
COMMUNICATION, CONFIGURATION, APPLICATION:
The three layer concept for Plug-and-Produce

Uwe E. Zimmermann, Rainer Bischoff
KUKA Roboter Gmbh, Zugspitzstraße 140

86165 Augsburg, Germany
UweZimmermann@kuka-roboter.de, RainerBischoff@kuka-roboter.de

Gerhard Grunwald, Georg Plank, Detlef Reintsema
German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen, 88234 Wessling Germany

Gerhard.Grunwald@dlr.de, Georg.Plank@dlr.de, Detlef.Reintsema@dlr.de

Keywords: Plug&Play, robotics, reduced set-up time, determinism, real-time communication, device description

Abstract: The Plug-And-Play is a synonym for the simple use of computer systems in office applications. This
appealing idea also emerges in the branches of robotics and automation. But due to their specific technical
and application driven requirements i.e. real-time, determinism, safety… a simple taking over of the
technology is not sufficient. Plug-and-Produce extends the “easy to use” for applications in robotics and
automation. This will lead to a dramatically reduction of set-up times of work-cells. In order to fulfil the
various requirements a three layered Plug-and-Produce architecture is presented. The communication layer
addresses all topics regarding the bus-system level; the configuration layer is responsible for the control and
operation system level; and the application layer addresses the needs of the user and system programmer. A
prototypical implementation is also presented.

1. INTRODUCTION

Technically, the integration of components i.e. a
memory stick, a camera, or a disk drive into a
computer system is a very complex task. Different
kind of knowledge is required. This includes
hardware, communication systems, operating
systems, programming and application interfaces.
Practically, the user wishes the simple addition of
his new device without requiring reconfiguration or
manual installation of device drivers. “Plug-And-
Play“(PnP) is the synonym for this wish. In the early
1980s the NuBus (NuBus, 1983) which was
originally developed by MIT and used by Apple
Macintosh and Texas Instruments was one of the
earliest PnP-busses. Today the Universal Serial Bus
(USB) is the widest spread and probably best known
PnP-bus (Axelson, 2005).

The Plug-And-Play technology was developed
for the simple use of computer systems in office
applications. Recently this appealing idea also
emerged in the branches of robotics and automation.

But due to their specific technical and application
driven requirements (details see in section 2) a
simple taking over of PnP is not possible. Hence the
EU funded project SMErobot™ (SMErobot, 2005)
created the term „Plug and Produce“(PnProduce) to
express these peculiarities and to delimit from the
office applications.

The potential of PnProduce is very obviously:
The set-up time of robot cells is time-consuming and
thus an important cost factor. It take days or even
weeks just to get all peripheral systems
communicating and working with each other, even
though the system was planed and designed very
detailed in advance. Costs could be dramatically
reduced, if it is possible to reduce the installation
time. Especially future robotics systems will require
much more flexibility due to frequent task and
equipment changes. It should be possible to connect
a new, even a priori unknown device to the robot
controller and to use it immediately without the need
of a long and error prone manual configuration.

Besides the reduction of costs a further important
factor is the “easy to use” feature. In future, more
and more robots will find their way into small and
medium enterprises, into the public and the health

sector. Also service robots or assistants for
entertainment and at home are emerging. These
systems will be in common, that non-robotic experts
will have to deal with such complex systems.
Adding of new tools, exchanging of faulty devices
or upgrading the system has to be manageable
without the need of an expert.

By means of scenarios and use cases section 2
motivates the details of PnProduce and specifies the
inherent technical requirements. In section 3 we
introduce the three layer concept of PnProduce and.
Some first implementation results are presented in
section 4.

2. PLUG AND PRODUCE
REQUIREMENTS

PnProduce concepts for industrial applications
especially robotics can adapt existing PnP concepts
from IT. But there are some special issues that have
to be covered and which are not solved by available
solutions. By means of use cases some features of
PnProduce are discussed and also the specific
technical requirements.

Figure 1: Scenarios for PnProduce

2.1 Use Cases

Figure 1 shows a generic setup of a work cell
with multiple, different robots, tools, grippers,
hands, sensors, and controllers. They are connected

via real-time bus systems i.e. EtherCAT, Sercos ….
Also the single components inside a robot should be
connected via PnProduce.

2.1.1 Device exchange

A robot component i.e. a drive unit has to be
exchanged or upgraded. The servicing staff powers
off the robot, exchanges the devices. In case of
PnProduce the robot has only to be switched on
being operational again. The central control unit
automatically identifies the new device, reads the
actual device status information, configures it and
integrates its functionality into the application.

2.1.2 (Automatic) tool change

Especially for versatile robot assistants frequent
tool changes are a common requirement. A device
driven approach is just a subversion of the previous
use case, where a new tool (e.g. driller) is plugged to
the robot and the associated tool service (e.g. “drill”)
is available for the user.

In a service driven approach the user first selects
the service (e.g. “drill”) and then the tool that could
perform the task is automatically selected by the
robot system itself. This means that an automatic
tool changer system has to be set up.

2.1.3 Start up of a new system/application

In general an application can be characterized by
the potential functionality of the connected
components and devices. When powering on the
functionalities of the devices are communicated with
the central controller or a programmer. Bus, devices
and robot controller are already configured for the
immediate use. The application itself can be
described by the detailed device configurations
needed for running the task. This could be done
manually or (semi-)automatic.

2.1.4 Start up of an existing
system/application

An application as described above may be stored
in a file. When switching on the system the
controller gets all status information from the
devices which are connected via the real-time bus.
These data can be compared with the stored
description of the planned application. The
controller can verify whether all devices are
connected and properly configured. If not
appropriate feedback to the user can be given.

2.2 Deterministic and Real-time
Communication

The communication in robotics and automation
must guarantee some features to facilitate a proper
and safe operation of the system. One of the most
important features are real-time and determinism. As
there are multiple specifications on the term real-
time, we will use in the context of PnProduce: “The
timing constraints of the system must be guaranteed
to be met. Guaranteeing timing behaviour requires
that the communication is predictable”. The term
deterministic tightens the requirement in real-time
communication. It is not sufficient to guarantee the
data within a time frame. The data have to be
delivered at a precise time.

2.3 Static and dynamic parameters

In the past, the application programmer
differentiates cyclic and acyclic communication.
Cyclic data are i.e. the sensor values from a force
torque sensor or the nominal and real value of the
robot joints. These data types are also called
“process images” (CAN, 2007), that are a complete
or partial local data base. The application or the
devices operate only on this local data, whereas the
bus system is responsible to keep the distributed data
consistent. The advantage is that communication and
application are highly decoupled. Another important
factor is the deterministic exchange of data as the
bus load is constant and could be analyzed a priori.

robot controller (master)

process image
P1 P2 P3 P4 P5 P6

Application

(acyclic) read/write

Device A (sensor)

P1 P3 P5 P6

Device B (actor)

P2 P4 P6

Cyclic data exchange

robot controller (master)

process image
P1 P2 P3 P4 P5 P6

Application

(acyclic) read/write

Device A (sensor)

P1 P3 P5 P6

Device B (actor)

P2 P4 P6

Cyclic data exchange

Figure 2: Cyclic/acyclic data exchange

Also there is an acyclic communication

regarding the application. Data types are commands
or events. Commands are triggered by the
application program and are explicitly programmed

by the user. Examples are “gripper open” or “sensor
on”. They are typically for actuators and tools that
are connected to the robot controller. The
philosophy of commands is very similar to the
Service Oriented Architecture (SOA) approaches.
Most existing robot languages are command based
and therefore PnProduce concepts could be
integrated seamlessly.

Events are used for the asynchronous transfer of
small data sets to inform the control system or the
devices on their actual status. They may also be used
for setting parameters of the attached devices and/or
software.

The parameters may be classified in static and
dynamic parameters. The latter may be set during
system start-up or in case of configuration purposes.
But they cannot or should not be changed during
run-time. Thus there is no need to include these
parameters in the process data sets. In general, static
parameters are device specific. Dynamic parameters
dynamically lead to more flexible systems. For
example, if a gripper with an adjustable gripping
force is used, the force parameter can be set once
(configuration data) before the application starts or
can be changed depending on what kind of object
has to be gripped (process data).

Commands and events are still called acyclic
even it is communicated in a cyclic manner on the
bus level. The process images as well as the data
exchange between the local data bases has to be
configured, which is a complex task and leads to
high demands for a PnProduce system. This is
especially true if the data exchange should be
dynamically changed.

2.4 Plug-And-Play Variants

There are different grades in the performance of
Plug-And-Play systems. The simplest version is
Cold PnP: All devices and components are switched
off and get connected. Thereafter the entire system is
switched on.

The most difficult variant is Hot PnP. The entire
system is in operational mode. The user may remove
or attach a device without further intervention and
most important without disturbing the running
application.

An intermediate level is Coordinated PnP which
is a preliminary stage of Hot PnP. The chance nature
of attaching/removing devices is eliminated. This
guarantees that the application itself is not disturbed.
The attaching/removal is user or program controlled.

Another classification scheme for PnP is
complete, semi-automatic, or configurable.

Complete PnP:
- The attached device is automatically

recognized and may be used without further
intervention.

- Device descriptions are stored in a data
base; drivers are automatically configured
and integrated to the application system.

Semiautomatic PnP:
- The device is attached and device type/class

is recognized.
- User has to integrate the appropriate drivers

(CD, DVD, Internet …)
- No further configuration is needed

Configurable PnP:
- Additionally to semiautomatic the user has

to configure the drivers, devices manually.

2.5 Abstraction and Descriptions

Hot-PnP, Complete-PnP, and the other variants
presuppose the description of devices,
configurations, and applications. The purpose is to
encapsulate some device/configuration/application
dependent functionality thus it can be used in a
modular fashion.

Device Descriptions are a key technology for
PnProduce. There are a several approaches which
will be shortly presented.

The first is EDDL, the Electronic Data

Definition Language and its predecessor the GSD,
the Generic Station Description. Both of them are
used in the PROFIBus Setting (EDDL, 2007).

The GSD is the obligatory “ID card” for every
Profibus device. It contains the key data of the
device, details relating to its communication
capabilities and other information relating, for
example, to diagnosis values. In the device
integration process the GSD is sufficient to employ
for the cyclic exchange of measurement values and
manipulated variables between the field device and
the automation system.

The EDDL is a textual and OS independent
format to describe field devices. It gives hints on
how to model the GUI, which is used to configure
the devices. This results in a standardized GUI for
devices of every manufacturer. The EDDL holds
fields for metadata, such as ordering and
maintenance information. The standardization is IEC
61804-2.

Another example for a description language is

EDS and DCF. EDS stands for electronic data sheet
and is used with the CAN bus, mainly with

CANopen and DeviceNet. EDS is just a template,
DCF, device configuration file, is a concrete
instance of this template.

EDS is also a plain ASCII or XML file,
standardized in ISO 15745. By means of an EDS, a
device can be described with respect to the content
of its object dictionary. User defined data types
(records), their value(s), simple values of predefined
type, arrays, "funktion pointers” and similar data is
stored there and therefore described in the EDS.
There are a lot of EDS Files predefined for devices
supporting the CAN bus (CAN, 2007).

FDCML is the field device configuration markup

language. It describes identity, logical and physical
communication facilities (bus independence),
functionality, and configuration facilities. Also it
supports the multilingual documentation of the
device. It's flexible in respect to future developments
and is capable of describing dependencies between
device parameters. It is possible to describe the
different types of devices which can be connected to
this device, the needed resources to use this device,
its structure and so on (FDCML, 2007).

The descriptions used in UPnP are written in

XML syntax (therefore again multilingualism
possible). UPnP describes identity, provided services
(functional units within devices), actions (functional
units within services) and state variables related to
these services. For each service the description
contains the type and URI's for eventing and
controlling. The device itself contains a URI for its
presentation. With these URIs it is possible to
interact with the service and to examine the device
(UPnP, 2007).

The actions are parameterized with supplied
arguments, which are defined within the service.
These arguments can be in or out arguments, relate
to any state variable within the service and have a
defined return value.

The state variables are typed, have a value range
and can send events. It is a very abstract approach,
so it doesn't include any description of physical
connections and therefore bus-independent.

Used in our setting the abstract approach and the
missing definition of the physical connection display
the need for extensions of the description.

Configuration descriptions are another category

of descriptions. They describe how a unique
instance of a device is actually used. Configuration
descriptions are only valid for exactly one device
instance and often are dependant from a single
application. A configuration description is more or
less just a “snapshot” of the actual device state, e.g.
the values of the static parameters. They can be used

to make device data persistent, to check if the actual
configuration is valid and for automatic
configuration of devices after a device exchange.

The application description contains the devices
and services needed to run an application. It is used
to check, if all conditions are met to start the
application or if there are modifications regarding
the connected devices.

3. THREE LAYER CONCEPT

It is obviously to see that PnProduce has
different levels of abstraction. You can identify three
“Plug-And-Produce”-layers to meet the
requirements of robotics and automation systems:

1. Communication and bus-system level: log-in
and log-out of subscribers;

2. Control and operation system level: integration
and release of components in the environment;

3. Application level: the offered functionalities of
the subscribers are used.

The German national project PAPAS: Plug And
Play for Automation Systems (PAPAS, 2006)
addressed this complexity and suggested a layered
structure similar to the famous ISI/OSI layers for
communication. Figure 3 relates the PAPAS
structure both to the ISO/OSI model and the typical
field bus approach.

Figure 3: The PAPAS Plug-And-Play layer architecture (Plank
et.al. 2006)

The Datalink and Physical Layer are directly
related to the communication bus and its physics.
Examples of a field-bus are CAN or Profibus.
PAPAS investigated among others Sercos
(SERCOS, 2007) and the Ethernet-based real-time
busses EtherCAT (ETG, 2007) and Ethernet-
Powerlink (EPSG, 2007). The two layers are the

only, clear delimited layers regarding the ISO/OSI
specification. The layers Session, Transport, and
Network are not used in the general field-bus
approaches. In all three models the application and
presentation layers are oriented towards the
application and/or the configuration of the
application. The limits of these ISO/OSI layers are
indistinct.

3.1 Communication PnProduce

The basis of PnProduce is the communication
layer, as it addresses the potential (i.e. bandwidth,
load, determinism, clock …) of the communication
itself. It is directly related to Layer 1 to Layer 5 of
the ISO/OSI reference model. The PAPAS
Plug&Play layer addresses here the PnP-
functionality regarding the bus-systems and their
specific communication protocols. At this level the
independency of the bus-system is implemented.

When these layers are successfully switched on
the systems knows all the participants by its network
address but not by its function. The transferring data
types are not known yet which guarantees the
independence of the application.

3.2 Configuration PnProduce

The effect of this layer is twofold. It configures
the system with regard to the communication as well
as to the application.

When the communication system is operational,
the participants are known and the master is able to
read their device descriptions (see 2.5). Typical
device information is:
- Synchronous, asynchronous communication
- Minimal/maximum bandwidth for sending

and/or receiving data i.e. joint value,
force/torque value, image data …

- Minimal/maximum clock for sending and/or
receiving data

According to their requirements and the needs of the
specific application the communication system can
be configured.

Analogue the devices and controls have to be
configured regarding their functionality. Following
tasks can/should be done in this layer:
- Determining which devices i.e. sensor are

available;
- Determining which functions, services, and

parameters are available (see device
descriptions);

- Automatic reconfiguration of a device after it
has been exchanged because the old one was
defect;

- Reading device status information i.e. error log,
software release, operating hours, and other
statistical data.

3.3 Application PnProduce

The intention of this layer is to structure the open
ended world of applications thus you can reuse robot
programs or tasks (synonym for robot applications)
in another context or environment. A robotic task
could be i.e. to “drill a hole”. This task is composed
by a robot, a sensor, a drilling machine, a piece of
wood, and software commanding the active devices.
You can repeat the task with the same components
but also with i.e. another robot. The application
remains the same. Only the functionality of the
connected devices is of interest.

The following scenarios describe a graded
structure, which can be distinguished within
Application PnProduce.
- Standardised Functions/Services: If functions,

services and parameters are standardised like
CANopen profiles (Pfeiffer et.al. 2003, CAN,
2007), they can be used automatically and
called from the system or the application.

- User integration: If a new device with an
unknown functionality is attached, the system is
able to autonomously detect and integrate it at
the communication level. But it is not able to
integrate its services or functions. It will inform
the user on the new component its offered
functionalities.

- Semantic information: Another possibility is to
integrate semantic knowledge into unknown
functionality. But this is a very difficult and not
completely solved task. Besides the syntactic
description a service the meaning must also be
represented.

Whereas the application PnProduce layer is fully
independent from the communication PnProduce
layer and vice versa, the configuration PnProduce
layer can have dependencies with both,
communication and application.

3.4 PnProduce Layer Model

The following will explain the PnProduce layers
and their interdependencies in more detail.

The new high performance communication
systems must meet the modern robotics and
automation demands:
- Distributed automation
- Close and coordinated coupling of devices with

different functions, timing, and data loads

- High clock speed
- Short reaction time
- Reduction of costs

The actual serial real-time bus systems (i.e.
EtherCAT, Ethernet-Powerlink, and Sercos) comply
with these demands. But they differ in transfer
modes and protocols. Thus the integration of
different devices equipped with different bus
systems into one robotics application is very difficult
and needs a lot of expert knowledge. In order to
reach the Communication PnProduce functionality
and thus a transparent and deterministic access to the
bus system level, an abstraction of the PnP-
behaviour from the bus-system is needed.

Figure 4: The PnProduce layer model. Each transition interface
provides a specific kind of PnProduce-capability.

 PnProduce assumes a master/slave architecture

which is commonly used in robotic and automation
systems. The PnProduce layer model (Figure 4)
shows the most important components and the data
flow.

- Master-Node: i.e. robot controller;
- Slave-Node: i.e. sensor device in its entirety;
- Device Function: description of the input/output

characteristics i.e. sensor values;
- Client Software: API of the device;
- Logical Device: Basic interface, which

facilitates the master an unified handling of the
varying devices;

- PAPAS System Software: Specific w.r.t. the
operation system but independent of the client
software and the bus interface;

- Bus-Interface: hardware i.e. EtherCAT, Sercos

Master and slave are composed of three layers. The
Bus Layer provides the physical and packet oriented
connection. The Device Layer contains all the

system information needed for the device
configuration. The Function Layer describes the
logical interconnection between master and slave.

The master puts a request on the bus. If the
needed communication resources are available either
the master or the slave sends its data. The success is
indicated by acknowledge. The PnProduce protocol
provides four data transfer modes:

1. Control: configuration of new attached devices

and device control. All devices have to support
this mode.

2. Interrupt: Asynchronous data transfer of small
data sets. The protocol guarantees the data
transfer in device specific service intervals.

3. Bulk: Asynchronous data transfer of large data
sets. The protocol guarantees the data transfer as
soon as the needed bandwidth is available.

4. Isochronous: This mode guarantees fixed data
rates and a maximum latency. When a new
device is attached the master verifies whether
the requested communication bandwidth is
available.

Figure 5: A light-weight robot arm as an assistant for human-
like working in industrial environments the PAPAS
experimental setup is designed to demonstrate a typical
example of an industrial manufacturing process.

4. EXPERIMENTAL SYSTEMS

This section describes in short the first version of
an implemented PnProduce system. Here the focus
is mainly on the communication PnProduce
functionality. The application addressed within the
PAPAS experimental setup is based on a robot
assistant for human working in industrial
environments (see Figure 5). One chosen task of the
robot is a typical example of an industrial
manufacturing process, which is still executed

almost completely manually today, with a very low
degree of automation. The assembly algorithms
developed and tested on a set of planar objects with
complex, non-convex geometric forms are described
within (Stemmer et.al, 2006).

Figure 6: Typical classes of slave tools and devices for
robotics and automation applications: a gripper with parallel
jaw motion, a force torque sensor and a programmable
focusing optics (PFO) which have been prepared to interact
as an EtherCAT slave device.

For verification of the PnProduce approach a set
of typical industrial tools has been prepared to
demonstrate hot plugging. Typical tools are a
Programmable Focusing Optics (PFO), a compliant
force-torque sensor or a parallel gripper (see Figure
6). The PFO of Trumpf Laser flexible welds spots
and seams without moving the workpiece, neither
the focusing optics having to be moved at all. The
PFO focuses the laser beam to any defined location
in the working area.

Especially for assembly and part mating with
industrial robots, a compliant force-torque sensor
was developed. The compliant sensor does not only
yield the forces and torques but also the
positional/rotational displacements of a tool, e.g.,
under the influence of gravity.

Figure 7: JAVA-based tools can be used to monitor the
plug-and-play process, to display recorded device data and
to command plugged devices using a general purpose
class-specific interface.

With the Ethernet Control Automation

Technology (EtherCAT) a new Ethernet-based field
bus system was chosen at the drive or I/O level
(ETG, 2007) for real-time transportation of process
data.

The experimental set up uses a line structure
configuration. A chain of EtherCAT slaves can be
connected in any sequence to the EtherCAT master
which monitors the Ethernet bus for plugged
devices. Inserting a new device into an expansion
slot forces the master to trigger the PnProduce
process of the overlaying PnProduce layer without
requiring reconfiguration or manual installation of
device drivers.

5. SUMMARY AND OUTLOOK

The integration of industrial components i.e.
gripper, force/torque sensors, intelligent tools… into
a robot work-cell is a very complex task. Different
kind of knowledge is required. This includes
hardware, communication systems, operating
systems, programming and application interfaces.
Plug-and-Produce extends the very well known
concept of Plug-And-Play towards the use in
industrial environments. Due to their specific
technical and application driven requirements i.e.
real-time, determinism, safety… a simple taking
over of the PnP technology is not sufficient. Plug-
and-Produce extends the “easy to use” for
applications in robotics and automation. This will
lead among other things to a dramatically reduction
of set-up times of work-cells.

In order to fulfil the various requirements a
layered Plug-and-Produce architecture was
presented. The key feature is to properly encapsulate
the functionalities of one layer with regard to the
neighbouring. Standardized interfaces i.e. the device
description will permit the interchangeability of
hardware and software

Three “Plug-And-Produce”-layers were specified
to meet the requirements of robotics and automation
systems:

1. Communication and bus-system level: log-in
and log-out of subscribers;

2. Control and operation system level: integration
and release of components in the environment;

3. Application level: the offered functionalities of
the subscribers are used.

The first implementation results especially the
Communication PnProduce are very promising. The
future activities of Application PnProduce may be
influenced by the research in Service Oriented
Architectures (SoA). Here we have to investigate
whether these concepts satisfy the PnProduce
requirements and how they can be integrated.

ACKNOWLEDGEMENTS

This work has been partially funded by the German
Collaborative project PAPAS under grant no.
02PH2060 and the European Commission’s Sixth
Framework Programme under grant no. 011838 as
part of the Integrated Project SMErobot™.

REFERENCES

NuBus, 1983. NuBus Specification, Texas Instruments.
Axelson, J. 2005. USB Complete: Everything You Need to

Develop Custom USB Peripherals. Lakeview
Research, Madison WI.

SMErobot, 2005. SMErobot™ - The European Robot
Initiative for Strengthening the Competitiveness
of SMEs in Manufacturing, www.smerobot.org,
Integrated project funded under the European Union’s
Sixth Framework Programme (FP6).

CAN, 2007. Controller Aera Network, www.can-cia.de.
EDDL, 2007. The Electronic Device Description

Language (EDDL), www.eddl.org.
FDCML, 2007. Field Device Configuration Markup

Language, www.fdcml.org.
UPnP, 2007. Universal Plug and Play, The UPnP™

Implementers Corporation, www.upnp-ic.org.
PAPAS, 2006. Plug-And-Play Antriebs- und

Steuerungskonzepte für die Produktion von morgen (in
German), www.robotic.de/PAPAS.

Plank, G., Reintsema, D., Grunwald, G., Otter, M., Kurze,
M., Löhning, M., Reiner, M., Zimmermann, U.,
Schreiber, G., Weiss, M., Bischoff, R., Fellhauer, B.,
Notheis, T., Barklage, T. 2006. PAPAS
Abschlussbericht (in german), http://www.dlr.de/rm-
neu/Portaldata/52/Resources/dokumente/papas/PAPA
S-Abschlussbericht.pdf

ETG, 2007. EtherCAT Technology Group: „Technology
Introduction and Overview”, http://www.ethercat.org.

SERCOS, 2007. SERCOS interface, www.sercos.de.
EPSG, 2007. Ethernet POWERLINK Standardization

Group, www.ethernet-powerlink.org.
Pfeiffer, O., Ayre, A., Keydel, C. 2003. Embedded

Networking with CAN and CANopen. RTC Books
Stemmer, A., Schreiber, G., Arbter, K., and Albu-

Schäffer, A. 2006. „Robust Assembly of Complex
Shaped Planar Parts Using Vision and Force”, in
IEEE International Conference on Multisensor Fusion
and Integration for Intelligent Systems (MFI2006), 3.-
6. September 2006, Heidelberg, Germany.

