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ABSTRACT: Simplified climate models can be used to calculate and to compare temperature re-
sponse contributions from small forcings without the need for considerable computer resources. A 
linear climate response model using Green’s functions has been formulated to calculate radiative 
forcing (RF) and the global mean temperature response from aviation. The model, LinClim, can 
calculate aviation RF for CO2, O3, CH4, water vapour, contrails, sulphate and black carbon aerosols. 
From these RFs, temperature responses may be calculated for individual effects in order to deter-
mine their relative importance by applying preliminary values for efficacies. The LinClim model is 
tuned to reproduce the dominant mode of its parent coupled atmosphere-ocean GCM, 
ECHAM4/OPYC3. LinClim is able to reproduce the IPCC (1999) 2050 aviation-related forcings. 
The model is shown through some example application analyses to be a useful tool for exploring 
the effects of aviation on RF and temperature response. 

1 INTRODUCTION 

Aircraft emissions may influence climate from a number of emissions and effects. These effects 
have been reviewed and assessed in the Intergovernmental Panel on Climate Change (IPCC) Spe-
cial Report ‘Aviation and the Global Atmosphere’ (IPCC, 1999). More recently, Sausen et al., 
(2005) gave an update to the IPCC results on the aviation's impact on climate by means of the met-
ric ‘radiative forcing of climate’. This metric has been adopted by the IPCC (IPCC, 1990) and the 
scientific community to assess different anthropogenic effects on climate. The RF concept has 
proven useful as there is an approximately linear relationship between the global mean radiative 
forcing (RF) and the associated equilibrium global mean surface temperature change (∆Ts), i.e.: 

FRTs λ≈Δ  , (1) 

where λ is the climate sensitivity parameter (unit K/Wm-2). For many years λ has been considered 
being a model constant, independent of the type of forcing. More recently, in a number of studies, it 
has been shown that λ is to some extent also dependent on the type of perturbation, in particular for 
non-homogeneously distributed climate change agents, e.g., aircraft-induced O3 perturbations (Han-
sen et al., 1997; Forster and Shine, 1997; Ponater et al., 1999; Joshi et al., 2003). This is sometimes 
denoted the ‘efficacy’ (Hansen et al., 2005) and is defined as: 

2/ COiir λλ=  , (2) 

where λi and λCO2 are the climate sensitivity parameters associated with perturbations of the climate 
change agent i and of CO2, respectively. Considering also the efficacy, eq. (1) modifies to 

FRrT COis 2λ≈Δ  . (3) 
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The ideal way to explore climate scenarios would be to perform simulations with general circula-
tion models (GCMs). However, GCMs are very complex and computationally demanding: a sce-
nario may need to be run (depending on the climate perturbation) for decades of simulation time 
taking processing time in the order of weeks to months on a high performance computer (in particu-
lar if chemistry is included). The necessity for long simulation periods arises from climate inertia 
effects and the requirement to separate signal from noise. For aircraft perturbations that are rela-
tively small, this is a particularly difficult problem. In order to overcome the high computational 
costs associated with determining environmental responses with GCMs, simplified climate response 
models may be used. Such models are generally tuned or parameterized to reproduce the main char-
acteristic responses of GCMs (such as the temporal evolution of the global mean near surface tem-
perature) and have been used extensively by the IPCC to explore the impacts of a large range of 
climate scenarios (IPCC, 2001). 

Sausen and Schumann (2000) (hereafter referred to as S&S 2000) demonstrated that some of the 
global mean environmental responses to particular engine technology development scenarios could 
be conveniently explored with a simple linear climate response model that was computationally ef-
ficient. This model went beyond RFs to compute temperature responses over various timescales. 
Using temperature response rather than RF allows an examination of the effects of ri by looking at 
the time-development of changes in ΔTs, and an assessment of the relative merits of abatement 
technologies in terms of climate protection. 

In this paper, a simplified climate response model, LinClim, which builds upon the approach of 
S&S (2000) is presented. The scope of the model has been expanded to include the full suite of 
aviation-specific effects identified by the IPCC (1999). These include RFs and temperature re-
sponse formulations for CO2, formation of O3 and CH4 destruction due to NOx, water vapour, con-
trails, sulphate, soot and indirect clouds. 

2 MODEL DESCRIPTION 

The modelling approach adopted was to calculate the emissions and subsequent concentrations of a 
climate gas, calculate its RF, and then to calculate the ΔTs due to the RF using a simplified climate 
response function. LinClim includes formulations which are consistent with either the IPCC (1999) 
or TRADEOFF (Sausen et al., 2005) data (denoted ‘99’ and ‘TO’, respectively). For methodologies 
that involves reference year scaling, the values may be obtained from various sources. 
2.1 Carbon dioxide (CO2) 
In order to calculate the full CO2 contribution to RF and temperature response, historical fuel and 
extrapolation out to 2100 were calculated using S&S (2000) methodology. Emissions of CO2 are 
then calculated using carbon mass fraction of 0.86 for aviation fuel (S&S 2000). The response of 
CO2 concentrations to an emissions rate is modelled using Hasselmann et al., (1997), which ap-
proximates to the results of the carbon cycle model of Maier-Reimer and Hasselmann (1987). 

The RF of a CO2 increase is dependent upon the reference concentration because of spectral 
saturation, such that in calculating the impacts of CO2 from aviation, it is necessary to know the 
‘background’ RF. Historical CO2 concentration data from 1800 until 1995, and thereafter until 2100 
from IPCC scenario IS92a (all natural and anthropogenic sources including aircraft emissions) were 
used as background (S&S 2000). The contribution of aviation CO2 concentrations are calculated 
explicitly, the concentration being assumed to be the difference between background and aviation 
concentrations. The RF of CO2 may then be calculated using the simplified expression adopted by 
IPCC (1997) or IPCC (2001). 
2.2 NOx-induced ozone (O3) and methane (CH4) 
The aviation O3 and CH4 RF methodology assumes that there is a linear relationship between avia-
tion NOx emissions and O3 (and indirect CH4) RF changes (IPCC, 1999), i.e.: 
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where Ea is the aircraft fuel burnt per year, and EINOx is the emissions index of nitrogen oxides per 
mass of fuel burnt. 
2.3 Water vapour (H2O) 
Similar to the calculation of aviation induced O3 and CH4, a simplified linear approach is taken for 
water vapour where the RF scales linearly with fuel use, i.e.: 
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2.4 Line-shaped contrails 
Contrails RF is assumed to scale with fuel burn and an additional factor, F, to account for the evolu-
tion of fleet and flight routes over time (IPCC, 1999) and F was then derived by scaling this RF 
value to the published values in IPCC (1999) for the years 2015 and 2050. Post 2050, F is assumed 
to be constant. The F values are summarized in Table 1. 

Table 1: Correction factor, F to account for fleet evolution and flight routes 

Year Technology 1 Technology 2 
1992 1.00 1.00 
2015 1.48 1.48 
2050 1.70 1.64 

2.5 Sulphate (SO4) and soot (BC) particles 
Aviation SO4 particle emissions were derived from the sulphur content of fuel, as in eq. (6), where 
ESO4 (t) is the aviation emissions at time t (Tg S), EISulphur is the emissions index 0.0004 kg S per kg 
fuel, β is the effective conversion factor from fuel-sulphur to optically active sulphate, following 
IPCC (1999), we adopt β = 50%. 

)()(4 tEEItE aSulphurSO ××= β  (6) 

Aviation soot (black carbon, BC) is calculated using eq. (7), where EBC (t) is the aviation emis-
sions at time t (Tg BC) and EIBC is the emissions index 0.00004 kg black carbon per kg fuel (IPCC, 
1999). 

)()( tEEItE aBCBC ×=  (7) 

RF for particles is scaled to the respective particle emissions and externally calculated RF. 
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2.6 Aviation-induced cirrus 
Similar to the water vapour RF calculation, it is assumed that RF of aviation-induced cirrus scales 
with fuel usage. However, due to the large uncertainties in aviation-induced cirrus calculation (c.f., 
Sausen et al., 2005; or Mannstein and Schumann, 2007), we refrain from including the contribution 
from this effect in the final results. 
2.7 Temperature response 
The temperature response approach was devised by Hasselmann et al., (1993) and has been widely 
used thereafter (e.g., Hasselmann et al., 1997; S&S 2000). The formulation presented by S&S 
(2000) has been rearranged to include the perturbation’s efficacy: 
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where ΔTi is the temperature response (K) due to perturbation i. ri is the associated efficacy, λCO2 is 
the CO2 climate sensitivity parameter (K/Wm-2) of the parent GCM, RFi is the associated radiative 
forcing (Wm-2). The revised Green’s function is )(ˆ tGT , τ  is the lifetime (e-folding time) of a tem-
perature perturbation (years). The current version of LinClim is tuned to reproduce the transient be-
haviour of the full-scale atmosphere ocean model ECHAM4/OPYC3 (Roeckner et al., 1999). The 
value of λCO2 is 0.64 K/Wm-2 and τ  is 37.4 years. The values for ri are summarized in Table 2. 

Table 2: Efficacies, ri 

Perturbation Reference ri (range) 
CO2, SO4, BC  1 
Aviation O3 Ponater et al., 2006 1.37 (1 – 2) 
CH4 Ponater et al., 2006 1.18 (1 – 1.2) 
H2O Ponater et al., 2006 1.14 
Contrails Ponater et al., 2006 0.59 

3 APPLICATION 

The aviation RF results from LinClim using the ‘99’ parameters (scaled to IPCC (1999) reference 
values parameters summarized in Table 3), denoted as LC-99, are presented in Table 4. The IPCC 
(1999) results are basically reproduced. The deviations in RFCO2 result from a slightly different CO2 
concentration. There were noticeable differences in the 1992 RFO3 and RFContrails. This is due to the 
difference in the 1992 fuel burnt in LinClim (165.1 Tg from S&S, 2000) and the IPCC (1999) 
(160.3 Tg). Small differences were yielded also for RFO3 and RFCH4 in future years. This is because 
the IPCC (1999) RFO3 and RFCH4 results were obtained from CTM runs, whereas the results from 
LC-99 were simply scaled to the NOx emissions. 

Table 3: Reference year (1992 and 2000) parameters used in the example applications 

Parameter Unit Reference values in 1992 
(used in LC-99) 

Reference values in 2000 
(used in LC-TO) 

Ea Tg/Yr 160.3* 169.0† 
ESO4 Tg S 0.032* 0.0338‡ 
EBC Tg BC 0.006* 0.0068‡ 
EI NOx g NO2/kg fuel 12.0* 12.7† 
RFO3 W/m2 0.023* 0.0219‡ 
RFCH4 W/m2 -0.014* -0.0104‡ 
RFH2O W/m2 0.0015* 0.0020‡ 
RFContrails W/m2 0.020* 0.0100‡ 
RFSO4 W/m2 -0.003* -0.0035‡ 
RFBC W/m2 0.003* 0.0025‡ 

*IPCC (1999), †Gauss et al. (2006), ‡Sausen et al. (2005). 

A second set of parameters from the TRADEOFF study (Sausen et al., 2005) were used to form 
an updated version of LinClim, denoted as LC-TO (Table 3). These updated results (see Table 4) 
show that the contribution of aviation RF is lower than in the previous assessments, both for 1992 
and for future scenarios. 

Figure 1 shows the total aviation RF (without aviation-induced cirrus) and the associated tem-
perature changes (with and without considering the efficacies) for scenario Fa1 calculated using 
LinClim with the TRADEOFF parameters (LC-TO). It is interesting to note the role of efficacies in 
the temperature prediction. Using an efficacy of 1 for all perturbations, the temperature response is 
approximately the same as the prediction including individual efficacy values for specific perturba-
tion (as listed in Table 2). By chance, the larger contributions from O3 and H2O are offset by the 
smaller contribution from contrails and the more negative contribution from CH4. However, by 
changing the efficacy of O3 to the lower (rO3 = 1) and upper (rO3 = 2) bounds, the temperature re-
sponse is 20% lower (rO3 = 1) or 33% higher (rO3 = 2) than the case where rO3 = 1.37 (as in Table 2) 
at 2100. This shows that the role of efficacies may become increasingly important in determining 
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the tradeoffs between different engine technology options, in particular with respect to NOx which 
causes component impacts of high efficacy. 

Table 4: RF comparison of LinClim with the IPCC (1999) parameters (LC-99) and with the TRADEOFF parameters 
(LC-TO). (Cont. = Contrails) 

Radiative forcing (W/m2) 
Scenario 

Data 
source 

CO2 
(ppmv) CO2 O3 CH4 H2O Cont. SO4 BC Total 

IPCC 1.0 0.018 0.023 -0.014 0.002 0.020 -0.003 0.003 0.049 
LC-99 1.3 0.022 0.024 -0.014 0.002 0.021 -0.003 0.003 0.054 

NASA-
1992 

LC-TO 1.3 0.019 0.020 -0.012 0.002 0.010 -0.003 0.002 0.038 
           

IPCC 2.5 0.038 0.040 -0.027 0.003 0.060 -0.006 0.006 0.114 
LC-99 2.8 0.044 0.052 -0.032 0.003 0.060 -0.006 0.006 0.128 

NASA-
2015 

LC-TO 2.8 0.038 0.044 -0.025 0.004 0.028 -0.007 0.005 0.087 
           

IPCC 6.0 0.074 0.060 -0.045 0.004 0.100 -0.009 0.009 0.193 
LC-99 6.3 0.080 0.086 -0.052 0.004 0.100 -0.009 0.009 0.218 

FESGa 
(tech1) 
2050 LC-TO 6.3 0.068 0.073 -0.044 0.006 0.047 -0.010 0.007 0.147 
           

IPCC 6.1 0.075 0.047 -0.035 0.005 0.100 -0.009 0.009 0.192 
LC-99 6.4 0.081 0.066 -0.040 0.005 0.100 -0.009 0.009 0.212 

FESGa 
(tech2) 
2050 LC-TO 6.4 0.069 0.057 -0.027 0.006 0.047 -0.010 0.007 0.149 

 

Figure 1: Aviation RF and associated temperature changes (with and without considering the efficacies) for 
scenario Fa1 

4 CONCLUSIONS AND FURTHER WORK 

The RF and temperature response results of the simple climate response model, LinClim, are pre-
sented. LinClim is able to predict the temperature response from the full suite of aviation perturba-
tions. The present day and future scenario RF results compared well with the published IPCC 
(1999) values. LinClim’s RF results are not intended to replace other RF estimates, but are rather 
used to describe the contribution of individual impact components to the total aviation effect for 
transient emission scenarios. In future work the model will be applied more extensively to various 
technology and growth scenarios to understand the role of aviation and by how technology im-
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provements may be best targeted. Moreover, the model will also be useful in exploring more appro-
priate climate metrics than RF for policy applications. 
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