
Mutual Information based Semi-Global Stereo

Matching on the GPU

Ines Ernst1 and Heiko Hirschmüller2

1 Department of Optical Information Systems, Institute of Robotics and Mechatronics, German

Aerospace Center (DLR), Berlin (Germany), ines.ernst@dlr.de
2 Department of Robotic Systems, Institute of Robotics and Mechatronics, German Aerospace

Center (DLR), Oberpfaffenhofen (Germany), heiko.hirschmueller@dlr.de

Abstract. Real-time stereo matching is necessary for many practical applica-

tions, including robotics. There are already many real-time stereo systems, but

they typically use local approaches that cause object boundaries to be blurred

and small objects to be removed. We have selected the Semi-Global Matching

(SGM) method for implementation on graphics hardware, because it can com-

pete with the currently best global stereo methods. At the same time, it is much

more efficient than most other methods that produce a similar quality. In con-

trast to previous work, we have fully implemented SGM including matching with

mutual information, which is partly responsible for the high quality of disparity

images. Our implementation reaches 4.2 fps on a GeForce 8800 ULTRA with im-

ages of 640×480 pixel size and 128 pixel disparity range and 13 fps on images

of 320×240 pixel size and 64 pixel disparity range.

1 Introduction

Fast stereo matching is necessary for many practical real-time applications, including

robotics. Often, it is not necessary to perform stereo matching at the video frame-rate.

Instead, processing several frames a second in a VGA like resolution can be sufficient.

Commercial real-time stereo systems are either based on special hardware that de-

livers disparity images at frame-rate [1, 2] or are available as pure software develop-

ment kit [3]. These solutions are all based on local approaches that perform correlation

of rectangular windows, followed by a winner-takes-all disparity selection. Correlation

methods are fast, but they are known to blur object boundaries and remove small struc-

tures [4]. More elaborate methods require higher computational resources, which are

available on graphics cards.

Modern graphics processing units (GPU) are usable as high-speed coprocessors

for general purpose computational tasks. For several years already, high-end graph-

ics processors have been supporting high performance applications through dedicated

programmable vertex and fragment processors [5]. However, programs on these GPUs

were limited to the capabilities of the specialized hardware. With only a few exceptions

[6] the existing graphics APIs required the transformation of computationally intensive

core algorithms into rendering tasks. In 2007, NVIDIA introduced with the G8 series

a new generation of GPUs [5]. The Compute Unified Device Architecture (CUDA)

[7] combines a new hardware concept (built around just one type of programmable

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

2 Ines Ernst and Heiko Hirschmüller

processor) with a new and more flexible programming model. CUDA provides a C-

like abstraction layer for implementing general purpose applications on GPUs without

substantial knowledge of underlying hardware or graphics concepts. CUDA cards over-

come limitations of earlier hardware such as unsupported data scattering on fragment

shader level, memory read- or write-only properties or missing integer arithmetic. The

CUDA concept is continued with the introduction of the G9, G200 and TESLA series

with ever growing numbers of unified processors and amounts of on-board memory3.

Nevertheless, all new GPUs continue to support the widely used graphics APIs OpenGL

and DirectX for their original task, i.e. very fast graphics rendering.

2 Previous Work

There are real-time GPU implementations of local stereo methods that try to increase

accuracy by different aggregation methods [8]. Others join multiple resolutions [9] or

windows [10]. Plane sweep stereo methods appear particularly well suited for GPU

implementations and reach high frame rates [11–13].

None of the stereo methods above are included in the Middlebury online evaluation

[14]. In fact, almost all methods of this comparison are global stereo approaches that

perform pixelwise matching, controlled by an energy function that connects all pixels

of the image with each other. Global methods are more accurate than local methods

[15], but their internal complexity is typically much higher than the complexity of local

methods. Therefore, their run-time is often several orders of magnitudes higher than

that of local methods, which makes them unsuitable for real-time applications.

An exception are dynamic programming solutions, which are global in one dimen-

sion. Gong and Yang [16] reached real-time performance with a two pass dynamic pro-

gramming method, implemented on the GPU. The average error (i.e. average of errors

at non-occluded, all and discontinues pixel areas over four datasets) is 10.7% according

to the Middlebury evaluation.

Another exception is the Semi-Global Matching (SGM) method [17], which com-

bines several one-dimensional optimizations from all directions. Its complexity is O(width×
height × disparityrange), like local methods, which results in efficient computations.

On the other hand, its accuracy is comparable to that of global methods. The Middle-

bury evaluation rates the original method with 7.5%, while the consistent variant for

structured environments has an average error of just 5.8%. This is not far away from

the average error of 4.2% of the currently very best method in this evaluation. When

looking at the run-times, even the CPU implementation of SGM is several orders of

magnitudes faster than most other methods of the evaluation. Furthermore, the algo-

rithm has a regular structure and the basic operations are very simple, which allows an

efficient GPU implementation.

Rosenberg et al. [18] implemented the core part of SGM on a NVIDIA 7900 GTX

using Cg. Their implementation includes matching with absolute differences, left/right

consistency checking and hole filling. The implementation reached 8 fps on images

of 320× 240 pixel size with 64 pixel disparity range. Gibson and Marques [19] used

3 Developments of other GPU vendors are not reviewed within this article.

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

Lecture Notes in Computer Science 3

CUDA on a NVIDIA Quadro FX56004. In their approach, matching is implemented

with the sampling-insensitive absolute difference [20] and the smoothness penalty is

adapted to the intensity gradient, but no left/right consistency checking is done. The

implementation reaches 5.9 fps on images of size 450× 375 pixels with 64 pixel dis-

parity range.

It has been found that matching with mutual information performs better than ab-

solute differences, even on images with no apparent radiometric differences [21]. Fur-

thermore, the hierarchical computation of mutual information (HMI) gives the same

result as the iterative computation [17]. Therefore, in contrast to previous work, we im-

plemented the full SGM method on the GPU, including hierarchically calculated mu-

tual information, intensity gradient sensitive smoothness penalty, left-right consistency

checking and sub-pixel interpolation.

The SGM algorithm is reviewed in Section 3. Its implementation on the GPU is

explained in Section 4. The quality and speed of the implementation are evaluated and

compared to previous implementations in Section 5. Section 6 concludes the paper.

3 The Semi-Global Matching Algorithm

We assume a rectified, binocular stereo pair as input and refer to the 8 bit intensity

values of the left and right image with IL and IR. The following sections describe the

individual steps of the method from an algorithmic point of view, which is visualized

in Figure 1. The interested reader is referred to the original publications [17] for the

derivation and justification of these steps.

3.1 Pixelwise Matching Costs using Mutual Information

The cost for matching two pixels is derived from mutual information (MI). It is com-

puted from the joint entropy of correspondences of both images (HIL,IR) and the en-

tropies of the left (HIL) and right image (HIR) as

MIIL ,IR = HIL + HIR −HIL,IR . (1)

The joint entropy, which is defined as P log(P), is computed by Taylor expansion,

according to Kim et al. [22], as a sum of data terms hIL ,IR over all pixels p and their

correspondences q

HIL ,IR = ∑
p

hIL,IR(ILp, IRq). (2)

The data term is computed from the probability distribution (P) and convolution

with a Gaussian kernel for Parzen estimation by

hIL ,IR(i,k) = −
1

n
log(PIL ,IR(i,k)⊗g(i,k))⊗g(i,k). (3)

4 According to personal communication with the author.

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

4 Ines Ernst and Heiko Hirschmüller

Fig. 1. Flowchart of the Semi-Global Matching method

The probability distribution is calculated from the histogram of corresponding in-

tensities of both images. This requires an initial guess of correspondences, i.e. an ini-

tial disparity image Dinit . Section 3.5 explains where this initial disparity image comes

from. Thus, Dinit is used for collecting corresponding intensities from IL and IR, by ig-

noring occlusions. Dividing all histogram entries by the number (n) of correspondences

results in the joint probability distribution PIL,IR , which is a table of 256× 256 entries

for 8 bit images. Thereafter, equation (3) is used for computing table hIL ,IR of data ele-

ments. The probability distributions PIL and PIR can be computed from PIL,IR by simply

summing over all lines or columns of PIL ,IR . The data terms hIL and hIR are computed

similarly to (3), except that they are one dimensional arrays instead of a two dimen-

sional table. Finally, all data terms are summed according to (1) for getting the table of

matching costs

miIL,IR(i,k) = hIL(i)+ hIR(k)−hIL,IR(i,k). (4)

It can be seen that summing with all pixel correspondences over this table results

in the mutual information, which is to be minimized. For SGM, the table mi is used for

computing the cost for matching pixel p with the corresponding pixels at disparity d

C(p,d) = miIL ,IR(L(p),R(p− [d,0]T)). (5)

3.2 Aggregation of Pixelwise Matching Costs

The SGM method approximates the minimization of the energy,

E(D) = ∑
p

(C(p,Dp)+ ∑
q∈Np

P1 T[|Dp −Dq| = 1]+ ∑
q∈Np

P2 T[|Dp −Dq| > 1]). (6)

The first term sums the pixelwise matching costs for all pixels. The second term pe-

nalizes small discontinuities with a penalty P1, while the third term penalizes all larger

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

Lecture Notes in Computer Science 5

discontinuities with a penalty P2. The approximation is implemented by summing path-

wise costs according to (6) into a cost volume. This process can be seen as aggregation.

The pixelwise matching costs are aggregated into a cost volume (S(p,d)) by going in

8 directions (r) through all pixels of the image IL. The directions are defined as [1,0]T ,

[1,1]T , [0,1]T , [−1,1]T and so on. The first pixels of each path (i.e. the pixels at the

image border) are defined by the pixelwise matching cost as Lr(p,d) = C(p,d). The

costs at all further pixels in the path direction r are computed according to (6) by

Lr(p,d) =C(p,d)+ min(Lr(p− r,d),Lr(p− r,d−1)+ P1,

Lr(p− r,d + 1)+ P1,min
i

Lr(p− r, i)+ P2)−min
i

Lr(p− r, i).
(7)

The value of P1 is a constant, while P2 is adapted to the intensity gradient along the

path by P2 =
P′

2
|Ibp−Ibp−r|

, with P′
2 as constant. The values of Lr(p,d) are added to S(p,d)

for all disparities d at each pixel p. Additionally, they are kept as previous values for

the next step r along the path.

3.3 Disparity Selection

The disparity at each pixel is selected as the index of the minimum cost

DL(p) = argmindS(p,d). (8)

Sub-pixel estimation is implemented by fitting a parabola through neighboring costs

Dsub
Lp = DLp +

S(p,DLp −1)−S(p,DLp + 1)

2S(p,DLp −1)−4S(p,DLp)−2S(p,DLp + 1)
. (9)

This parabolic fitting is used as an approximation in the absence of a theoretically

derived sub-pixel interpolation function for a complex matching cost like MI. However,

it has been found that this choice delivers good results.

3.4 Post Filtering and Consistency Checking

The disparities that correspond to the right image are derived from the same cost volume

S by a diagonal search for the minimum, i.e.

DR(p) = argmindS(p+[d,0]T ,d). (10)

Both disparity images are filtered with a 3x3 median for removing outliers. The

result is used for a left right consistency check. If |DLp −DRq|> 1 with q = p− [d,0]T ,

then the value at DLp is set to invalid.

3.5 Hierarchical Computation of MI

As discussed earlier, the computation of the matching cost table (4) requires an initial

disparity image Dinit . It has been found that MI can be computed hierarchically, by

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

6 Ines Ernst and Heiko Hirschmüller

starting with images that are downscaled by factor 2 f (e.g. 16), which results in I
f
L and

I
f
R . The initial disparity is set to random values. The random sampling within the dispar-

ity range is sufficient for computing an initial matching table that is used for matching

I
f
L and I

f
R , which results in the disparity image D

f
L. The disparity image is upscaled by

simple interpolation to D
f−1
L and used as initial disparity image for matching I

f−1
L and

I
f−1
R . The process is repeated until f = 1.

The hierarchical computation reduces the runtime of an otherwise iterative com-

putation of MI that would require several runs at full resolution. It is important that

the hierarchical computation is only used for refining the initial disparity for MI com-

putation and not for reducing the disparity search range, as this could easily lead to

loosing small objects. It has been found that the matching quality of the hierarchical

computation of MI equals that of the iterative computation [17].

4 GPU Implementation

We started our work on the G7 GPU architecture for which the OpenGL/Cg [23, 24] pro-

gramming technique is available. This decision was supported by the fact that important

parts of the algorithm map very well to graphics concepts and the OpenGL drivers offer

highly optimized parallelization and scheduling mechanisms for this class of computa-

tions. Also, using OpenGL/Cg rather than CUDA allows using older-generation GPUs

(e.g. G7). Our current implementation of SGM with HMI is based on this proven tech-

nique, but is also intended as a reference for a future migration to CUDA, which will

overcome the OpenGL/Cg limitations described in Section 1.

Our implementation is based on the usage of three render buffers of a frame buffer

object. These RGBA-buffers with a 16-bit-float data type (i.e. 1 sign bit, 5 exponent bits,

and 10 mantissa bits) are used in a ping pong technique for keeping the data while the

arithmetic operations are done in 32-bit-float precision. Almost all work is carried out

through the execution of OpenGL rendering commands and several specialized frag-

ment shader programs. For the MI matching table calculation a vertex shader program

is used in addition.

4.1 GPU Implementation of SGM

The priority objective for designing the memory buffer partitioning is to provide the

input data in a form that minimizes the number of memory accesses in all computations.

Generally it is worth keeping in mind that GPUs are principally designed and optimized

for fast 3D rendering of textured objects. Calculations should be done on four values

synchronously with respect to the super-scalar architecture of the G7 (and earlier) GPUs

and the associated data structures in OpenGL/Cg.

Initially, the left and right original images IL and IR are considered as textures and

loaded with all necessary levels of detail to one color channel of a render buffer. A

second channel holds 180 degree rotated versions of the images. According to Section

3.2, a cost volume S is calculated. S is mapped to a render buffer as a sequence of

width/2 rectangles, each of dimension disparityrange×height/2. Every color channel

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

Lecture Notes in Computer Science 7

of S contains cost values belonging to a quarter of the original image IL. S stays resident

in the render buffer until all path costs for all image pixels have been calculated.

The path costs for one pixel in one path direction are dependent only on the path

costs of the predecessor pixel in this direction, not on the costs of the neighboring

pixels perpendicular to the path. Therefore all path costs e.g. in horizontal direction

for an entire image column can be calculated in parallel. The calculation of path costs

for vertical or diagonal directions r is done analogously, respecting the corresponding

predecessor dependencies. The computation of four path directions in the four color

channels in parallel produces all Lr values by rendering of width rectangles of size

disparityrange× height and height rectangles of size disparityrange×width. Exper-

iments showed that the most efficient way to get the values of the cost volume C for

the Lr calculation is to calculate them on the fly rather than storing a separate three-

dimensional array C. The values of the adaptive penalty P2 can either be determined

during the calculation of Lr or be pre-calculated and stored on a render buffer. The

latter option is slightly faster in practice.

All Lr values depend not only on their predecessor values, according to (7), but also

on the minima of the path costs for all disparities for the previous pixel in the current

path. Prior to the calculation for the next pixel row and column, some of the Lr channels

are shifted in order to optimize the texture fetch in the next stage. For finding the minima

of the Lr values for all disparities, a composite procedure of some comparisons in the

fragment shader and application of OpenGL blending equation GL MIN turned out to

be the fastest. When the path costs for one column and one row are available they are

added to the cost volume S. While the Lr values for one image column can be added

by rendering only one rectangle, the values for an image row have to be assigned to

S in lines. Care must be taken w.r.t. the range of the values of the Lr because they are

accumulated into S through the GPU blending unit with the parameter GL FUNC ADD

for the blending equation, and the sum is always clamped to the range [0.,1.].

The next step is the disparity selection as described in Section 3.3. The SGM al-

gorithm does not only require computing the minimum values of the accumulated path

cost values in S but also determining the indices of these minimal path costs per pixel,

which represent the disparity values. Therefore it is not possible to use the GPU blend-

ing unit with blending equation GL MIN. We implemented a reduce method, which

finds both, the values and the positions of the minima for all rows of the rectangles

representing S by rendering only a few polygons. In the first reduce step explicit in-

dices are generated and stored together with the values. After the last reduce step, the

remaining columns of the rectangles of S contain the minimal path costs and the corre-

sponding raw disparity columns for the quarters of IL. The sub-pixel interpolation can

be integrated into the first reduce step with marginal computational effort.

The cost volume S has to be kept for a diagonal search described in 3.4 for deriving

a right disparity image. While all subsequent reduce steps are equivalent to the corre-

sponding ones of the left disparity image, the first reduce pass uses a special address

function in the fragment shader. This function handles mapping of the search diagonals

to the memory structure of S as described above. In order to work around unexpected

results of floating point modulo operations [25] we use a hand-written modulo func-

tion. When both disparity images have been derived, they are filtered by a 3×3 median

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

8 Ines Ernst and Heiko Hirschmüller

and the thresholding as described in Section 3.3 is applied for obtaining the final valid

disparity image.

4.2 Implementation of the MI Cost Table on the GPU

In order to avoid unnecessary data transfer to and from the CPU, the MI matching

table mi derived in Section 3.1 is calculated on the GPU, too. Here the main challenge

is the calculation of the joint probability distribution PIL,IR . This task requires free data

scattering and is not possible on the fragment shader level under OpenGL/Cg. However,

if all necessary features of OpenGL 2.1 are supported by the GPU a vertex shader

program is able to calculate PIL,IR
5. For larger input images, the limited accuracy of

the 16-bit float memory buffers available on the GPU requires data partitioning. Thus,

the distribution calculation needs to be done for smaller image tiles with a subsequent

accumulation phase analogous to [26].

When the joint distribution is available, the single probability distributions are cal-

culated by one-dimensional reduce operations. The unscaled matching table is calcu-

lated by applying 5× 5 Gaussian filters, logarithm functions and summing in the way

described in Section 3.1. Finally, scale factors for that 256×256- array are determined

by a two-dimensional reduce operation. They are utilized for adapting the penalties P1

and P2 and for setting up the final matching table mi.

4.3 GPU Implementation of Hierarchical Computation

The computation of disparity images starts on a coarse level of detail with a random ini-

tial matching table. The SGM algorithm is executed and, as described in Section 3.5, the

disparity image that is found in this step is up-scaled and a new matching table for the

next level of detail is calculated. This iteration terminates when a final disparity image

for the original image resolution has been reached. With a G7 GPU, all computationally

demanding calculations are done on the GPU, except for the determination of the joint

distribution. If GPU and driver support all required OpenGL features (G8 and higher,

Section 4.2) all computationally demanding calculation steps from the original stereo

image pair to the resulting disparity image are done on the GPU, without hampering the

computation by costly data transfers between CPU and GPU.

5 Results

We have tested the implementation on a NVIDIA GeForce 7800 GTX with 256 MB as

well as a GeForce 8800 ULTRA with 768 MB on-board memory. Disparity images that

were computed on the graphics card are shown in Figure 2.

The interesting aspect of the GPU implementation is the run time on different image

sizes and disparity ranges. Figure 3 shows the results, which include transfering the

stereo image pair onto the graphics card and the disparity image back to main memory.

5 Unfortunately on the G7 architecture, vertex textures of our render buffer format are not sup-

ported. As a workaround the right image can be remapped according to the disparity image on

the GPU and after uploading this, the distribution table is computed on the CPU with a slight

performance drop.

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

Lecture Notes in Computer Science 9

Fig. 2. Results of computing SGM on the GPU with mutual information and 5 hierarchical levels

 0

 100

 200

 300

 400

 500

 600

 700

5
1
2
x
5
1
2

x
1
0
0

4
8
0
x
6
4
0

x
6
4

4
5
0
x
3
7
6

x
6
4

3
2
0
x
2
4
0

x
6
4

3
2
0
x
2
4
0

x
3
2

T
im

e
 [
m

s
]

(a) GeForce 7800 GTX

 0

 100

 200

 300

 400

 500

 600

 700

5
1
2
x
5
1
2

x
2
0
0

5
1
2
x
5
1
2

x
1
0
0

6
4
0
x
4
8
0

x
1
2
8

6
4
0
x
4
8
0

x
6
4

4
5
0
x
3
7
6

x
6
4

3
2
0
x
2
4
0

x
6
4

3
2
0
x
2
4
0

x
3
2

T
im

e
 [
m

s
]

5 hierarchical levels
Full resolution only

(b) GeForce 8800 ULTRA

Fig. 3. Run-times of the GPU implementation in different configurations, including the time for

transfering the stereo image pair onto the graphics card and the disparity image back to main

memory. Not all combinations are possible on the GeForce 7800, due to less memory

In theory, the run-time of the method should scale linear with the number of pixels

in an image as well as the disparity range. However, we have found that the runtime on

small images (i.e. 320×240) increases only slightly when doubling the disparity range,

while the increase comes closer to the expectation when using large images. This is

probably because the massive parallelization of the graphics card cannot be properly

used for small images. It is similar to the image sizes. The run-time appears to scale

linear to the image width and not to the number of pixel of the input images.

In contrast, the run-time scales worse than expected to the number of hierarchi-

cal levels. The run-time increase for matching the images at five hierarchical levels is

expected to be 14% compared to only matching at full resolution [17]. In our measure-

ments (Fig. 3) it even doubles, on lower image sizes. This is probably due to the constant

overhead of MI computation. Fortunately, the relative overhead of MI computation is

reduced on larger images.

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

10 Ines Ernst and Heiko Hirschmüller

The original CPU implementation on an Opteron with 2.2 GHz required 1.8 s on

images of size 450× 375 pixels with 64 pixel disparity range [17]. In contrast, our

implementation requires just 114 ms at the same image resolution and disparity range.

This is 15 times faster than the CPU implementation.

In comparison, Rosenberg et al. [18] implemented SGM in Cg on a NVIDIA GeForce

7900 GTX. They implemented the absolute difference as matching cost instead of Mu-

tual Information, which is faster, but offers a lower quality. Like us, they computed 8

paths for aggregation (but probably without adapting P2) and also computed the right

image for consistency checking by searching diagonally through the aggregated costs S.

In contrast to us, they also did hole filling, but no sub-pixel interpolation. They reached

8 fps using an image size of 320×240 pixel and 64 pixel disparity range. Our full im-

plementation on the probably comparable NVIDIA GeForce 7800 GTX reaches 4.7 fps

with the same resolution and disparity range, but includes computing 5 hierarchical

levels with mutual information in contrast to Rosenberg et al. With just one hierarchi-

cal level, our implementation reaches 8.1 fps. Thus, our implementation has the same

efficiency, but allows to compute the full method at the cost of a higher run-time.

Gibson and Marques [19] implemented SGM in CUDA on a NVIDIA Quadro FX5600.

They used the more sophisticated sampling insensitive absolute difference [20] instead

of Mutual Information. Like us, they implemented 8 paths with adaptive P2. However,

they did not implement consistency checking or sub-pixel interpolation. They reached

5.9 fps using an image size of 450× 375 pixel with 64 pixel disparity range. Our full

implementation on the probably comparable NVIDIA GeForce 8800 ULTRA reaches

8.8 fps with the same resolution and disparity range, but includes consistency check-

ing and computing 5 hierarchical levels with mutual information in contrast to Gibson

and Marques. With just one hierarchical level, but still with the consistency checking,

our implementation reaches 16.1 fps. Thus, our Cg implementation appears much more

efficient.

6 Conclusion

We have shown that it is possible to implement the full SGM algorithm including pix-

elwise matching with mutual information on the GPU. Our implementation reaches

4.2 fps on a GeForce 8800 ULTRA with images of 640×480 pixel size and 128 pixel

disparity range and 13 fps on images of 320× 240 pixel size and 64 pixel disparity

range. This is already enough for many real-time applications.

According to reported run-times, our implementation has a comparable efficiency

to another Cg implementation of SGM and appeared much more efficient than a CUDA

implementation. However, since CUDA offers more flexibility and higher abstraction

from the graphics hardware, we are going to implement SGM in CUDA and hope to

reach at least the same performance as in our Cg implementation.

References

1. Videre Design: Stereo on chip. http://www.videredesign.com/vision/stoc.htm (2008)

2. Tyzx: Deep sea g2 vision system. http://www.tyzx.com/products/DeepSeaG2.html (2008)

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA, 1-3

December 2008

Lecture Notes in Computer Science 11

3. Point Grey: Triclops SDK. http://www.ptgrey.com/products/triclopsSDK/index.asp (2008)

4. Hirschmüller, H., Innocent, P.R., Garibaldi, J.M.: Real-time correlation-based stereo vision

with reduced border errors. International Journal of Computer Vision 47 (2002) 229–246

5. Owens, J.: GPU architecture overview. In: International Conference on Computer Graphics

and Interactive Techniques, SIGGRAPH 2007 courses, San Diego, CA, USA, ACM (2007)

6. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanrahan, P.: Brook

for GPUs: Stream computing on graphics hardware. In: SIGGRAPH Conference. (2004)

7. NVIDIA: CUDA compute unified device architecture, prog. guide, version 1.1 (2007)
8. Wang, L., Gong, M., Gong, M., Yang, R.: How far can we go with local optimization in

real-time stereo matching. In: Third International Symposium on 3D Data Processing, Visu-

alization and Transmission (3DPVT). (2006)
9. Yang, R., Pollefeys, M.: Real-time stereo on commodity graphics hardware. In: IEEE Con-

ference for Computer Vision and Pattern Recognition. (2003)
10. Woetzel, J., Koch, R.: Real-time multi-stereo depth estimation on GPU with approximative

discontinuity handling. In March, ed.: 1st European Conference on Visual Media Production,

London, UK (2004)
11. Gallup, D., Frahm, J.M., Mordohai, P., Yang, Q., Pollefeys, M.: Real-time plane-sweeping

stereo with multiple sweeping directions. In: IEEE Computer Vision and Pattern Recogni-

tion, Minneapolis, MN, USA (2007)

12. Cornelis, N., Van Gool, L.: Real-time connectivity constrained depth map computation using

programmable graphics hardware. In: IEEE Conference on Computer Vision and Pattern

Recognition. Volume 1., San Diego, CA, USA (2005) 1099–1104

13. Yang, R., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction using

commodity graphics hardware. In: Pacific Graphics 2002, Beijing, China (2002)

14. Scharstein, D., Szeliski, R.: Middlebury stereo website. www.middlebury.edu/stereo (2008)
15. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo corre-

spondence algorithms. International Journal of Computer Vision 47 (2002) 7–42
16. Gong, M., Yang, Y.H.: Near real-time reliable stereo matching using programmable graphics

hardware. In: IEEE Conference on Computer Vision and Pattern Recognition. Volume 1.,

San Diego, CA, USA (2005) 924–931
17. Hirschmüller, H.: Stereo processing by semi-global matching and mutual information. IEEE

Transactions on Pattern Analysis and Machine Intelligence 30 (2008) 328–341
18. Rosenberg, I.D., Davidson, P.L., Muller, C.M.R., Han, J.Y.: Real-time stereo vision using

semi-global matching on programmable graphics hardware. In: International Conference on

Computer Graphics and Interactive Techniques - SIGGRAPH. (2006)
19. Gibson, J., Marques, O.: Stereo depth with a unified architecture GPU. In: IEEE Conference

on Computer Vision and Pattern Recognition. (2008)
20. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sam-

pling. IEEE Transactions on Pattern Analysis and Machine Intelligence 20 (1998) 401–406
21. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: IEEE

Conference on Computer Vision and Pattern Recognition, Minneapolis, USA (2007)
22. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and

mutual information. In: International Conference on Computer Vision. (2003)

23. OpenGL: Home page. http://www.opengl.org/ (2008)

24. NVIDIA: Cg Toolkit, User’s manual, Release 1.4, A Developer’s Guide to Programmable

Graphics. (2005)
25. Dencker, K.: Cloth Modelling on the GPU. PhD thesis, Department of Computer and Infor-

mation Science (2006)
26. Scheuermann, T., Hensley, J.: Efficient histogram generation using scattering on GPUs. In:

Proceedings of the 2007 symposium on Interactive 3D graphics and games, Seattle, Wash-

ington, USA, ACM (2007) 33–37

4th International Symposium on Visual Computing (ISVC08), Las Vegas, NV, USA,

1-3 December 2008

