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ABSTRACT

In this paper we have presented an indoor positioning sys-
tem for pedestrians combining Wireless LAN fingerprinting
with foot mounted inertial and magnetometer sensors. To
achieve a system capable of real-time processing we have
employed a hierarchical Bayesian filtering approach using
cascaded extended Kalman filters. The accuracy of the com-
bined system was quantitatively evaluated in a real build-

ing against ground-truth. Our results show that accuracy is
much higher than using Wireless LAN fingerprinting alone;
in our experiment we achieved a positioning error (standard
deviation) of roughly 1.6 meters. The approach requires
only minimal fingerprinting effort since the high accuracy
is achieved by the support of the inertial-based step estima-
tion in the overall estimation process.

1 INTRODUCTION

Reliable and accurate indoor positioning remains as one of
the greatest challenges in the area of personal navigation.
Outdoors, in areas of adequate visibility of GPS satellites,
the use of dedicated portable navigation devices or cell phones
and PDAs equipped with GPS receivers has increased dra-
matically over the last few years providing personal naviga-
tion in vehicles and also pedestrian navigation in cities and
recreational environments.

The indoor environment is problematic for two rea-
sons: firstly, the desired accuracy for meaningful location
dependent services is often very much higher than outdoors;
and secondly, the difficulty of GPS reception results in much
greater deficiencies in accuracy and availability. Infrastruc-
ture based approaches are being used indoors, as well as
additional sensors worn by the user. Infrastructure systems
fall into two categories: dedicated wireless arrangement (for
example the Cricket system [1] or Ubisense [2]), or adap-
tation/usage of existing communications infrastructure like
Wireless LANs [3, 4, 5, 6]. In the majority of buildings in
which people require personal navigation (e.g. to be guided
to a certain room or office) there now exists a dense in-
stallation of WLAN infrastructure, often operated by dif-
ferent operators, for example in airports, public buildings,
and company premises.

In order to achieve truly ubiquitous personal position-
ing and navigation indoors, we believe a successful approach
will need to be as autonomous as possible, requiring a min-
imal amount of additional standardization and dedicated in-
frastructure, whilst building on the rapid advances in portable
data processing and sensors. Additionally, techniques where
the location is actually computed partially or fully in the



infrastructure will always remain questionable in terms of
privacy considerations.

In this paper we will present a novel approach that
combines an existing WLAN infrastructure with a simple
inertial and magnetometer sensor suite mounted on the shoe
of the pedestrian user. The goal is to obtain and process
all the sensor data locally, and without any need of regis-
tration with the local infrastructure. Since we will employ
WLAN fingerprinting based on the signal power (e.g. [7]),
the only information needed at the local device will be a
fingerprinting database for the local building, which can be
maintained and distributed by an entity independent of the
local wireless infrastructure domain. The goal is to use as
few calibration locations as possible and to rely on the short-
term accuracy of foot mounted inertial dead-reckoning (for
instance Zero Update based techniques, [8]) ”in between”
these points. The role of the WLAN positioning here is
therefore to provide long term accuracy in the area of in-
terest. In contrast, in the work of Woodman et al. [9] very
coarse WLAN positioning was only used to reduce the ini-
tial ambiguities of map aided inertial navigation. Suitable
(approximate) Bayesian sensor fusion algorithms provide a
close-to-optimal estimate of the position that can be effi-
ciently implemented on the end-user’s device. The work in
[10] describes how fingerprinting can be simplified by using
an INS (not foot mounted) during calibration and how actual
performance is enhanced during positioning. Our approach
using a foot mounted Inertial Navigation System (INS) will
perform better in situations where WLAN positioning is not
available for any significant length of time during which a
standard INS approach (no foot mounting; no zero update)
would drift too far. This also applies to the work of [11]
in which no true 6-degrees-of-freedom ZUPT based inertial
processing was performed, but only stride estimation (an-
gular change and stride detection). Furthermore, the particle
filter used in [11] relied on a known building layout. The use
of WLAN fingerprinting fulfills the requirement of need-
ing no association with the actual access points and is rel-
atively energy efficient. Importantly, the scheduling of the
WLAN receiver’s duty cycle can in principle be controlled
by the fact that the user’s motion can be detected from the
foot mounted sensors - meaning that WLAN reception is
only needed when the user is walking. The fingerprinting it-
self is a very simple process, requiring measurement of the
available WLAN stations approximately every 5 meters that
each lasts just a few seconds. The large rectangular office
floor used in our actual experiments was thus added to the
database in a matter of minutes. Finally, we must add that
estimation of the orientation of the user is important for any
real-time navigation service. This is very difficult without
the use of additional sensors such as the ones proposed in
this paper.

Our work presents both the pre-processing of the WLAN

and dead-reckoning sensors (Sections 2 and 3) as well as
theoretical basis for the overall sensor fusion (Section 4).
We have adopted a hierarchical approach whereby the in-
ertial system is processed by its own Bayesian filter to es-
timate individual steps of the user; these estimates are then

combined with the estimate of the location from fingerprint-
ing. This decoupling [12] allows the estimation filters to run
at their local sampling rates and reduces overall complexity
without suffering from significant loss of final estimation
accuracy; this coupling of two Kalman filters in this context
is novel to the authors’ knowledge. The software and hard-
ware implementation of our real-time positioning system is
described in Section 5, along with a quantitative evaluation
of positioning accuracy that was tested against ground-truth
locations. We achieved results that are as accurate as those
in [11], but we did not need maps and use a system that has
inherently lower complexity.

Our Bayesian estimation algorithms were in fact inte-
grated in a larger context management framework that sched-
ules and gathers sensors’ inputs and triggers the pluggable
estimation processes. This will allow additional sensors to
be readily added in the future. The resulting system was
shown to provide sufficient accuracy to allow a particular
office to be found by the user. The paper concludes with
recommendations for extensions and directions of further
work in Section 6.

2 WLAN POSITIONING

There are two primary methods for location determination
from Wireless LAN [13, 14] based around Received Signal
Strength Indicators (RSSI). One method is based on propa-
gation models, using estimated degradation of signal strength
over distance in space from the known location of access
points and transmit power - typically using an indoor mod-
elled as established by the COST 231 standards [15], these
calculated distances are then typically used to estimate a lo-
cation through trilateration [4]. The other is empirical, rely-
ing on storing pre-recorded calibration data in order to gen-
erate an RF map of a building [16, 3, 17, 18]. The location
of a Mobile Station (MS) can be estimated by correlating
its RSSI measurements with the RF-map constructed, from
here on this method shall be called ‘Location Fingerprint-
ing’.

Location Fingerprinting requires time to train, and re-
sults can be dependant on the time of training as obstruc-
tions created by differing numbers of people can affect cal-
ibration sample data, however wireless infrastructure infor-
mation, such as the exact location of the BSs/APs, is not
required. Only the reference location of the RSS samples
collected during the RF-map construction is needed. Fur-
thermore, fingerprinting can operate using only one active
BS/AP - but it will likely produce poor results over large
areas. The main drawback of this method is that genera-
tion and maintenance of the RF-map is time-consuming and
expensive when performed over wide areas, but it typically
results in higher accuracy over deterministic methods. Fur-
thermore, location fingerprinting algorithms can be classi-
fied into two main categories: deterministic and probabilis-
tic. Deterministic algorithms are using a set of constant lo-
cation fingerprints, which includes mean vectors and stan-
dard deviation vectors of RSSI. Probabilistic algorithms (as
used for WLAN location estimation herein) model the loca-
tion calibration points with RSSI probability distributions.
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Figure 1. System overview of the WLAN fingerprinting subcom-
ponent

The system has two phases of operation, a calibra-
tion phase, and a location calculation phase, which can be
initiated after calibration. During the calibration phase a
database of location fingerprints is established using RSSI
measurements, at a number of calibration points, each ref-
erenced to a physical location. This can be seen in Fig. 1,
with the RSST Manager collecting readings from the WLAN
driver, and processing this information to establish a finger-
print, which is then stored into the fingerprint database. This
process is then repeated until calibration points have been
set for the entire area of interest. The more calibration points
used, the greater the accuracy of the system. However if cal-
ibration points are place too close together, such that there
is little difference between RSSI variation of access points,
i.e. they have very similar fingerprints, little advantage is
gained, and training time becomes infeasible for large areas.
In the positioning phase, continual scans from the wireless
driver are processed by the RSSI manager. These readings
are passed directly through to the positioning engine, which
calculates a distance for each of the calibration points, com-
paring each one to the observed readings. The distance for
each calibration point is defined by the following equation:

Dp = > > |(xir — xi5)pyjl (1)
i

where x;, is the observed RSSI for the access point ¢, x;;
is the recorded RSSI stored in the fingerprinting database,
and p;; is the probability of measuring the reading at the
given calibration point. Summing over all access points,
then gives a distance calculation for each calibration point
denoted Dy. The results are collated, and the minimum
distance is taken as the location estimation. To increase sta-
bility of the given location, a best-of-three approach is used
to establish the estimated location. If no dominant location
is determined, the latest estimate is returned as the current
location.

3 INERTIAL NAVIGATION FOR PEDESTRIANS
The use of inertial sensors is becoming widespread for pedes-
trian navigation, especially for indoor applications. Basi-
cally two approaches can be distinguished. The pedometer-
approach employs an accelerometer for detecting individual

steps whilst the stride length and stride direction are them-
selves estimated using additional sensors, such as global
navigation satellite systems (GNSS), or a priori information.
Given a detected step, its length and its direction, a person’s
position can be determined by dead-reckoning [19, 20, 21].
Other methods have been studied in [22]. The latest ap-
proaches are based on full six degree of freedom (6DOF)
inertial navigation. A foot-mounted 6DOF strapdown iner-
tial platform comprising triads of accelerometers and gyro-
scopes is used to dead reckon via a conventional strapdown
navigation algorithm. An Extended Kalman filter (EKF)
runs in parallel to the strapdown algorithm. Rest phases of
the foot, which are detected from the accelerometer signals,
trigger zero-velocity (virtual) measurements that are used to
update the filter (ZUPT). Due to the regular ZUPT measure-
ments we can estimate and correct the drift errors, which
accumulate in the strapdown solution [8, 23, 24, 25]. It was
shown in [8] that this pedestrian dead-reckoning (PDR) ap-
proach can achieve very good performance even with to-
day’s low-cost micro-electro-mechanical (MEMS) sensors,
because the ZUPTs are so frequent that errors build up only
slowly during each step the pedestrian makes.

The benefit of combining foot-mounted inertial sen-
sors with nonlinear map-matching techniques or additional
nonlinear / non-Gaussian sensors typically used in an in-
door scenario has been revealed in [26] and [27]. Compara-
ble results were shown for a 2.5 D environment in [9]. The
benefit of integrating a pair of platforms that are mounted on
each of the pedestrians’ feet respectively has been studied in
[12]. In these sensor fusion approaches foot displacement
and heading change values from the foot’s PDR filter are
computed at each step and are exploited as measurements
within a higher-level main fusion filter. In the following the
details of the inertial PDR filter are addressed.

3.1 ALGORITHM FUNDAMENTALS

A strapdown navigation algorithm [28] processes the vector
of acceleration and turn rate measurements z; = [a, wl]T
which is provided by the inertial sensors, to compute po-
sition r;, velocity v;, and attitude ¥;. In parallel an EKF
is used to estimate the errors of the strapdown calculations
[29]. In our simple implementation 9 states are estimated
by the filter: position errors dr;, velocity errors §v; and at-
titude errors ¥;. In a more elaborate estimation one could
also estimate accelerometer biases da; and gyroscopic bi-
ases dw;. Additionally, our implementation incorporates a
magnetometer to align and stabilize the heading as an addi-
tional measurement. Hence the inertial filter provides esti-
mates of position, velocity, and attitude in terms of a Gaus-
sian Probability Density Function (PDF). In the subsequent
processing only position and heading are states of interest:

m=<a>7 )

where U, is the yaw angle derived from ¥;. From the pos-
terior PDF of the inertial filter the (marginalized) posterior
p(xi|zi, . . ., 2z0) can be derived straightforward.

)



3.2 REST PHASE DETECTION

The reliable identification of the foot’s rest phases is cru-
cial for the update of the PDR filter. Different approaches
have been proposed to trigger the ZUPT measurement [8],
[23]. Here we basically follow these ideas and monitor the
magnitude of the acceleration vector, which is sensed by the
accelerometer triad. If the signal remains within a thresh-
old interval around earth acceleration for a certain time in-
terval ZUPTs are triggered until the threshold condition is
violated.

3.3 THE STEP SENSOR

The inertial filter is used to process the high rate inertial
measurements. To exploit them in a further main fusion fil-
ter a (virtual) step sensor is derived from the output of the
inertial filter, which provides a measure of the traveled dis-
tance and the change in heading for each step the pedestrian
makes, see Fig. 2. To provide the step measure the fol-
lowing operations need to be performed: Each time a new
ZUPT is triggered the expectation of the inertial filter x; is
stored in the variable x; =x;. Introducing the step displace-
ment variable Ax; = xy — Xy_; we may write for the
displacement with respect to the coordinate system of the
inertial filter

Axp = Xp—Xrp—1
ATy,
= (A\i/L ) ‘ )

As final step measure the displacement with respect to the

A

Ar: Distance travelled during step AT

AWV: Change of heading during step

Figure 2. The INS is used to calculate an estimate of the pedes-
trian’s step in the form of a foot displacement vector.

heading before the step is computed and we have

Axy = ( CT (v, )CT(V_1)Atg ) |

A, “4)

with
c= () ) B

The average heading misalignment of the inertial sensor plat-
form with respect to the pedestrian’s heading is given by the
angle W, which has to be fixed initially.

4 JOINT SENSOR DATA FUSION
The objective in our system is now to integrate the WLAN-
fingerprinting with the inertial step-sensor. This is done

via a main integration filter, in which we keep track of the
pedestrians position r; and her heading ¥j. The overall
signal processing is illustrated in Figure 3. The state vector
can thus be written as

xk:(;’;). ©)

To alleviate the incorporation of the step-sensor we further-
more consider the change in position Ary and the change
in heading AW, per each step the pedestrian makes through
the step measure

Ax), = ( AA‘;’; > . (7)

4.1 MOVEMENT MODEL

The movement model is used to characterize the temporal
evolution of the state xy, in order to reflect the physical con-
straints that are imposed on the movement of a pedestrian.
In particular in an indoor environment this may include also
any restrictions which are imposed by the building layout.
The benefit of this approach was shown in [26], [27]. Nev-
ertheless in our application scenario the building layout is
not known. Hence formally, the new state x; is assumed
to depend only on the previous state x;_1, the current step-
measure Ax;, and a noise term n,:

Xk = f(xkr—la AXk, 1’15) ) (8)

where we have chosen that the new location and heading
depend on the past state and on the step-measure through

ry = Tp_1+C(¥y_1)Ary +n,, , )
Uy = Y1 +A¥V, +n,0 , (10)

where C(WU_1) is the rotation matrix given in (5). The
noise processes n, = [n! . 1, ¢]” and g, = [ng4,n5,]"
are zero-mean uncorrelated Gaussian noise processes of vari-
ance 02 ., 02 . and aiq, respectively, which are adjusted to
reflect the uncertainty of the step-measure.

4.2 MEASUREMENT MODEL

The position estimate obtained by the WLAN fingerprinting
filter is used as an position measurement zj, in the main in-
tegration filter and is assumed to depend only on the current
state X;, and a noise term na:

z, = h(xg,ny) . an
In particular we assume
Zp =Tk + Dy, 12)

withn,, = [Ny 4, nwyy]T being zero-mean uncorrelated Gaus-
sian noise. The respective variances O'?U’m and ofj’y are ad-

justed to reflect the uncertainty of the WLAN-fingerprinting-
based position estimate.

4.3 FILTER DESIGN

Since we do not make use of the building layout or further
sensors there is no need to incorporate any further nonlin-
ear constraints than the one given by (9). But this relation
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is rather moderate with respect to nonlinarity and thus an
Extended Kalman filter (EKF) [30] is adequate to imple-
ment our main integration filter, in particular as all relevant
noise sources are Gaussian. We may now follow straighfor-
ward the well known implementation of the EKF: Given the
initial mean xg = X and the associated intial covariance
P, = P, we compute at each filter iteration in the pre-
diction step recusively the parameters of the Gaussian prior
PDF, which are mean

X, = f(Xk—1,A%x;,0) , (13)
and covariance

P, = &P 1@ + Qs , (14)
where the Jacobian of the system dynamics is given by
Of (Xp—1, Ax, 0)

(P =
* axk_l Xp—1=Xp—1
1 0 a1
= 0 1 go . (15)
0 0 1
The terms g; and go are the respective elements of the vector
g=C'(¥y_1)Ary , (16)

where the derivative of the rotation matrix is
_de(w)

C'(V) 10

a7

In the subsequent update step the parameters of the Gaus-
sian posterior PDF are computed recursively at each itera-
tion. The posterior mean computes with

Xp = )A(; + Ky (Zk — h(f(,;,())) s (18)
and the posterior covariance with
P, =(1I-KH,)P, , (19)
where the Kalman gain is given by
K, = P H{ (HP HY + Ry) ™ (20)
with the Jacobian of the measurement equation
H, 8hg(;_, 0)
Xe o lxp=x;
1 00
- ( 0 1 0 ) ' @D
For the other matrices we have
Ry = diag([ o5, o, ]), (22)
Qr = diag([ 02, of, ol ]) . (23)

5 IMPLEMENTATION AND EVALUATION

5.1 TEST ENVIRONMENT

To test the presented system, we chose an university build-
ing. It is equipped with eleven WiFi access points on one
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Figure 5. Example PDFs of One Calibration Point for Different Access Points

floor as can be seen (black dots) in Fig. 4, for public in-
ternet access, as well as for research purposes in the labs.
Detection of different offices and rooms was expected to be
fairly easy by WiFi fingerprinting as infrastructure (in par-
ticular walls) should produce a significantly different finger-
print than in other rooms. So we concentrated for testing on
a circular walk (4 laps) in the hallway. We were provided
with a floor plan whose coordinates in pixels were used as
absolute position with a known conversion factor to meters.

E
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H X Access Point
r

Figure 4. Floor plan of the test building with eleven Access Points
(black crosses) and 17 reference points (grey dots)

Fingerprinting calibration points were taken approx-
imately every 2.5 m and were in the corridor, with signal
strength readings being taken once per second. Measure-
ments were taken by holding a laptop at a fixed height (ap-
prox. 1.2 m), with slight motion to build up a PDF over a
small region. A sample size of 60 was used for each cal-
ibration point. At each point, a minimum of three access
points are always recorded. An example of the output for
a single calibration point for three particular access points

can be seen in Fig. 5. The calibration point was defined by
clicking on a floor plan to designate the physical location.

For the evaluation we defined 17 reference points on
the floor plan and marked them on the floor of the building,
which were followed then precisely.

5.2 IMPLEMENTATION
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Figure 6. Visualisation of recorded track

The implementation of the positioning system was re-
alised in the three separate part systems we explained in the
last sections and installed on two laptops. They commu-
nicated in Client-Server mode as both sensor connections
were implemented in C while the higher level Kalman filter
was implemented in Java, as well as a visualisation ap-
plication. Laptop 1, with a Windows OS (for driver rea-
sons), implemented the INS connection and the low level
filter and the client part of the connection. Laptop 2 was
running Linux with two wireless network cards for the Fin-
gerprinting part. One network card was used for scanning
to ensure consistent results during the training stage, and
to allow channel hopping without disrupting network com-
munications. A second wireless card was used to send real



time location updates to other displays for live presentation
of data. Furthermore, Laptop 2 had the connection server
implemented in Java, which fed the Kalman filter with the
newest measurements. The fusion filter, after calculating a
new position, stores it in a file and passes it in addition to
the visualisation application, also on Laptop 2. Its output
can be seen in Fig. 6. To reduce network related delays,
both laptops were connected by an ethernet cable through-
out the walk.

In order to be able to evaluate properly the data, all
data together with their timestamp (in milliseconds) were
recorded. Raw INS output on Laptop 1, input (from finger-
printing and low level filter) and output of the sensor fusion
on Laptop 2. During the test walk furthermore we recorded
the timestamps when we passed the reference points marked
on the floor. Those data were used then for the evaluation
presented in the following subsection.

5.3 EVALUATION
Evaluation goals were to:

e determine the accuracy of the WLAN standalone ap-
proach in our configuration,

e determine the accuracy of the fused position
e compare both approaches.

To evaluate the gathered data, we compared the pedestrian’s
position calculated with WLAN and the fused position at
one point in time with the known, absolute position at that
moment. Our measure for the accuracy was the absolute
distance (line of sight) of the calculated position to the ref-
erence point in meters. Fig. 5.3 (left) shows those results
for each of the 49 recorded points. Results for WLAN stan-
dalone are presented by the dashed line, the fused position
error is shown with the complete line. It is obvious that the
fused result is influenced strongly by the WLAN result, in
particular with regards to the fingerprinting “errors”, when
wrong sample points were identified as current position and
hence the error was particularly high. From both techniques
we calculated the arithmetic mean error for our test track:

e 3.1777 meters for pure WLAN fingerprinting

e 1.6468 meters for the fusion of fingerprinting and shoe
data.

All in all the fused result is more stable than the fingerprint-
ing approach: the INS is preventing big jumps that are pos-
sible with pure fingerprinting. Using INS alone would lead
to significant drift over time with increasing errors. There-
fore it is not a sensible stand alone approach and therefore
not evaluated specifically. On the other side fingerprinting
partially provides very good results - when the absolute ref-
erence points were very close to correctly detected finger-
printing sample points. This can be also seen in the right
picture of Fig. 5.3, that shows the cumulative probability
distribution: Fingerprinting provides more than 20% of er-
rors below half a meter, but also 20% of errors over 4 meters
- which appear in the fused results only with a frequency
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Figure 7. Position error distribution over walking time (left) and
cumulative probability distribution (right)

below 5%. It can be seen that the majority of the calculated
errors of the fusion lie around one meter.

6 CONCLUSIONS

In this paper we have presented an indoor positioning sys-
tem for pedestrians combining WLAN fingerprinting with
foot mounted inertial and magnetometer sensors. The ap-
proach requires no processing outside of the local device
and minimal a-priori fingerprinting effort. We have em-
ployed a hierarchical Bayesian filtering approach using cas-
caded extended Kalman filters to achieve a real-time im-
plementation. The accuracy of the combined system was
quantitatively evaluated in a real building and shows that it
is much higher than that of the fingerprinting alone; in ad-
dition it also provides an estimate of the orientation of the
user.

Further work should focus on an extension to three
dimensions as well as investigating different building lay-
outs. Additionally, other sensors could be incorporated, as
well as information of the floor plan, as in [26, 9, 12], or
pseudorange measurements from GPS. Such additional in-



formation might mandate the use of other algorithms for the
upper fusion layer, such as Sequential Monte Carlo (SMC)
techniques (i.e. particle filters).

From a practical perspective, scheduling of the WLAN
fingerprinting receiver triggered by the estimator could save
required power usage, and an investigation of the tradeoff
between different densities of fingerprinting and accuracy
could guide the necessary calibration effort. Also, WLAN
base stations are sometimes relocated, and the radio propa-
gation may change, after calibration. An approach that uses
the current estimate of users’ positions to perform incremen-
tal adaptation of the fingerprinting could in future address
these issues. It will also be valuable to gauge how much the
fingerprinting effort can be reduced while still maintaining
reliable positioning.
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