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ABSTRACT – Advanced driver assistance systems (ADAS) require a comprehensive and
accurate situation model. Often in-vehicle sensors do not provide sufficient quality and
quantity of information to fulfill the demanding requirements. Car-2-Car communication can
be seen as an adaptive sensor that provides additional information regularly but also on
demand. Due to the fact that Car-2-Car communication strongly depends on the penetration
rate, we argue for a seamless integration of Car-2-Car communication as an additional sensor
in automotive sensor fusion. With increasing penetration rate the sensor fusion will
significantly benefit and eventually unfold its full potential. Due to the fundamentally different
measuring principles of in-vehicle sensors and information provided by Car-2-Car
communication, redundancy and complementarity can be leveraged to a great extent, thus,
increasing accuracy, reliability and robustness of the situation assessment.
In addition to a detailed description of the fusion algorithm this paper outlines DLR’s system
architecture for ADAS and an enhanced ACC as an application example to show the potential
of our approach.

INTRODUCTION

Being adevelopment memberof Car-2-Car Communication Consortium, theGerman
Aerospace Center(DLR) takes part in the quickly evolving standardization process of
Car-2-Car communication technology. As already described in (1) this technology offers a
wide range of support for improvement of existing applications and enables new applications
in the field ofIntelligent Transportation Systems(ITS). Great potential for Car-2-Car
communication is seen in driver assistance systems. The focus of the use cases described by
the Car-2-Car Communication Consortium is on supplying information and warnings to the
driver, for example cooperative collision warning, traffic jam warning, decentralized floating
car information.

A lot of these applications rely on cooperative awareness, creating the demand for a certain
rate of market penetration (5% for traffic information propagation, 10% for inter-vehicle
danger warnings) (1). In economics, this effect is called network externalities (2), indicating
that an individual user benefits from a technology only when a certain amount of others use
this technology, too. One possible enabler for the first customers of Car-2-Car communication
technology might be deployment of infrastructure or Internet based services, since these do not
rely on a high penetration rate of Car-2-Car communication.



From the drivers point of view, the scenarios illustrated by the Car-2-Car Communication
Consortium primarily address guidance tasks, and even non-driving related tasks. Driver
assistance systems focus on the interaction modesinformationandwarning. Thinking beyond
the initial market penetration of Car-2-Car communication technology, the use of this
technology becomes more valuable for safety-critical applications with every unit sold.

The use case and the respective technology described in the scope of this paper deals with the
use of Car-2-Car communication in active driver assistance in the driving-related layers
maneuverandstabilizationbut could also be extended to thenavigationlayer. The focus is on
the generic integration of Car-2-Car communication technology into a vehicle’s system
architecture. Therefore, it is treated as a virtual scalable sensor, being used in a sensor fusion
with in-vehicle sensors. Through this abstraction the additional information may be
incorporated into situation awareness of driver assistance systems without making them
directly rely on the availability of a wireless link.

The remainder of the paper is structured as follows. Section 2 gives an overview of the system
architecture and shows how Car-2-Car communication can be integrated as a virtual sensor.
One of the essential components of the system architecture namely the sensor fusion is
described in detail in section 3. Section 4 introducesCooperative Adaptive Cruise Control
(CACC)as a potential application that significantly benefits from additional information
provided by Car-2-Car communication. The paper ends with a conclusion given in section 5.

SYSTEM ARCHITECTURE

Regarding the development of driver assistance systems DLR’s system architecture concept (3)
strongly encourages human-centered development process and design. A service-oriented
paradigm is used for software development and domain modeling following the three layer
model of human driving operation, as illustrated in table 1.

Behavior Assistance
Knowledge-based Navigation

Rule-based Maneuver
Skill-based Stabilization

Table 1: Three levels of control for human action.

Such a system design helps matching the mental model of a function (the driver’s expectation
of a system’s behavior) with the functional behavior itself (understandability). The way to
achieve this goal is being outlined by two methods. Either the driver may learn to use a
technical system (adaption of human behavior) or the machine may be designed to match the
human expectations as best as possible. In the latter case (adaption of machine behavior) the
possibilities are further enhanced by a technology that is able to fit the driver individually.

A great step towards customization (personalization) of assistance functions on the
technological side is the use of Car-2-Car communication. Additionally to the information that
will be distributed by every vehicle regularly (i.e. position, velocity, etc.) using periodic
beaconing, the Car-2-Car communication can be used to retrieve information on demand (use a
certainservice) aiming at optimizing the individual use for the driver.



This additional information may be orthogonal to information delivered by in-vehicle sensors
and might therefore be used to broaden situation awareness. On the other hand, redundant
information may be used to verify assumptions generated by in-vehicle sensor measurements
and increase robustness in case of in-vehicle sensor failures.

Since the quality of in-vehicle sensors and wireless communication is dynamically changing, it
is necessary to be able to prioritize information demands for the Car-2-Car communication
module. This prioritization depends on the demand of driver assistance systems and the
current quality of in-vehicle sensors. To be able to fulfill non-functional requirements like
maintainability and portability we propose the following scheme:

• Each ofn driver assistance systems ADASi has certain demanddi(·) for certain
information. This demanddi(·) is being passed to a situation analysis module. In return,
it receives a certain quality of informationqi(·).

• The situation analysis module prioritizes parts of its environment model using demands
D j(·).

• The sensor fusion module (CODAR – Cooperative Object Detection And Ranging)
knows specifics about the vehicle configuration, including online sensor quality and
Car-2-Car connectivity. Using the prioritized demandsD j(·) it dynamically allocates and
optimizes the use of the available wireless resources, delivering information quality
Q j(·).

The overall architecture overview is illustrated in figure 1.
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Figure 1: Functional architecture involving Car-2-Car Communication

SENSOR FUSION

By integrating this new sensor module in the vehicle system architecture additional
information becomes available. This information might be complementary or redundant to the
information provided by in-vehicle sensors, thus, increasing robustness, reliability and
accuracy of the situation assessment can be gained.



In order to realize these advantages, the information given by different sensors has to be joined
together. This has to be done in a flexible, self-adapting way due to the inherent uncertainty in
the sensor measurements facing varying application requirements. Uncertainty in sensor
measurements occur due to:

• inherent sensor noise (inducing inaccuracy of measurements)

• sensor failures and malfunctioning (resulting in loss and discontinuation of
measurements)

• physical limitations of sensor technology (resulting in incorrect, incomplete or
inaccurate measurements)

The virtualCar-2-Carsensor additionally is subject to:

• unreliability of wireless message distribution

• delay of data processing and medium access

• malicious intruders trying to manipulate the system

A fusion algorithm that joins locally generated measurements with information provided by
other vehicles via Car-2-Car communication has to cope with all these peculiarities
accordingly. For this purpose the fusion algorithm has to exploit causal relations of the
measurements emerging as a result of their redundancy and complementarity. Furthermore, the
recurrence of sensor measurements, e.g. periodic radar measurements or Car-2-Car beaconing,
has to be incorporated and exploited appropriately. Therefore, we decided to use particle
filtering for the sensor fusion and dynamic state estimation. The outstanding criteria is in the
ability of the particle filter to traceably process multiple hypotheses given recurring noisy and
unreliable sensor measurements, nevertheless, still providing controllable computation
complexity.

The key idea of particle filtering is to represent the posterior distribution of the state estimation
by a set of discrete samples, so calledparticles. Particle filters use sequential Monte Carlo
methods for Bayesian inference to predict and update the estimated state on the occurrence of
observations. This allows to carry along several hypotheses each assigned with a respective
weight providing a fast and accurate adaptation to sensor noise and incomplete measurements,
even with complex sensor and state transition models (4).

Similar to other Bayesian filter techniques, such as the well-known kalman filter and its
extensions, the fundamental core of a particle filter is based onpredicationandupdatewhich
repeats recursively. Thus, according to Chen (5) Bayesian filtering can be seen as a recursive
prediction-correction processbased on the following formulas (see also fig. 2).

Prediction:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (1)

xk state space at time stepk
zk measurements at time stepk
z1:k = {zi , i = 1, . . . , k}
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Figure 2: Prediction and Update for Bayesian filtering given observations of two sensors

Update:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(2)

In case of several sensors the measurement z can be seen as a set of measurements{z1, . . . , zm}

with zj generated by sensor j∈ {1, . . . ,m} whereas again each sensor measurement zj can be
composed of several cohesive measurements zj,1, . . . , zj,d (e.g. latitudinal positionlat,
longitudinal positionlon, plus the respective accuracieslat acc andlon acc).

The state space x which can be composed of several state variables{x1, . . . , xT} includes all
variables of interestthat are required to fulfill the respective application demands. The
variables of interest do not have to be sensed individually by a sensor but may also be inferred
from other variables of interest based on their causal relation (by predictive and diagnostic
reasoning). For the dynamic state estimation the transition of the state space from its
Markovian parents is based on a respective transition model. E.g. a microscopic car-following
movement model, such as the Krauss model (6) can be used as the basis for vehicle tracking.

The likelihoodp(z|x) of a sensor measurement z given a certain state x encodes the
measurement noises, unreliability and trustworthiness. Hence, this likelihood has to be chosen
with special diligence. The likelihood function represents a core component for multi-modal
fusion of in-vehicle sensors and the virtual Car-2-Car sensor, and determines success or failure
of the whole system. It has to take into account qualitative aspects related to the measurement
noise and quantitative aspects resulting from false positives (i.e. false detections) and false
negatives (i.e. undetections) emerging from the above mentioned measurement errors.
Furthermore partial redundancy, e.g. due to partial overlapping detection zones, has to be
addressed in the likelihood function.

Thus, appropriately configured particle filtering provides a flexible and versatile solution for
dynamic state estimation incorporating multiple sensors with inaccurate and unreliable
measurements. An implementation of an ADAS utilizing Car-2-Car communication as
additional sensor is provided in the following section.



COOPERATIVE ACC

The adaptive cruise control (ACC) system is well-known and standardized (7). Additionally to
a cruise control system, it governs the distance or time-gap to the preceding vehicle. It uses an
environment sensor, like radar or lidar technology to detect and range the preceding vehicle.

The conventional ACC system has been reorchestrated from several base services, which have
been designed according to the three layer model (see figure 3). For seamless deployment
DLR’s service-oriented architecture framework DOMINION is used. Specialized code for
integration in different runtime environments (RTE) is generated from the formal service
descriptions (8).

The major elements in thestabilizationandmaneuverlayers of an ACC system can be
described as follows.

• CODAR Fusion Engine– This component creates an image of the local surrounding. In
our case this at least involves an environment sensor (radar, lidar) and Car-2-Car
communication providing at least position data, e.g. determined by the Global
Navigation Satellite System (GNSS).

• Situation Analysis– Analysis of the local environment around the vehicle, for the ACC
operation the area in front of the ego vehicle is most important.

• Maneuver Planning– After the analysis of the situation in the local environment, a
trajectory is being planned. In the case of an ACC system, this means planning of
approach behavior towards the preceding vehicle.

• Maneuver Execution– The trajectory is being executed by the available actuators. In this
case the actuators for longitudinal control (throttle, brake) are used.
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Figure 3: Deployment of the ACC services towards different research facilities

Through the use of Car-2-Car communication, sensor specific problems (e.g. detection of
lateral distance using radar technology) and general drawbacks of current in-vehicle sensors
are being addressed:



• Limited field of view– The field of view of a radar system, especially the detection angle
is limited. This hinders the continuous distance estimation to the preceding vehicle in
scenarios with narrow curvatures or hilly courses.

• Poor foresight– Furthermore, detection and ranging systems such as radar, lidar or
camera are not capable of detecting objects located behind their reflection points. Thus,
it lacks lookahead functionality, meaning that there is no way to detect what the vehicle
in front of the preceding vehicle is doing, which of course influences the behavior of the
preceding vehicle. Knowledge of this would improve the control strategy for
approaching and following a vehicle.

• No maneuver recognition– Radar, lidar or camera sensors merely measure the effect of
maneuver, e.g. the decreasing distance, if the preceding vehicle brakes. This delays the
reaction time of the control strategy. If instead the causes, i.e. the initiation of a braking
maneuver is made available to the ego vehicle via Car-2-Car communication, this boosts
the use of cooperative ACC in dense traffic situations.

• Restricted identification– Radar, lidar or camera sensors are normally not capable of
directly identifying vehicles. Thus, measurements can not easily be assigned to
individual vehicles, and measurements caused by several vehicles can in certain
constellations not be separated directly, e.g. due to a limited angular resolution of
radar (9).
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Figure 4: Fusion Model

Information additionally provided via Car-2-Car communication can supplement the
information gathered from in-vehicle sensors filling the above mentioned gaps and increase the
accuracy and robustness of the system. The main focus of this paper lies in the provisioning of
position related information in order to extend the field of view and enable a better foresight.

Therefore the estimated distance to a relevant vehicle is determined by two variables of interest
namely theRadar Measurement Rand theRelative GPS Distance Gwhich is determined by
theEgo Position Measurement Eand theC2C Position Measurement C. Figure 4(a) shows the
static fusion model with the random variablesD, G, R, E, Cand their causal relations as
directed arcs. Evidence is provided to the variablesRandE from the in-vehicle sensor system.
Evidence to variableC is provided by the Car-2-Car sensor system. TheRelative GPS Distance
G and theRadar Measurement Rshare redundant information due to overlapping detection



zones, thus increasing accuracy and robustness for detection and ranging. Additionally, the
Relative GPS Distance Gcomplements theRadar Measurement Rin the relevant detection
zone which is not covered byRadar Measurement Rdue to its physical limitations.

In order to exploit temporal causal relations between recurring measurements in dynamic
traffic environments, the distance estimation is created as a time-sliced prediction-correction
process. A particle filter with 1000 particles as described in the previous section is used for the
dynamic state estimation and sensor fusion. The respective dynamic fusion model is depicted
in figure 4(b).

In order to fulfill all requirements specified by the set of driver assistance systems
{ADASi , i = 1, . . . ,n} the fusion engine dynamically adapts its structure and evidential
instantiations. Thus, the fusion engine adapts to the most demanding requirement given the set
of demands{di(I ), i = 1, . . . ,n} for a variable of interestI which is imposed by the set of
ADAS. The adaptation has to be performed in accordance with the evidence already given. For
the CACC this means that in cases where the state estimation based on available sensor
measurements already fulfills the given requirements no other evidence has to be incorporated.
But in cases where the requirements are not fulfilled additional evidence provided by the
Car-2-Car sensor system (e.g. high accuracy position information, heading, speed, etc. of the
target vehicle) will be exploited. Therefore this information will be prioritized on the wireless
channel accordingly because of its increased importance for the problem solving.

Figure 5 presents a screenshot of our initial simulations showing the cooperative situation
assessment of the ego vehicle. The figure shows an increased availability of the position
estimation which extends the limited field of view of the radar sensor. In overlapping detection
zones, i.e. the unobstructed field of view of the radar sensor, a higher accuracy of the position
estimation for vehicleA,E,G(F is obstructed byA) is given. This can be seen by a denser
distribution of particles for the vehicles within this area. The vehiclesB,C,F,Hwhich are not
detected by radar but are located in the coverage area of Car-2-Car communication show less
accurate position estimations due to lower accuracy of GNSS positioning and no redundant
measurements of the radar sensor. But still the mean of the particle distribution shows a quite
exact match with the real vehicle position. Thus a sudden lane change of vehicleB, E or even
G causing the preceding vehicleA to brake hard can be detected in time. This enables a much
better foresight for CACC.

Figure 5: Cooperative situation assessment for Cooperative ACC



CONCLUSION

Summarizing, this paper presented the integration of Car-2-Car communication for sensor
fusion in future advanced driver assistance systems. These systems will adaptively exploit
information given by in-vehicle sensors as well as other vehicles or roadside units in their
vicinity. In order to join the heterogeneous information and provide a sophisticated estimation
of the current situation we proposed to use particle filtering for the dynamic state estimation
and multi-sensor fusion. This fusion engine will be a key component of our service-oriented
system architecture.

To show the applicability of our approach we introduced an enhancement of ACC, namely
Cooperative ACC, which integrates position information provided by the vehicles in the
vicinity via Car-2-Car communication additionally to radar or lidar sensor measurements. The
result was a high-precision image of the current driving situation which allows a fast and
accurate situation assessment and thus increases safety, efficiency and comfort of future
driving.

Next steps will be the integration of our approach into our test vehicles in order to perform real
test runs and evaluate the concepts under realistic conditions.

REFERENCES

(1) Car-2-Car Communication Consortium. Manifesto. http://www.car-2-car.org.
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