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Abstract  

The short revisit time in the ERS Tandem experiment shows the data quality reachable when the temporal coher-

ence is high. Sentinel 1 [5] will have a revisit time of 12 days. Using the 3 days repeat data from the ice phase of 

ERS1, we evaluated the improvements for distributed scatterers interferometry. Slow ground motion, visible in 

many successive images, allows the estimation of the subsidence rate from the interferogram stacks and not only 

from Persistent Scatterers. Interferograms at multiple spans can be optimally combined. The dispersion of the 

subsidence rate estimate obtained in one year using interferogram stacks compares favourably to a PS, if the 

number of pixels used is greater than say 100. We compare the Cramér Rao bound for the subsidence estimates 

for a Markov model of the temporal decorrelation  to an approximated optimal linear estimate found from the 

covariances of the interferograms at different spans. The unbiased subsidence rate estimates are consistent.  

 

1 Exponential decorrelation: the fit 

Many targets in a SAR image are not coherent over 

long temporal intervals, but nevertheless they can be 

exploited for motion estimation using "conventional" 

DInSAR techniques. Most approaches can be gener-

ally defined as interferogram stacks [2, 4]. We study 

target decorrelation for interferogram stacks, and pro-

vide a statistically consistent estimator, to be used 

mainly for the assessment of the ground motion accu-

racy. If we suppose that the time decorrelation mecha-

nism is primarily due to the motion of the scatterers in 

the resolution cell [6] we can model this as a 

Brownian motion, or the sum of many successive in-

dependent and equally distributed motions. It is pos-

sible to substitute the variable describing motion in 

the line of sight with the variable describing the un-

wrapped phase because of the linear relation between 

the two. The decorrelation law is: 
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A Brownian motion in the look direction could have a 

standard deviation in a day of 1Bd =1mm/¥(day). This 

corresponds, for a single scatterer, to a time-constant 

2=40[days] in C-band. If the resolution cell contains 

many scatterers so that the observed reflectivity is the 

sum of elemental contributions, then the coherence 

shows the same exponential decay with time, pro-

vided that each element is affected by the same inde-

pendent Brownian motion. An alternative Markov 

model making the assumption that the elemental scat-

terers in the resolution cell change at random but sud-

denly the reflectivity leads to the same exponential 

decorrelation. 

1.1 Validation with real data 

    The results here discussed are based on scenes 

from an ERS-1 Ice-Phase data set (Track 22, Frame 

2763) acquired over central Italy. During this acquisi-

tion phase, the revisit interval was 3 days. The images 

were range over sampled  2:1 and co-registered. A 

portion of the scene was then selected (20×15km, 

range× azimuth). It is near the Fiumicino (Rome) air-

port and shows the last part of course of the Tevere 

river [6]. We studied the decorrelation dynamics for 

the time span of a few weeks. We worked with a re-

duced set of 17 images in the range ±250m (Bperp).  

 

 

 

 

 

  

 

 

 

Figure 1 Histogram of the log coherences (best 60%) versus span 

We applied a spectral shift filtering in the common 

band and spatially averaged on windows of 12×12 

pixels (range over sampled 2:1). For each window, we 

L1 fitted an exponential decay with variable initial 

coherence �0 and time constant 2. The histograms of 

these two parameters are presented in [6]. The aver-

age time constant is  about 40 days. In  figure 1 we 

show the histogram of the 60% best fitting log-

coherences as a function of the time span of the inter-

ferogram, after rescaling with respect to the time con-

stant and the initial coherence. The histogram is cen-

tered on the line with slope -1, as in the  exponential 

model.    



Implication for 12 day repeat pass 

Making use of the above model we can predict the 

coherence for a given time span and compare it to the 

12 day coherence from that measured from the data-

set. A typical value we would expect is 0.4-0.5. A 

change in the revisit time impacts on resolution (lar-

ger swaths imply coarser azimuth resolution) and 

number of available interferograms. These two effects 

broadly compensate: more interferograms means 

more  samples in time, coarser resolution means less 

samples in space. However, for caution, we neglect 

the increase  of interferograms and consider only spa-

tial averaging to improve the interferogram quality. 

Moreover, the Sentinel-1 system shortens the revisit 

time to 12 days without reducing the final resolution, 

thanks to the augmented system bandwidth [5]. The 

big difference is in the temporal decorrelation for 

which we have to consider the combined effect of �á  

and 2.  The Cramér Rao bound for the phase variance 

gives the well known expression  [1]: 
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with L being the number of independent samples av-

eraged. With the exponential model of coherence, the 

expected dispersion of the interferometric phase for a 

wide variation of �á  from 0.3 to 0.7 increases 4-5dB 

moving from 12 to 35 days. Conversely, operating 

Sentinel-1 with a halved spatial resolution in order to 

bring the revisit time to 6 days, we lose 1-2dB as the 

increased temporal coherence does not compensate 

the resolution degradation. 

 

2 The model for the distributed 
scatterers 

Starting from the results presented in the previous 

section, we introduce the model to be used for the dis-

tributed scatter. The input is a distributed target made 

by L independent samples, subject all to the same 

subsidence and decorrelation. The index n is the dis-

crete time at which the acquisition has been made, 

and the scene decorrelation comes out from the AR(1) 

model, so far discussed, i.e. a white source un that 

feeds a single pole filter. For the GS1 case we will 

assume the pole equal to: 
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The pole is modulated by the subsidence rate. White 

noise nn ,to be added, accounts for the other target 

decorrelation sources. The L pixels phases can be  av-

eraged to get a single "super-pixel" with an SNR in-

creased by a factor L. Finally, the Atmospheric Phase 

Screen [3] due to the water vapor, adds to each image 

a white phase noise, an that is identical on all the L 

looks as long as their mutual distance is not greater 

than say 500m. In this term, we can include also the 

target elevation error contribution. 

2.1.2 DInSAR Subsidence rate estimate 

    The optimal estimation of the subsidence rate, v, is  

complicated by the presence of target decorrelation, 

additive noise (clutter and thermal) and multiplicative 

noise (APS). In particular, this last contribution makes 

the PDF of the observations non- Gaussian. As a mat-

ter of fact, we have observed that in literature most of 

the "interferogram stacking" techniques are heuristic 

combinations of interferograms weighted according to 

a mixture of coherence and temporal baseline. 

    We will derive a bound for the estimate of the sub-

sidence rate and we will define a suitable DInSAR-

based estimate. We approach the problem here by ap-

proximating the APS phase screen as an additive 

noise. Moreover, we assume large SNR, that is L>>1, 

and relatively large scene coherence, say  �>0.5, that 

allows us a simple derivation of the ML estimate of 

the subsidence rate as well as its Cramér-Rao Bound. 

    An exact ML estimate can be derived by a more 

refined statistical analysis. This has been done in [7],  

splitting the problem of estimating the subsidence rate 

in a two steps, where first the interferometric phases 

(including the APS) are retrieved as ML estimate 

from the complex images, and then the subsidence 

rate is retrieved from the phase series. This approach, 

that cascades two optimal estimates, is not overall op-

timal in strict statistic sense, but it is likely to be 

close. 

    In the other approach [6], the model is linearized 

and the subsidence rate is estimated in one shot. The 

results achieved by the three different approaches 

have been compared: although the estimators are dif-

ferent, they fit very well one against the other, and get 

close to the value that we find in simulations. 

2.2 Simplified spectral properties 

We consider a fixed pixel, so that APS and ther-

mal+clutter merges in a single, white noise added to 

the take and we account later for the averaging over L 

samples. The contribution of temporal decorrelation 

to the interferogram n,m is related directly to the 

AR(1) parameters. The center frequency of the power 

spectrum depends on the subsidence rate. We can thus 

estimate v in the frequency domain. Moving to the 

DFT:  
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we see that Zk is a nonstationary, incorrelated, zero-

mean, Gaussian circular process. Its likelihood is: 
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and the covariance matrix is diagonal, its elements 

being the power spectrum. The log-likelihood is thus 

blind with respect to the source phase and information 



on v is contained in the location of the peak of the 

PSD. The ML estimator is the maximizer % of the av-

erage power of the whitened spectrum: 
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where the Sk  are the power spectral density elements 

of the sequence zn . The spectral analysis allows us to 

provide an alternative formulation of the ML. We can 

in fact compute the periodogram by applying the DFT 

to the sampled estimate of the process and taking the 

modulus, or transforming the autocorrelation. The two 

formulations lead to two approaches in the ML esti-

mate: 1. apply a proper weighting to the N images 

(i.e., the DFT), take the squared amplitude | Zk |² , 

then estimate v by the ML; 2. Compute all the N(N-

1)/2 interferograms, and perform the proper weighting 

- the DFT operator and then implement the ML esti-

mate. The two approaches correspond to [6][7]: al-

though in the end they get similar results, they are dif-

ficult to compare. The whitening operation could be 

performed in the time domain simply for an AR(1) 

model (no noise). The perfect whitening is achieved 

by the 2-samples FIR: 

� � 1exp1)( �� zjzH w IU  

This allows us to interpret the subsidence rate as the 

phase of the average of the interferograms taken at the 

shortest span (12 days), or identically, as the argument 

of the first sample of the autocorrelation estimate. If 

the thermal, clutter and atmospheric noises add up, we 

have a filling of the spectrum, that can no longer be 

deconvolved by a simple 2-samples operator. We need 

many more spans, or a higher order whitening. We 

can for example truncate to an order M the autocorre-

lation sequence and compute the whitening operator 

by identifying the AR(M) process, e.g. by inverting 

the Yule-Walker equations. In [5] the estimate of the 

velocity rate is provided as a function of the inter-

ferograms at all the spans. 

 

3. Cramér-Rao Bound 

    The Cramér Rao Bound for the rate estimate is de-

rived by exploiting the log likelihood. The expression 

leads to the simple interpretation that the most rele-

vant spectral contributions are those with a high de-

rivative and a low power (noise floor). We remember 

that the spectra are circular. The spectrum can be 

evaluated either as a convolution of the spectrum and 

the DFT squared of the window or as the DFT of the 

windowed autocorrelation. We approach two different 

cases: (1) the window size is so large that the convo-

lution does not affect appreciably the evaluation of 

the CRB, or (2) the window size is so small that 

dominates the performances. For a rough value of N, 

we observe that as the autocorrelation decades as 

0.746, so its lag p=7 is 10dB lower than lag p=0. We 

expect this to be the case when N = 30 (yearly takes). 

We have then, if centered on v=0; 
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This expression is not suited for a closed form solu-

tion, and can be integrated numerically to derive the 

CRB. Ignoring clutter and atmospheric noise, we get 

a lower bound for the subsidence rate when affected 

only by temporal decorrelation. Converting into sub-

sidence rate variance, we have to average on the L 

looks times N-1 interferograms. We expect the best 

accuracy, but thermal and atmospheric noises leads to 

higher variances. 
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With added noise, the best results need more inter-

ferogram spans: longer delays see greater phase 

shifts, but the coherence is lower. For N small, the 

PSD of the AR(1) + noise process is to be convolved 

with a window whose lobe is quite large. The result-

ing spectrum is quite smooth, and the variance of the 

estimate is worsened. Loosely speaking, we can ap-

proximate the PSD of the AR(1) process + noise as a 

the PSD of a complex sinusoid (whose frequency is 

the subsidence rate) plus noise, and this approxima-

tion holds as far as the main lobe of the AR is small 

compared with the window bandwidth 1/N. In this 

case, we expect that the accuracy of subsidence rate 

estimation is approximated by the N�³ (N small, re-

member) power law found for a PS. 

 

4. Rate error budget estimate 

    The analysis of DInSAR allows us to define an ap-

proximation, depending in particular on N, L, !, the 

APS phase noise variance, and the thermal, clutter 

and volumetric decorrelation. This variance of the es-

timate of velocity is the combination of two contribu-

tions. When the number of image spans a time inter-

val shorter than the decay time of the coherence, there 

is no relevant difference between the spectral proper-

ties of the AR(1) and the PS case. The rate error has 

the same expression that holds for PS. 
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and 1t is the variance of the travel path due to the 

APS. Notice that the error rate variance decreases 

with N³, as for the PS case. When the number of im-

ages becomes large, and longer than the time decay of 

the coherence, the temporal decorrelation becomes 

more and more influent, leading to the lower bound 

seen before. In absence of APS, clutter and thermal 

noise, it predicts a decrease of the variance according 

to N. The actual behavior of the variance may be 

qualitatively modeled as a mixture of the two. A plot 

of this behavior is given in Fig. 2. The figure has been 

computed by assuming conditions very close to those 



for PS interferometry. The scene short term coherence 

was assumed 0.6. If we exploit the combination  of 

interferograms taken at T = 12 days, the overall co-

herence of each interferogram, including temporal 

decorrelation, would be  �= 0.4. The contribution of 

the APS is still dominating, leading to a rate error of 

3.4 mm/year. This result is worse than in the actual PS 

case since then it is possible remove the APS by esti-

mating it in each image. Notice that L = 30 looks of 

100 m2 each would correspond to about 200 measures 

in the APS lobe, in the best case, but less in practice, 

given the sparsely coherent DInSAR pixels. But it 

may be possible to separate within an APS lobe the 

contributions of the areas where we expect to have no 

subsidence, in order to estimate and abate the APS 

itself. Finally, notice that the floor provided by the AR 

model is very close, at 2.9 mm/year. A further in-

crease in the number of acquisitions would not lead to 

a significant improvement, a part from that of adding 

an independent measure (so a factor N-1/2). Second, 

increasing the number of looks would not change too 

much the result, as it would not affect the APS error. 

Therefore, we can conclude that the plot represents a 

good possible balance between different and contrast-

ing effects. An interesting conclusion drawn in [6] is 

that the exponential model of the coherence, so nicely 

fitting in Figure 1, implies a substantial uniformity of 

the behavior of the subsidence rate estimate with fre-

quency, at least in the interval between 1.5 and 6 

GHz.  

 

5. Conclusion 

    An evaluation of the subsidence rate error budget 

has been carried out for DInSAR interferometry, us-

ing the 3 days revisit interval data over Rome taken 

by ERS - 1. The results of modeling temporal decor-

relation with a Brownian motion depend upon the 

number N of images used and the revisit interval T. 

Assuming a short term target coherence of 0.6 and 

averaging measures over L=100 independent looks 

the dispersion of the velocity estimate is lower than 4 

- 4.5mm/year for a 12 days revisit time.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  Accuracy in the estimate of the subsidence rate in 

mm/year using interferogram stacks on L pixels undergoing the 

same atmospheric disturbance. N is the number of images, taken at 

12 days interval. The black line reports the behavior of a single PS. 
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