Hirzinger [8]). In this case, (10)
is used to enforce some known time delayτ0 which can be compensated due to
command shifting (see [9]).

4 Time-Discrete Input Shaping

The discretization of input shapers has been the emphasis ofmany publications
([4],[5],[6]). Singer described in [4] a digital shaper by fixing the time between the
impulses and only changing the magnitudesAi. Based on the ideas in [4], Kamel et
al. described in [9] a systematic design to generate a time discrete input shaper for
low sampled robotic systems. This will be briefly reviewed inthis section.

In order to fit the time instants of the impulses to the sampling periodT we can
explicitly constrain allti andτ0 to be a multiple ofT . An intuitive choice may be:

ti = iT ; τ0 = mT (12)

wherei ∈ {0,1, ...,n−1} andm ∈N are design parameters used to set the ramp time
delay to a known value.

Adding (12) to the CSNE eliminates the time instants and replaces them by the
known integersi. Note that the nonlinear statements are transformed to linear ones
by fixing the time instantsti. Thus the CSNE becomes a constrained set of linear
equations (CSLE):

CA = b (13)

with theC ∈ R
6×n, the amplitude setA ∈ R

n and the right sideb ∈ R
6 (see [9]). The

problem can now be stated as follows: Find a vector of amplitudesA that satisfies the
CSLE stated above. Forn > 6, the statement (13) is under-determined. The problem
has consequently for a given sequence lengthn an infinity of solutions from which
we need to select one that satisfies (7) if it exists. This taskcan be solved by many
numerical iterative tools. An iterative algorithm is presented in [9] to solve this
problem and to keep the length of the impulse sequence to a minimum.

5 Minimization of the Quadratic Control Error

At this level, it’s very important to realize that a good performance of the filter does
not only depend on a good vibrations’ damping, but also on other important criteria.
In fact, the elimination of the oscillatory dynamics invokes implicitly a modification
of the commands. This means concretely that the robot will effectuate vibrationless
motions which unfortunately do not match exactly the desired motion. One way to
deal with this problem is to minimize the positional controlerror due to the filtering
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and to the sensor deflections. To do so we first of all consider the following signal
flow diagram stated in Fig. 2:

--

w(t)

filter f (t)

Kω2
0s2

s2 +2Dω0s+ω2
0

u(t) y(t)

e(t)ẽ(t)

end-effector

Fig. 2 Signal flow diagram of the total positional control error

w(t) denotes the desired motion profile. For the following optimization taskw(t)
is supposed to be a unity gain stepσ(t). Using these commanded references, the
input shaper generates the system inputsu(t):

u(t) = f (t)∗w(t) =
n−1

∑
i=0

Aiσ(t − ti) =︸︷︷︸
(12)

n−1

∑
i=0

Aiσ(t − iT ) (14)

If the robot is supposed to be ideal (only rigid body interactions with no delay), then
u(t) corresponds to the measured position profile of the robot flange. In this case, the
differenceẽ(t) between the referencesw(t) and the inputu(t) is the position error
caused by the input shaper.y(t) denotes the deflections measured in the compliant
sensor. One can easily verify that:

y(t) =
d
dt

g(t)∗ f (t) =
n−1

∑
i=0

Ai
d
dt

g(t − iT ) (15)

whereg(t) is the impulse response of plant (1). The total position error reads:

e(t) = ẽ(t)− y(t) = w(t)−u(t)− y(t) (16)

5.1 Analytical formulation of the cost function

The equations (14), (15) and (16) provide an analytical characterization of the con-
trol error occurring when applying a positional step. We define the following mini-
mization problem:

min
A∈R

Iq subject to CA = b where Iq(A) = AT QA+

∞∫

0

e2(t)dt (17)
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Q is a positive definite weighting matrix to penalize high amplitude values. One
can already feed the problem at this level to a numerical iterative solver. However,
the computational effort will be extremely high. That’s why, it’s recommendable
to formulate and solve the problem analytically. Due to (6) and to the fact that the
input shaper totally eliminates any oscillations immediately after applying the last
impulse, the control errore(t) exists only betweent = 0 andt = tn−1 = (n−1)T .
For the derivation below we suppose that a prediction overm sampling steps is
performed. This means thatw(t) switches to 1 att = mT .

∞∫

0

e2(t)dt =

(n−1)T∫

0

e2(t)dt =

(n−1)T∫

0

(w(t)−u(t)− y(t))2 dt (18)

= (n−m−1)T −2

(n−1)T∫

mT

u(t)+ y(t)dt

︸ ︷︷ ︸
l

+

(n−1)T∫

0

(u(t)+ y(t))2 dt

︸ ︷︷ ︸
q

l andq denote the terms of the cost function that respectively leadto a linear and
quadratic dependency on the magnitudesAi. The linear terml can be easily com-
puted:

l =
n−1

∑
i=0

Ai

(n-1)T∫

mT

σ(t-iT )+
d
dt

g(t-iT )dt =
n−1

∑
i=0

Ai




(n−1)T∫

max(m,i)T

dt+

(n−i−1)T∫

max(m-i,0)T

d
dt

g(t)dt




=
n−1

∑
i=0

Ai

[
(n-max(m, i)-1)T + g((n-i-1)T )−g(max(m-i,0)T )

]
=

n−1

∑
i=0

Aiθi (19)

To determine the quadratic termq we need first to compute some sub-integrals:

q1 =

(n−1)T∫

0

u2(t)dt =
n−1

∑
i, j=0

AiA j

(n−1)T∫

max(i, j)T

dt =
n−1

∑
i, j=0

AiA j (n-max(i, j)-1)T (20)

q2 =

(n−1)T∫

0

u(t)y(t)dt =
n−1

∑
i, j=0

AiA j

(n− j−1)T∫

max(i− j,0)T

d
dt

g(t)dt

=
n−1

∑
i, j=0

AiA j (g [(n− j−1)T ]−g [max(i− j,0)T ]) (21)

q3 =

(n−1)T∫

0

y2(t)dt =
n−1

∑
i, j=0

AiA j

(n−1)T∫

0

d
dt

g(t − iT )
d
dt

g(t − jT )dt

= hi, j ((n−1)T)−hi, j(0) (22)
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where

hi, j(t) = -
K2ω3

0 eω0DT (i+ j)

4(1-D2)
e-2ω0Dt

[
cos(ωdT ( j-i))

D
-cos(2ωdt-ωdT (i+ j) -ϕ)

]

Therefore:

q = q1 +2q2+ q3 =
n−1

∑
i, j=0

AiA j

[
(n−max(i, j)−1)T + hi, j((n−1)T)−hi, j(0)

+ 2(g [(n− j−1)T ]−g [max(i− j,0)T ])
]

=
n−1

∑
i, j=0

AiA jψi, j (23)

The equations (18), (19) and (23) give an analytical formulation of the cost function:

Iq(A) = AT QA +
n−1

∑
i, j=0

AiA jψi, j −2
n−1

∑
i=0

Aiθi +(n−m−1)T

= AT (Ψ + Q︸ ︷︷ ︸
Ψ̃

)A−2AT θ +(n−m−1)T (24)

Since analytical expressions forg andh are available, the computation of the matrix
Ψ and the vectorθ does not need any numerical integration. Once computed,Ψ
andθ can be used to evaluate the costs for any given amplitude setA. Hence the
determination of the optimal solutionAopt does not need huge computational effort.
At this level, an iterative solver can be used to compute the optimum. However an
analytical solution can be derived to figure out the dependency of Aopt onΨ , C and
θ and hence on the plant parameters.

5.2 Analytical solution of the minimization problem

Using an appropriate Lagrangian function, the constraints(13) may be coupled to
the cost function to compute a general solution for the problem formulated above:

Aopt = P
[
2θ −CT

((
CPCT )−1

(2CPθ −b)
)]

(25)

with P =
(

Ψ̃ +Ψ̃T
)−1

. Note that this solution is only valid for regular matrixesP

andC. Note also that the stated solution is a minimum if and only ifP is positive
definite. In fact, this restriction is not that dramatic, since we can always influence
P by the choice of the elements of the matrixQ.
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6 Results

The robot motion and the end-effector oscillation are fairly decoupled when using
the approach of [8] to control the setup of Fig. 1. Thus the desired motion of the
end-effector almost coincides with the actual motion and thus deserves as input for
the end-effector control. In particular, there is no interdependance with the robot
joint states. Therefore input shaping can be directly applied to the desired posi-
tions/orientations of the Cartesian components of the robot motion.

The individual components can be modeled by independent second order trans-
fer functions (1), considering only the dominant oscillation each. If several modes
would be significant in each case, input shaping could be applied to each of them,
thus yielding a sequence of input filters. In both cases, damping of the respective
oscillations reduces as well the cross-couplings between the individual degrees of
freedom.
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Fig. 3 Simulation results of the system response to finite rate stepresponses(a&b) and to a typical
robot motion profile (c) withw = 30rad

s , D = 0.02,K = 8.10−4 andT = 12ms. (a): no prediction is
applied i.em = 0, (b&c): predication over the first 18 sampling steps is applied i.em = 17. Dotted:
step response without input shaping. Dashed-dotted: step response using an unoptimized input
shaper (n = 36). Dashed: step response using an optimized input shaper (n = 36) with Q = 0.1· I
(I is the unity matrix).
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Fig.3 shows samples of our simulation results. Both optimized and unoptimized
filters could compensate the shaping time delay using a prediction overm sampling
steps. One can clearly see, that an optimized input shaper does not only filter the
oscillatory dynamics of the plant’s output, but also tracksthe references better than
other shapers. For large impulse sequences, we could reducethe costsIq up to
35%.

Notice that compared with the shapers presented in [9] whichonly minimize
the sensor deflection, the current shaper minimizes also thedeviation between the
references and the commands. Thus the deflected end-effector pose is controlled to
track the reference. Measurements of the sensor deflection are required only for the
identification of the system. They are not more used for control.

7 Conclusion

The paper demonstrates that the well known method of input shaping can be mod-
ified to fit some principle features of today’s industrial robots. A systematical and
extendable computational framework is provided to generate such modified shapers.
Since fixed robot paths can be commanded in advance, the resulting time delay is not
unfavorable and could be compensated. Besides, control errors due to the shaping
process and to the oscillation of a compliant tool are minimized. Future work will
address the matter of the optimum sensitivity with respect to the plant parameters.
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