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Abstract 

Compared to the various effects which degrade GNSS performance in general, nowadays 
multipath propagation accounts for the most dominant error in satellite navigation. Other error 
sources like satellite clock deviation and atmospheric effects for example can be compensated 
to a certain degree by the use of high-stability timing equipment (as for example the hydrogen 
maser in GIOVE-B represents), SBAS corrections, multi-frequency Galileo ranging and pilot 
signals, and the future availability of civil signals with a higher bandwidth than the currently 
available C/A code signal. Especially in high-multipath environments like urban and suburban 
areas, the performance of GNSS receivers is severely affected by multipath propagation. 

Extensive measurement campaigns were undertaken during the last years by the German 
Aerospace Center (DLR) for different scenarios such as the aeronautical, vehicular/pedestrian 
urban, sub-urban and rural environments, to record and model effects caused by multipath 
signal reception. Based on the measurement campaigns sophisticated high-realistic channel 
models have been developed in recent years, which allow for the investigation of multipath 
effects on GNSS receiver performance and which are foreseen as well to support the design 
and development of future navigation signals and high performance multipath mitigation 
algorithms.  

To advance and push the development of those GNSS applications, which currently still 
suffer seriously from multipath reception, areas of work at DLR cover all relevant issues 
related to multipath, reaching from the aforementioned measurement campaigns and the 
development of high-realistic channel models to subsequent hardware/software simulation of 
navigation receivers and the development and assessment of novel mitigation algorithms. 

After an introduction to the aeronautical and urban GNSS channel models developed by DLR, 
a newly developed time-domain sample-true GNSS simulation software is introduced. In the 
subsequent paragraph novel particle-filter based algorithms for multipath mitigation are 
described. Combining these three components (GNSS channel models – realistic GNSS 
simulation – particle-filter multipath mitigation) culminates in the assessment of multipath 
errors in safety-critical applications such as aviation, and the simulation-based verification of 



novel receiver signal processing methods as well as the assessment of navigation signals 
under realistic propagation conditions. 

 

Analysis of Multipath in Aeronautical Environments 

In the last years the usage of GNSS for aviation was a quickly growing field. In this context 
the problem of multipath reception becomes crucial as aviation demands high accuracy 
navigation based upon GNSS throughout all phases of flight and in particular with strong 
requirements for the approach and landing phase. To address this issue future aeronautical 
applications require detailed multipath analyses [14], which can take benefit of the satellite-
to-aircraft navigation channel model (SANCM)  developed by DLR in 2003 [19], which 
found its way into the recommendation ITU 682-2 [21]. This section presents the simulated 
pseudo-range [1] tracking performance of a navigation receiver as function of the satellite 
azimuth γ and elevation θ (see Figure 1) relative with respect to the aircraft, using the 
SANCM and a standard receiver model. The presented results are plotted in polar azimuth-
elevation plots whose interpretation is corresponding to Figure 1. Due to the SANCM 
limitations the results cover an elevation range from 10° to 70° and an azimuth range from 
10° to 170° and 190° to 350°. The limitations of the angular values arise from the physical 
optics model that underlies the ASCM, where the fuselage is modelled as a cylinder [19]. Due 
to that fact physical reasonable SANCM outputs are obtainable only for restricted angular 
ranges. 

 
Figure 1: Azimuth-elevation plot, azimuth angleγ  and elevation angleθ  
 

 
Figure 2 shows the standard deviation and bias of the simulated pseudo-range error for the 
A340 aircraft. The presented simulation results are averaged over 30 approaches, whereas a 
resolution of 5 degree steps for azimuth and a resolution of 10 degree steps for elevation are 
used. To improve the statistics the two symmetry axes of the SANCM [19] are taken into 
account, resulting in 120 approaches per data point effectively. As expected, the delay error 
bias and variance generally decrease with an increasing elevation angle. A dependence on 
azimuth is less pronounced, but the most critical regions appear to be around ±45° and ±135°. 
It can also be seen that the error bias is much smaller than the standard deviation.  
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Figure 2: Standard deviation (left) and bias (right) over azimuth and elevation, aircraft A340 

 

The results of the assessment reveal that the azimuth of the satellite constellation is not 
important while the elevation of the satellite plays the major role for the pseudo-range error 
distribution. Most critical pseudo-range errors are caused by the ground echo path. Due to 
variations of these echoes during an approach their contribution is not permanent. Instead, 
errors of extraordinarily high magnitude occur from time to time when the ground reflection 
has a severe influence [15]. Further investigations show that the pseudo-range error 
distribution is non-symmetric around the true pseudo-range (see Figure 3 and Figure 4, left 
figures respectively). Astonishingly, it is characterized by a long tail towards positive values. 
In the development of aircraft landing systems it is quite common to over bound the true error 
distribution by a wider Gaussian distribution. The results show that this over bounding 
distribution has a significantly larger standard deviation than the true standard deviation of the 
process. The knowledge of such over bounding distributions is very important for the 
certification of the final landing system. 

 
Figure 3: Comparison of pseudo-range error distributions for different C/N0. Simulation (left) and 
calculation (right) . 
 



 
Figure 4: Comparison of pseudo-range error distributions for different C/N0. Simulation (left) and 
calculation (right) . 
 
To verify the simulation results a theoretical analysis based on the SANCM ground echo 
statistics was performed in [15], resulting in an analytical approximation of the pseudo-range 
error distribution (see Figure 3 and Figure 4, right figures respectively). Although these 
calculations can only give an approximation of the true error, the analysis serves as a valuable 
tool to explain and confirm the observations made from the simulation results. 

 

GNSS Multipath Modelling in Urban Environments 

Satellite navigation receivers are most challenged in urban environments. At first, the line-of-
sight signal from certain satellites is often shadowed in urban canyons. Secondly, the satellite 
navigation radio signal is most often reflected, diffracted, and scattered on various objects like 
buildings, cars, trees, and lamp poles in city areas. DLR undertook high-resolution land 
mobile satellite channel (LMS) sounding measurements to investigate these effects which 
culminated in the development of highly realistic GNSS channel models for urban and 
suburban areas [12][16]. 

The channel was sounded at a frequency of 1.51 GHz and a bandwidth of 100MHz, resulting 
in a time resolution of 10 ns. The transmitter was mounted on a Zeppelin which served as 
vibration-poor hovering platform resembling a satellite. The Estimation of Signal Parameters 
via Rotational Invariance Techniques (ESPRIT) super-resolution algorithm was used to 
extrapolate the measured channel sounder data and to increase the resolution in time-domain. 

The model comprises of a deterministic part with a generated scenery for calculating LOS 
signal shadowing and knife edge diffraction for house fronts, lamp poles, and tree trunks. The 
other observables like the number of coexisting echoes, the life span of reflectors, and the 
echoes' mean power are generated stochastically. Within the artificial scenery, every echo is 
initialized at a random position, the excess delays and Doppler phases for each echo are 
calculated geometrically. The measurements for the urban channel model were conducted in 
the Munich city center. 



The main model assumption takes only multipath effects and receiver movement into account. 
The channel impulse response (CIR) ( , )h tτΔ is expressed relative to the LOS signal and 

consists of N discrete echoes: 
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receiver movement and the varying multipath environment. 

An automatic recognition of start and stop times of single echoes from the ESPRIT-processed 
data was performed. Thus, the delay range, the life cycle, and the power distribution for each 
echo were determined. Additionally, the number of coexisting echoes could be calculated. 

The inputs to the model define the scenery, the time-variant receiver speed and heading, and 
the satellite's azimuth and elevation. The model's output is a series of complex, time-variant 
channel impulse responses. Figure 5 shows an example for one CIR output. 

 
Figure 5: Output of the DLR LMS urban GNSS channel model. A single channel impulse response’s 
magnitude and phase outputs are shown. 

 



The model can be sampled at different rates, for the presented work, a CIR rate of R=1000 Hz 
was chosen. To fulfil the Nyquist Theorem regarding positive and negative Doppler, this CIR 
rate allows for a maximum vehicle speed of  
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with respect to stationary reflectors [11]. 

 

Realistic Simulation of GNSS reception in Urban Environments 

Due to its realistic behaviour, the DLR urban model output comprises a high amount of 
drastically time-varying echoes. For the work on hand, echoes with a power of down to 

100 dB− with respect to LOS were taken into account. This led to a maximum of 
approximately 80 echoes in certain situations. 

A simulation system which performs a sample-true simulation directly in the time-domain 
without using any simplifications has to perform the following tasks: 

1. GPS signal generation 

2. interface to channel model output: CIR time series 

3. CIR to finite impulse response filter (FIR) coefficients interpolation 

4. FIR filtering (convolution) 

5. A/D conversion 

6. software receiver module 

a. acquisition module 

b. tracking module and pseudo-range computation 

7. evaluation tool to compare the convoluted signal to the undistorted signal. 

The difficulty in simulating this chain lays in the bandwidth: For the GPS C/A code, a 
simulator sampling frequency of 40 MHz is being used in the presented work. The required 
filtering and channel convolution imposes a very high burden on the simulator software. 
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Figure 6: Structure of the newly developed sample-true GNSS simulation system. 

A new high-efficient simulation system has been developed in C++ to perform pseudo-range 
simulations using the CIR output of highly realistic GNSS channel models. Figure 6 shows 
the general structure. Two implementation details made this GNSS sample-true simulation in 
a reasonable amount of time possible: Firstly, every module runs in an own thread. Thus, all 
threads are connected with circular buffers for concurrent access as shown in Figure 6. 
Secondly, performance-critical parts such as filtering, convolution, and correlation were 
optimized using Intel’s SIMD (Single Instruction, Multiple Data) SSE2 instruction set. Yet, 
the program is still portable and compiles under Windows XP and Debian/GNU Linux. Figure 
7 and Figure 8 show screenshots of the simulator software. Every column represent one signal 
processing module. The six modules in Figure 7 represent the following modules: 

1. GPS signal generation 

2. Low-pass filter 

3. LMS urban channel model CIR output 

4. CIR to FIR interpolation 

5. convolution result 

6. A/D conversion, sampling 

The four columns in Figure 8 display the output of the software receiver module, 

1. incoming signal’s Is and Qs and the replica early, prompt, and late codes 

2. I/Q plane, early, prompt, and late correlation results, pseudo-range computation 

3. PLL and DLL output 

4. correlation function, sampled at 13 instants. 



 
Figure 7: Simulator screenshot 1: signal generation, low-pass filtering, CIRs, FIRs, convolution result, up-
conversion and sampling. 

 
Figure 8: Simulator screenshot 2: code generation, tracking loop results, sampled correlation function, 
and pseudo-range result.



Design of Novel GNSS Receiver Multipath Mitigation Algorithms 

An overview of multipath mitigation techniques is given in the following table. The left 
column represents the class of techniques that attempt to mitigate the effect of multipath in 
different ways. This can for example be achieved by modifications of the antenna response, 
either by means of hardware design or with signal processing techniques (e.g., beamforming). 
The majority of the remaining mitigation techniques are in some way aligning the more or 
less traditional receiver components (e.g., the early/late correlator) to the signal received in 
the multipath environment. To incorporate new signal forms (such as BOC), these methods 
need “tuning” in order to suffer as little as possible from multipath. On the other hand, 
multipath estimation techniques (right column) treat multipath (in particular the delay of the 
paths) as something to be estimated from the channel observations, so that its effects can be 
trivially removed at a later processing stage. For the estimation techniques, there are static and 
dynamic approaches, according to the underlying assumption of the channel dynamics. 
Examples for static multipath estimation are those belonging to the family of maximum 
likelihood (ML) estimators, often using different efficient maximization strategies over the 
likelihood function. For static channels without availability of prior information, the ML 
approach is optimal and performs significantly better than other techniques, especially if the 
echoes have short delay. Finally, dynamic estimators that target the computation of the 
posterior PDF conditioned on the received channel output sequence at the receiver can be 
applied.  

 
Table 1: Overview of multipath mitigation techniques 

 

The classical mitigation techniques modify and shape the conventional early/late detector to 
reduce the impact of multipath. The narrow correlation [2] uses a conventional early/late 
correlator configuration, but their spacing is much smaller than one chip, e.g. 0.1 times the 
chip duration. This will be the reference mitigation method. The Double-Delta [3] correlator 
uses a pair of early/late correlators to form the loop-S curve detector. 



 
Figure 9: Multipath error envelope (left) and  non-coherent loop-S detector curves (right) for the GPS L1 
C/A signal with wide, narrow and double-delta correlator, signal-to-multipath ratio SMR=20dB 

 

For the advanced mitigation techniques a signal parameter estimation problem is formulated, 
which takes the multipath replica explicitly into account. By considering the multipath in the 
signal model the formulation of an asymptotic efficient unbiased estimator is possible, such 
that the multipath bias is implicitly removed. Several strategies have been proposed in the 
literature to implement the ML estimator with low complexity [4], [6].  For the ML estimator 
the complex baseband signal model is a superposition of the LOS component and a specified 
number of replicas, whereas the sum of signals is assumed to be superimposed by white 
Gaussian noise: 
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where z(t) is the received signal, s(t) is the noise-free navigation signal, ai(t) are the complex 
amplitudes and τi(t) the delays of the respective paths, N(t) is the number of paths and n(t) the 
noise signal. The parameters are commonly assumed to be constant for a specific time 
interval. For this interval the signal is sampled and processed batch-wise. In vector notation 
the signal becomes  

( )= +z S τ a n  

Given the Gaussian noise, the likelihood, namely the probability of the received signal 
conditioned on the signal parameters is maximized through a implementation-dependent 
method to obtain the ML estimates of the signal parameters: 
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whereas p(z|a,τ) is a complex Gaussian: 
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The length of the batch vector is L and the variance of the noise is σ2. The unknown number 
of received paths N is obtained through a statistic test. Different path hypotheses are 
commonly compared based upon the estimation residual 
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whereas higher order models commonly are penalized through the test metrics. 

The a-posteriori minimum mean square error (MMSE) estimator [17], which is based on a 
particle filter implementation [5], is also a mitigation technique based on signal parameter 
estimation similar to the ML estimator. The difference of the two estimators is that the MMSE 
estimator is based on the concept of sequential Bayesian estimation. Estimates are not 
obtained independently for each time step, but rather at each time step prior knowledge that is 
derived from the past time steps is used to improve the quality of the estimates. Using the 
sequential Bayesian formulation the number of multipath signals can be estimated directly in 
terms of a random parameter, which is tracked along with the other signal parameters in a 
probabilistic fashion. To achieve this the signal model is extended by the binary random 
variable ei є [1,0], which controls the activity of the paths: 
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Hence, in vector notation the signal for the observation period k becomes 

( )k k k k= +z S τ E a n  

and the likelihood is thus 
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To estimate the posterior distribution p(ek,ak,τk|Zk), Zk={z0,..,zk}, the likelihood is joined with 
a prior density p(ek,ak,τk | Zk-1), which introduces the prior knowledge about the parameters:  
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The prior density, which is not considered by the ML estimator, is obtained from the previous 
posterior through a prediction step, which follows 
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which makes use of the statistical dependencies between successive observation intervals 
through the transition density p(ek,ak,τk|ek-1,ak-1,τk-1). The MMSE estimate is then given by 
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Since the sequential approach takes benefit of the temporal correlation of the channel, future 
sequential algorithms can take advantage of highly realistic channel models, as actually the 
task of channel modelling comes close to the development of a proper characterization of the 
temporal channel statistics through the transition density p(ek,ak,τk|ek-1,ak-1,τk-1). In fact, given 
a channel model is characterized through a Markovian process that follows the transition PDF 
p(ek,ak,τk|ek-1,ak-1,τk-1), the optimal sequential algorithm will use the same density to compute 
the prior PDF p(ek,ak,τk|Zk-1). Thus there are two major benefits for designing future advanced 
mitigation algorithms: On the one hand the statistical model underlying the mitigation 
algorithm can be adapted and trained to fit the model statistics, and on the other hand the 
novel algorithm can be verified when being exposed to the model.  

 

Simulation runs 

To assess the performance of the MMSE multipath mitigation algorithm, three procedures 
could be applied: 

1. Generate GNSS signals with a fixed amount of predetermined multipath disturbances, 
i.e. the direct path plus one or two discrete echoes. This procedure can serve as a 
verification of the algorithm’s capability of tracking discrete echoes but it does not 
provide an insight into its behaviour in realistic environments. 

2. Direct use of CIR measurement data from the DLR urban environment measurement 
campaign. A disadvantage is the limited availability of measurement data and the 
limited amount of measured scenarios. 

3. Usage of the DLR LMS GNSS channel model. This allows for a statistical analysis of 
the algorithm’s performance behaviour due to the possibility of long simulation runs 
for many different scenarios (regarding the satellite’s position and the user vehicle 
trajectory). 

 



Assessment of Navigation Signals under Realistic Conditions Using Measured CIRs 

The complexity of a mobile urban navigation channel is shown in Figure 10. Various 
situations challenge the mitigation algorithm simultaneously: Dynamic LOS blockage and 
shadowing as well as appearing and disappearing multipath signals. 

 
Figure 10: Measurement of urban navigation channel in Munich (left). The section highlighted by the box 
corresponds to a stop of the vehicle at a traffic light. The position of the stop is indicated by the marker on 
the track (right). 

 

Figure 11 shows how a dynamic mitigation algorithm is able to cope with these situations. 
Where conventional tracking algorithms fail, the sequential algorithm is able to detect and 
track the appearing multipath signal, which implicitly removes the multipath errors on the 
LOS estimate. As illustrated the bandwidth of the channel fading process is smaller than the 
tracking bandwidth of the loop during the selected stop period, since the DLL is not able to 
average out the multipath errors. The multipath-induced time-variant tracking error is reduced 
significantly by smoothing the DLL estimate with carrier measurements. If reliable tracking 
of the phase is not available, the carrier smoothing obviously fails (t > 60s). For the MMSE 
estimator the tracking estimate remains accurate, independent of the carrier tracking 
performance. 

 
Figure 11: DLL tracking for the previously highlighted channel section (left). Narrow correlator (red), 
with 10s (green) and 100s (blue) carrier smoothing.  MMSE estimator (right) with LOS estimate (blue) 
and multipath track (red). 



The simulation of highly realistic channels is also valuable for the assessment of the multipath 
mitigation capabilities of novel navigation signals. Commonly these assessments are 
performed for static channel configurations and standard receiver implementations, which are 
useful for obtaining first hints on the expectable performance, but which give only limited 
insight finally, in particular with respect to novel dynamic mitigation algorithms. Figure 12 
shows the results of a simulation stimulated by a measured vehicular and pedestrian channel 
scenario with a BPSK and a BOC(1,1) [8] modulated signal respectively when using different 
types of mitigation algorithms. The results are summarized in Table 2. 

 

 

 

Figure 12: Magntiude of time-delay estimation error over time for vehicular (top) and pedestrian 
scenario.  BPSK signal (left) and BOC(1,1) signal (right). 

 

BPSK / BOC(1,1) Pedestrian Vehicular 

DLL/TED 15.5m / 13.7m 3.8m / 3.7m 

ML+Kalman 11.1m / 10.7m 3.3m / 2.9m 

MMSE 9.2m / 5.9m 2.9m / 2.4m 
Table 2: Summary of algorithm performance depending on user scenario and navigation signal 

 

Even if the advance in average performance is rather small the results show that the more 
advanced algorithms are more robust against exceptional error events, which arise 
occasionally during LOS blockage and shadowing periods. The results confirm also that the 
channel statistics itself can have much more impact on the performance than the shape of the 
navigation signal. Figure 13 illustrates the behaviour of the Bayesian MMSE algorithm in 
some typical urban/sub-urban multipath scenarios. 



 

 

Figure 13: Bayesian MMSE estimator in comparison with DLL under typical multipath scenarios. DLL 
estimate (blue), MMSE LOS estimate (green), and MMSE multipath estimates (red). Top-left: Capturing 
and tracking a close-in static multipath replica. Top-right: Tracking a multipath replica during 
movement. Bottom-left: Coping with multiple simultaneous replica. Bottom-right: Bridging through a 
shadowed LOS superimposed by strong multipath. 

 

Assessment of Navigation Signals under Realistic Conditions Using the DLR LMS GNSS 
Urban Channel Model 

The results of a 120s simulation run are presented. The parameters of the simulation 
parameters are listed in Table 3. In the simulation, the satellite was positioned at an elevation 
of 25° and an azimuth of 135°, i.e. the vehicle was moving away from the satellite. The 
maximum speed was 50 km/h and 3 full stops were included in the vehicle’s trajectory. 

 

Sampling frequency 40 Hz 

Intermediate frequency 5 MHz 



ADC resolution 4 bit 

early-late spacing 1 chip 

PLL damping ratio 0.7 

PLL noise bandwidth 25 Hz 

PLL discriminator 1tan
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DLL damping ratio 0.7 

DLL noise bandwidth 2 Hz 

DLL discriminator 
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Table 3: Simulation parameters 

 

A GPS C/A code signal was generated, low-pass filtered to 4 MHz and convoluted with the 
channel impulse responses at the respective moments using the above mentioned newly 
developed GNSS simulator software. The correlation function was sampled at 13 equally 
spaced instants starting from -1.5 chips to 1.5 chips in 0.25 chips steps. 

 

 
Figure 14: 120s run of a realistic urban scenario with periods of shadowed and direct LOS operation. 
Performance of DLL (blue), Kalman filter (green), and Bayesian MMSE estimator (red). 



 

Figure 15: Normalized cumulative error histogram corresponding to the results shown in Figure 14. 

 

Conclusion 

In this paper we have shown several applications for the simulation of high-realistic multipath 
environments and recent developments in the area of simulation tools and signal processing 
algorithms for navigation receivers. Measured as well as artificial channel data, as it can be 
generated by novel high-realistic channel models, have been shown to be valuable for the 
development and assessment of navigation signals and future receiver algorithms. The results 
confirm that significant advance may be expected from future sophisticatedly shaped 
navigation signals and novel signal processing algorithms. 
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